1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/IteratedDominanceFrontier.h" 17 #include "llvm/Analysis/MemorySSA.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include <algorithm> 28 29 #define DEBUG_TYPE "memoryssa" 30 using namespace llvm; 31 32 // This is the marker algorithm from "Simple and Efficient Construction of 33 // Static Single Assignment Form" 34 // The simple, non-marker algorithm places phi nodes at any join 35 // Here, we place markers, and only place phi nodes if they end up necessary. 36 // They are only necessary if they break a cycle (IE we recursively visit 37 // ourselves again), or we discover, while getting the value of the operands, 38 // that there are two or more definitions needing to be merged. 39 // This still will leave non-minimal form in the case of irreducible control 40 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 42 BasicBlock *BB, 43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 44 // First, do a cache lookup. Without this cache, certain CFG structures 45 // (like a series of if statements) take exponential time to visit. 46 auto Cached = CachedPreviousDef.find(BB); 47 if (Cached != CachedPreviousDef.end()) { 48 return Cached->second; 49 } 50 51 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 52 // Single predecessor case, just recurse, we can only have one definition. 53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 54 CachedPreviousDef.insert({BB, Result}); 55 return Result; 56 } 57 58 if (VisitedBlocks.count(BB)) { 59 // We hit our node again, meaning we had a cycle, we must insert a phi 60 // node to break it so we have an operand. The only case this will 61 // insert useless phis is if we have irreducible control flow. 62 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 63 CachedPreviousDef.insert({BB, Result}); 64 return Result; 65 } 66 67 if (VisitedBlocks.insert(BB).second) { 68 // Mark us visited so we can detect a cycle 69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 70 71 // Recurse to get the values in our predecessors for placement of a 72 // potential phi node. This will insert phi nodes if we cycle in order to 73 // break the cycle and have an operand. 74 for (auto *Pred : predecessors(BB)) 75 if (MSSA->DT->isReachableFromEntry(Pred)) 76 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); 77 else 78 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 79 80 // Now try to simplify the ops to avoid placing a phi. 81 // This may return null if we never created a phi yet, that's okay 82 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 83 84 // See if we can avoid the phi by simplifying it. 85 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 86 // If we couldn't simplify, we may have to create a phi 87 if (Result == Phi) { 88 if (!Phi) 89 Phi = MSSA->createMemoryPhi(BB); 90 91 // See if the existing phi operands match what we need. 92 // Unlike normal SSA, we only allow one phi node per block, so we can't just 93 // create a new one. 94 if (Phi->getNumOperands() != 0) { 95 // FIXME: Figure out whether this is dead code and if so remove it. 96 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 97 // These will have been filled in by the recursive read we did above. 98 llvm::copy(PhiOps, Phi->op_begin()); 99 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 100 } 101 } else { 102 unsigned i = 0; 103 for (auto *Pred : predecessors(BB)) 104 Phi->addIncoming(&*PhiOps[i++], Pred); 105 InsertedPHIs.push_back(Phi); 106 } 107 Result = Phi; 108 } 109 110 // Set ourselves up for the next variable by resetting visited state. 111 VisitedBlocks.erase(BB); 112 CachedPreviousDef.insert({BB, Result}); 113 return Result; 114 } 115 llvm_unreachable("Should have hit one of the three cases above"); 116 } 117 118 // This starts at the memory access, and goes backwards in the block to find the 119 // previous definition. If a definition is not found the block of the access, 120 // it continues globally, creating phi nodes to ensure we have a single 121 // definition. 122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 123 if (auto *LocalResult = getPreviousDefInBlock(MA)) 124 return LocalResult; 125 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 126 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 127 } 128 129 // This starts at the memory access, and goes backwards in the block to the find 130 // the previous definition. If the definition is not found in the block of the 131 // access, it returns nullptr. 132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 133 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 134 135 // It's possible there are no defs, or we got handed the first def to start. 136 if (Defs) { 137 // If this is a def, we can just use the def iterators. 138 if (!isa<MemoryUse>(MA)) { 139 auto Iter = MA->getReverseDefsIterator(); 140 ++Iter; 141 if (Iter != Defs->rend()) 142 return &*Iter; 143 } else { 144 // Otherwise, have to walk the all access iterator. 145 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 146 for (auto &U : make_range(++MA->getReverseIterator(), End)) 147 if (!isa<MemoryUse>(U)) 148 return cast<MemoryAccess>(&U); 149 // Note that if MA comes before Defs->begin(), we won't hit a def. 150 return nullptr; 151 } 152 } 153 return nullptr; 154 } 155 156 // This starts at the end of block 157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 158 BasicBlock *BB, 159 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 160 auto *Defs = MSSA->getWritableBlockDefs(BB); 161 162 if (Defs) { 163 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 164 return &*Defs->rbegin(); 165 } 166 167 return getPreviousDefRecursive(BB, CachedPreviousDef); 168 } 169 // Recurse over a set of phi uses to eliminate the trivial ones 170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 171 if (!Phi) 172 return nullptr; 173 TrackingVH<MemoryAccess> Res(Phi); 174 SmallVector<TrackingVH<Value>, 8> Uses; 175 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 176 for (auto &U : Uses) { 177 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { 178 auto OperRange = UsePhi->operands(); 179 tryRemoveTrivialPhi(UsePhi, OperRange); 180 } 181 } 182 return Res; 183 } 184 185 // Eliminate trivial phis 186 // Phis are trivial if they are defined either by themselves, or all the same 187 // argument. 188 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 189 // We recursively try to remove them. 190 template <class RangeType> 191 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 192 RangeType &Operands) { 193 // Bail out on non-opt Phis. 194 if (NonOptPhis.count(Phi)) 195 return Phi; 196 197 // Detect equal or self arguments 198 MemoryAccess *Same = nullptr; 199 for (auto &Op : Operands) { 200 // If the same or self, good so far 201 if (Op == Phi || Op == Same) 202 continue; 203 // not the same, return the phi since it's not eliminatable by us 204 if (Same) 205 return Phi; 206 Same = cast<MemoryAccess>(&*Op); 207 } 208 // Never found a non-self reference, the phi is undef 209 if (Same == nullptr) 210 return MSSA->getLiveOnEntryDef(); 211 if (Phi) { 212 Phi->replaceAllUsesWith(Same); 213 removeMemoryAccess(Phi); 214 } 215 216 // We should only end up recursing in case we replaced something, in which 217 // case, we may have made other Phis trivial. 218 return recursePhi(Same); 219 } 220 221 void MemorySSAUpdater::insertUse(MemoryUse *MU) { 222 InsertedPHIs.clear(); 223 MU->setDefiningAccess(getPreviousDef(MU)); 224 // Unlike for defs, there is no extra work to do. Because uses do not create 225 // new may-defs, there are only two cases: 226 // 227 // 1. There was a def already below us, and therefore, we should not have 228 // created a phi node because it was already needed for the def. 229 // 230 // 2. There is no def below us, and therefore, there is no extra renaming work 231 // to do. 232 } 233 234 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 235 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 236 MemoryAccess *NewDef) { 237 // Replace any operand with us an incoming block with the new defining 238 // access. 239 int i = MP->getBasicBlockIndex(BB); 240 assert(i != -1 && "Should have found the basic block in the phi"); 241 // We can't just compare i against getNumOperands since one is signed and the 242 // other not. So use it to index into the block iterator. 243 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 244 ++BBIter) { 245 if (*BBIter != BB) 246 break; 247 MP->setIncomingValue(i, NewDef); 248 ++i; 249 } 250 } 251 252 // A brief description of the algorithm: 253 // First, we compute what should define the new def, using the SSA 254 // construction algorithm. 255 // Then, we update the defs below us (and any new phi nodes) in the graph to 256 // point to the correct new defs, to ensure we only have one variable, and no 257 // disconnected stores. 258 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 259 InsertedPHIs.clear(); 260 261 // See if we had a local def, and if not, go hunting. 262 MemoryAccess *DefBefore = getPreviousDef(MD); 263 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); 264 265 // There is a def before us, which means we can replace any store/phi uses 266 // of that thing with us, since we are in the way of whatever was there 267 // before. 268 // We now define that def's memorydefs and memoryphis 269 if (DefBeforeSameBlock) { 270 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) { 271 // Leave the MemoryUses alone. 272 // Also make sure we skip ourselves to avoid self references. 273 User *Usr = U.getUser(); 274 return !isa<MemoryUse>(Usr) && Usr != MD; 275 // Defs are automatically unoptimized when the user is set to MD below, 276 // because the isOptimized() call will fail to find the same ID. 277 }); 278 } 279 280 // and that def is now our defining access. 281 MD->setDefiningAccess(DefBefore); 282 283 // Remember the index where we may insert new phis below. 284 unsigned NewPhiIndex = InsertedPHIs.size(); 285 286 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 287 if (!DefBeforeSameBlock) { 288 // If there was a local def before us, we must have the same effect it 289 // did. Because every may-def is the same, any phis/etc we would create, it 290 // would also have created. If there was no local def before us, we 291 // performed a global update, and have to search all successors and make 292 // sure we update the first def in each of them (following all paths until 293 // we hit the first def along each path). This may also insert phi nodes. 294 // TODO: There are other cases we can skip this work, such as when we have a 295 // single successor, and only used a straight line of single pred blocks 296 // backwards to find the def. To make that work, we'd have to track whether 297 // getDefRecursive only ever used the single predecessor case. These types 298 // of paths also only exist in between CFG simplifications. 299 300 // If this is the first def in the block and this insert is in an arbitrary 301 // place, compute IDF and place phis. 302 auto Iter = MD->getDefsIterator(); 303 ++Iter; 304 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 305 if (Iter == IterEnd) { 306 ForwardIDFCalculator IDFs(*MSSA->DT); 307 SmallVector<BasicBlock *, 32> IDFBlocks; 308 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 309 DefiningBlocks.insert(MD->getBlock()); 310 IDFs.setDefiningBlocks(DefiningBlocks); 311 IDFs.calculate(IDFBlocks); 312 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 313 for (auto *BBIDF : IDFBlocks) 314 if (!MSSA->getMemoryAccess(BBIDF)) { 315 auto *MPhi = MSSA->createMemoryPhi(BBIDF); 316 NewInsertedPHIs.push_back(MPhi); 317 // Add the phis created into the IDF blocks to NonOptPhis, so they are 318 // not optimized out as trivial by the call to getPreviousDefFromEnd 319 // below. Once they are complete, all these Phis are added to the 320 // FixupList, and removed from NonOptPhis inside fixupDefs(). 321 NonOptPhis.insert(MPhi); 322 } 323 324 for (auto &MPhi : NewInsertedPHIs) { 325 auto *BBIDF = MPhi->getBlock(); 326 for (auto *Pred : predecessors(BBIDF)) { 327 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 328 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), 329 Pred); 330 } 331 } 332 333 // Re-take the index where we're adding the new phis, because the above 334 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 335 NewPhiIndex = InsertedPHIs.size(); 336 for (auto &MPhi : NewInsertedPHIs) { 337 InsertedPHIs.push_back(&*MPhi); 338 FixupList.push_back(&*MPhi); 339 } 340 } 341 342 FixupList.push_back(MD); 343 } 344 345 // Remember the index where we stopped inserting new phis above, since the 346 // fixupDefs call in the loop below may insert more, that are already minimal. 347 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 348 349 while (!FixupList.empty()) { 350 unsigned StartingPHISize = InsertedPHIs.size(); 351 fixupDefs(FixupList); 352 FixupList.clear(); 353 // Put any new phis on the fixup list, and process them 354 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 355 } 356 357 // Optimize potentially non-minimal phis added in this method. 358 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 359 if (NewPhiSize) 360 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 361 362 // Now that all fixups are done, rename all uses if we are asked. 363 if (RenameUses) { 364 SmallPtrSet<BasicBlock *, 16> Visited; 365 BasicBlock *StartBlock = MD->getBlock(); 366 // We are guaranteed there is a def in the block, because we just got it 367 // handed to us in this function. 368 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 369 // Convert to incoming value if it's a memorydef. A phi *is* already an 370 // incoming value. 371 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 372 FirstDef = MD->getDefiningAccess(); 373 374 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 375 // We just inserted a phi into this block, so the incoming value will become 376 // the phi anyway, so it does not matter what we pass. 377 for (auto &MP : InsertedPHIs) { 378 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 379 if (Phi) 380 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 381 } 382 } 383 } 384 385 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 386 SmallPtrSet<const BasicBlock *, 8> Seen; 387 SmallVector<const BasicBlock *, 16> Worklist; 388 for (auto &Var : Vars) { 389 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 390 if (!NewDef) 391 continue; 392 // First, see if there is a local def after the operand. 393 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 394 auto DefIter = NewDef->getDefsIterator(); 395 396 // The temporary Phi is being fixed, unmark it for not to optimize. 397 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 398 NonOptPhis.erase(Phi); 399 400 // If there is a local def after us, we only have to rename that. 401 if (++DefIter != Defs->end()) { 402 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 403 continue; 404 } 405 406 // Otherwise, we need to search down through the CFG. 407 // For each of our successors, handle it directly if their is a phi, or 408 // place on the fixup worklist. 409 for (const auto *S : successors(NewDef->getBlock())) { 410 if (auto *MP = MSSA->getMemoryAccess(S)) 411 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 412 else 413 Worklist.push_back(S); 414 } 415 416 while (!Worklist.empty()) { 417 const BasicBlock *FixupBlock = Worklist.back(); 418 Worklist.pop_back(); 419 420 // Get the first def in the block that isn't a phi node. 421 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 422 auto *FirstDef = &*Defs->begin(); 423 // The loop above and below should have taken care of phi nodes 424 assert(!isa<MemoryPhi>(FirstDef) && 425 "Should have already handled phi nodes!"); 426 // We are now this def's defining access, make sure we actually dominate 427 // it 428 assert(MSSA->dominates(NewDef, FirstDef) && 429 "Should have dominated the new access"); 430 431 // This may insert new phi nodes, because we are not guaranteed the 432 // block we are processing has a single pred, and depending where the 433 // store was inserted, it may require phi nodes below it. 434 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 435 return; 436 } 437 // We didn't find a def, so we must continue. 438 for (const auto *S : successors(FixupBlock)) { 439 // If there is a phi node, handle it. 440 // Otherwise, put the block on the worklist 441 if (auto *MP = MSSA->getMemoryAccess(S)) 442 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 443 else { 444 // If we cycle, we should have ended up at a phi node that we already 445 // processed. FIXME: Double check this 446 if (!Seen.insert(S).second) 447 continue; 448 Worklist.push_back(S); 449 } 450 } 451 } 452 } 453 } 454 455 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 456 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 457 MPhi->unorderedDeleteIncomingBlock(From); 458 if (MPhi->getNumIncomingValues() == 1) 459 removeMemoryAccess(MPhi); 460 } 461 } 462 463 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 464 const BasicBlock *To) { 465 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 466 bool Found = false; 467 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 468 if (From != B) 469 return false; 470 if (Found) 471 return true; 472 Found = true; 473 return false; 474 }); 475 if (MPhi->getNumIncomingValues() == 1) 476 removeMemoryAccess(MPhi); 477 } 478 } 479 480 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA, 481 const ValueToValueMapTy &VMap, 482 PhiToDefMap &MPhiMap, 483 bool CloneWasSimplified, 484 MemorySSA *MSSA) { 485 MemoryAccess *InsnDefining = MA; 486 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) { 487 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 488 Instruction *DefMUDI = DefMUD->getMemoryInst(); 489 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 490 if (Instruction *NewDefMUDI = 491 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) { 492 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 493 if (!CloneWasSimplified) 494 assert(InsnDefining && "Defining instruction cannot be nullptr."); 495 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) { 496 // The clone was simplified, it's no longer a MemoryDef, look up. 497 auto DefIt = DefMUD->getDefsIterator(); 498 // Since simplified clones only occur in single block cloning, a 499 // previous definition must exist, otherwise NewDefMUDI would not 500 // have been found in VMap. 501 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() && 502 "Previous def must exist"); 503 InsnDefining = getNewDefiningAccessForClone( 504 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA); 505 } 506 } 507 } 508 } else { 509 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 510 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 511 InsnDefining = NewDefPhi; 512 } 513 assert(InsnDefining && "Defining instruction cannot be nullptr."); 514 return InsnDefining; 515 } 516 517 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 518 const ValueToValueMapTy &VMap, 519 PhiToDefMap &MPhiMap, 520 bool CloneWasSimplified) { 521 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 522 if (!Acc) 523 return; 524 for (const MemoryAccess &MA : *Acc) { 525 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 526 Instruction *Insn = MUD->getMemoryInst(); 527 // Entry does not exist if the clone of the block did not clone all 528 // instructions. This occurs in LoopRotate when cloning instructions 529 // from the old header to the old preheader. The cloned instruction may 530 // also be a simplified Value, not an Instruction (see LoopRotate). 531 // Also in LoopRotate, even when it's an instruction, due to it being 532 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 533 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 534 if (Instruction *NewInsn = 535 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 536 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 537 NewInsn, 538 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap, 539 MPhiMap, CloneWasSimplified, MSSA), 540 /*Template=*/CloneWasSimplified ? nullptr : MUD, 541 /*CreationMustSucceed=*/CloneWasSimplified ? false : true); 542 if (NewUseOrDef) 543 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 544 } 545 } 546 } 547 } 548 549 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 550 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 551 auto *MPhi = MSSA->getMemoryAccess(Header); 552 if (!MPhi) 553 return; 554 555 // Create phi node in the backedge block and populate it with the same 556 // incoming values as MPhi. Skip incoming values coming from Preheader. 557 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 558 bool HasUniqueIncomingValue = true; 559 MemoryAccess *UniqueValue = nullptr; 560 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 561 BasicBlock *IBB = MPhi->getIncomingBlock(I); 562 MemoryAccess *IV = MPhi->getIncomingValue(I); 563 if (IBB != Preheader) { 564 NewMPhi->addIncoming(IV, IBB); 565 if (HasUniqueIncomingValue) { 566 if (!UniqueValue) 567 UniqueValue = IV; 568 else if (UniqueValue != IV) 569 HasUniqueIncomingValue = false; 570 } 571 } 572 } 573 574 // Update incoming edges into MPhi. Remove all but the incoming edge from 575 // Preheader. Add an edge from NewMPhi 576 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 577 MPhi->setIncomingValue(0, AccFromPreheader); 578 MPhi->setIncomingBlock(0, Preheader); 579 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 580 MPhi->unorderedDeleteIncoming(I); 581 MPhi->addIncoming(NewMPhi, BEBlock); 582 583 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 584 // replaced with the unique value. 585 if (HasUniqueIncomingValue) 586 removeMemoryAccess(NewMPhi); 587 } 588 589 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 590 ArrayRef<BasicBlock *> ExitBlocks, 591 const ValueToValueMapTy &VMap, 592 bool IgnoreIncomingWithNoClones) { 593 PhiToDefMap MPhiMap; 594 595 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 596 assert(Phi && NewPhi && "Invalid Phi nodes."); 597 BasicBlock *NewPhiBB = NewPhi->getBlock(); 598 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 599 pred_end(NewPhiBB)); 600 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 601 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 602 BasicBlock *IncBB = Phi->getIncomingBlock(It); 603 604 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 605 IncBB = NewIncBB; 606 else if (IgnoreIncomingWithNoClones) 607 continue; 608 609 // Now we have IncBB, and will need to add incoming from it to NewPhi. 610 611 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 612 // NewPhiBB was cloned without that edge. 613 if (!NewPhiBBPreds.count(IncBB)) 614 continue; 615 616 // Determine incoming value and add it as incoming from IncBB. 617 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 618 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 619 Instruction *IncI = IncMUD->getMemoryInst(); 620 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 621 if (Instruction *NewIncI = 622 cast_or_null<Instruction>(VMap.lookup(IncI))) { 623 IncMUD = MSSA->getMemoryAccess(NewIncI); 624 assert(IncMUD && 625 "MemoryUseOrDef cannot be null, all preds processed."); 626 } 627 } 628 NewPhi->addIncoming(IncMUD, IncBB); 629 } else { 630 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 631 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 632 NewPhi->addIncoming(NewDefPhi, IncBB); 633 else 634 NewPhi->addIncoming(IncPhi, IncBB); 635 } 636 } 637 }; 638 639 auto ProcessBlock = [&](BasicBlock *BB) { 640 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 641 if (!NewBlock) 642 return; 643 644 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 645 "Cloned block should have no accesses"); 646 647 // Add MemoryPhi. 648 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 649 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 650 MPhiMap[MPhi] = NewPhi; 651 } 652 // Update Uses and Defs. 653 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 654 }; 655 656 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 657 ProcessBlock(BB); 658 659 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 660 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 661 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 662 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 663 } 664 665 void MemorySSAUpdater::updateForClonedBlockIntoPred( 666 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 667 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 668 // Since those defs/phis must have dominated BB, and also dominate P1. 669 // Defs from BB being used in BB will be replaced with the cloned defs from 670 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 671 // incoming def into the Phi from P1. 672 // Instructions cloned into the predecessor are in practice sometimes 673 // simplified, so disable the use of the template, and create an access from 674 // scratch. 675 PhiToDefMap MPhiMap; 676 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 677 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 678 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 679 } 680 681 template <typename Iter> 682 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 683 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 684 DominatorTree &DT) { 685 SmallVector<CFGUpdate, 4> Updates; 686 // Update/insert phis in all successors of exit blocks. 687 for (auto *Exit : ExitBlocks) 688 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 689 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 690 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 691 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 692 } 693 applyInsertUpdates(Updates, DT); 694 } 695 696 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 697 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 698 DominatorTree &DT) { 699 const ValueToValueMapTy *const Arr[] = {&VMap}; 700 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 701 std::end(Arr), DT); 702 } 703 704 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 705 ArrayRef<BasicBlock *> ExitBlocks, 706 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 707 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 708 return I.get(); 709 }; 710 using MappedIteratorType = 711 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 712 decltype(GetPtr)>; 713 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 714 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 715 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 716 } 717 718 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 719 DominatorTree &DT) { 720 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 721 SmallVector<CFGUpdate, 4> InsertUpdates; 722 for (auto &Update : Updates) { 723 if (Update.getKind() == DT.Insert) 724 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 725 else 726 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 727 } 728 729 if (!RevDeleteUpdates.empty()) { 730 // Update for inserted edges: use newDT and snapshot CFG as if deletes had 731 // not occurred. 732 // FIXME: This creates a new DT, so it's more expensive to do mix 733 // delete/inserts vs just inserts. We can do an incremental update on the DT 734 // to revert deletes, than re-delete the edges. Teaching DT to do this, is 735 // part of a pending cleanup. 736 DominatorTree NewDT(DT, RevDeleteUpdates); 737 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 738 applyInsertUpdates(InsertUpdates, NewDT, &GD); 739 } else { 740 GraphDiff<BasicBlock *> GD; 741 applyInsertUpdates(InsertUpdates, DT, &GD); 742 } 743 744 // Update for deleted edges 745 for (auto &Update : RevDeleteUpdates) 746 removeEdge(Update.getFrom(), Update.getTo()); 747 } 748 749 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 750 DominatorTree &DT) { 751 GraphDiff<BasicBlock *> GD; 752 applyInsertUpdates(Updates, DT, &GD); 753 } 754 755 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 756 DominatorTree &DT, 757 const GraphDiff<BasicBlock *> *GD) { 758 // Get recursive last Def, assuming well formed MSSA and updated DT. 759 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 760 while (true) { 761 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 762 // Return last Def or Phi in BB, if it exists. 763 if (Defs) 764 return &*(--Defs->end()); 765 766 // Check number of predecessors, we only care if there's more than one. 767 unsigned Count = 0; 768 BasicBlock *Pred = nullptr; 769 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 770 Pred = Pair.second; 771 Count++; 772 if (Count == 2) 773 break; 774 } 775 776 // If BB has multiple predecessors, get last definition from IDom. 777 if (Count != 1) { 778 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 779 // DT is invalidated. Return LoE as its last def. This will be added to 780 // MemoryPhi node, and later deleted when the block is deleted. 781 if (!DT.getNode(BB)) 782 return MSSA->getLiveOnEntryDef(); 783 if (auto *IDom = DT.getNode(BB)->getIDom()) 784 if (IDom->getBlock() != BB) { 785 BB = IDom->getBlock(); 786 continue; 787 } 788 return MSSA->getLiveOnEntryDef(); 789 } else { 790 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 791 assert(Count == 1 && Pred && "Single predecessor expected."); 792 BB = Pred; 793 } 794 }; 795 llvm_unreachable("Unable to get last definition."); 796 }; 797 798 // Get nearest IDom given a set of blocks. 799 // TODO: this can be optimized by starting the search at the node with the 800 // lowest level (highest in the tree). 801 auto FindNearestCommonDominator = 802 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 803 BasicBlock *PrevIDom = *BBSet.begin(); 804 for (auto *BB : BBSet) 805 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 806 return PrevIDom; 807 }; 808 809 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 810 // include CurrIDom. 811 auto GetNoLongerDomBlocks = 812 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 813 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 814 if (PrevIDom == CurrIDom) 815 return; 816 BlocksPrevDom.push_back(PrevIDom); 817 BasicBlock *NextIDom = PrevIDom; 818 while (BasicBlock *UpIDom = 819 DT.getNode(NextIDom)->getIDom()->getBlock()) { 820 if (UpIDom == CurrIDom) 821 break; 822 BlocksPrevDom.push_back(UpIDom); 823 NextIDom = UpIDom; 824 } 825 }; 826 827 // Map a BB to its predecessors: added + previously existing. To get a 828 // deterministic order, store predecessors as SetVectors. The order in each 829 // will be defined by the order in Updates (fixed) and the order given by 830 // children<> (also fixed). Since we further iterate over these ordered sets, 831 // we lose the information of multiple edges possibly existing between two 832 // blocks, so we'll keep and EdgeCount map for that. 833 // An alternate implementation could keep unordered set for the predecessors, 834 // traverse either Updates or children<> each time to get the deterministic 835 // order, and drop the usage of EdgeCount. This alternate approach would still 836 // require querying the maps for each predecessor, and children<> call has 837 // additional computation inside for creating the snapshot-graph predecessors. 838 // As such, we favor using a little additional storage and less compute time. 839 // This decision can be revisited if we find the alternative more favorable. 840 841 struct PredInfo { 842 SmallSetVector<BasicBlock *, 2> Added; 843 SmallSetVector<BasicBlock *, 2> Prev; 844 }; 845 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 846 847 for (auto &Edge : Updates) { 848 BasicBlock *BB = Edge.getTo(); 849 auto &AddedBlockSet = PredMap[BB].Added; 850 AddedBlockSet.insert(Edge.getFrom()); 851 } 852 853 // Store all existing predecessor for each BB, at least one must exist. 854 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 855 SmallPtrSet<BasicBlock *, 2> NewBlocks; 856 for (auto &BBPredPair : PredMap) { 857 auto *BB = BBPredPair.first; 858 const auto &AddedBlockSet = BBPredPair.second.Added; 859 auto &PrevBlockSet = BBPredPair.second.Prev; 860 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 861 BasicBlock *Pi = Pair.second; 862 if (!AddedBlockSet.count(Pi)) 863 PrevBlockSet.insert(Pi); 864 EdgeCountMap[{Pi, BB}]++; 865 } 866 867 if (PrevBlockSet.empty()) { 868 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 869 LLVM_DEBUG( 870 dbgs() 871 << "Adding a predecessor to a block with no predecessors. " 872 "This must be an edge added to a new, likely cloned, block. " 873 "Its memory accesses must be already correct, assuming completed " 874 "via the updateExitBlocksForClonedLoop API. " 875 "Assert a single such edge is added so no phi addition or " 876 "additional processing is required.\n"); 877 assert(AddedBlockSet.size() == 1 && 878 "Can only handle adding one predecessor to a new block."); 879 // Need to remove new blocks from PredMap. Remove below to not invalidate 880 // iterator here. 881 NewBlocks.insert(BB); 882 } 883 } 884 // Nothing to process for new/cloned blocks. 885 for (auto *BB : NewBlocks) 886 PredMap.erase(BB); 887 888 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 889 SmallVector<WeakVH, 8> InsertedPhis; 890 891 // First create MemoryPhis in all blocks that don't have one. Create in the 892 // order found in Updates, not in PredMap, to get deterministic numbering. 893 for (auto &Edge : Updates) { 894 BasicBlock *BB = Edge.getTo(); 895 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 896 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 897 } 898 899 // Now we'll fill in the MemoryPhis with the right incoming values. 900 for (auto &BBPredPair : PredMap) { 901 auto *BB = BBPredPair.first; 902 const auto &PrevBlockSet = BBPredPair.second.Prev; 903 const auto &AddedBlockSet = BBPredPair.second.Added; 904 assert(!PrevBlockSet.empty() && 905 "At least one previous predecessor must exist."); 906 907 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 908 // keeping this map before the loop. We can reuse already populated entries 909 // if an edge is added from the same predecessor to two different blocks, 910 // and this does happen in rotate. Note that the map needs to be updated 911 // when deleting non-necessary phis below, if the phi is in the map by 912 // replacing the value with DefP1. 913 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 914 for (auto *AddedPred : AddedBlockSet) { 915 auto *DefPn = GetLastDef(AddedPred); 916 assert(DefPn != nullptr && "Unable to find last definition."); 917 LastDefAddedPred[AddedPred] = DefPn; 918 } 919 920 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 921 // If Phi is not empty, add an incoming edge from each added pred. Must 922 // still compute blocks with defs to replace for this block below. 923 if (NewPhi->getNumOperands()) { 924 for (auto *Pred : AddedBlockSet) { 925 auto *LastDefForPred = LastDefAddedPred[Pred]; 926 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 927 NewPhi->addIncoming(LastDefForPred, Pred); 928 } 929 } else { 930 // Pick any existing predecessor and get its definition. All other 931 // existing predecessors should have the same one, since no phi existed. 932 auto *P1 = *PrevBlockSet.begin(); 933 MemoryAccess *DefP1 = GetLastDef(P1); 934 935 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 936 // nothing to add. 937 bool InsertPhi = false; 938 for (auto LastDefPredPair : LastDefAddedPred) 939 if (DefP1 != LastDefPredPair.second) { 940 InsertPhi = true; 941 break; 942 } 943 if (!InsertPhi) { 944 // Since NewPhi may be used in other newly added Phis, replace all uses 945 // of NewPhi with the definition coming from all predecessors (DefP1), 946 // before deleting it. 947 NewPhi->replaceAllUsesWith(DefP1); 948 removeMemoryAccess(NewPhi); 949 continue; 950 } 951 952 // Update Phi with new values for new predecessors and old value for all 953 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 954 // sets, the order of entries in NewPhi is deterministic. 955 for (auto *Pred : AddedBlockSet) { 956 auto *LastDefForPred = LastDefAddedPred[Pred]; 957 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 958 NewPhi->addIncoming(LastDefForPred, Pred); 959 } 960 for (auto *Pred : PrevBlockSet) 961 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 962 NewPhi->addIncoming(DefP1, Pred); 963 } 964 965 // Get all blocks that used to dominate BB and no longer do after adding 966 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 967 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 968 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 969 assert(PrevIDom && "Previous IDom should exists"); 970 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 971 assert(NewIDom && "BB should have a new valid idom"); 972 assert(DT.dominates(NewIDom, PrevIDom) && 973 "New idom should dominate old idom"); 974 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 975 } 976 977 tryRemoveTrivialPhis(InsertedPhis); 978 // Create the set of blocks that now have a definition. We'll use this to 979 // compute IDF and add Phis there next. 980 SmallVector<BasicBlock *, 8> BlocksToProcess; 981 for (auto &VH : InsertedPhis) 982 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 983 BlocksToProcess.push_back(MPhi->getBlock()); 984 985 // Compute IDF and add Phis in all IDF blocks that do not have one. 986 SmallVector<BasicBlock *, 32> IDFBlocks; 987 if (!BlocksToProcess.empty()) { 988 ForwardIDFCalculator IDFs(DT, GD); 989 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 990 BlocksToProcess.end()); 991 IDFs.setDefiningBlocks(DefiningBlocks); 992 IDFs.calculate(IDFBlocks); 993 994 SmallSetVector<MemoryPhi *, 4> PhisToFill; 995 // First create all needed Phis. 996 for (auto *BBIDF : IDFBlocks) 997 if (!MSSA->getMemoryAccess(BBIDF)) { 998 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 999 InsertedPhis.push_back(IDFPhi); 1000 PhisToFill.insert(IDFPhi); 1001 } 1002 // Then update or insert their correct incoming values. 1003 for (auto *BBIDF : IDFBlocks) { 1004 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 1005 assert(IDFPhi && "Phi must exist"); 1006 if (!PhisToFill.count(IDFPhi)) { 1007 // Update existing Phi. 1008 // FIXME: some updates may be redundant, try to optimize and skip some. 1009 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 1010 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 1011 } else { 1012 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) { 1013 BasicBlock *Pi = Pair.second; 1014 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 1015 } 1016 } 1017 } 1018 } 1019 1020 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1021 // longer dominate, replace those with the closest dominating def. 1022 // This will also update optimized accesses, as they're also uses. 1023 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1024 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1025 for (auto &DefToReplaceUses : *DefsList) { 1026 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1027 Value::use_iterator UI = DefToReplaceUses.use_begin(), 1028 E = DefToReplaceUses.use_end(); 1029 for (; UI != E;) { 1030 Use &U = *UI; 1031 ++UI; 1032 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser()); 1033 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1034 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1035 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1036 U.set(GetLastDef(DominatedBlock)); 1037 } else { 1038 BasicBlock *DominatedBlock = Usr->getBlock(); 1039 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1040 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1041 U.set(DomBlPhi); 1042 else { 1043 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1044 assert(IDom && "Block must have a valid IDom."); 1045 U.set(GetLastDef(IDom->getBlock())); 1046 } 1047 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1048 } 1049 } 1050 } 1051 } 1052 } 1053 } 1054 tryRemoveTrivialPhis(InsertedPhis); 1055 } 1056 1057 // Move What before Where in the MemorySSA IR. 1058 template <class WhereType> 1059 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1060 WhereType Where) { 1061 // Mark MemoryPhi users of What not to be optimized. 1062 for (auto *U : What->users()) 1063 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1064 NonOptPhis.insert(PhiUser); 1065 1066 // Replace all our users with our defining access. 1067 What->replaceAllUsesWith(What->getDefiningAccess()); 1068 1069 // Let MemorySSA take care of moving it around in the lists. 1070 MSSA->moveTo(What, BB, Where); 1071 1072 // Now reinsert it into the IR and do whatever fixups needed. 1073 if (auto *MD = dyn_cast<MemoryDef>(What)) 1074 insertDef(MD, true); 1075 else 1076 insertUse(cast<MemoryUse>(What)); 1077 1078 // Clear dangling pointers. We added all MemoryPhi users, but not all 1079 // of them are removed by fixupDefs(). 1080 NonOptPhis.clear(); 1081 } 1082 1083 // Move What before Where in the MemorySSA IR. 1084 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1085 moveTo(What, Where->getBlock(), Where->getIterator()); 1086 } 1087 1088 // Move What after Where in the MemorySSA IR. 1089 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1090 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1091 } 1092 1093 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1094 MemorySSA::InsertionPlace Where) { 1095 return moveTo(What, BB, Where); 1096 } 1097 1098 // All accesses in To used to be in From. Move to end and update access lists. 1099 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1100 Instruction *Start) { 1101 1102 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1103 if (!Accs) 1104 return; 1105 1106 MemoryAccess *FirstInNew = nullptr; 1107 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1108 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1109 break; 1110 if (!FirstInNew) 1111 return; 1112 1113 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1114 do { 1115 auto NextIt = ++MUD->getIterator(); 1116 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1117 ? nullptr 1118 : cast<MemoryUseOrDef>(&*NextIt); 1119 MSSA->moveTo(MUD, To, MemorySSA::End); 1120 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to 1121 // retrieve it again. 1122 Accs = MSSA->getWritableBlockAccesses(From); 1123 MUD = NextMUD; 1124 } while (MUD); 1125 } 1126 1127 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1128 BasicBlock *To, 1129 Instruction *Start) { 1130 assert(MSSA->getBlockAccesses(To) == nullptr && 1131 "To block is expected to be free of MemoryAccesses."); 1132 moveAllAccesses(From, To, Start); 1133 for (BasicBlock *Succ : successors(To)) 1134 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1135 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1136 } 1137 1138 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1139 Instruction *Start) { 1140 assert(From->getSinglePredecessor() == To && 1141 "From block is expected to have a single predecessor (To)."); 1142 moveAllAccesses(From, To, Start); 1143 for (BasicBlock *Succ : successors(From)) 1144 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1145 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1146 } 1147 1148 /// If all arguments of a MemoryPHI are defined by the same incoming 1149 /// argument, return that argument. 1150 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 1151 MemoryAccess *MA = nullptr; 1152 1153 for (auto &Arg : MP->operands()) { 1154 if (!MA) 1155 MA = cast<MemoryAccess>(Arg); 1156 else if (MA != Arg) 1157 return nullptr; 1158 } 1159 return MA; 1160 } 1161 1162 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1163 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1164 bool IdenticalEdgesWereMerged) { 1165 assert(!MSSA->getWritableBlockAccesses(New) && 1166 "Access list should be null for a new block."); 1167 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1168 if (!Phi) 1169 return; 1170 if (Old->hasNPredecessors(1)) { 1171 assert(pred_size(New) == Preds.size() && 1172 "Should have moved all predecessors."); 1173 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1174 } else { 1175 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1176 "new immediate predecessor."); 1177 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1178 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1179 // Currently only support the case of removing a single incoming edge when 1180 // identical edges were not merged. 1181 if (!IdenticalEdgesWereMerged) 1182 assert(PredsSet.size() == Preds.size() && 1183 "If identical edges were not merged, we cannot have duplicate " 1184 "blocks in the predecessors"); 1185 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1186 if (PredsSet.count(B)) { 1187 NewPhi->addIncoming(MA, B); 1188 if (!IdenticalEdgesWereMerged) 1189 PredsSet.erase(B); 1190 return true; 1191 } 1192 return false; 1193 }); 1194 Phi->addIncoming(NewPhi, New); 1195 if (onlySingleValue(NewPhi)) 1196 removeMemoryAccess(NewPhi); 1197 } 1198 } 1199 1200 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1201 assert(!MSSA->isLiveOnEntryDef(MA) && 1202 "Trying to remove the live on entry def"); 1203 // We can only delete phi nodes if they have no uses, or we can replace all 1204 // uses with a single definition. 1205 MemoryAccess *NewDefTarget = nullptr; 1206 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1207 // Note that it is sufficient to know that all edges of the phi node have 1208 // the same argument. If they do, by the definition of dominance frontiers 1209 // (which we used to place this phi), that argument must dominate this phi, 1210 // and thus, must dominate the phi's uses, and so we will not hit the assert 1211 // below. 1212 NewDefTarget = onlySingleValue(MP); 1213 assert((NewDefTarget || MP->use_empty()) && 1214 "We can't delete this memory phi"); 1215 } else { 1216 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1217 } 1218 1219 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1220 1221 // Re-point the uses at our defining access 1222 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1223 // Reset optimized on users of this store, and reset the uses. 1224 // A few notes: 1225 // 1. This is a slightly modified version of RAUW to avoid walking the 1226 // uses twice here. 1227 // 2. If we wanted to be complete, we would have to reset the optimized 1228 // flags on users of phi nodes if doing the below makes a phi node have all 1229 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1230 // phi nodes, because doing it here would be N^3. 1231 if (MA->hasValueHandle()) 1232 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1233 // Note: We assume MemorySSA is not used in metadata since it's not really 1234 // part of the IR. 1235 1236 while (!MA->use_empty()) { 1237 Use &U = *MA->use_begin(); 1238 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1239 MUD->resetOptimized(); 1240 if (OptimizePhis) 1241 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1242 PhisToCheck.insert(MP); 1243 U.set(NewDefTarget); 1244 } 1245 } 1246 1247 // The call below to erase will destroy MA, so we can't change the order we 1248 // are doing things here 1249 MSSA->removeFromLookups(MA); 1250 MSSA->removeFromLists(MA); 1251 1252 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1253 if (!PhisToCheck.empty()) { 1254 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1255 PhisToCheck.end()}; 1256 PhisToCheck.clear(); 1257 1258 unsigned PhisSize = PhisToOptimize.size(); 1259 while (PhisSize-- > 0) 1260 if (MemoryPhi *MP = 1261 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) { 1262 auto OperRange = MP->operands(); 1263 tryRemoveTrivialPhi(MP, OperRange); 1264 } 1265 } 1266 } 1267 1268 void MemorySSAUpdater::removeBlocks( 1269 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1270 // First delete all uses of BB in MemoryPhis. 1271 for (BasicBlock *BB : DeadBlocks) { 1272 Instruction *TI = BB->getTerminator(); 1273 assert(TI && "Basic block expected to have a terminator instruction"); 1274 for (BasicBlock *Succ : successors(TI)) 1275 if (!DeadBlocks.count(Succ)) 1276 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1277 MP->unorderedDeleteIncomingBlock(BB); 1278 if (MP->getNumIncomingValues() == 1) 1279 removeMemoryAccess(MP); 1280 } 1281 // Drop all references of all accesses in BB 1282 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1283 for (MemoryAccess &MA : *Acc) 1284 MA.dropAllReferences(); 1285 } 1286 1287 // Next, delete all memory accesses in each block 1288 for (BasicBlock *BB : DeadBlocks) { 1289 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1290 if (!Acc) 1291 continue; 1292 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1293 MemoryAccess *MA = &*AB; 1294 ++AB; 1295 MSSA->removeFromLookups(MA); 1296 MSSA->removeFromLists(MA); 1297 } 1298 } 1299 } 1300 1301 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1302 for (auto &VH : UpdatedPHIs) 1303 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) { 1304 auto OperRange = MPhi->operands(); 1305 tryRemoveTrivialPhi(MPhi, OperRange); 1306 } 1307 } 1308 1309 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1310 const BasicBlock *BB = I->getParent(); 1311 // Remove memory accesses in BB for I and all following instructions. 1312 auto BBI = I->getIterator(), BBE = BB->end(); 1313 // FIXME: If this becomes too expensive, iterate until the first instruction 1314 // with a memory access, then iterate over MemoryAccesses. 1315 while (BBI != BBE) 1316 removeMemoryAccess(&*(BBI++)); 1317 // Update phis in BB's successors to remove BB. 1318 SmallVector<WeakVH, 16> UpdatedPHIs; 1319 for (const BasicBlock *Successor : successors(BB)) { 1320 removeDuplicatePhiEdgesBetween(BB, Successor); 1321 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1322 MPhi->unorderedDeleteIncomingBlock(BB); 1323 UpdatedPHIs.push_back(MPhi); 1324 } 1325 } 1326 // Optimize trivial phis. 1327 tryRemoveTrivialPhis(UpdatedPHIs); 1328 } 1329 1330 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, 1331 const BasicBlock *To) { 1332 const BasicBlock *BB = BI->getParent(); 1333 SmallVector<WeakVH, 16> UpdatedPHIs; 1334 for (const BasicBlock *Succ : successors(BB)) { 1335 removeDuplicatePhiEdgesBetween(BB, Succ); 1336 if (Succ != To) 1337 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { 1338 MPhi->unorderedDeleteIncomingBlock(BB); 1339 UpdatedPHIs.push_back(MPhi); 1340 } 1341 } 1342 // Optimize trivial phis. 1343 tryRemoveTrivialPhis(UpdatedPHIs); 1344 } 1345 1346 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1347 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1348 MemorySSA::InsertionPlace Point) { 1349 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1350 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1351 return NewAccess; 1352 } 1353 1354 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1355 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1356 assert(I->getParent() == InsertPt->getBlock() && 1357 "New and old access must be in the same block"); 1358 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1359 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1360 InsertPt->getIterator()); 1361 return NewAccess; 1362 } 1363 1364 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1365 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1366 assert(I->getParent() == InsertPt->getBlock() && 1367 "New and old access must be in the same block"); 1368 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1369 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1370 ++InsertPt->getIterator()); 1371 return NewAccess; 1372 } 1373