1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/IteratedDominanceFrontier.h" 17 #include "llvm/Analysis/MemorySSA.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include <algorithm> 28 29 #define DEBUG_TYPE "memoryssa" 30 using namespace llvm; 31 32 // This is the marker algorithm from "Simple and Efficient Construction of 33 // Static Single Assignment Form" 34 // The simple, non-marker algorithm places phi nodes at any join 35 // Here, we place markers, and only place phi nodes if they end up necessary. 36 // They are only necessary if they break a cycle (IE we recursively visit 37 // ourselves again), or we discover, while getting the value of the operands, 38 // that there are two or more definitions needing to be merged. 39 // This still will leave non-minimal form in the case of irreducible control 40 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 42 BasicBlock *BB, 43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 44 // First, do a cache lookup. Without this cache, certain CFG structures 45 // (like a series of if statements) take exponential time to visit. 46 auto Cached = CachedPreviousDef.find(BB); 47 if (Cached != CachedPreviousDef.end()) { 48 return Cached->second; 49 } 50 51 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 52 // Single predecessor case, just recurse, we can only have one definition. 53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 54 CachedPreviousDef.insert({BB, Result}); 55 return Result; 56 } 57 58 if (VisitedBlocks.count(BB)) { 59 // We hit our node again, meaning we had a cycle, we must insert a phi 60 // node to break it so we have an operand. The only case this will 61 // insert useless phis is if we have irreducible control flow. 62 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 63 CachedPreviousDef.insert({BB, Result}); 64 return Result; 65 } 66 67 if (VisitedBlocks.insert(BB).second) { 68 // Mark us visited so we can detect a cycle 69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 70 71 // Recurse to get the values in our predecessors for placement of a 72 // potential phi node. This will insert phi nodes if we cycle in order to 73 // break the cycle and have an operand. 74 for (auto *Pred : predecessors(BB)) 75 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); 76 77 // Now try to simplify the ops to avoid placing a phi. 78 // This may return null if we never created a phi yet, that's okay 79 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 80 81 // See if we can avoid the phi by simplifying it. 82 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 83 // If we couldn't simplify, we may have to create a phi 84 if (Result == Phi) { 85 if (!Phi) 86 Phi = MSSA->createMemoryPhi(BB); 87 88 // See if the existing phi operands match what we need. 89 // Unlike normal SSA, we only allow one phi node per block, so we can't just 90 // create a new one. 91 if (Phi->getNumOperands() != 0) { 92 // FIXME: Figure out whether this is dead code and if so remove it. 93 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 94 // These will have been filled in by the recursive read we did above. 95 llvm::copy(PhiOps, Phi->op_begin()); 96 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 97 } 98 } else { 99 unsigned i = 0; 100 for (auto *Pred : predecessors(BB)) 101 Phi->addIncoming(&*PhiOps[i++], Pred); 102 InsertedPHIs.push_back(Phi); 103 } 104 Result = Phi; 105 } 106 107 // Set ourselves up for the next variable by resetting visited state. 108 VisitedBlocks.erase(BB); 109 CachedPreviousDef.insert({BB, Result}); 110 return Result; 111 } 112 llvm_unreachable("Should have hit one of the three cases above"); 113 } 114 115 // This starts at the memory access, and goes backwards in the block to find the 116 // previous definition. If a definition is not found the block of the access, 117 // it continues globally, creating phi nodes to ensure we have a single 118 // definition. 119 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 120 if (auto *LocalResult = getPreviousDefInBlock(MA)) 121 return LocalResult; 122 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 123 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 124 } 125 126 // This starts at the memory access, and goes backwards in the block to the find 127 // the previous definition. If the definition is not found in the block of the 128 // access, it returns nullptr. 129 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 130 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 131 132 // It's possible there are no defs, or we got handed the first def to start. 133 if (Defs) { 134 // If this is a def, we can just use the def iterators. 135 if (!isa<MemoryUse>(MA)) { 136 auto Iter = MA->getReverseDefsIterator(); 137 ++Iter; 138 if (Iter != Defs->rend()) 139 return &*Iter; 140 } else { 141 // Otherwise, have to walk the all access iterator. 142 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 143 for (auto &U : make_range(++MA->getReverseIterator(), End)) 144 if (!isa<MemoryUse>(U)) 145 return cast<MemoryAccess>(&U); 146 // Note that if MA comes before Defs->begin(), we won't hit a def. 147 return nullptr; 148 } 149 } 150 return nullptr; 151 } 152 153 // This starts at the end of block 154 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 155 BasicBlock *BB, 156 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 157 auto *Defs = MSSA->getWritableBlockDefs(BB); 158 159 if (Defs) 160 return &*Defs->rbegin(); 161 162 return getPreviousDefRecursive(BB, CachedPreviousDef); 163 } 164 // Recurse over a set of phi uses to eliminate the trivial ones 165 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 166 if (!Phi) 167 return nullptr; 168 TrackingVH<MemoryAccess> Res(Phi); 169 SmallVector<TrackingVH<Value>, 8> Uses; 170 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 171 for (auto &U : Uses) { 172 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { 173 auto OperRange = UsePhi->operands(); 174 tryRemoveTrivialPhi(UsePhi, OperRange); 175 } 176 } 177 return Res; 178 } 179 180 // Eliminate trivial phis 181 // Phis are trivial if they are defined either by themselves, or all the same 182 // argument. 183 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 184 // We recursively try to remove them. 185 template <class RangeType> 186 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 187 RangeType &Operands) { 188 // Bail out on non-opt Phis. 189 if (NonOptPhis.count(Phi)) 190 return Phi; 191 192 // Detect equal or self arguments 193 MemoryAccess *Same = nullptr; 194 for (auto &Op : Operands) { 195 // If the same or self, good so far 196 if (Op == Phi || Op == Same) 197 continue; 198 // not the same, return the phi since it's not eliminatable by us 199 if (Same) 200 return Phi; 201 Same = cast<MemoryAccess>(&*Op); 202 } 203 // Never found a non-self reference, the phi is undef 204 if (Same == nullptr) 205 return MSSA->getLiveOnEntryDef(); 206 if (Phi) { 207 Phi->replaceAllUsesWith(Same); 208 removeMemoryAccess(Phi); 209 } 210 211 // We should only end up recursing in case we replaced something, in which 212 // case, we may have made other Phis trivial. 213 return recursePhi(Same); 214 } 215 216 void MemorySSAUpdater::insertUse(MemoryUse *MU) { 217 InsertedPHIs.clear(); 218 MU->setDefiningAccess(getPreviousDef(MU)); 219 // Unlike for defs, there is no extra work to do. Because uses do not create 220 // new may-defs, there are only two cases: 221 // 222 // 1. There was a def already below us, and therefore, we should not have 223 // created a phi node because it was already needed for the def. 224 // 225 // 2. There is no def below us, and therefore, there is no extra renaming work 226 // to do. 227 } 228 229 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 230 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 231 MemoryAccess *NewDef) { 232 // Replace any operand with us an incoming block with the new defining 233 // access. 234 int i = MP->getBasicBlockIndex(BB); 235 assert(i != -1 && "Should have found the basic block in the phi"); 236 // We can't just compare i against getNumOperands since one is signed and the 237 // other not. So use it to index into the block iterator. 238 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 239 ++BBIter) { 240 if (*BBIter != BB) 241 break; 242 MP->setIncomingValue(i, NewDef); 243 ++i; 244 } 245 } 246 247 // A brief description of the algorithm: 248 // First, we compute what should define the new def, using the SSA 249 // construction algorithm. 250 // Then, we update the defs below us (and any new phi nodes) in the graph to 251 // point to the correct new defs, to ensure we only have one variable, and no 252 // disconnected stores. 253 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 254 InsertedPHIs.clear(); 255 256 // See if we had a local def, and if not, go hunting. 257 MemoryAccess *DefBefore = getPreviousDef(MD); 258 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); 259 260 // There is a def before us, which means we can replace any store/phi uses 261 // of that thing with us, since we are in the way of whatever was there 262 // before. 263 // We now define that def's memorydefs and memoryphis 264 if (DefBeforeSameBlock) { 265 for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); 266 UI != UE;) { 267 Use &U = *UI++; 268 // Leave the MemoryUses alone. 269 // Also make sure we skip ourselves to avoid self references. 270 if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD) 271 continue; 272 // Defs are automatically unoptimized when the user is set to MD below, 273 // because the isOptimized() call will fail to find the same ID. 274 U.set(MD); 275 } 276 } 277 278 // and that def is now our defining access. 279 MD->setDefiningAccess(DefBefore); 280 281 // Remember the index where we may insert new phis below. 282 unsigned NewPhiIndex = InsertedPHIs.size(); 283 284 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 285 if (!DefBeforeSameBlock) { 286 // If there was a local def before us, we must have the same effect it 287 // did. Because every may-def is the same, any phis/etc we would create, it 288 // would also have created. If there was no local def before us, we 289 // performed a global update, and have to search all successors and make 290 // sure we update the first def in each of them (following all paths until 291 // we hit the first def along each path). This may also insert phi nodes. 292 // TODO: There are other cases we can skip this work, such as when we have a 293 // single successor, and only used a straight line of single pred blocks 294 // backwards to find the def. To make that work, we'd have to track whether 295 // getDefRecursive only ever used the single predecessor case. These types 296 // of paths also only exist in between CFG simplifications. 297 298 // If this is the first def in the block and this insert is in an arbitrary 299 // place, compute IDF and place phis. 300 auto Iter = MD->getDefsIterator(); 301 ++Iter; 302 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 303 if (Iter == IterEnd) { 304 ForwardIDFCalculator IDFs(*MSSA->DT); 305 SmallVector<BasicBlock *, 32> IDFBlocks; 306 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 307 DefiningBlocks.insert(MD->getBlock()); 308 IDFs.setDefiningBlocks(DefiningBlocks); 309 IDFs.calculate(IDFBlocks); 310 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 311 for (auto *BBIDF : IDFBlocks) 312 if (!MSSA->getMemoryAccess(BBIDF)) { 313 auto *MPhi = MSSA->createMemoryPhi(BBIDF); 314 NewInsertedPHIs.push_back(MPhi); 315 // Add the phis created into the IDF blocks to NonOptPhis, so they are 316 // not optimized out as trivial by the call to getPreviousDefFromEnd 317 // below. Once they are complete, all these Phis are added to the 318 // FixupList, and removed from NonOptPhis inside fixupDefs(). 319 NonOptPhis.insert(MPhi); 320 } 321 322 for (auto &MPhi : NewInsertedPHIs) { 323 auto *BBIDF = MPhi->getBlock(); 324 for (auto *Pred : predecessors(BBIDF)) { 325 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 326 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), 327 Pred); 328 } 329 } 330 331 // Re-take the index where we're adding the new phis, because the above 332 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 333 NewPhiIndex = InsertedPHIs.size(); 334 for (auto &MPhi : NewInsertedPHIs) { 335 InsertedPHIs.push_back(&*MPhi); 336 FixupList.push_back(&*MPhi); 337 } 338 } 339 340 FixupList.push_back(MD); 341 } 342 343 // Remember the index where we stopped inserting new phis above, since the 344 // fixupDefs call in the loop below may insert more, that are already minimal. 345 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 346 347 while (!FixupList.empty()) { 348 unsigned StartingPHISize = InsertedPHIs.size(); 349 fixupDefs(FixupList); 350 FixupList.clear(); 351 // Put any new phis on the fixup list, and process them 352 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 353 } 354 355 // Optimize potentially non-minimal phis added in this method. 356 for (unsigned Idx = NewPhiIndex; Idx < NewPhiIndexEnd; ++Idx) { 357 if (auto *MPhi = cast_or_null<MemoryPhi>(InsertedPHIs[Idx])) { 358 auto OperRange = MPhi->operands(); 359 tryRemoveTrivialPhi(MPhi, OperRange); 360 } 361 } 362 363 // Now that all fixups are done, rename all uses if we are asked. 364 if (RenameUses) { 365 SmallPtrSet<BasicBlock *, 16> Visited; 366 BasicBlock *StartBlock = MD->getBlock(); 367 // We are guaranteed there is a def in the block, because we just got it 368 // handed to us in this function. 369 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 370 // Convert to incoming value if it's a memorydef. A phi *is* already an 371 // incoming value. 372 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 373 FirstDef = MD->getDefiningAccess(); 374 375 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 376 // We just inserted a phi into this block, so the incoming value will become 377 // the phi anyway, so it does not matter what we pass. 378 for (auto &MP : InsertedPHIs) { 379 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 380 if (Phi) 381 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 382 } 383 } 384 } 385 386 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 387 SmallPtrSet<const BasicBlock *, 8> Seen; 388 SmallVector<const BasicBlock *, 16> Worklist; 389 for (auto &Var : Vars) { 390 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 391 if (!NewDef) 392 continue; 393 // First, see if there is a local def after the operand. 394 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 395 auto DefIter = NewDef->getDefsIterator(); 396 397 // The temporary Phi is being fixed, unmark it for not to optimize. 398 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 399 NonOptPhis.erase(Phi); 400 401 // If there is a local def after us, we only have to rename that. 402 if (++DefIter != Defs->end()) { 403 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 404 continue; 405 } 406 407 // Otherwise, we need to search down through the CFG. 408 // For each of our successors, handle it directly if their is a phi, or 409 // place on the fixup worklist. 410 for (const auto *S : successors(NewDef->getBlock())) { 411 if (auto *MP = MSSA->getMemoryAccess(S)) 412 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 413 else 414 Worklist.push_back(S); 415 } 416 417 while (!Worklist.empty()) { 418 const BasicBlock *FixupBlock = Worklist.back(); 419 Worklist.pop_back(); 420 421 // Get the first def in the block that isn't a phi node. 422 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 423 auto *FirstDef = &*Defs->begin(); 424 // The loop above and below should have taken care of phi nodes 425 assert(!isa<MemoryPhi>(FirstDef) && 426 "Should have already handled phi nodes!"); 427 // We are now this def's defining access, make sure we actually dominate 428 // it 429 assert(MSSA->dominates(NewDef, FirstDef) && 430 "Should have dominated the new access"); 431 432 // This may insert new phi nodes, because we are not guaranteed the 433 // block we are processing has a single pred, and depending where the 434 // store was inserted, it may require phi nodes below it. 435 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 436 return; 437 } 438 // We didn't find a def, so we must continue. 439 for (const auto *S : successors(FixupBlock)) { 440 // If there is a phi node, handle it. 441 // Otherwise, put the block on the worklist 442 if (auto *MP = MSSA->getMemoryAccess(S)) 443 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 444 else { 445 // If we cycle, we should have ended up at a phi node that we already 446 // processed. FIXME: Double check this 447 if (!Seen.insert(S).second) 448 continue; 449 Worklist.push_back(S); 450 } 451 } 452 } 453 } 454 } 455 456 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 457 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 458 MPhi->unorderedDeleteIncomingBlock(From); 459 if (MPhi->getNumIncomingValues() == 1) 460 removeMemoryAccess(MPhi); 461 } 462 } 463 464 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(BasicBlock *From, 465 BasicBlock *To) { 466 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 467 bool Found = false; 468 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 469 if (From != B) 470 return false; 471 if (Found) 472 return true; 473 Found = true; 474 return false; 475 }); 476 if (MPhi->getNumIncomingValues() == 1) 477 removeMemoryAccess(MPhi); 478 } 479 } 480 481 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 482 const ValueToValueMapTy &VMap, 483 PhiToDefMap &MPhiMap) { 484 auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * { 485 MemoryAccess *InsnDefining = MA; 486 if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) { 487 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 488 Instruction *DefMUDI = DefMUD->getMemoryInst(); 489 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 490 if (Instruction *NewDefMUDI = 491 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) 492 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 493 } 494 } else { 495 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 496 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 497 InsnDefining = NewDefPhi; 498 } 499 assert(InsnDefining && "Defining instruction cannot be nullptr."); 500 return InsnDefining; 501 }; 502 503 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 504 if (!Acc) 505 return; 506 for (const MemoryAccess &MA : *Acc) { 507 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 508 Instruction *Insn = MUD->getMemoryInst(); 509 // Entry does not exist if the clone of the block did not clone all 510 // instructions. This occurs in LoopRotate when cloning instructions 511 // from the old header to the old preheader. The cloned instruction may 512 // also be a simplified Value, not an Instruction (see LoopRotate). 513 if (Instruction *NewInsn = 514 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 515 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 516 NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), MUD); 517 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 518 } 519 } 520 } 521 } 522 523 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 524 ArrayRef<BasicBlock *> ExitBlocks, 525 const ValueToValueMapTy &VMap, 526 bool IgnoreIncomingWithNoClones) { 527 PhiToDefMap MPhiMap; 528 529 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 530 assert(Phi && NewPhi && "Invalid Phi nodes."); 531 BasicBlock *NewPhiBB = NewPhi->getBlock(); 532 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 533 pred_end(NewPhiBB)); 534 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 535 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 536 BasicBlock *IncBB = Phi->getIncomingBlock(It); 537 538 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 539 IncBB = NewIncBB; 540 else if (IgnoreIncomingWithNoClones) 541 continue; 542 543 // Now we have IncBB, and will need to add incoming from it to NewPhi. 544 545 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 546 // NewPhiBB was cloned without that edge. 547 if (!NewPhiBBPreds.count(IncBB)) 548 continue; 549 550 // Determine incoming value and add it as incoming from IncBB. 551 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 552 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 553 Instruction *IncI = IncMUD->getMemoryInst(); 554 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 555 if (Instruction *NewIncI = 556 cast_or_null<Instruction>(VMap.lookup(IncI))) { 557 IncMUD = MSSA->getMemoryAccess(NewIncI); 558 assert(IncMUD && 559 "MemoryUseOrDef cannot be null, all preds processed."); 560 } 561 } 562 NewPhi->addIncoming(IncMUD, IncBB); 563 } else { 564 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 565 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 566 NewPhi->addIncoming(NewDefPhi, IncBB); 567 else 568 NewPhi->addIncoming(IncPhi, IncBB); 569 } 570 } 571 }; 572 573 auto ProcessBlock = [&](BasicBlock *BB) { 574 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 575 if (!NewBlock) 576 return; 577 578 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 579 "Cloned block should have no accesses"); 580 581 // Add MemoryPhi. 582 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 583 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 584 MPhiMap[MPhi] = NewPhi; 585 } 586 // Update Uses and Defs. 587 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 588 }; 589 590 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 591 ProcessBlock(BB); 592 593 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 594 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 595 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 596 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 597 } 598 599 void MemorySSAUpdater::updateForClonedBlockIntoPred( 600 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 601 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 602 // Since those defs/phis must have dominated BB, and also dominate P1. 603 // Defs from BB being used in BB will be replaced with the cloned defs from 604 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 605 // incoming def into the Phi from P1. 606 PhiToDefMap MPhiMap; 607 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 608 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 609 cloneUsesAndDefs(BB, P1, VM, MPhiMap); 610 } 611 612 template <typename Iter> 613 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 614 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 615 DominatorTree &DT) { 616 SmallVector<CFGUpdate, 4> Updates; 617 // Update/insert phis in all successors of exit blocks. 618 for (auto *Exit : ExitBlocks) 619 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 620 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 621 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 622 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 623 } 624 applyInsertUpdates(Updates, DT); 625 } 626 627 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 628 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 629 DominatorTree &DT) { 630 const ValueToValueMapTy *const Arr[] = {&VMap}; 631 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 632 std::end(Arr), DT); 633 } 634 635 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 636 ArrayRef<BasicBlock *> ExitBlocks, 637 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 638 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 639 return I.get(); 640 }; 641 using MappedIteratorType = 642 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 643 decltype(GetPtr)>; 644 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 645 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 646 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 647 } 648 649 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 650 DominatorTree &DT) { 651 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 652 SmallVector<CFGUpdate, 4> InsertUpdates; 653 for (auto &Update : Updates) { 654 if (Update.getKind() == DT.Insert) 655 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 656 else 657 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 658 } 659 660 if (!RevDeleteUpdates.empty()) { 661 // Update for inserted edges: use newDT and snapshot CFG as if deletes had 662 // not occurred. 663 // FIXME: This creates a new DT, so it's more expensive to do mix 664 // delete/inserts vs just inserts. We can do an incremental update on the DT 665 // to revert deletes, than re-delete the edges. Teaching DT to do this, is 666 // part of a pending cleanup. 667 DominatorTree NewDT(DT, RevDeleteUpdates); 668 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 669 applyInsertUpdates(InsertUpdates, NewDT, &GD); 670 } else { 671 GraphDiff<BasicBlock *> GD; 672 applyInsertUpdates(InsertUpdates, DT, &GD); 673 } 674 675 // Update for deleted edges 676 for (auto &Update : RevDeleteUpdates) 677 removeEdge(Update.getFrom(), Update.getTo()); 678 } 679 680 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 681 DominatorTree &DT) { 682 GraphDiff<BasicBlock *> GD; 683 applyInsertUpdates(Updates, DT, &GD); 684 } 685 686 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 687 DominatorTree &DT, 688 const GraphDiff<BasicBlock *> *GD) { 689 // Get recursive last Def, assuming well formed MSSA and updated DT. 690 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 691 while (true) { 692 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 693 // Return last Def or Phi in BB, if it exists. 694 if (Defs) 695 return &*(--Defs->end()); 696 697 // Check number of predecessors, we only care if there's more than one. 698 unsigned Count = 0; 699 BasicBlock *Pred = nullptr; 700 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 701 Pred = Pair.second; 702 Count++; 703 if (Count == 2) 704 break; 705 } 706 707 // If BB has multiple predecessors, get last definition from IDom. 708 if (Count != 1) { 709 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 710 // DT is invalidated. Return LoE as its last def. This will be added to 711 // MemoryPhi node, and later deleted when the block is deleted. 712 if (!DT.getNode(BB)) 713 return MSSA->getLiveOnEntryDef(); 714 if (auto *IDom = DT.getNode(BB)->getIDom()) 715 if (IDom->getBlock() != BB) { 716 BB = IDom->getBlock(); 717 continue; 718 } 719 return MSSA->getLiveOnEntryDef(); 720 } else { 721 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 722 assert(Count == 1 && Pred && "Single predecessor expected."); 723 BB = Pred; 724 } 725 }; 726 llvm_unreachable("Unable to get last definition."); 727 }; 728 729 // Get nearest IDom given a set of blocks. 730 // TODO: this can be optimized by starting the search at the node with the 731 // lowest level (highest in the tree). 732 auto FindNearestCommonDominator = 733 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 734 BasicBlock *PrevIDom = *BBSet.begin(); 735 for (auto *BB : BBSet) 736 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 737 return PrevIDom; 738 }; 739 740 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 741 // include CurrIDom. 742 auto GetNoLongerDomBlocks = 743 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 744 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 745 if (PrevIDom == CurrIDom) 746 return; 747 BlocksPrevDom.push_back(PrevIDom); 748 BasicBlock *NextIDom = PrevIDom; 749 while (BasicBlock *UpIDom = 750 DT.getNode(NextIDom)->getIDom()->getBlock()) { 751 if (UpIDom == CurrIDom) 752 break; 753 BlocksPrevDom.push_back(UpIDom); 754 NextIDom = UpIDom; 755 } 756 }; 757 758 // Map a BB to its predecessors: added + previously existing. To get a 759 // deterministic order, store predecessors as SetVectors. The order in each 760 // will be defined by the order in Updates (fixed) and the order given by 761 // children<> (also fixed). Since we further iterate over these ordered sets, 762 // we lose the information of multiple edges possibly existing between two 763 // blocks, so we'll keep and EdgeCount map for that. 764 // An alternate implementation could keep unordered set for the predecessors, 765 // traverse either Updates or children<> each time to get the deterministic 766 // order, and drop the usage of EdgeCount. This alternate approach would still 767 // require querying the maps for each predecessor, and children<> call has 768 // additional computation inside for creating the snapshot-graph predecessors. 769 // As such, we favor using a little additional storage and less compute time. 770 // This decision can be revisited if we find the alternative more favorable. 771 772 struct PredInfo { 773 SmallSetVector<BasicBlock *, 2> Added; 774 SmallSetVector<BasicBlock *, 2> Prev; 775 }; 776 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 777 778 for (auto &Edge : Updates) { 779 BasicBlock *BB = Edge.getTo(); 780 auto &AddedBlockSet = PredMap[BB].Added; 781 AddedBlockSet.insert(Edge.getFrom()); 782 } 783 784 // Store all existing predecessor for each BB, at least one must exist. 785 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 786 SmallPtrSet<BasicBlock *, 2> NewBlocks; 787 for (auto &BBPredPair : PredMap) { 788 auto *BB = BBPredPair.first; 789 const auto &AddedBlockSet = BBPredPair.second.Added; 790 auto &PrevBlockSet = BBPredPair.second.Prev; 791 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 792 BasicBlock *Pi = Pair.second; 793 if (!AddedBlockSet.count(Pi)) 794 PrevBlockSet.insert(Pi); 795 EdgeCountMap[{Pi, BB}]++; 796 } 797 798 if (PrevBlockSet.empty()) { 799 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 800 LLVM_DEBUG( 801 dbgs() 802 << "Adding a predecessor to a block with no predecessors. " 803 "This must be an edge added to a new, likely cloned, block. " 804 "Its memory accesses must be already correct, assuming completed " 805 "via the updateExitBlocksForClonedLoop API. " 806 "Assert a single such edge is added so no phi addition or " 807 "additional processing is required.\n"); 808 assert(AddedBlockSet.size() == 1 && 809 "Can only handle adding one predecessor to a new block."); 810 // Need to remove new blocks from PredMap. Remove below to not invalidate 811 // iterator here. 812 NewBlocks.insert(BB); 813 } 814 } 815 // Nothing to process for new/cloned blocks. 816 for (auto *BB : NewBlocks) 817 PredMap.erase(BB); 818 819 SmallVector<BasicBlock *, 8> BlocksToProcess; 820 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 821 822 // First create MemoryPhis in all blocks that don't have one. Create in the 823 // order found in Updates, not in PredMap, to get deterministic numbering. 824 for (auto &Edge : Updates) { 825 BasicBlock *BB = Edge.getTo(); 826 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 827 MSSA->createMemoryPhi(BB); 828 } 829 830 // Now we'll fill in the MemoryPhis with the right incoming values. 831 for (auto &BBPredPair : PredMap) { 832 auto *BB = BBPredPair.first; 833 const auto &PrevBlockSet = BBPredPair.second.Prev; 834 const auto &AddedBlockSet = BBPredPair.second.Added; 835 assert(!PrevBlockSet.empty() && 836 "At least one previous predecessor must exist."); 837 838 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 839 // keeping this map before the loop. We can reuse already populated entries 840 // if an edge is added from the same predecessor to two different blocks, 841 // and this does happen in rotate. Note that the map needs to be updated 842 // when deleting non-necessary phis below, if the phi is in the map by 843 // replacing the value with DefP1. 844 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 845 for (auto *AddedPred : AddedBlockSet) { 846 auto *DefPn = GetLastDef(AddedPred); 847 assert(DefPn != nullptr && "Unable to find last definition."); 848 LastDefAddedPred[AddedPred] = DefPn; 849 } 850 851 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 852 // If Phi is not empty, add an incoming edge from each added pred. Must 853 // still compute blocks with defs to replace for this block below. 854 if (NewPhi->getNumOperands()) { 855 for (auto *Pred : AddedBlockSet) { 856 auto *LastDefForPred = LastDefAddedPred[Pred]; 857 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 858 NewPhi->addIncoming(LastDefForPred, Pred); 859 } 860 } else { 861 // Pick any existing predecessor and get its definition. All other 862 // existing predecessors should have the same one, since no phi existed. 863 auto *P1 = *PrevBlockSet.begin(); 864 MemoryAccess *DefP1 = GetLastDef(P1); 865 866 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 867 // nothing to add. 868 bool InsertPhi = false; 869 for (auto LastDefPredPair : LastDefAddedPred) 870 if (DefP1 != LastDefPredPair.second) { 871 InsertPhi = true; 872 break; 873 } 874 if (!InsertPhi) { 875 // Since NewPhi may be used in other newly added Phis, replace all uses 876 // of NewPhi with the definition coming from all predecessors (DefP1), 877 // before deleting it. 878 NewPhi->replaceAllUsesWith(DefP1); 879 removeMemoryAccess(NewPhi); 880 continue; 881 } 882 883 // Update Phi with new values for new predecessors and old value for all 884 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 885 // sets, the order of entries in NewPhi is deterministic. 886 for (auto *Pred : AddedBlockSet) { 887 auto *LastDefForPred = LastDefAddedPred[Pred]; 888 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 889 NewPhi->addIncoming(LastDefForPred, Pred); 890 } 891 for (auto *Pred : PrevBlockSet) 892 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 893 NewPhi->addIncoming(DefP1, Pred); 894 895 // Insert BB in the set of blocks that now have definition. We'll use this 896 // to compute IDF and add Phis there next. 897 BlocksToProcess.push_back(BB); 898 } 899 900 // Get all blocks that used to dominate BB and no longer do after adding 901 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 902 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 903 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 904 assert(PrevIDom && "Previous IDom should exists"); 905 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 906 assert(NewIDom && "BB should have a new valid idom"); 907 assert(DT.dominates(NewIDom, PrevIDom) && 908 "New idom should dominate old idom"); 909 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 910 } 911 912 // Compute IDF and add Phis in all IDF blocks that do not have one. 913 SmallVector<BasicBlock *, 32> IDFBlocks; 914 if (!BlocksToProcess.empty()) { 915 ForwardIDFCalculator IDFs(DT); 916 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 917 BlocksToProcess.end()); 918 IDFs.setDefiningBlocks(DefiningBlocks); 919 IDFs.calculate(IDFBlocks); 920 for (auto *BBIDF : IDFBlocks) { 921 if (auto *IDFPhi = MSSA->getMemoryAccess(BBIDF)) { 922 // Update existing Phi. 923 // FIXME: some updates may be redundant, try to optimize and skip some. 924 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 925 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 926 } else { 927 IDFPhi = MSSA->createMemoryPhi(BBIDF); 928 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) { 929 BasicBlock *Pi = Pair.second; 930 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 931 } 932 } 933 } 934 } 935 936 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 937 // longer dominate, replace those with the closest dominating def. 938 // This will also update optimized accesses, as they're also uses. 939 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 940 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 941 for (auto &DefToReplaceUses : *DefsList) { 942 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 943 Value::use_iterator UI = DefToReplaceUses.use_begin(), 944 E = DefToReplaceUses.use_end(); 945 for (; UI != E;) { 946 Use &U = *UI; 947 ++UI; 948 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser()); 949 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 950 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 951 if (!DT.dominates(DominatingBlock, DominatedBlock)) 952 U.set(GetLastDef(DominatedBlock)); 953 } else { 954 BasicBlock *DominatedBlock = Usr->getBlock(); 955 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 956 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 957 U.set(DomBlPhi); 958 else { 959 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 960 assert(IDom && "Block must have a valid IDom."); 961 U.set(GetLastDef(IDom->getBlock())); 962 } 963 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 964 } 965 } 966 } 967 } 968 } 969 } 970 } 971 972 // Move What before Where in the MemorySSA IR. 973 template <class WhereType> 974 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 975 WhereType Where) { 976 // Mark MemoryPhi users of What not to be optimized. 977 for (auto *U : What->users()) 978 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 979 NonOptPhis.insert(PhiUser); 980 981 // Replace all our users with our defining access. 982 What->replaceAllUsesWith(What->getDefiningAccess()); 983 984 // Let MemorySSA take care of moving it around in the lists. 985 MSSA->moveTo(What, BB, Where); 986 987 // Now reinsert it into the IR and do whatever fixups needed. 988 if (auto *MD = dyn_cast<MemoryDef>(What)) 989 insertDef(MD); 990 else 991 insertUse(cast<MemoryUse>(What)); 992 993 // Clear dangling pointers. We added all MemoryPhi users, but not all 994 // of them are removed by fixupDefs(). 995 NonOptPhis.clear(); 996 } 997 998 // Move What before Where in the MemorySSA IR. 999 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1000 moveTo(What, Where->getBlock(), Where->getIterator()); 1001 } 1002 1003 // Move What after Where in the MemorySSA IR. 1004 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1005 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1006 } 1007 1008 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1009 MemorySSA::InsertionPlace Where) { 1010 return moveTo(What, BB, Where); 1011 } 1012 1013 // All accesses in To used to be in From. Move to end and update access lists. 1014 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1015 Instruction *Start) { 1016 1017 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1018 if (!Accs) 1019 return; 1020 1021 MemoryAccess *FirstInNew = nullptr; 1022 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1023 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1024 break; 1025 if (!FirstInNew) 1026 return; 1027 1028 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1029 do { 1030 auto NextIt = ++MUD->getIterator(); 1031 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1032 ? nullptr 1033 : cast<MemoryUseOrDef>(&*NextIt); 1034 MSSA->moveTo(MUD, To, MemorySSA::End); 1035 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to 1036 // retrieve it again. 1037 Accs = MSSA->getWritableBlockAccesses(From); 1038 MUD = NextMUD; 1039 } while (MUD); 1040 } 1041 1042 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1043 BasicBlock *To, 1044 Instruction *Start) { 1045 assert(MSSA->getBlockAccesses(To) == nullptr && 1046 "To block is expected to be free of MemoryAccesses."); 1047 moveAllAccesses(From, To, Start); 1048 for (BasicBlock *Succ : successors(To)) 1049 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1050 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1051 } 1052 1053 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1054 Instruction *Start) { 1055 assert(From->getSinglePredecessor() == To && 1056 "From block is expected to have a single predecessor (To)."); 1057 moveAllAccesses(From, To, Start); 1058 for (BasicBlock *Succ : successors(From)) 1059 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1060 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1061 } 1062 1063 /// If all arguments of a MemoryPHI are defined by the same incoming 1064 /// argument, return that argument. 1065 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 1066 MemoryAccess *MA = nullptr; 1067 1068 for (auto &Arg : MP->operands()) { 1069 if (!MA) 1070 MA = cast<MemoryAccess>(Arg); 1071 else if (MA != Arg) 1072 return nullptr; 1073 } 1074 return MA; 1075 } 1076 1077 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1078 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1079 bool IdenticalEdgesWereMerged) { 1080 assert(!MSSA->getWritableBlockAccesses(New) && 1081 "Access list should be null for a new block."); 1082 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1083 if (!Phi) 1084 return; 1085 if (Old->hasNPredecessors(1)) { 1086 assert(pred_size(New) == Preds.size() && 1087 "Should have moved all predecessors."); 1088 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1089 } else { 1090 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1091 "new immediate predecessor."); 1092 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1093 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1094 // Currently only support the case of removing a single incoming edge when 1095 // identical edges were not merged. 1096 if (!IdenticalEdgesWereMerged) 1097 assert(PredsSet.size() == Preds.size() && 1098 "If identical edges were not merged, we cannot have duplicate " 1099 "blocks in the predecessors"); 1100 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1101 if (PredsSet.count(B)) { 1102 NewPhi->addIncoming(MA, B); 1103 if (!IdenticalEdgesWereMerged) 1104 PredsSet.erase(B); 1105 return true; 1106 } 1107 return false; 1108 }); 1109 Phi->addIncoming(NewPhi, New); 1110 if (onlySingleValue(NewPhi)) 1111 removeMemoryAccess(NewPhi); 1112 } 1113 } 1114 1115 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1116 assert(!MSSA->isLiveOnEntryDef(MA) && 1117 "Trying to remove the live on entry def"); 1118 // We can only delete phi nodes if they have no uses, or we can replace all 1119 // uses with a single definition. 1120 MemoryAccess *NewDefTarget = nullptr; 1121 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1122 // Note that it is sufficient to know that all edges of the phi node have 1123 // the same argument. If they do, by the definition of dominance frontiers 1124 // (which we used to place this phi), that argument must dominate this phi, 1125 // and thus, must dominate the phi's uses, and so we will not hit the assert 1126 // below. 1127 NewDefTarget = onlySingleValue(MP); 1128 assert((NewDefTarget || MP->use_empty()) && 1129 "We can't delete this memory phi"); 1130 } else { 1131 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1132 } 1133 1134 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1135 1136 // Re-point the uses at our defining access 1137 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1138 // Reset optimized on users of this store, and reset the uses. 1139 // A few notes: 1140 // 1. This is a slightly modified version of RAUW to avoid walking the 1141 // uses twice here. 1142 // 2. If we wanted to be complete, we would have to reset the optimized 1143 // flags on users of phi nodes if doing the below makes a phi node have all 1144 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1145 // phi nodes, because doing it here would be N^3. 1146 if (MA->hasValueHandle()) 1147 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1148 // Note: We assume MemorySSA is not used in metadata since it's not really 1149 // part of the IR. 1150 1151 while (!MA->use_empty()) { 1152 Use &U = *MA->use_begin(); 1153 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1154 MUD->resetOptimized(); 1155 if (OptimizePhis) 1156 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1157 PhisToCheck.insert(MP); 1158 U.set(NewDefTarget); 1159 } 1160 } 1161 1162 // The call below to erase will destroy MA, so we can't change the order we 1163 // are doing things here 1164 MSSA->removeFromLookups(MA); 1165 MSSA->removeFromLists(MA); 1166 1167 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1168 if (!PhisToCheck.empty()) { 1169 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1170 PhisToCheck.end()}; 1171 PhisToCheck.clear(); 1172 1173 unsigned PhisSize = PhisToOptimize.size(); 1174 while (PhisSize-- > 0) 1175 if (MemoryPhi *MP = 1176 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) { 1177 auto OperRange = MP->operands(); 1178 tryRemoveTrivialPhi(MP, OperRange); 1179 } 1180 } 1181 } 1182 1183 void MemorySSAUpdater::removeBlocks( 1184 const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) { 1185 // First delete all uses of BB in MemoryPhis. 1186 for (BasicBlock *BB : DeadBlocks) { 1187 Instruction *TI = BB->getTerminator(); 1188 assert(TI && "Basic block expected to have a terminator instruction"); 1189 for (BasicBlock *Succ : successors(TI)) 1190 if (!DeadBlocks.count(Succ)) 1191 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1192 MP->unorderedDeleteIncomingBlock(BB); 1193 if (MP->getNumIncomingValues() == 1) 1194 removeMemoryAccess(MP); 1195 } 1196 // Drop all references of all accesses in BB 1197 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1198 for (MemoryAccess &MA : *Acc) 1199 MA.dropAllReferences(); 1200 } 1201 1202 // Next, delete all memory accesses in each block 1203 for (BasicBlock *BB : DeadBlocks) { 1204 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1205 if (!Acc) 1206 continue; 1207 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1208 MemoryAccess *MA = &*AB; 1209 ++AB; 1210 MSSA->removeFromLookups(MA); 1211 MSSA->removeFromLists(MA); 1212 } 1213 } 1214 } 1215 1216 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1217 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1218 MemorySSA::InsertionPlace Point) { 1219 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1220 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1221 return NewAccess; 1222 } 1223 1224 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1225 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1226 assert(I->getParent() == InsertPt->getBlock() && 1227 "New and old access must be in the same block"); 1228 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1229 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1230 InsertPt->getIterator()); 1231 return NewAccess; 1232 } 1233 1234 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1235 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1236 assert(I->getParent() == InsertPt->getBlock() && 1237 "New and old access must be in the same block"); 1238 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1239 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1240 ++InsertPt->getIterator()); 1241 return NewAccess; 1242 } 1243