1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
28 
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
31 
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42     BasicBlock *BB,
43     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44   // First, do a cache lookup. Without this cache, certain CFG structures
45   // (like a series of if statements) take exponential time to visit.
46   auto Cached = CachedPreviousDef.find(BB);
47   if (Cached != CachedPreviousDef.end()) {
48     return Cached->second;
49   }
50 
51   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
52     // Single predecessor case, just recurse, we can only have one definition.
53     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
54     CachedPreviousDef.insert({BB, Result});
55     return Result;
56   }
57 
58   if (VisitedBlocks.count(BB)) {
59     // We hit our node again, meaning we had a cycle, we must insert a phi
60     // node to break it so we have an operand. The only case this will
61     // insert useless phis is if we have irreducible control flow.
62     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
63     CachedPreviousDef.insert({BB, Result});
64     return Result;
65   }
66 
67   if (VisitedBlocks.insert(BB).second) {
68     // Mark us visited so we can detect a cycle
69     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
70 
71     // Recurse to get the values in our predecessors for placement of a
72     // potential phi node. This will insert phi nodes if we cycle in order to
73     // break the cycle and have an operand.
74     for (auto *Pred : predecessors(BB))
75       PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
76 
77     // Now try to simplify the ops to avoid placing a phi.
78     // This may return null if we never created a phi yet, that's okay
79     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
80 
81     // See if we can avoid the phi by simplifying it.
82     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
83     // If we couldn't simplify, we may have to create a phi
84     if (Result == Phi) {
85       if (!Phi)
86         Phi = MSSA->createMemoryPhi(BB);
87 
88       // See if the existing phi operands match what we need.
89       // Unlike normal SSA, we only allow one phi node per block, so we can't just
90       // create a new one.
91       if (Phi->getNumOperands() != 0) {
92         // FIXME: Figure out whether this is dead code and if so remove it.
93         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
94           // These will have been filled in by the recursive read we did above.
95           llvm::copy(PhiOps, Phi->op_begin());
96           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
97         }
98       } else {
99         unsigned i = 0;
100         for (auto *Pred : predecessors(BB))
101           Phi->addIncoming(&*PhiOps[i++], Pred);
102         InsertedPHIs.push_back(Phi);
103       }
104       Result = Phi;
105     }
106 
107     // Set ourselves up for the next variable by resetting visited state.
108     VisitedBlocks.erase(BB);
109     CachedPreviousDef.insert({BB, Result});
110     return Result;
111   }
112   llvm_unreachable("Should have hit one of the three cases above");
113 }
114 
115 // This starts at the memory access, and goes backwards in the block to find the
116 // previous definition. If a definition is not found the block of the access,
117 // it continues globally, creating phi nodes to ensure we have a single
118 // definition.
119 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
120   if (auto *LocalResult = getPreviousDefInBlock(MA))
121     return LocalResult;
122   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
123   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
124 }
125 
126 // This starts at the memory access, and goes backwards in the block to the find
127 // the previous definition. If the definition is not found in the block of the
128 // access, it returns nullptr.
129 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
130   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
131 
132   // It's possible there are no defs, or we got handed the first def to start.
133   if (Defs) {
134     // If this is a def, we can just use the def iterators.
135     if (!isa<MemoryUse>(MA)) {
136       auto Iter = MA->getReverseDefsIterator();
137       ++Iter;
138       if (Iter != Defs->rend())
139         return &*Iter;
140     } else {
141       // Otherwise, have to walk the all access iterator.
142       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
143       for (auto &U : make_range(++MA->getReverseIterator(), End))
144         if (!isa<MemoryUse>(U))
145           return cast<MemoryAccess>(&U);
146       // Note that if MA comes before Defs->begin(), we won't hit a def.
147       return nullptr;
148     }
149   }
150   return nullptr;
151 }
152 
153 // This starts at the end of block
154 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
155     BasicBlock *BB,
156     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
157   auto *Defs = MSSA->getWritableBlockDefs(BB);
158 
159   if (Defs)
160     return &*Defs->rbegin();
161 
162   return getPreviousDefRecursive(BB, CachedPreviousDef);
163 }
164 // Recurse over a set of phi uses to eliminate the trivial ones
165 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
166   if (!Phi)
167     return nullptr;
168   TrackingVH<MemoryAccess> Res(Phi);
169   SmallVector<TrackingVH<Value>, 8> Uses;
170   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
171   for (auto &U : Uses) {
172     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
173       auto OperRange = UsePhi->operands();
174       tryRemoveTrivialPhi(UsePhi, OperRange);
175     }
176   }
177   return Res;
178 }
179 
180 // Eliminate trivial phis
181 // Phis are trivial if they are defined either by themselves, or all the same
182 // argument.
183 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
184 // We recursively try to remove them.
185 template <class RangeType>
186 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
187                                                     RangeType &Operands) {
188   // Bail out on non-opt Phis.
189   if (NonOptPhis.count(Phi))
190     return Phi;
191 
192   // Detect equal or self arguments
193   MemoryAccess *Same = nullptr;
194   for (auto &Op : Operands) {
195     // If the same or self, good so far
196     if (Op == Phi || Op == Same)
197       continue;
198     // not the same, return the phi since it's not eliminatable by us
199     if (Same)
200       return Phi;
201     Same = cast<MemoryAccess>(&*Op);
202   }
203   // Never found a non-self reference, the phi is undef
204   if (Same == nullptr)
205     return MSSA->getLiveOnEntryDef();
206   if (Phi) {
207     Phi->replaceAllUsesWith(Same);
208     removeMemoryAccess(Phi);
209   }
210 
211   // We should only end up recursing in case we replaced something, in which
212   // case, we may have made other Phis trivial.
213   return recursePhi(Same);
214 }
215 
216 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
217   InsertedPHIs.clear();
218   MU->setDefiningAccess(getPreviousDef(MU));
219   // Unlike for defs, there is no extra work to do.  Because uses do not create
220   // new may-defs, there are only two cases:
221   //
222   // 1. There was a def already below us, and therefore, we should not have
223   // created a phi node because it was already needed for the def.
224   //
225   // 2. There is no def below us, and therefore, there is no extra renaming work
226   // to do.
227 }
228 
229 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
230 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
231                                       MemoryAccess *NewDef) {
232   // Replace any operand with us an incoming block with the new defining
233   // access.
234   int i = MP->getBasicBlockIndex(BB);
235   assert(i != -1 && "Should have found the basic block in the phi");
236   // We can't just compare i against getNumOperands since one is signed and the
237   // other not. So use it to index into the block iterator.
238   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
239        ++BBIter) {
240     if (*BBIter != BB)
241       break;
242     MP->setIncomingValue(i, NewDef);
243     ++i;
244   }
245 }
246 
247 // A brief description of the algorithm:
248 // First, we compute what should define the new def, using the SSA
249 // construction algorithm.
250 // Then, we update the defs below us (and any new phi nodes) in the graph to
251 // point to the correct new defs, to ensure we only have one variable, and no
252 // disconnected stores.
253 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
254   InsertedPHIs.clear();
255 
256   // See if we had a local def, and if not, go hunting.
257   MemoryAccess *DefBefore = getPreviousDef(MD);
258   bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
259 
260   // There is a def before us, which means we can replace any store/phi uses
261   // of that thing with us, since we are in the way of whatever was there
262   // before.
263   // We now define that def's memorydefs and memoryphis
264   if (DefBeforeSameBlock) {
265     for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
266          UI != UE;) {
267       Use &U = *UI++;
268       // Leave the MemoryUses alone.
269       // Also make sure we skip ourselves to avoid self references.
270       if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD)
271         continue;
272       // Defs are automatically unoptimized when the user is set to MD below,
273       // because the isOptimized() call will fail to find the same ID.
274       U.set(MD);
275     }
276   }
277 
278   // and that def is now our defining access.
279   MD->setDefiningAccess(DefBefore);
280 
281   // Remember the index where we may insert new phis below.
282   unsigned NewPhiIndex = InsertedPHIs.size();
283 
284   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
285   if (!DefBeforeSameBlock) {
286     // If there was a local def before us, we must have the same effect it
287     // did. Because every may-def is the same, any phis/etc we would create, it
288     // would also have created.  If there was no local def before us, we
289     // performed a global update, and have to search all successors and make
290     // sure we update the first def in each of them (following all paths until
291     // we hit the first def along each path). This may also insert phi nodes.
292     // TODO: There are other cases we can skip this work, such as when we have a
293     // single successor, and only used a straight line of single pred blocks
294     // backwards to find the def.  To make that work, we'd have to track whether
295     // getDefRecursive only ever used the single predecessor case.  These types
296     // of paths also only exist in between CFG simplifications.
297 
298     // If this is the first def in the block and this insert is in an arbitrary
299     // place, compute IDF and place phis.
300     auto Iter = MD->getDefsIterator();
301     ++Iter;
302     auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
303     if (Iter == IterEnd) {
304       ForwardIDFCalculator IDFs(*MSSA->DT);
305       SmallVector<BasicBlock *, 32> IDFBlocks;
306       SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
307       DefiningBlocks.insert(MD->getBlock());
308       IDFs.setDefiningBlocks(DefiningBlocks);
309       IDFs.calculate(IDFBlocks);
310       SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
311       for (auto *BBIDF : IDFBlocks)
312         if (!MSSA->getMemoryAccess(BBIDF)) {
313           auto *MPhi = MSSA->createMemoryPhi(BBIDF);
314           NewInsertedPHIs.push_back(MPhi);
315           // Add the phis created into the IDF blocks to NonOptPhis, so they are
316           // not optimized out as trivial by the call to getPreviousDefFromEnd
317           // below. Once they are complete, all these Phis are added to the
318           // FixupList, and removed from NonOptPhis inside fixupDefs().
319           NonOptPhis.insert(MPhi);
320         }
321 
322       for (auto &MPhi : NewInsertedPHIs) {
323         auto *BBIDF = MPhi->getBlock();
324         for (auto *Pred : predecessors(BBIDF)) {
325           DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
326           MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef),
327                             Pred);
328         }
329       }
330 
331       // Re-take the index where we're adding the new phis, because the above
332       // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
333       NewPhiIndex = InsertedPHIs.size();
334       for (auto &MPhi : NewInsertedPHIs) {
335         InsertedPHIs.push_back(&*MPhi);
336         FixupList.push_back(&*MPhi);
337       }
338     }
339 
340     FixupList.push_back(MD);
341   }
342 
343   // Remember the index where we stopped inserting new phis above, since the
344   // fixupDefs call in the loop below may insert more, that are already minimal.
345   unsigned NewPhiIndexEnd = InsertedPHIs.size();
346 
347   while (!FixupList.empty()) {
348     unsigned StartingPHISize = InsertedPHIs.size();
349     fixupDefs(FixupList);
350     FixupList.clear();
351     // Put any new phis on the fixup list, and process them
352     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
353   }
354 
355   // Optimize potentially non-minimal phis added in this method.
356   for (unsigned Idx = NewPhiIndex; Idx < NewPhiIndexEnd; ++Idx) {
357     if (auto *MPhi = cast_or_null<MemoryPhi>(InsertedPHIs[Idx])) {
358       auto OperRange = MPhi->operands();
359       tryRemoveTrivialPhi(MPhi, OperRange);
360     }
361   }
362 
363   // Now that all fixups are done, rename all uses if we are asked.
364   if (RenameUses) {
365     SmallPtrSet<BasicBlock *, 16> Visited;
366     BasicBlock *StartBlock = MD->getBlock();
367     // We are guaranteed there is a def in the block, because we just got it
368     // handed to us in this function.
369     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
370     // Convert to incoming value if it's a memorydef. A phi *is* already an
371     // incoming value.
372     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
373       FirstDef = MD->getDefiningAccess();
374 
375     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
376     // We just inserted a phi into this block, so the incoming value will become
377     // the phi anyway, so it does not matter what we pass.
378     for (auto &MP : InsertedPHIs) {
379       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
380       if (Phi)
381         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
382     }
383   }
384 }
385 
386 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
387   SmallPtrSet<const BasicBlock *, 8> Seen;
388   SmallVector<const BasicBlock *, 16> Worklist;
389   for (auto &Var : Vars) {
390     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
391     if (!NewDef)
392       continue;
393     // First, see if there is a local def after the operand.
394     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
395     auto DefIter = NewDef->getDefsIterator();
396 
397     // The temporary Phi is being fixed, unmark it for not to optimize.
398     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
399       NonOptPhis.erase(Phi);
400 
401     // If there is a local def after us, we only have to rename that.
402     if (++DefIter != Defs->end()) {
403       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
404       continue;
405     }
406 
407     // Otherwise, we need to search down through the CFG.
408     // For each of our successors, handle it directly if their is a phi, or
409     // place on the fixup worklist.
410     for (const auto *S : successors(NewDef->getBlock())) {
411       if (auto *MP = MSSA->getMemoryAccess(S))
412         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
413       else
414         Worklist.push_back(S);
415     }
416 
417     while (!Worklist.empty()) {
418       const BasicBlock *FixupBlock = Worklist.back();
419       Worklist.pop_back();
420 
421       // Get the first def in the block that isn't a phi node.
422       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
423         auto *FirstDef = &*Defs->begin();
424         // The loop above and below should have taken care of phi nodes
425         assert(!isa<MemoryPhi>(FirstDef) &&
426                "Should have already handled phi nodes!");
427         // We are now this def's defining access, make sure we actually dominate
428         // it
429         assert(MSSA->dominates(NewDef, FirstDef) &&
430                "Should have dominated the new access");
431 
432         // This may insert new phi nodes, because we are not guaranteed the
433         // block we are processing has a single pred, and depending where the
434         // store was inserted, it may require phi nodes below it.
435         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
436         return;
437       }
438       // We didn't find a def, so we must continue.
439       for (const auto *S : successors(FixupBlock)) {
440         // If there is a phi node, handle it.
441         // Otherwise, put the block on the worklist
442         if (auto *MP = MSSA->getMemoryAccess(S))
443           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
444         else {
445           // If we cycle, we should have ended up at a phi node that we already
446           // processed.  FIXME: Double check this
447           if (!Seen.insert(S).second)
448             continue;
449           Worklist.push_back(S);
450         }
451       }
452     }
453   }
454 }
455 
456 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
457   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
458     MPhi->unorderedDeleteIncomingBlock(From);
459     if (MPhi->getNumIncomingValues() == 1)
460       removeMemoryAccess(MPhi);
461   }
462 }
463 
464 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(BasicBlock *From,
465                                                       BasicBlock *To) {
466   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
467     bool Found = false;
468     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
469       if (From != B)
470         return false;
471       if (Found)
472         return true;
473       Found = true;
474       return false;
475     });
476     if (MPhi->getNumIncomingValues() == 1)
477       removeMemoryAccess(MPhi);
478   }
479 }
480 
481 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
482                                         const ValueToValueMapTy &VMap,
483                                         PhiToDefMap &MPhiMap) {
484   auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * {
485     MemoryAccess *InsnDefining = MA;
486     if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) {
487       if (!MSSA->isLiveOnEntryDef(DefMUD)) {
488         Instruction *DefMUDI = DefMUD->getMemoryInst();
489         assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
490         if (Instruction *NewDefMUDI =
491                 cast_or_null<Instruction>(VMap.lookup(DefMUDI)))
492           InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
493       }
494     } else {
495       MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
496       if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
497         InsnDefining = NewDefPhi;
498     }
499     assert(InsnDefining && "Defining instruction cannot be nullptr.");
500     return InsnDefining;
501   };
502 
503   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
504   if (!Acc)
505     return;
506   for (const MemoryAccess &MA : *Acc) {
507     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
508       Instruction *Insn = MUD->getMemoryInst();
509       // Entry does not exist if the clone of the block did not clone all
510       // instructions. This occurs in LoopRotate when cloning instructions
511       // from the old header to the old preheader. The cloned instruction may
512       // also be a simplified Value, not an Instruction (see LoopRotate).
513       if (Instruction *NewInsn =
514               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
515         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
516             NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), MUD);
517         MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
518       }
519     }
520   }
521 }
522 
523 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
524                                            ArrayRef<BasicBlock *> ExitBlocks,
525                                            const ValueToValueMapTy &VMap,
526                                            bool IgnoreIncomingWithNoClones) {
527   PhiToDefMap MPhiMap;
528 
529   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
530     assert(Phi && NewPhi && "Invalid Phi nodes.");
531     BasicBlock *NewPhiBB = NewPhi->getBlock();
532     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
533                                                pred_end(NewPhiBB));
534     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
535       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
536       BasicBlock *IncBB = Phi->getIncomingBlock(It);
537 
538       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
539         IncBB = NewIncBB;
540       else if (IgnoreIncomingWithNoClones)
541         continue;
542 
543       // Now we have IncBB, and will need to add incoming from it to NewPhi.
544 
545       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
546       // NewPhiBB was cloned without that edge.
547       if (!NewPhiBBPreds.count(IncBB))
548         continue;
549 
550       // Determine incoming value and add it as incoming from IncBB.
551       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
552         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
553           Instruction *IncI = IncMUD->getMemoryInst();
554           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
555           if (Instruction *NewIncI =
556                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
557             IncMUD = MSSA->getMemoryAccess(NewIncI);
558             assert(IncMUD &&
559                    "MemoryUseOrDef cannot be null, all preds processed.");
560           }
561         }
562         NewPhi->addIncoming(IncMUD, IncBB);
563       } else {
564         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
565         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
566           NewPhi->addIncoming(NewDefPhi, IncBB);
567         else
568           NewPhi->addIncoming(IncPhi, IncBB);
569       }
570     }
571   };
572 
573   auto ProcessBlock = [&](BasicBlock *BB) {
574     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
575     if (!NewBlock)
576       return;
577 
578     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
579            "Cloned block should have no accesses");
580 
581     // Add MemoryPhi.
582     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
583       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
584       MPhiMap[MPhi] = NewPhi;
585     }
586     // Update Uses and Defs.
587     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
588   };
589 
590   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
591     ProcessBlock(BB);
592 
593   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
594     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
595       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
596         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
597 }
598 
599 void MemorySSAUpdater::updateForClonedBlockIntoPred(
600     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
601   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
602   // Since those defs/phis must have dominated BB, and also dominate P1.
603   // Defs from BB being used in BB will be replaced with the cloned defs from
604   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
605   // incoming def into the Phi from P1.
606   PhiToDefMap MPhiMap;
607   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
608     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
609   cloneUsesAndDefs(BB, P1, VM, MPhiMap);
610 }
611 
612 template <typename Iter>
613 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
614     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
615     DominatorTree &DT) {
616   SmallVector<CFGUpdate, 4> Updates;
617   // Update/insert phis in all successors of exit blocks.
618   for (auto *Exit : ExitBlocks)
619     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
620       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
621         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
622         Updates.push_back({DT.Insert, NewExit, ExitSucc});
623       }
624   applyInsertUpdates(Updates, DT);
625 }
626 
627 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
628     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
629     DominatorTree &DT) {
630   const ValueToValueMapTy *const Arr[] = {&VMap};
631   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
632                                        std::end(Arr), DT);
633 }
634 
635 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
636     ArrayRef<BasicBlock *> ExitBlocks,
637     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
638   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
639     return I.get();
640   };
641   using MappedIteratorType =
642       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
643                       decltype(GetPtr)>;
644   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
645   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
646   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
647 }
648 
649 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
650                                     DominatorTree &DT) {
651   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
652   SmallVector<CFGUpdate, 4> InsertUpdates;
653   for (auto &Update : Updates) {
654     if (Update.getKind() == DT.Insert)
655       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
656     else
657       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
658   }
659 
660   if (!RevDeleteUpdates.empty()) {
661     // Update for inserted edges: use newDT and snapshot CFG as if deletes had
662     // not occurred.
663     // FIXME: This creates a new DT, so it's more expensive to do mix
664     // delete/inserts vs just inserts. We can do an incremental update on the DT
665     // to revert deletes, than re-delete the edges. Teaching DT to do this, is
666     // part of a pending cleanup.
667     DominatorTree NewDT(DT, RevDeleteUpdates);
668     GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
669     applyInsertUpdates(InsertUpdates, NewDT, &GD);
670   } else {
671     GraphDiff<BasicBlock *> GD;
672     applyInsertUpdates(InsertUpdates, DT, &GD);
673   }
674 
675   // Update for deleted edges
676   for (auto &Update : RevDeleteUpdates)
677     removeEdge(Update.getFrom(), Update.getTo());
678 }
679 
680 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
681                                           DominatorTree &DT) {
682   GraphDiff<BasicBlock *> GD;
683   applyInsertUpdates(Updates, DT, &GD);
684 }
685 
686 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
687                                           DominatorTree &DT,
688                                           const GraphDiff<BasicBlock *> *GD) {
689   // Get recursive last Def, assuming well formed MSSA and updated DT.
690   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
691     while (true) {
692       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
693       // Return last Def or Phi in BB, if it exists.
694       if (Defs)
695         return &*(--Defs->end());
696 
697       // Check number of predecessors, we only care if there's more than one.
698       unsigned Count = 0;
699       BasicBlock *Pred = nullptr;
700       for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
701         Pred = Pair.second;
702         Count++;
703         if (Count == 2)
704           break;
705       }
706 
707       // If BB has multiple predecessors, get last definition from IDom.
708       if (Count != 1) {
709         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
710         // DT is invalidated. Return LoE as its last def. This will be added to
711         // MemoryPhi node, and later deleted when the block is deleted.
712         if (!DT.getNode(BB))
713           return MSSA->getLiveOnEntryDef();
714         if (auto *IDom = DT.getNode(BB)->getIDom())
715           if (IDom->getBlock() != BB) {
716             BB = IDom->getBlock();
717             continue;
718           }
719         return MSSA->getLiveOnEntryDef();
720       } else {
721         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
722         assert(Count == 1 && Pred && "Single predecessor expected.");
723         BB = Pred;
724       }
725     };
726     llvm_unreachable("Unable to get last definition.");
727   };
728 
729   // Get nearest IDom given a set of blocks.
730   // TODO: this can be optimized by starting the search at the node with the
731   // lowest level (highest in the tree).
732   auto FindNearestCommonDominator =
733       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
734     BasicBlock *PrevIDom = *BBSet.begin();
735     for (auto *BB : BBSet)
736       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
737     return PrevIDom;
738   };
739 
740   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
741   // include CurrIDom.
742   auto GetNoLongerDomBlocks =
743       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
744           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
745         if (PrevIDom == CurrIDom)
746           return;
747         BlocksPrevDom.push_back(PrevIDom);
748         BasicBlock *NextIDom = PrevIDom;
749         while (BasicBlock *UpIDom =
750                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
751           if (UpIDom == CurrIDom)
752             break;
753           BlocksPrevDom.push_back(UpIDom);
754           NextIDom = UpIDom;
755         }
756       };
757 
758   // Map a BB to its predecessors: added + previously existing. To get a
759   // deterministic order, store predecessors as SetVectors. The order in each
760   // will be defined by the order in Updates (fixed) and the order given by
761   // children<> (also fixed). Since we further iterate over these ordered sets,
762   // we lose the information of multiple edges possibly existing between two
763   // blocks, so we'll keep and EdgeCount map for that.
764   // An alternate implementation could keep unordered set for the predecessors,
765   // traverse either Updates or children<> each time to get  the deterministic
766   // order, and drop the usage of EdgeCount. This alternate approach would still
767   // require querying the maps for each predecessor, and children<> call has
768   // additional computation inside for creating the snapshot-graph predecessors.
769   // As such, we favor using a little additional storage and less compute time.
770   // This decision can be revisited if we find the alternative more favorable.
771 
772   struct PredInfo {
773     SmallSetVector<BasicBlock *, 2> Added;
774     SmallSetVector<BasicBlock *, 2> Prev;
775   };
776   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
777 
778   for (auto &Edge : Updates) {
779     BasicBlock *BB = Edge.getTo();
780     auto &AddedBlockSet = PredMap[BB].Added;
781     AddedBlockSet.insert(Edge.getFrom());
782   }
783 
784   // Store all existing predecessor for each BB, at least one must exist.
785   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
786   SmallPtrSet<BasicBlock *, 2> NewBlocks;
787   for (auto &BBPredPair : PredMap) {
788     auto *BB = BBPredPair.first;
789     const auto &AddedBlockSet = BBPredPair.second.Added;
790     auto &PrevBlockSet = BBPredPair.second.Prev;
791     for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
792       BasicBlock *Pi = Pair.second;
793       if (!AddedBlockSet.count(Pi))
794         PrevBlockSet.insert(Pi);
795       EdgeCountMap[{Pi, BB}]++;
796     }
797 
798     if (PrevBlockSet.empty()) {
799       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
800       LLVM_DEBUG(
801           dbgs()
802           << "Adding a predecessor to a block with no predecessors. "
803              "This must be an edge added to a new, likely cloned, block. "
804              "Its memory accesses must be already correct, assuming completed "
805              "via the updateExitBlocksForClonedLoop API. "
806              "Assert a single such edge is added so no phi addition or "
807              "additional processing is required.\n");
808       assert(AddedBlockSet.size() == 1 &&
809              "Can only handle adding one predecessor to a new block.");
810       // Need to remove new blocks from PredMap. Remove below to not invalidate
811       // iterator here.
812       NewBlocks.insert(BB);
813     }
814   }
815   // Nothing to process for new/cloned blocks.
816   for (auto *BB : NewBlocks)
817     PredMap.erase(BB);
818 
819   SmallVector<BasicBlock *, 8> BlocksToProcess;
820   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
821 
822   // First create MemoryPhis in all blocks that don't have one. Create in the
823   // order found in Updates, not in PredMap, to get deterministic numbering.
824   for (auto &Edge : Updates) {
825     BasicBlock *BB = Edge.getTo();
826     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
827       MSSA->createMemoryPhi(BB);
828   }
829 
830   // Now we'll fill in the MemoryPhis with the right incoming values.
831   for (auto &BBPredPair : PredMap) {
832     auto *BB = BBPredPair.first;
833     const auto &PrevBlockSet = BBPredPair.second.Prev;
834     const auto &AddedBlockSet = BBPredPair.second.Added;
835     assert(!PrevBlockSet.empty() &&
836            "At least one previous predecessor must exist.");
837 
838     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
839     // keeping this map before the loop. We can reuse already populated entries
840     // if an edge is added from the same predecessor to two different blocks,
841     // and this does happen in rotate. Note that the map needs to be updated
842     // when deleting non-necessary phis below, if the phi is in the map by
843     // replacing the value with DefP1.
844     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
845     for (auto *AddedPred : AddedBlockSet) {
846       auto *DefPn = GetLastDef(AddedPred);
847       assert(DefPn != nullptr && "Unable to find last definition.");
848       LastDefAddedPred[AddedPred] = DefPn;
849     }
850 
851     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
852     // If Phi is not empty, add an incoming edge from each added pred. Must
853     // still compute blocks with defs to replace for this block below.
854     if (NewPhi->getNumOperands()) {
855       for (auto *Pred : AddedBlockSet) {
856         auto *LastDefForPred = LastDefAddedPred[Pred];
857         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
858           NewPhi->addIncoming(LastDefForPred, Pred);
859       }
860     } else {
861       // Pick any existing predecessor and get its definition. All other
862       // existing predecessors should have the same one, since no phi existed.
863       auto *P1 = *PrevBlockSet.begin();
864       MemoryAccess *DefP1 = GetLastDef(P1);
865 
866       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
867       // nothing to add.
868       bool InsertPhi = false;
869       for (auto LastDefPredPair : LastDefAddedPred)
870         if (DefP1 != LastDefPredPair.second) {
871           InsertPhi = true;
872           break;
873         }
874       if (!InsertPhi) {
875         // Since NewPhi may be used in other newly added Phis, replace all uses
876         // of NewPhi with the definition coming from all predecessors (DefP1),
877         // before deleting it.
878         NewPhi->replaceAllUsesWith(DefP1);
879         removeMemoryAccess(NewPhi);
880         continue;
881       }
882 
883       // Update Phi with new values for new predecessors and old value for all
884       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
885       // sets, the order of entries in NewPhi is deterministic.
886       for (auto *Pred : AddedBlockSet) {
887         auto *LastDefForPred = LastDefAddedPred[Pred];
888         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
889           NewPhi->addIncoming(LastDefForPred, Pred);
890       }
891       for (auto *Pred : PrevBlockSet)
892         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
893           NewPhi->addIncoming(DefP1, Pred);
894 
895       // Insert BB in the set of blocks that now have definition. We'll use this
896       // to compute IDF and add Phis there next.
897       BlocksToProcess.push_back(BB);
898     }
899 
900     // Get all blocks that used to dominate BB and no longer do after adding
901     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
902     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
903     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
904     assert(PrevIDom && "Previous IDom should exists");
905     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
906     assert(NewIDom && "BB should have a new valid idom");
907     assert(DT.dominates(NewIDom, PrevIDom) &&
908            "New idom should dominate old idom");
909     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
910   }
911 
912   // Compute IDF and add Phis in all IDF blocks that do not have one.
913   SmallVector<BasicBlock *, 32> IDFBlocks;
914   if (!BlocksToProcess.empty()) {
915     ForwardIDFCalculator IDFs(DT);
916     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
917                                                  BlocksToProcess.end());
918     IDFs.setDefiningBlocks(DefiningBlocks);
919     IDFs.calculate(IDFBlocks);
920     for (auto *BBIDF : IDFBlocks) {
921       if (auto *IDFPhi = MSSA->getMemoryAccess(BBIDF)) {
922         // Update existing Phi.
923         // FIXME: some updates may be redundant, try to optimize and skip some.
924         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
925           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
926       } else {
927         IDFPhi = MSSA->createMemoryPhi(BBIDF);
928         for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
929           BasicBlock *Pi = Pair.second;
930           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
931         }
932       }
933     }
934   }
935 
936   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
937   // longer dominate, replace those with the closest dominating def.
938   // This will also update optimized accesses, as they're also uses.
939   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
940     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
941       for (auto &DefToReplaceUses : *DefsList) {
942         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
943         Value::use_iterator UI = DefToReplaceUses.use_begin(),
944                             E = DefToReplaceUses.use_end();
945         for (; UI != E;) {
946           Use &U = *UI;
947           ++UI;
948           MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
949           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
950             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
951             if (!DT.dominates(DominatingBlock, DominatedBlock))
952               U.set(GetLastDef(DominatedBlock));
953           } else {
954             BasicBlock *DominatedBlock = Usr->getBlock();
955             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
956               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
957                 U.set(DomBlPhi);
958               else {
959                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
960                 assert(IDom && "Block must have a valid IDom.");
961                 U.set(GetLastDef(IDom->getBlock()));
962               }
963               cast<MemoryUseOrDef>(Usr)->resetOptimized();
964             }
965           }
966         }
967       }
968     }
969   }
970 }
971 
972 // Move What before Where in the MemorySSA IR.
973 template <class WhereType>
974 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
975                               WhereType Where) {
976   // Mark MemoryPhi users of What not to be optimized.
977   for (auto *U : What->users())
978     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
979       NonOptPhis.insert(PhiUser);
980 
981   // Replace all our users with our defining access.
982   What->replaceAllUsesWith(What->getDefiningAccess());
983 
984   // Let MemorySSA take care of moving it around in the lists.
985   MSSA->moveTo(What, BB, Where);
986 
987   // Now reinsert it into the IR and do whatever fixups needed.
988   if (auto *MD = dyn_cast<MemoryDef>(What))
989     insertDef(MD);
990   else
991     insertUse(cast<MemoryUse>(What));
992 
993   // Clear dangling pointers. We added all MemoryPhi users, but not all
994   // of them are removed by fixupDefs().
995   NonOptPhis.clear();
996 }
997 
998 // Move What before Where in the MemorySSA IR.
999 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1000   moveTo(What, Where->getBlock(), Where->getIterator());
1001 }
1002 
1003 // Move What after Where in the MemorySSA IR.
1004 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1005   moveTo(What, Where->getBlock(), ++Where->getIterator());
1006 }
1007 
1008 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1009                                    MemorySSA::InsertionPlace Where) {
1010   return moveTo(What, BB, Where);
1011 }
1012 
1013 // All accesses in To used to be in From. Move to end and update access lists.
1014 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1015                                        Instruction *Start) {
1016 
1017   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1018   if (!Accs)
1019     return;
1020 
1021   MemoryAccess *FirstInNew = nullptr;
1022   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1023     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1024       break;
1025   if (!FirstInNew)
1026     return;
1027 
1028   auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1029   do {
1030     auto NextIt = ++MUD->getIterator();
1031     MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1032                                   ? nullptr
1033                                   : cast<MemoryUseOrDef>(&*NextIt);
1034     MSSA->moveTo(MUD, To, MemorySSA::End);
1035     // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1036     // retrieve it again.
1037     Accs = MSSA->getWritableBlockAccesses(From);
1038     MUD = NextMUD;
1039   } while (MUD);
1040 }
1041 
1042 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1043                                                 BasicBlock *To,
1044                                                 Instruction *Start) {
1045   assert(MSSA->getBlockAccesses(To) == nullptr &&
1046          "To block is expected to be free of MemoryAccesses.");
1047   moveAllAccesses(From, To, Start);
1048   for (BasicBlock *Succ : successors(To))
1049     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1050       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1051 }
1052 
1053 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1054                                                Instruction *Start) {
1055   assert(From->getSinglePredecessor() == To &&
1056          "From block is expected to have a single predecessor (To).");
1057   moveAllAccesses(From, To, Start);
1058   for (BasicBlock *Succ : successors(From))
1059     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1060       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1061 }
1062 
1063 /// If all arguments of a MemoryPHI are defined by the same incoming
1064 /// argument, return that argument.
1065 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1066   MemoryAccess *MA = nullptr;
1067 
1068   for (auto &Arg : MP->operands()) {
1069     if (!MA)
1070       MA = cast<MemoryAccess>(Arg);
1071     else if (MA != Arg)
1072       return nullptr;
1073   }
1074   return MA;
1075 }
1076 
1077 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1078     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1079     bool IdenticalEdgesWereMerged) {
1080   assert(!MSSA->getWritableBlockAccesses(New) &&
1081          "Access list should be null for a new block.");
1082   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1083   if (!Phi)
1084     return;
1085   if (Old->hasNPredecessors(1)) {
1086     assert(pred_size(New) == Preds.size() &&
1087            "Should have moved all predecessors.");
1088     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1089   } else {
1090     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1091                              "new immediate predecessor.");
1092     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1093     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1094     // Currently only support the case of removing a single incoming edge when
1095     // identical edges were not merged.
1096     if (!IdenticalEdgesWereMerged)
1097       assert(PredsSet.size() == Preds.size() &&
1098              "If identical edges were not merged, we cannot have duplicate "
1099              "blocks in the predecessors");
1100     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1101       if (PredsSet.count(B)) {
1102         NewPhi->addIncoming(MA, B);
1103         if (!IdenticalEdgesWereMerged)
1104           PredsSet.erase(B);
1105         return true;
1106       }
1107       return false;
1108     });
1109     Phi->addIncoming(NewPhi, New);
1110     if (onlySingleValue(NewPhi))
1111       removeMemoryAccess(NewPhi);
1112   }
1113 }
1114 
1115 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1116   assert(!MSSA->isLiveOnEntryDef(MA) &&
1117          "Trying to remove the live on entry def");
1118   // We can only delete phi nodes if they have no uses, or we can replace all
1119   // uses with a single definition.
1120   MemoryAccess *NewDefTarget = nullptr;
1121   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1122     // Note that it is sufficient to know that all edges of the phi node have
1123     // the same argument.  If they do, by the definition of dominance frontiers
1124     // (which we used to place this phi), that argument must dominate this phi,
1125     // and thus, must dominate the phi's uses, and so we will not hit the assert
1126     // below.
1127     NewDefTarget = onlySingleValue(MP);
1128     assert((NewDefTarget || MP->use_empty()) &&
1129            "We can't delete this memory phi");
1130   } else {
1131     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1132   }
1133 
1134   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1135 
1136   // Re-point the uses at our defining access
1137   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1138     // Reset optimized on users of this store, and reset the uses.
1139     // A few notes:
1140     // 1. This is a slightly modified version of RAUW to avoid walking the
1141     // uses twice here.
1142     // 2. If we wanted to be complete, we would have to reset the optimized
1143     // flags on users of phi nodes if doing the below makes a phi node have all
1144     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1145     // phi nodes, because doing it here would be N^3.
1146     if (MA->hasValueHandle())
1147       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1148     // Note: We assume MemorySSA is not used in metadata since it's not really
1149     // part of the IR.
1150 
1151     while (!MA->use_empty()) {
1152       Use &U = *MA->use_begin();
1153       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1154         MUD->resetOptimized();
1155       if (OptimizePhis)
1156         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1157           PhisToCheck.insert(MP);
1158       U.set(NewDefTarget);
1159     }
1160   }
1161 
1162   // The call below to erase will destroy MA, so we can't change the order we
1163   // are doing things here
1164   MSSA->removeFromLookups(MA);
1165   MSSA->removeFromLists(MA);
1166 
1167   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1168   if (!PhisToCheck.empty()) {
1169     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1170                                            PhisToCheck.end()};
1171     PhisToCheck.clear();
1172 
1173     unsigned PhisSize = PhisToOptimize.size();
1174     while (PhisSize-- > 0)
1175       if (MemoryPhi *MP =
1176               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) {
1177         auto OperRange = MP->operands();
1178         tryRemoveTrivialPhi(MP, OperRange);
1179       }
1180   }
1181 }
1182 
1183 void MemorySSAUpdater::removeBlocks(
1184     const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) {
1185   // First delete all uses of BB in MemoryPhis.
1186   for (BasicBlock *BB : DeadBlocks) {
1187     Instruction *TI = BB->getTerminator();
1188     assert(TI && "Basic block expected to have a terminator instruction");
1189     for (BasicBlock *Succ : successors(TI))
1190       if (!DeadBlocks.count(Succ))
1191         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1192           MP->unorderedDeleteIncomingBlock(BB);
1193           if (MP->getNumIncomingValues() == 1)
1194             removeMemoryAccess(MP);
1195         }
1196     // Drop all references of all accesses in BB
1197     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1198       for (MemoryAccess &MA : *Acc)
1199         MA.dropAllReferences();
1200   }
1201 
1202   // Next, delete all memory accesses in each block
1203   for (BasicBlock *BB : DeadBlocks) {
1204     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1205     if (!Acc)
1206       continue;
1207     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1208       MemoryAccess *MA = &*AB;
1209       ++AB;
1210       MSSA->removeFromLookups(MA);
1211       MSSA->removeFromLists(MA);
1212     }
1213   }
1214 }
1215 
1216 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1217     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1218     MemorySSA::InsertionPlace Point) {
1219   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1220   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1221   return NewAccess;
1222 }
1223 
1224 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1225     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1226   assert(I->getParent() == InsertPt->getBlock() &&
1227          "New and old access must be in the same block");
1228   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1229   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1230                               InsertPt->getIterator());
1231   return NewAccess;
1232 }
1233 
1234 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1235     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1236   assert(I->getParent() == InsertPt->getBlock() &&
1237          "New and old access must be in the same block");
1238   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1239   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1240                               ++InsertPt->getIterator());
1241   return NewAccess;
1242 }
1243