1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSAUpdater class.
11 //
12 //===----------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSAUpdater.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/MemorySSA.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/GlobalVariable.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Metadata.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/FormattedStream.h"
26 #include <algorithm>
27 
28 #define DEBUG_TYPE "memoryssa"
29 using namespace llvm;
30 
31 // This is the marker algorithm from "Simple and Efficient Construction of
32 // Static Single Assignment Form"
33 // The simple, non-marker algorithm places phi nodes at any join
34 // Here, we place markers, and only place phi nodes if they end up necessary.
35 // They are only necessary if they break a cycle (IE we recursively visit
36 // ourselves again), or we discover, while getting the value of the operands,
37 // that there are two or more definitions needing to be merged.
38 // This still will leave non-minimal form in the case of irreducible control
39 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
40 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
41     BasicBlock *BB,
42     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
43   // First, do a cache lookup. Without this cache, certain CFG structures
44   // (like a series of if statements) take exponential time to visit.
45   auto Cached = CachedPreviousDef.find(BB);
46   if (Cached != CachedPreviousDef.end()) {
47     return Cached->second;
48   }
49 
50   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
51     // Single predecessor case, just recurse, we can only have one definition.
52     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
53     CachedPreviousDef.insert({BB, Result});
54     return Result;
55   }
56 
57   if (VisitedBlocks.count(BB)) {
58     // We hit our node again, meaning we had a cycle, we must insert a phi
59     // node to break it so we have an operand. The only case this will
60     // insert useless phis is if we have irreducible control flow.
61     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
62     CachedPreviousDef.insert({BB, Result});
63     return Result;
64   }
65 
66   if (VisitedBlocks.insert(BB).second) {
67     // Mark us visited so we can detect a cycle
68     SmallVector<MemoryAccess *, 8> PhiOps;
69 
70     // Recurse to get the values in our predecessors for placement of a
71     // potential phi node. This will insert phi nodes if we cycle in order to
72     // break the cycle and have an operand.
73     for (auto *Pred : predecessors(BB))
74       PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
75 
76     // Now try to simplify the ops to avoid placing a phi.
77     // This may return null if we never created a phi yet, that's okay
78     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
79     bool PHIExistsButNeedsUpdate = false;
80     // See if the existing phi operands match what we need.
81     // Unlike normal SSA, we only allow one phi node per block, so we can't just
82     // create a new one.
83     if (Phi && Phi->getNumOperands() != 0)
84       if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
85         PHIExistsButNeedsUpdate = true;
86       }
87 
88     // See if we can avoid the phi by simplifying it.
89     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
90     // If we couldn't simplify, we may have to create a phi
91     if (Result == Phi) {
92       if (!Phi)
93         Phi = MSSA->createMemoryPhi(BB);
94 
95       // These will have been filled in by the recursive read we did above.
96       if (PHIExistsButNeedsUpdate) {
97         std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
98         std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
99       } else {
100         unsigned i = 0;
101         for (auto *Pred : predecessors(BB))
102           Phi->addIncoming(PhiOps[i++], Pred);
103         InsertedPHIs.push_back(Phi);
104       }
105       Result = Phi;
106     }
107 
108     // Set ourselves up for the next variable by resetting visited state.
109     VisitedBlocks.erase(BB);
110     CachedPreviousDef.insert({BB, Result});
111     return Result;
112   }
113   llvm_unreachable("Should have hit one of the three cases above");
114 }
115 
116 // This starts at the memory access, and goes backwards in the block to find the
117 // previous definition. If a definition is not found the block of the access,
118 // it continues globally, creating phi nodes to ensure we have a single
119 // definition.
120 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
121   if (auto *LocalResult = getPreviousDefInBlock(MA))
122     return LocalResult;
123   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
124   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
125 }
126 
127 // This starts at the memory access, and goes backwards in the block to the find
128 // the previous definition. If the definition is not found in the block of the
129 // access, it returns nullptr.
130 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
131   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
132 
133   // It's possible there are no defs, or we got handed the first def to start.
134   if (Defs) {
135     // If this is a def, we can just use the def iterators.
136     if (!isa<MemoryUse>(MA)) {
137       auto Iter = MA->getReverseDefsIterator();
138       ++Iter;
139       if (Iter != Defs->rend())
140         return &*Iter;
141     } else {
142       // Otherwise, have to walk the all access iterator.
143       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
144       for (auto &U : make_range(++MA->getReverseIterator(), End))
145         if (!isa<MemoryUse>(U))
146           return cast<MemoryAccess>(&U);
147       // Note that if MA comes before Defs->begin(), we won't hit a def.
148       return nullptr;
149     }
150   }
151   return nullptr;
152 }
153 
154 // This starts at the end of block
155 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
156     BasicBlock *BB,
157     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
158   auto *Defs = MSSA->getWritableBlockDefs(BB);
159 
160   if (Defs)
161     return &*Defs->rbegin();
162 
163   return getPreviousDefRecursive(BB, CachedPreviousDef);
164 }
165 // Recurse over a set of phi uses to eliminate the trivial ones
166 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
167   if (!Phi)
168     return nullptr;
169   TrackingVH<MemoryAccess> Res(Phi);
170   SmallVector<TrackingVH<Value>, 8> Uses;
171   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
172   for (auto &U : Uses) {
173     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
174       auto OperRange = UsePhi->operands();
175       tryRemoveTrivialPhi(UsePhi, OperRange);
176     }
177   }
178   return Res;
179 }
180 
181 // Eliminate trivial phis
182 // Phis are trivial if they are defined either by themselves, or all the same
183 // argument.
184 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
185 // We recursively try to remove them.
186 template <class RangeType>
187 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
188                                                     RangeType &Operands) {
189   // Bail out on non-opt Phis.
190   if (NonOptPhis.count(Phi))
191     return Phi;
192 
193   // Detect equal or self arguments
194   MemoryAccess *Same = nullptr;
195   for (auto &Op : Operands) {
196     // If the same or self, good so far
197     if (Op == Phi || Op == Same)
198       continue;
199     // not the same, return the phi since it's not eliminatable by us
200     if (Same)
201       return Phi;
202     Same = cast<MemoryAccess>(Op);
203   }
204   // Never found a non-self reference, the phi is undef
205   if (Same == nullptr)
206     return MSSA->getLiveOnEntryDef();
207   if (Phi) {
208     Phi->replaceAllUsesWith(Same);
209     removeMemoryAccess(Phi);
210   }
211 
212   // We should only end up recursing in case we replaced something, in which
213   // case, we may have made other Phis trivial.
214   return recursePhi(Same);
215 }
216 
217 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
218   InsertedPHIs.clear();
219   MU->setDefiningAccess(getPreviousDef(MU));
220   // Unlike for defs, there is no extra work to do.  Because uses do not create
221   // new may-defs, there are only two cases:
222   //
223   // 1. There was a def already below us, and therefore, we should not have
224   // created a phi node because it was already needed for the def.
225   //
226   // 2. There is no def below us, and therefore, there is no extra renaming work
227   // to do.
228 }
229 
230 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
231 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
232                                       MemoryAccess *NewDef) {
233   // Replace any operand with us an incoming block with the new defining
234   // access.
235   int i = MP->getBasicBlockIndex(BB);
236   assert(i != -1 && "Should have found the basic block in the phi");
237   // We can't just compare i against getNumOperands since one is signed and the
238   // other not. So use it to index into the block iterator.
239   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
240        ++BBIter) {
241     if (*BBIter != BB)
242       break;
243     MP->setIncomingValue(i, NewDef);
244     ++i;
245   }
246 }
247 
248 // A brief description of the algorithm:
249 // First, we compute what should define the new def, using the SSA
250 // construction algorithm.
251 // Then, we update the defs below us (and any new phi nodes) in the graph to
252 // point to the correct new defs, to ensure we only have one variable, and no
253 // disconnected stores.
254 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
255   InsertedPHIs.clear();
256 
257   // See if we had a local def, and if not, go hunting.
258   MemoryAccess *DefBefore = getPreviousDef(MD);
259   bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
260 
261   // There is a def before us, which means we can replace any store/phi uses
262   // of that thing with us, since we are in the way of whatever was there
263   // before.
264   // We now define that def's memorydefs and memoryphis
265   if (DefBeforeSameBlock) {
266     for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
267          UI != UE;) {
268       Use &U = *UI++;
269       // Leave the uses alone
270       if (isa<MemoryUse>(U.getUser()))
271         continue;
272       U.set(MD);
273     }
274   }
275 
276   // and that def is now our defining access.
277   // We change them in this order otherwise we will appear in the use list
278   // above and reset ourselves.
279   MD->setDefiningAccess(DefBefore);
280 
281   SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
282                                            InsertedPHIs.end());
283   if (!DefBeforeSameBlock) {
284     // If there was a local def before us, we must have the same effect it
285     // did. Because every may-def is the same, any phis/etc we would create, it
286     // would also have created.  If there was no local def before us, we
287     // performed a global update, and have to search all successors and make
288     // sure we update the first def in each of them (following all paths until
289     // we hit the first def along each path). This may also insert phi nodes.
290     // TODO: There are other cases we can skip this work, such as when we have a
291     // single successor, and only used a straight line of single pred blocks
292     // backwards to find the def.  To make that work, we'd have to track whether
293     // getDefRecursive only ever used the single predecessor case.  These types
294     // of paths also only exist in between CFG simplifications.
295     FixupList.push_back(MD);
296   }
297 
298   while (!FixupList.empty()) {
299     unsigned StartingPHISize = InsertedPHIs.size();
300     fixupDefs(FixupList);
301     FixupList.clear();
302     // Put any new phis on the fixup list, and process them
303     FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
304   }
305   // Now that all fixups are done, rename all uses if we are asked.
306   if (RenameUses) {
307     SmallPtrSet<BasicBlock *, 16> Visited;
308     BasicBlock *StartBlock = MD->getBlock();
309     // We are guaranteed there is a def in the block, because we just got it
310     // handed to us in this function.
311     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
312     // Convert to incoming value if it's a memorydef. A phi *is* already an
313     // incoming value.
314     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
315       FirstDef = MD->getDefiningAccess();
316 
317     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
318     // We just inserted a phi into this block, so the incoming value will become
319     // the phi anyway, so it does not matter what we pass.
320     for (auto *MP : InsertedPHIs)
321       MSSA->renamePass(MP->getBlock(), nullptr, Visited);
322   }
323 }
324 
325 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
326   SmallPtrSet<const BasicBlock *, 8> Seen;
327   SmallVector<const BasicBlock *, 16> Worklist;
328   for (auto *NewDef : Vars) {
329     // First, see if there is a local def after the operand.
330     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
331     auto DefIter = NewDef->getDefsIterator();
332 
333     // The temporary Phi is being fixed, unmark it for not to optimize.
334     if (MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(NewDef))
335       NonOptPhis.erase(Phi);
336 
337     // If there is a local def after us, we only have to rename that.
338     if (++DefIter != Defs->end()) {
339       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
340       continue;
341     }
342 
343     // Otherwise, we need to search down through the CFG.
344     // For each of our successors, handle it directly if their is a phi, or
345     // place on the fixup worklist.
346     for (const auto *S : successors(NewDef->getBlock())) {
347       if (auto *MP = MSSA->getMemoryAccess(S))
348         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
349       else
350         Worklist.push_back(S);
351     }
352 
353     while (!Worklist.empty()) {
354       const BasicBlock *FixupBlock = Worklist.back();
355       Worklist.pop_back();
356 
357       // Get the first def in the block that isn't a phi node.
358       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
359         auto *FirstDef = &*Defs->begin();
360         // The loop above and below should have taken care of phi nodes
361         assert(!isa<MemoryPhi>(FirstDef) &&
362                "Should have already handled phi nodes!");
363         // We are now this def's defining access, make sure we actually dominate
364         // it
365         assert(MSSA->dominates(NewDef, FirstDef) &&
366                "Should have dominated the new access");
367 
368         // This may insert new phi nodes, because we are not guaranteed the
369         // block we are processing has a single pred, and depending where the
370         // store was inserted, it may require phi nodes below it.
371         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
372         return;
373       }
374       // We didn't find a def, so we must continue.
375       for (const auto *S : successors(FixupBlock)) {
376         // If there is a phi node, handle it.
377         // Otherwise, put the block on the worklist
378         if (auto *MP = MSSA->getMemoryAccess(S))
379           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
380         else {
381           // If we cycle, we should have ended up at a phi node that we already
382           // processed.  FIXME: Double check this
383           if (!Seen.insert(S).second)
384             continue;
385           Worklist.push_back(S);
386         }
387       }
388     }
389   }
390 }
391 
392 // Move What before Where in the MemorySSA IR.
393 template <class WhereType>
394 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
395                               WhereType Where) {
396   // Mark MemoryPhi users of What not to be optimized.
397   for (auto *U : What->users())
398     if (MemoryPhi *PhiUser = dyn_cast_or_null<MemoryPhi>(U))
399       NonOptPhis.insert(PhiUser);
400 
401   // Replace all our users with our defining access.
402   What->replaceAllUsesWith(What->getDefiningAccess());
403 
404   // Let MemorySSA take care of moving it around in the lists.
405   MSSA->moveTo(What, BB, Where);
406 
407   // Now reinsert it into the IR and do whatever fixups needed.
408   if (auto *MD = dyn_cast<MemoryDef>(What))
409     insertDef(MD);
410   else
411     insertUse(cast<MemoryUse>(What));
412 
413   // Clear dangling pointers. We added all MemoryPhi users, but not all
414   // of them are removed by fixupDefs().
415   NonOptPhis.clear();
416 }
417 
418 // Move What before Where in the MemorySSA IR.
419 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
420   moveTo(What, Where->getBlock(), Where->getIterator());
421 }
422 
423 // Move What after Where in the MemorySSA IR.
424 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
425   moveTo(What, Where->getBlock(), ++Where->getIterator());
426 }
427 
428 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
429                                    MemorySSA::InsertionPlace Where) {
430   return moveTo(What, BB, Where);
431 }
432 
433 /// If all arguments of a MemoryPHI are defined by the same incoming
434 /// argument, return that argument.
435 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
436   MemoryAccess *MA = nullptr;
437 
438   for (auto &Arg : MP->operands()) {
439     if (!MA)
440       MA = cast<MemoryAccess>(Arg);
441     else if (MA != Arg)
442       return nullptr;
443   }
444   return MA;
445 }
446 
447 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
448   assert(!MSSA->isLiveOnEntryDef(MA) &&
449          "Trying to remove the live on entry def");
450   // We can only delete phi nodes if they have no uses, or we can replace all
451   // uses with a single definition.
452   MemoryAccess *NewDefTarget = nullptr;
453   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
454     // Note that it is sufficient to know that all edges of the phi node have
455     // the same argument.  If they do, by the definition of dominance frontiers
456     // (which we used to place this phi), that argument must dominate this phi,
457     // and thus, must dominate the phi's uses, and so we will not hit the assert
458     // below.
459     NewDefTarget = onlySingleValue(MP);
460     assert((NewDefTarget || MP->use_empty()) &&
461            "We can't delete this memory phi");
462   } else {
463     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
464   }
465 
466   // Re-point the uses at our defining access
467   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
468     // Reset optimized on users of this store, and reset the uses.
469     // A few notes:
470     // 1. This is a slightly modified version of RAUW to avoid walking the
471     // uses twice here.
472     // 2. If we wanted to be complete, we would have to reset the optimized
473     // flags on users of phi nodes if doing the below makes a phi node have all
474     // the same arguments. Instead, we prefer users to removeMemoryAccess those
475     // phi nodes, because doing it here would be N^3.
476     if (MA->hasValueHandle())
477       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
478     // Note: We assume MemorySSA is not used in metadata since it's not really
479     // part of the IR.
480 
481     while (!MA->use_empty()) {
482       Use &U = *MA->use_begin();
483       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
484         MUD->resetOptimized();
485       U.set(NewDefTarget);
486     }
487   }
488 
489   // The call below to erase will destroy MA, so we can't change the order we
490   // are doing things here
491   MSSA->removeFromLookups(MA);
492   MSSA->removeFromLists(MA);
493 }
494 
495 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
496     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
497     MemorySSA::InsertionPlace Point) {
498   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
499   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
500   return NewAccess;
501 }
502 
503 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
504     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
505   assert(I->getParent() == InsertPt->getBlock() &&
506          "New and old access must be in the same block");
507   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
508   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
509                               InsertPt->getIterator());
510   return NewAccess;
511 }
512 
513 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
514     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
515   assert(I->getParent() == InsertPt->getBlock() &&
516          "New and old access must be in the same block");
517   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
518   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
519                               ++InsertPt->getIterator());
520   return NewAccess;
521 }
522