1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
28 
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
31 
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42     BasicBlock *BB,
43     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44   // First, do a cache lookup. Without this cache, certain CFG structures
45   // (like a series of if statements) take exponential time to visit.
46   auto Cached = CachedPreviousDef.find(BB);
47   if (Cached != CachedPreviousDef.end()) {
48     return Cached->second;
49   }
50 
51   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
52     // Single predecessor case, just recurse, we can only have one definition.
53     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
54     CachedPreviousDef.insert({BB, Result});
55     return Result;
56   }
57 
58   if (VisitedBlocks.count(BB)) {
59     // We hit our node again, meaning we had a cycle, we must insert a phi
60     // node to break it so we have an operand. The only case this will
61     // insert useless phis is if we have irreducible control flow.
62     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
63     CachedPreviousDef.insert({BB, Result});
64     return Result;
65   }
66 
67   if (VisitedBlocks.insert(BB).second) {
68     // Mark us visited so we can detect a cycle
69     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
70 
71     // Recurse to get the values in our predecessors for placement of a
72     // potential phi node. This will insert phi nodes if we cycle in order to
73     // break the cycle and have an operand.
74     for (auto *Pred : predecessors(BB))
75       if (MSSA->DT->isReachableFromEntry(Pred))
76         PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
77       else
78         PhiOps.push_back(MSSA->getLiveOnEntryDef());
79 
80     // Now try to simplify the ops to avoid placing a phi.
81     // This may return null if we never created a phi yet, that's okay
82     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
83 
84     // See if we can avoid the phi by simplifying it.
85     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
86     // If we couldn't simplify, we may have to create a phi
87     if (Result == Phi) {
88       if (!Phi)
89         Phi = MSSA->createMemoryPhi(BB);
90 
91       // See if the existing phi operands match what we need.
92       // Unlike normal SSA, we only allow one phi node per block, so we can't just
93       // create a new one.
94       if (Phi->getNumOperands() != 0) {
95         // FIXME: Figure out whether this is dead code and if so remove it.
96         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
97           // These will have been filled in by the recursive read we did above.
98           llvm::copy(PhiOps, Phi->op_begin());
99           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
100         }
101       } else {
102         unsigned i = 0;
103         for (auto *Pred : predecessors(BB))
104           Phi->addIncoming(&*PhiOps[i++], Pred);
105         InsertedPHIs.push_back(Phi);
106       }
107       Result = Phi;
108     }
109 
110     // Set ourselves up for the next variable by resetting visited state.
111     VisitedBlocks.erase(BB);
112     CachedPreviousDef.insert({BB, Result});
113     return Result;
114   }
115   llvm_unreachable("Should have hit one of the three cases above");
116 }
117 
118 // This starts at the memory access, and goes backwards in the block to find the
119 // previous definition. If a definition is not found the block of the access,
120 // it continues globally, creating phi nodes to ensure we have a single
121 // definition.
122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
123   if (auto *LocalResult = getPreviousDefInBlock(MA))
124     return LocalResult;
125   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
126   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
127 }
128 
129 // This starts at the memory access, and goes backwards in the block to the find
130 // the previous definition. If the definition is not found in the block of the
131 // access, it returns nullptr.
132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
133   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
134 
135   // It's possible there are no defs, or we got handed the first def to start.
136   if (Defs) {
137     // If this is a def, we can just use the def iterators.
138     if (!isa<MemoryUse>(MA)) {
139       auto Iter = MA->getReverseDefsIterator();
140       ++Iter;
141       if (Iter != Defs->rend())
142         return &*Iter;
143     } else {
144       // Otherwise, have to walk the all access iterator.
145       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
146       for (auto &U : make_range(++MA->getReverseIterator(), End))
147         if (!isa<MemoryUse>(U))
148           return cast<MemoryAccess>(&U);
149       // Note that if MA comes before Defs->begin(), we won't hit a def.
150       return nullptr;
151     }
152   }
153   return nullptr;
154 }
155 
156 // This starts at the end of block
157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
158     BasicBlock *BB,
159     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
160   auto *Defs = MSSA->getWritableBlockDefs(BB);
161 
162   if (Defs) {
163     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
164     return &*Defs->rbegin();
165   }
166 
167   return getPreviousDefRecursive(BB, CachedPreviousDef);
168 }
169 // Recurse over a set of phi uses to eliminate the trivial ones
170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
171   if (!Phi)
172     return nullptr;
173   TrackingVH<MemoryAccess> Res(Phi);
174   SmallVector<TrackingVH<Value>, 8> Uses;
175   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
176   for (auto &U : Uses) {
177     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
178       auto OperRange = UsePhi->operands();
179       tryRemoveTrivialPhi(UsePhi, OperRange);
180     }
181   }
182   return Res;
183 }
184 
185 // Eliminate trivial phis
186 // Phis are trivial if they are defined either by themselves, or all the same
187 // argument.
188 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
189 // We recursively try to remove them.
190 template <class RangeType>
191 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
192                                                     RangeType &Operands) {
193   // Bail out on non-opt Phis.
194   if (NonOptPhis.count(Phi))
195     return Phi;
196 
197   // Detect equal or self arguments
198   MemoryAccess *Same = nullptr;
199   for (auto &Op : Operands) {
200     // If the same or self, good so far
201     if (Op == Phi || Op == Same)
202       continue;
203     // not the same, return the phi since it's not eliminatable by us
204     if (Same)
205       return Phi;
206     Same = cast<MemoryAccess>(&*Op);
207   }
208   // Never found a non-self reference, the phi is undef
209   if (Same == nullptr)
210     return MSSA->getLiveOnEntryDef();
211   if (Phi) {
212     Phi->replaceAllUsesWith(Same);
213     removeMemoryAccess(Phi);
214   }
215 
216   // We should only end up recursing in case we replaced something, in which
217   // case, we may have made other Phis trivial.
218   return recursePhi(Same);
219 }
220 
221 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
222   InsertedPHIs.clear();
223   MU->setDefiningAccess(getPreviousDef(MU));
224   // Unlike for defs, there is no extra work to do.  Because uses do not create
225   // new may-defs, there are only two cases:
226   //
227   // 1. There was a def already below us, and therefore, we should not have
228   // created a phi node because it was already needed for the def.
229   //
230   // 2. There is no def below us, and therefore, there is no extra renaming work
231   // to do.
232 }
233 
234 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
235 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
236                                       MemoryAccess *NewDef) {
237   // Replace any operand with us an incoming block with the new defining
238   // access.
239   int i = MP->getBasicBlockIndex(BB);
240   assert(i != -1 && "Should have found the basic block in the phi");
241   // We can't just compare i against getNumOperands since one is signed and the
242   // other not. So use it to index into the block iterator.
243   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
244        ++BBIter) {
245     if (*BBIter != BB)
246       break;
247     MP->setIncomingValue(i, NewDef);
248     ++i;
249   }
250 }
251 
252 // A brief description of the algorithm:
253 // First, we compute what should define the new def, using the SSA
254 // construction algorithm.
255 // Then, we update the defs below us (and any new phi nodes) in the graph to
256 // point to the correct new defs, to ensure we only have one variable, and no
257 // disconnected stores.
258 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
259   InsertedPHIs.clear();
260 
261   // See if we had a local def, and if not, go hunting.
262   MemoryAccess *DefBefore = getPreviousDef(MD);
263   bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
264 
265   // There is a def before us, which means we can replace any store/phi uses
266   // of that thing with us, since we are in the way of whatever was there
267   // before.
268   // We now define that def's memorydefs and memoryphis
269   if (DefBeforeSameBlock) {
270     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
271       // Leave the MemoryUses alone.
272       // Also make sure we skip ourselves to avoid self references.
273       User *Usr = U.getUser();
274       return !isa<MemoryUse>(Usr) && Usr != MD;
275       // Defs are automatically unoptimized when the user is set to MD below,
276       // because the isOptimized() call will fail to find the same ID.
277     });
278   }
279 
280   // and that def is now our defining access.
281   MD->setDefiningAccess(DefBefore);
282 
283   // Remember the index where we may insert new phis below.
284   unsigned NewPhiIndex = InsertedPHIs.size();
285 
286   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
287   if (!DefBeforeSameBlock) {
288     // If there was a local def before us, we must have the same effect it
289     // did. Because every may-def is the same, any phis/etc we would create, it
290     // would also have created.  If there was no local def before us, we
291     // performed a global update, and have to search all successors and make
292     // sure we update the first def in each of them (following all paths until
293     // we hit the first def along each path). This may also insert phi nodes.
294     // TODO: There are other cases we can skip this work, such as when we have a
295     // single successor, and only used a straight line of single pred blocks
296     // backwards to find the def.  To make that work, we'd have to track whether
297     // getDefRecursive only ever used the single predecessor case.  These types
298     // of paths also only exist in between CFG simplifications.
299 
300     // If this is the first def in the block and this insert is in an arbitrary
301     // place, compute IDF and place phis.
302     auto Iter = MD->getDefsIterator();
303     ++Iter;
304     auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
305     if (Iter == IterEnd) {
306       ForwardIDFCalculator IDFs(*MSSA->DT);
307       SmallVector<BasicBlock *, 32> IDFBlocks;
308       SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
309       DefiningBlocks.insert(MD->getBlock());
310       IDFs.setDefiningBlocks(DefiningBlocks);
311       IDFs.calculate(IDFBlocks);
312       SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
313       for (auto *BBIDF : IDFBlocks)
314         if (!MSSA->getMemoryAccess(BBIDF)) {
315           auto *MPhi = MSSA->createMemoryPhi(BBIDF);
316           NewInsertedPHIs.push_back(MPhi);
317           // Add the phis created into the IDF blocks to NonOptPhis, so they are
318           // not optimized out as trivial by the call to getPreviousDefFromEnd
319           // below. Once they are complete, all these Phis are added to the
320           // FixupList, and removed from NonOptPhis inside fixupDefs().
321           NonOptPhis.insert(MPhi);
322         }
323 
324       for (auto &MPhi : NewInsertedPHIs) {
325         auto *BBIDF = MPhi->getBlock();
326         for (auto *Pred : predecessors(BBIDF)) {
327           DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
328           MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef),
329                             Pred);
330         }
331       }
332 
333       // Re-take the index where we're adding the new phis, because the above
334       // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
335       NewPhiIndex = InsertedPHIs.size();
336       for (auto &MPhi : NewInsertedPHIs) {
337         InsertedPHIs.push_back(&*MPhi);
338         FixupList.push_back(&*MPhi);
339       }
340     }
341 
342     FixupList.push_back(MD);
343   }
344 
345   // Remember the index where we stopped inserting new phis above, since the
346   // fixupDefs call in the loop below may insert more, that are already minimal.
347   unsigned NewPhiIndexEnd = InsertedPHIs.size();
348 
349   while (!FixupList.empty()) {
350     unsigned StartingPHISize = InsertedPHIs.size();
351     fixupDefs(FixupList);
352     FixupList.clear();
353     // Put any new phis on the fixup list, and process them
354     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
355   }
356 
357   // Optimize potentially non-minimal phis added in this method.
358   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
359   if (NewPhiSize)
360     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
361 
362   // Now that all fixups are done, rename all uses if we are asked.
363   if (RenameUses) {
364     SmallPtrSet<BasicBlock *, 16> Visited;
365     BasicBlock *StartBlock = MD->getBlock();
366     // We are guaranteed there is a def in the block, because we just got it
367     // handed to us in this function.
368     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
369     // Convert to incoming value if it's a memorydef. A phi *is* already an
370     // incoming value.
371     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
372       FirstDef = MD->getDefiningAccess();
373 
374     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
375     // We just inserted a phi into this block, so the incoming value will become
376     // the phi anyway, so it does not matter what we pass.
377     for (auto &MP : InsertedPHIs) {
378       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
379       if (Phi)
380         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
381     }
382   }
383 }
384 
385 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
386   SmallPtrSet<const BasicBlock *, 8> Seen;
387   SmallVector<const BasicBlock *, 16> Worklist;
388   for (auto &Var : Vars) {
389     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
390     if (!NewDef)
391       continue;
392     // First, see if there is a local def after the operand.
393     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
394     auto DefIter = NewDef->getDefsIterator();
395 
396     // The temporary Phi is being fixed, unmark it for not to optimize.
397     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
398       NonOptPhis.erase(Phi);
399 
400     // If there is a local def after us, we only have to rename that.
401     if (++DefIter != Defs->end()) {
402       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
403       continue;
404     }
405 
406     // Otherwise, we need to search down through the CFG.
407     // For each of our successors, handle it directly if their is a phi, or
408     // place on the fixup worklist.
409     for (const auto *S : successors(NewDef->getBlock())) {
410       if (auto *MP = MSSA->getMemoryAccess(S))
411         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
412       else
413         Worklist.push_back(S);
414     }
415 
416     while (!Worklist.empty()) {
417       const BasicBlock *FixupBlock = Worklist.back();
418       Worklist.pop_back();
419 
420       // Get the first def in the block that isn't a phi node.
421       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
422         auto *FirstDef = &*Defs->begin();
423         // The loop above and below should have taken care of phi nodes
424         assert(!isa<MemoryPhi>(FirstDef) &&
425                "Should have already handled phi nodes!");
426         // We are now this def's defining access, make sure we actually dominate
427         // it
428         assert(MSSA->dominates(NewDef, FirstDef) &&
429                "Should have dominated the new access");
430 
431         // This may insert new phi nodes, because we are not guaranteed the
432         // block we are processing has a single pred, and depending where the
433         // store was inserted, it may require phi nodes below it.
434         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
435         return;
436       }
437       // We didn't find a def, so we must continue.
438       for (const auto *S : successors(FixupBlock)) {
439         // If there is a phi node, handle it.
440         // Otherwise, put the block on the worklist
441         if (auto *MP = MSSA->getMemoryAccess(S))
442           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
443         else {
444           // If we cycle, we should have ended up at a phi node that we already
445           // processed.  FIXME: Double check this
446           if (!Seen.insert(S).second)
447             continue;
448           Worklist.push_back(S);
449         }
450       }
451     }
452   }
453 }
454 
455 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
456   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
457     MPhi->unorderedDeleteIncomingBlock(From);
458     if (MPhi->getNumIncomingValues() == 1)
459       removeMemoryAccess(MPhi);
460   }
461 }
462 
463 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
464                                                       const BasicBlock *To) {
465   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
466     bool Found = false;
467     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
468       if (From != B)
469         return false;
470       if (Found)
471         return true;
472       Found = true;
473       return false;
474     });
475     if (MPhi->getNumIncomingValues() == 1)
476       removeMemoryAccess(MPhi);
477   }
478 }
479 
480 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
481                                                   const ValueToValueMapTy &VMap,
482                                                   PhiToDefMap &MPhiMap,
483                                                   bool CloneWasSimplified,
484                                                   MemorySSA *MSSA) {
485   MemoryAccess *InsnDefining = MA;
486   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
487     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
488       Instruction *DefMUDI = DefMUD->getMemoryInst();
489       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
490       if (Instruction *NewDefMUDI =
491               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
492         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
493         if (!CloneWasSimplified)
494           assert(InsnDefining && "Defining instruction cannot be nullptr.");
495         else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
496           // The clone was simplified, it's no longer a MemoryDef, look up.
497           auto DefIt = DefMUD->getDefsIterator();
498           // Since simplified clones only occur in single block cloning, a
499           // previous definition must exist, otherwise NewDefMUDI would not
500           // have been found in VMap.
501           assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
502                  "Previous def must exist");
503           InsnDefining = getNewDefiningAccessForClone(
504               &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
505         }
506       }
507     }
508   } else {
509     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
510     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
511       InsnDefining = NewDefPhi;
512   }
513   assert(InsnDefining && "Defining instruction cannot be nullptr.");
514   return InsnDefining;
515 }
516 
517 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
518                                         const ValueToValueMapTy &VMap,
519                                         PhiToDefMap &MPhiMap,
520                                         bool CloneWasSimplified) {
521   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
522   if (!Acc)
523     return;
524   for (const MemoryAccess &MA : *Acc) {
525     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
526       Instruction *Insn = MUD->getMemoryInst();
527       // Entry does not exist if the clone of the block did not clone all
528       // instructions. This occurs in LoopRotate when cloning instructions
529       // from the old header to the old preheader. The cloned instruction may
530       // also be a simplified Value, not an Instruction (see LoopRotate).
531       // Also in LoopRotate, even when it's an instruction, due to it being
532       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
533       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
534       if (Instruction *NewInsn =
535               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
536         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
537             NewInsn,
538             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
539                                          MPhiMap, CloneWasSimplified, MSSA),
540             /*Template=*/CloneWasSimplified ? nullptr : MUD,
541             /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
542         if (NewUseOrDef)
543           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
544       }
545     }
546   }
547 }
548 
549 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
550     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
551   auto *MPhi = MSSA->getMemoryAccess(Header);
552   if (!MPhi)
553     return;
554 
555   // Create phi node in the backedge block and populate it with the same
556   // incoming values as MPhi. Skip incoming values coming from Preheader.
557   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
558   bool HasUniqueIncomingValue = true;
559   MemoryAccess *UniqueValue = nullptr;
560   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
561     BasicBlock *IBB = MPhi->getIncomingBlock(I);
562     MemoryAccess *IV = MPhi->getIncomingValue(I);
563     if (IBB != Preheader) {
564       NewMPhi->addIncoming(IV, IBB);
565       if (HasUniqueIncomingValue) {
566         if (!UniqueValue)
567           UniqueValue = IV;
568         else if (UniqueValue != IV)
569           HasUniqueIncomingValue = false;
570       }
571     }
572   }
573 
574   // Update incoming edges into MPhi. Remove all but the incoming edge from
575   // Preheader. Add an edge from NewMPhi
576   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
577   MPhi->setIncomingValue(0, AccFromPreheader);
578   MPhi->setIncomingBlock(0, Preheader);
579   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
580     MPhi->unorderedDeleteIncoming(I);
581   MPhi->addIncoming(NewMPhi, BEBlock);
582 
583   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
584   // replaced with the unique value.
585   if (HasUniqueIncomingValue)
586     removeMemoryAccess(NewMPhi);
587 }
588 
589 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
590                                            ArrayRef<BasicBlock *> ExitBlocks,
591                                            const ValueToValueMapTy &VMap,
592                                            bool IgnoreIncomingWithNoClones) {
593   PhiToDefMap MPhiMap;
594 
595   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
596     assert(Phi && NewPhi && "Invalid Phi nodes.");
597     BasicBlock *NewPhiBB = NewPhi->getBlock();
598     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
599                                                pred_end(NewPhiBB));
600     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
601       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
602       BasicBlock *IncBB = Phi->getIncomingBlock(It);
603 
604       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
605         IncBB = NewIncBB;
606       else if (IgnoreIncomingWithNoClones)
607         continue;
608 
609       // Now we have IncBB, and will need to add incoming from it to NewPhi.
610 
611       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
612       // NewPhiBB was cloned without that edge.
613       if (!NewPhiBBPreds.count(IncBB))
614         continue;
615 
616       // Determine incoming value and add it as incoming from IncBB.
617       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
618         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
619           Instruction *IncI = IncMUD->getMemoryInst();
620           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
621           if (Instruction *NewIncI =
622                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
623             IncMUD = MSSA->getMemoryAccess(NewIncI);
624             assert(IncMUD &&
625                    "MemoryUseOrDef cannot be null, all preds processed.");
626           }
627         }
628         NewPhi->addIncoming(IncMUD, IncBB);
629       } else {
630         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
631         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
632           NewPhi->addIncoming(NewDefPhi, IncBB);
633         else
634           NewPhi->addIncoming(IncPhi, IncBB);
635       }
636     }
637   };
638 
639   auto ProcessBlock = [&](BasicBlock *BB) {
640     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
641     if (!NewBlock)
642       return;
643 
644     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
645            "Cloned block should have no accesses");
646 
647     // Add MemoryPhi.
648     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
649       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
650       MPhiMap[MPhi] = NewPhi;
651     }
652     // Update Uses and Defs.
653     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
654   };
655 
656   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
657     ProcessBlock(BB);
658 
659   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
660     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
661       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
662         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
663 }
664 
665 void MemorySSAUpdater::updateForClonedBlockIntoPred(
666     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
667   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
668   // Since those defs/phis must have dominated BB, and also dominate P1.
669   // Defs from BB being used in BB will be replaced with the cloned defs from
670   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
671   // incoming def into the Phi from P1.
672   // Instructions cloned into the predecessor are in practice sometimes
673   // simplified, so disable the use of the template, and create an access from
674   // scratch.
675   PhiToDefMap MPhiMap;
676   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
677     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
678   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
679 }
680 
681 template <typename Iter>
682 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
683     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
684     DominatorTree &DT) {
685   SmallVector<CFGUpdate, 4> Updates;
686   // Update/insert phis in all successors of exit blocks.
687   for (auto *Exit : ExitBlocks)
688     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
689       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
690         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
691         Updates.push_back({DT.Insert, NewExit, ExitSucc});
692       }
693   applyInsertUpdates(Updates, DT);
694 }
695 
696 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
697     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
698     DominatorTree &DT) {
699   const ValueToValueMapTy *const Arr[] = {&VMap};
700   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
701                                        std::end(Arr), DT);
702 }
703 
704 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
705     ArrayRef<BasicBlock *> ExitBlocks,
706     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
707   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
708     return I.get();
709   };
710   using MappedIteratorType =
711       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
712                       decltype(GetPtr)>;
713   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
714   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
715   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
716 }
717 
718 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
719                                     DominatorTree &DT) {
720   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
721   SmallVector<CFGUpdate, 4> InsertUpdates;
722   for (auto &Update : Updates) {
723     if (Update.getKind() == DT.Insert)
724       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
725     else
726       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
727   }
728 
729   if (!RevDeleteUpdates.empty()) {
730     // Update for inserted edges: use newDT and snapshot CFG as if deletes had
731     // not occurred.
732     // FIXME: This creates a new DT, so it's more expensive to do mix
733     // delete/inserts vs just inserts. We can do an incremental update on the DT
734     // to revert deletes, than re-delete the edges. Teaching DT to do this, is
735     // part of a pending cleanup.
736     DominatorTree NewDT(DT, RevDeleteUpdates);
737     GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
738     applyInsertUpdates(InsertUpdates, NewDT, &GD);
739   } else {
740     GraphDiff<BasicBlock *> GD;
741     applyInsertUpdates(InsertUpdates, DT, &GD);
742   }
743 
744   // Update for deleted edges
745   for (auto &Update : RevDeleteUpdates)
746     removeEdge(Update.getFrom(), Update.getTo());
747 }
748 
749 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
750                                           DominatorTree &DT) {
751   GraphDiff<BasicBlock *> GD;
752   applyInsertUpdates(Updates, DT, &GD);
753 }
754 
755 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
756                                           DominatorTree &DT,
757                                           const GraphDiff<BasicBlock *> *GD) {
758   // Get recursive last Def, assuming well formed MSSA and updated DT.
759   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
760     while (true) {
761       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
762       // Return last Def or Phi in BB, if it exists.
763       if (Defs)
764         return &*(--Defs->end());
765 
766       // Check number of predecessors, we only care if there's more than one.
767       unsigned Count = 0;
768       BasicBlock *Pred = nullptr;
769       for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
770         Pred = Pair.second;
771         Count++;
772         if (Count == 2)
773           break;
774       }
775 
776       // If BB has multiple predecessors, get last definition from IDom.
777       if (Count != 1) {
778         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
779         // DT is invalidated. Return LoE as its last def. This will be added to
780         // MemoryPhi node, and later deleted when the block is deleted.
781         if (!DT.getNode(BB))
782           return MSSA->getLiveOnEntryDef();
783         if (auto *IDom = DT.getNode(BB)->getIDom())
784           if (IDom->getBlock() != BB) {
785             BB = IDom->getBlock();
786             continue;
787           }
788         return MSSA->getLiveOnEntryDef();
789       } else {
790         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
791         assert(Count == 1 && Pred && "Single predecessor expected.");
792         BB = Pred;
793       }
794     };
795     llvm_unreachable("Unable to get last definition.");
796   };
797 
798   // Get nearest IDom given a set of blocks.
799   // TODO: this can be optimized by starting the search at the node with the
800   // lowest level (highest in the tree).
801   auto FindNearestCommonDominator =
802       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
803     BasicBlock *PrevIDom = *BBSet.begin();
804     for (auto *BB : BBSet)
805       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
806     return PrevIDom;
807   };
808 
809   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
810   // include CurrIDom.
811   auto GetNoLongerDomBlocks =
812       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
813           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
814         if (PrevIDom == CurrIDom)
815           return;
816         BlocksPrevDom.push_back(PrevIDom);
817         BasicBlock *NextIDom = PrevIDom;
818         while (BasicBlock *UpIDom =
819                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
820           if (UpIDom == CurrIDom)
821             break;
822           BlocksPrevDom.push_back(UpIDom);
823           NextIDom = UpIDom;
824         }
825       };
826 
827   // Map a BB to its predecessors: added + previously existing. To get a
828   // deterministic order, store predecessors as SetVectors. The order in each
829   // will be defined by the order in Updates (fixed) and the order given by
830   // children<> (also fixed). Since we further iterate over these ordered sets,
831   // we lose the information of multiple edges possibly existing between two
832   // blocks, so we'll keep and EdgeCount map for that.
833   // An alternate implementation could keep unordered set for the predecessors,
834   // traverse either Updates or children<> each time to get  the deterministic
835   // order, and drop the usage of EdgeCount. This alternate approach would still
836   // require querying the maps for each predecessor, and children<> call has
837   // additional computation inside for creating the snapshot-graph predecessors.
838   // As such, we favor using a little additional storage and less compute time.
839   // This decision can be revisited if we find the alternative more favorable.
840 
841   struct PredInfo {
842     SmallSetVector<BasicBlock *, 2> Added;
843     SmallSetVector<BasicBlock *, 2> Prev;
844   };
845   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
846 
847   for (auto &Edge : Updates) {
848     BasicBlock *BB = Edge.getTo();
849     auto &AddedBlockSet = PredMap[BB].Added;
850     AddedBlockSet.insert(Edge.getFrom());
851   }
852 
853   // Store all existing predecessor for each BB, at least one must exist.
854   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
855   SmallPtrSet<BasicBlock *, 2> NewBlocks;
856   for (auto &BBPredPair : PredMap) {
857     auto *BB = BBPredPair.first;
858     const auto &AddedBlockSet = BBPredPair.second.Added;
859     auto &PrevBlockSet = BBPredPair.second.Prev;
860     for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
861       BasicBlock *Pi = Pair.second;
862       if (!AddedBlockSet.count(Pi))
863         PrevBlockSet.insert(Pi);
864       EdgeCountMap[{Pi, BB}]++;
865     }
866 
867     if (PrevBlockSet.empty()) {
868       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
869       LLVM_DEBUG(
870           dbgs()
871           << "Adding a predecessor to a block with no predecessors. "
872              "This must be an edge added to a new, likely cloned, block. "
873              "Its memory accesses must be already correct, assuming completed "
874              "via the updateExitBlocksForClonedLoop API. "
875              "Assert a single such edge is added so no phi addition or "
876              "additional processing is required.\n");
877       assert(AddedBlockSet.size() == 1 &&
878              "Can only handle adding one predecessor to a new block.");
879       // Need to remove new blocks from PredMap. Remove below to not invalidate
880       // iterator here.
881       NewBlocks.insert(BB);
882     }
883   }
884   // Nothing to process for new/cloned blocks.
885   for (auto *BB : NewBlocks)
886     PredMap.erase(BB);
887 
888   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
889   SmallVector<WeakVH, 8> InsertedPhis;
890 
891   // First create MemoryPhis in all blocks that don't have one. Create in the
892   // order found in Updates, not in PredMap, to get deterministic numbering.
893   for (auto &Edge : Updates) {
894     BasicBlock *BB = Edge.getTo();
895     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
896       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
897   }
898 
899   // Now we'll fill in the MemoryPhis with the right incoming values.
900   for (auto &BBPredPair : PredMap) {
901     auto *BB = BBPredPair.first;
902     const auto &PrevBlockSet = BBPredPair.second.Prev;
903     const auto &AddedBlockSet = BBPredPair.second.Added;
904     assert(!PrevBlockSet.empty() &&
905            "At least one previous predecessor must exist.");
906 
907     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
908     // keeping this map before the loop. We can reuse already populated entries
909     // if an edge is added from the same predecessor to two different blocks,
910     // and this does happen in rotate. Note that the map needs to be updated
911     // when deleting non-necessary phis below, if the phi is in the map by
912     // replacing the value with DefP1.
913     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
914     for (auto *AddedPred : AddedBlockSet) {
915       auto *DefPn = GetLastDef(AddedPred);
916       assert(DefPn != nullptr && "Unable to find last definition.");
917       LastDefAddedPred[AddedPred] = DefPn;
918     }
919 
920     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
921     // If Phi is not empty, add an incoming edge from each added pred. Must
922     // still compute blocks with defs to replace for this block below.
923     if (NewPhi->getNumOperands()) {
924       for (auto *Pred : AddedBlockSet) {
925         auto *LastDefForPred = LastDefAddedPred[Pred];
926         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
927           NewPhi->addIncoming(LastDefForPred, Pred);
928       }
929     } else {
930       // Pick any existing predecessor and get its definition. All other
931       // existing predecessors should have the same one, since no phi existed.
932       auto *P1 = *PrevBlockSet.begin();
933       MemoryAccess *DefP1 = GetLastDef(P1);
934 
935       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
936       // nothing to add.
937       bool InsertPhi = false;
938       for (auto LastDefPredPair : LastDefAddedPred)
939         if (DefP1 != LastDefPredPair.second) {
940           InsertPhi = true;
941           break;
942         }
943       if (!InsertPhi) {
944         // Since NewPhi may be used in other newly added Phis, replace all uses
945         // of NewPhi with the definition coming from all predecessors (DefP1),
946         // before deleting it.
947         NewPhi->replaceAllUsesWith(DefP1);
948         removeMemoryAccess(NewPhi);
949         continue;
950       }
951 
952       // Update Phi with new values for new predecessors and old value for all
953       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
954       // sets, the order of entries in NewPhi is deterministic.
955       for (auto *Pred : AddedBlockSet) {
956         auto *LastDefForPred = LastDefAddedPred[Pred];
957         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
958           NewPhi->addIncoming(LastDefForPred, Pred);
959       }
960       for (auto *Pred : PrevBlockSet)
961         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
962           NewPhi->addIncoming(DefP1, Pred);
963     }
964 
965     // Get all blocks that used to dominate BB and no longer do after adding
966     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
967     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
968     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
969     assert(PrevIDom && "Previous IDom should exists");
970     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
971     assert(NewIDom && "BB should have a new valid idom");
972     assert(DT.dominates(NewIDom, PrevIDom) &&
973            "New idom should dominate old idom");
974     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
975   }
976 
977   tryRemoveTrivialPhis(InsertedPhis);
978   // Create the set of blocks that now have a definition. We'll use this to
979   // compute IDF and add Phis there next.
980   SmallVector<BasicBlock *, 8> BlocksToProcess;
981   for (auto &VH : InsertedPhis)
982     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
983       BlocksToProcess.push_back(MPhi->getBlock());
984 
985   // Compute IDF and add Phis in all IDF blocks that do not have one.
986   SmallVector<BasicBlock *, 32> IDFBlocks;
987   if (!BlocksToProcess.empty()) {
988     ForwardIDFCalculator IDFs(DT, GD);
989     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
990                                                  BlocksToProcess.end());
991     IDFs.setDefiningBlocks(DefiningBlocks);
992     IDFs.calculate(IDFBlocks);
993 
994     SmallSetVector<MemoryPhi *, 4> PhisToFill;
995     // First create all needed Phis.
996     for (auto *BBIDF : IDFBlocks)
997       if (!MSSA->getMemoryAccess(BBIDF)) {
998         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
999         InsertedPhis.push_back(IDFPhi);
1000         PhisToFill.insert(IDFPhi);
1001       }
1002     // Then update or insert their correct incoming values.
1003     for (auto *BBIDF : IDFBlocks) {
1004       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1005       assert(IDFPhi && "Phi must exist");
1006       if (!PhisToFill.count(IDFPhi)) {
1007         // Update existing Phi.
1008         // FIXME: some updates may be redundant, try to optimize and skip some.
1009         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1010           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1011       } else {
1012         for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
1013           BasicBlock *Pi = Pair.second;
1014           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1015         }
1016       }
1017     }
1018   }
1019 
1020   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1021   // longer dominate, replace those with the closest dominating def.
1022   // This will also update optimized accesses, as they're also uses.
1023   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1024     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1025       for (auto &DefToReplaceUses : *DefsList) {
1026         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1027         Value::use_iterator UI = DefToReplaceUses.use_begin(),
1028                             E = DefToReplaceUses.use_end();
1029         for (; UI != E;) {
1030           Use &U = *UI;
1031           ++UI;
1032           MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
1033           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1034             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1035             if (!DT.dominates(DominatingBlock, DominatedBlock))
1036               U.set(GetLastDef(DominatedBlock));
1037           } else {
1038             BasicBlock *DominatedBlock = Usr->getBlock();
1039             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1040               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1041                 U.set(DomBlPhi);
1042               else {
1043                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1044                 assert(IDom && "Block must have a valid IDom.");
1045                 U.set(GetLastDef(IDom->getBlock()));
1046               }
1047               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1048             }
1049           }
1050         }
1051       }
1052     }
1053   }
1054   tryRemoveTrivialPhis(InsertedPhis);
1055 }
1056 
1057 // Move What before Where in the MemorySSA IR.
1058 template <class WhereType>
1059 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1060                               WhereType Where) {
1061   // Mark MemoryPhi users of What not to be optimized.
1062   for (auto *U : What->users())
1063     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1064       NonOptPhis.insert(PhiUser);
1065 
1066   // Replace all our users with our defining access.
1067   What->replaceAllUsesWith(What->getDefiningAccess());
1068 
1069   // Let MemorySSA take care of moving it around in the lists.
1070   MSSA->moveTo(What, BB, Where);
1071 
1072   // Now reinsert it into the IR and do whatever fixups needed.
1073   if (auto *MD = dyn_cast<MemoryDef>(What))
1074     insertDef(MD, true);
1075   else
1076     insertUse(cast<MemoryUse>(What));
1077 
1078   // Clear dangling pointers. We added all MemoryPhi users, but not all
1079   // of them are removed by fixupDefs().
1080   NonOptPhis.clear();
1081 }
1082 
1083 // Move What before Where in the MemorySSA IR.
1084 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1085   moveTo(What, Where->getBlock(), Where->getIterator());
1086 }
1087 
1088 // Move What after Where in the MemorySSA IR.
1089 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1090   moveTo(What, Where->getBlock(), ++Where->getIterator());
1091 }
1092 
1093 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1094                                    MemorySSA::InsertionPlace Where) {
1095   return moveTo(What, BB, Where);
1096 }
1097 
1098 // All accesses in To used to be in From. Move to end and update access lists.
1099 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1100                                        Instruction *Start) {
1101 
1102   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1103   if (!Accs)
1104     return;
1105 
1106   MemoryAccess *FirstInNew = nullptr;
1107   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1108     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1109       break;
1110   if (!FirstInNew)
1111     return;
1112 
1113   auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1114   do {
1115     auto NextIt = ++MUD->getIterator();
1116     MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1117                                   ? nullptr
1118                                   : cast<MemoryUseOrDef>(&*NextIt);
1119     MSSA->moveTo(MUD, To, MemorySSA::End);
1120     // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1121     // retrieve it again.
1122     Accs = MSSA->getWritableBlockAccesses(From);
1123     MUD = NextMUD;
1124   } while (MUD);
1125 }
1126 
1127 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1128                                                 BasicBlock *To,
1129                                                 Instruction *Start) {
1130   assert(MSSA->getBlockAccesses(To) == nullptr &&
1131          "To block is expected to be free of MemoryAccesses.");
1132   moveAllAccesses(From, To, Start);
1133   for (BasicBlock *Succ : successors(To))
1134     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1135       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1136 }
1137 
1138 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1139                                                Instruction *Start) {
1140   assert(From->getSinglePredecessor() == To &&
1141          "From block is expected to have a single predecessor (To).");
1142   moveAllAccesses(From, To, Start);
1143   for (BasicBlock *Succ : successors(From))
1144     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1145       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1146 }
1147 
1148 /// If all arguments of a MemoryPHI are defined by the same incoming
1149 /// argument, return that argument.
1150 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1151   MemoryAccess *MA = nullptr;
1152 
1153   for (auto &Arg : MP->operands()) {
1154     if (!MA)
1155       MA = cast<MemoryAccess>(Arg);
1156     else if (MA != Arg)
1157       return nullptr;
1158   }
1159   return MA;
1160 }
1161 
1162 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1163     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1164     bool IdenticalEdgesWereMerged) {
1165   assert(!MSSA->getWritableBlockAccesses(New) &&
1166          "Access list should be null for a new block.");
1167   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1168   if (!Phi)
1169     return;
1170   if (Old->hasNPredecessors(1)) {
1171     assert(pred_size(New) == Preds.size() &&
1172            "Should have moved all predecessors.");
1173     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1174   } else {
1175     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1176                              "new immediate predecessor.");
1177     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1178     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1179     // Currently only support the case of removing a single incoming edge when
1180     // identical edges were not merged.
1181     if (!IdenticalEdgesWereMerged)
1182       assert(PredsSet.size() == Preds.size() &&
1183              "If identical edges were not merged, we cannot have duplicate "
1184              "blocks in the predecessors");
1185     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1186       if (PredsSet.count(B)) {
1187         NewPhi->addIncoming(MA, B);
1188         if (!IdenticalEdgesWereMerged)
1189           PredsSet.erase(B);
1190         return true;
1191       }
1192       return false;
1193     });
1194     Phi->addIncoming(NewPhi, New);
1195     if (onlySingleValue(NewPhi))
1196       removeMemoryAccess(NewPhi);
1197   }
1198 }
1199 
1200 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1201   assert(!MSSA->isLiveOnEntryDef(MA) &&
1202          "Trying to remove the live on entry def");
1203   // We can only delete phi nodes if they have no uses, or we can replace all
1204   // uses with a single definition.
1205   MemoryAccess *NewDefTarget = nullptr;
1206   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1207     // Note that it is sufficient to know that all edges of the phi node have
1208     // the same argument.  If they do, by the definition of dominance frontiers
1209     // (which we used to place this phi), that argument must dominate this phi,
1210     // and thus, must dominate the phi's uses, and so we will not hit the assert
1211     // below.
1212     NewDefTarget = onlySingleValue(MP);
1213     assert((NewDefTarget || MP->use_empty()) &&
1214            "We can't delete this memory phi");
1215   } else {
1216     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1217   }
1218 
1219   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1220 
1221   // Re-point the uses at our defining access
1222   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1223     // Reset optimized on users of this store, and reset the uses.
1224     // A few notes:
1225     // 1. This is a slightly modified version of RAUW to avoid walking the
1226     // uses twice here.
1227     // 2. If we wanted to be complete, we would have to reset the optimized
1228     // flags on users of phi nodes if doing the below makes a phi node have all
1229     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1230     // phi nodes, because doing it here would be N^3.
1231     if (MA->hasValueHandle())
1232       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1233     // Note: We assume MemorySSA is not used in metadata since it's not really
1234     // part of the IR.
1235 
1236     while (!MA->use_empty()) {
1237       Use &U = *MA->use_begin();
1238       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1239         MUD->resetOptimized();
1240       if (OptimizePhis)
1241         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1242           PhisToCheck.insert(MP);
1243       U.set(NewDefTarget);
1244     }
1245   }
1246 
1247   // The call below to erase will destroy MA, so we can't change the order we
1248   // are doing things here
1249   MSSA->removeFromLookups(MA);
1250   MSSA->removeFromLists(MA);
1251 
1252   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1253   if (!PhisToCheck.empty()) {
1254     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1255                                            PhisToCheck.end()};
1256     PhisToCheck.clear();
1257 
1258     unsigned PhisSize = PhisToOptimize.size();
1259     while (PhisSize-- > 0)
1260       if (MemoryPhi *MP =
1261               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) {
1262         auto OperRange = MP->operands();
1263         tryRemoveTrivialPhi(MP, OperRange);
1264       }
1265   }
1266 }
1267 
1268 void MemorySSAUpdater::removeBlocks(
1269     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1270   // First delete all uses of BB in MemoryPhis.
1271   for (BasicBlock *BB : DeadBlocks) {
1272     Instruction *TI = BB->getTerminator();
1273     assert(TI && "Basic block expected to have a terminator instruction");
1274     for (BasicBlock *Succ : successors(TI))
1275       if (!DeadBlocks.count(Succ))
1276         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1277           MP->unorderedDeleteIncomingBlock(BB);
1278           if (MP->getNumIncomingValues() == 1)
1279             removeMemoryAccess(MP);
1280         }
1281     // Drop all references of all accesses in BB
1282     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1283       for (MemoryAccess &MA : *Acc)
1284         MA.dropAllReferences();
1285   }
1286 
1287   // Next, delete all memory accesses in each block
1288   for (BasicBlock *BB : DeadBlocks) {
1289     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1290     if (!Acc)
1291       continue;
1292     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1293       MemoryAccess *MA = &*AB;
1294       ++AB;
1295       MSSA->removeFromLookups(MA);
1296       MSSA->removeFromLists(MA);
1297     }
1298   }
1299 }
1300 
1301 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1302   for (auto &VH : UpdatedPHIs)
1303     if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) {
1304       auto OperRange = MPhi->operands();
1305       tryRemoveTrivialPhi(MPhi, OperRange);
1306     }
1307 }
1308 
1309 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1310   const BasicBlock *BB = I->getParent();
1311   // Remove memory accesses in BB for I and all following instructions.
1312   auto BBI = I->getIterator(), BBE = BB->end();
1313   // FIXME: If this becomes too expensive, iterate until the first instruction
1314   // with a memory access, then iterate over MemoryAccesses.
1315   while (BBI != BBE)
1316     removeMemoryAccess(&*(BBI++));
1317   // Update phis in BB's successors to remove BB.
1318   SmallVector<WeakVH, 16> UpdatedPHIs;
1319   for (const BasicBlock *Successor : successors(BB)) {
1320     removeDuplicatePhiEdgesBetween(BB, Successor);
1321     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1322       MPhi->unorderedDeleteIncomingBlock(BB);
1323       UpdatedPHIs.push_back(MPhi);
1324     }
1325   }
1326   // Optimize trivial phis.
1327   tryRemoveTrivialPhis(UpdatedPHIs);
1328 }
1329 
1330 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1331                                                          const BasicBlock *To) {
1332   const BasicBlock *BB = BI->getParent();
1333   SmallVector<WeakVH, 16> UpdatedPHIs;
1334   for (const BasicBlock *Succ : successors(BB)) {
1335     removeDuplicatePhiEdgesBetween(BB, Succ);
1336     if (Succ != To)
1337       if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1338         MPhi->unorderedDeleteIncomingBlock(BB);
1339         UpdatedPHIs.push_back(MPhi);
1340       }
1341   }
1342   // Optimize trivial phis.
1343   tryRemoveTrivialPhis(UpdatedPHIs);
1344 }
1345 
1346 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1347     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1348     MemorySSA::InsertionPlace Point) {
1349   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1350   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1351   return NewAccess;
1352 }
1353 
1354 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1355     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1356   assert(I->getParent() == InsertPt->getBlock() &&
1357          "New and old access must be in the same block");
1358   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1359   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1360                               InsertPt->getIterator());
1361   return NewAccess;
1362 }
1363 
1364 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1365     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1366   assert(I->getParent() == InsertPt->getBlock() &&
1367          "New and old access must be in the same block");
1368   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1369   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1370                               ++InsertPt->getIterator());
1371   return NewAccess;
1372 }
1373