1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------===// 9 // 10 // This file implements the MemorySSAUpdater class. 11 // 12 //===----------------------------------------------------------------===// 13 #include "llvm/Analysis/MemorySSAUpdater.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/MemorySSA.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/IR/GlobalVariable.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Metadata.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/FormattedStream.h" 26 #include <algorithm> 27 28 #define DEBUG_TYPE "memoryssa" 29 using namespace llvm; 30 31 // This is the marker algorithm from "Simple and Efficient Construction of 32 // Static Single Assignment Form" 33 // The simple, non-marker algorithm places phi nodes at any join 34 // Here, we place markers, and only place phi nodes if they end up necessary. 35 // They are only necessary if they break a cycle (IE we recursively visit 36 // ourselves again), or we discover, while getting the value of the operands, 37 // that there are two or more definitions needing to be merged. 38 // This still will leave non-minimal form in the case of irreducible control 39 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 40 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) { 41 // Single predecessor case, just recurse, we can only have one definition. 42 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 43 return getPreviousDefFromEnd(Pred); 44 } else if (VisitedBlocks.count(BB)) { 45 // We hit our node again, meaning we had a cycle, we must insert a phi 46 // node to break it so we have an operand. The only case this will 47 // insert useless phis is if we have irreducible control flow. 48 return MSSA->createMemoryPhi(BB); 49 } else if (VisitedBlocks.insert(BB).second) { 50 // Mark us visited so we can detect a cycle 51 SmallVector<MemoryAccess *, 8> PhiOps; 52 53 // Recurse to get the values in our predecessors for placement of a 54 // potential phi node. This will insert phi nodes if we cycle in order to 55 // break the cycle and have an operand. 56 for (auto *Pred : predecessors(BB)) 57 PhiOps.push_back(getPreviousDefFromEnd(Pred)); 58 59 // Now try to simplify the ops to avoid placing a phi. 60 // This may return null if we never created a phi yet, that's okay 61 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 62 bool PHIExistsButNeedsUpdate = false; 63 // See if the existing phi operands match what we need. 64 // Unlike normal SSA, we only allow one phi node per block, so we can't just 65 // create a new one. 66 if (Phi && Phi->getNumOperands() != 0) 67 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 68 PHIExistsButNeedsUpdate = true; 69 } 70 71 // See if we can avoid the phi by simplifying it. 72 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 73 // If we couldn't simplify, we may have to create a phi 74 if (Result == Phi) { 75 if (!Phi) 76 Phi = MSSA->createMemoryPhi(BB); 77 78 // These will have been filled in by the recursive read we did above. 79 if (PHIExistsButNeedsUpdate) { 80 std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); 81 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 82 } else { 83 unsigned i = 0; 84 for (auto *Pred : predecessors(BB)) 85 Phi->addIncoming(PhiOps[i++], Pred); 86 InsertedPHIs.push_back(Phi); 87 } 88 Result = Phi; 89 } 90 91 // Set ourselves up for the next variable by resetting visited state. 92 VisitedBlocks.erase(BB); 93 return Result; 94 } 95 llvm_unreachable("Should have hit one of the three cases above"); 96 } 97 98 // This starts at the memory access, and goes backwards in the block to find the 99 // previous definition. If a definition is not found the block of the access, 100 // it continues globally, creating phi nodes to ensure we have a single 101 // definition. 102 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 103 auto *LocalResult = getPreviousDefInBlock(MA); 104 105 return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock()); 106 } 107 108 // This starts at the memory access, and goes backwards in the block to the find 109 // the previous definition. If the definition is not found in the block of the 110 // access, it returns nullptr. 111 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 112 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 113 114 // It's possible there are no defs, or we got handed the first def to start. 115 if (Defs) { 116 // If this is a def, we can just use the def iterators. 117 if (!isa<MemoryUse>(MA)) { 118 auto Iter = MA->getReverseDefsIterator(); 119 ++Iter; 120 if (Iter != Defs->rend()) 121 return &*Iter; 122 } else { 123 // Otherwise, have to walk the all access iterator. 124 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 125 for (auto &U : make_range(++MA->getReverseIterator(), End)) 126 if (!isa<MemoryUse>(U)) 127 return cast<MemoryAccess>(&U); 128 // Note that if MA comes before Defs->begin(), we won't hit a def. 129 return nullptr; 130 } 131 } 132 return nullptr; 133 } 134 135 // This starts at the end of block 136 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) { 137 auto *Defs = MSSA->getWritableBlockDefs(BB); 138 139 if (Defs) 140 return &*Defs->rbegin(); 141 142 return getPreviousDefRecursive(BB); 143 } 144 // Recurse over a set of phi uses to eliminate the trivial ones 145 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 146 if (!Phi) 147 return nullptr; 148 TrackingVH<MemoryAccess> Res(Phi); 149 SmallVector<TrackingVH<Value>, 8> Uses; 150 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 151 for (auto &U : Uses) { 152 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { 153 auto OperRange = UsePhi->operands(); 154 tryRemoveTrivialPhi(UsePhi, OperRange); 155 } 156 } 157 return Res; 158 } 159 160 // Eliminate trivial phis 161 // Phis are trivial if they are defined either by themselves, or all the same 162 // argument. 163 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 164 // We recursively try to remove them. 165 template <class RangeType> 166 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 167 RangeType &Operands) { 168 // Detect equal or self arguments 169 MemoryAccess *Same = nullptr; 170 for (auto &Op : Operands) { 171 // If the same or self, good so far 172 if (Op == Phi || Op == Same) 173 continue; 174 // not the same, return the phi since it's not eliminatable by us 175 if (Same) 176 return Phi; 177 Same = cast<MemoryAccess>(Op); 178 } 179 // Never found a non-self reference, the phi is undef 180 if (Same == nullptr) 181 return MSSA->getLiveOnEntryDef(); 182 if (Phi) { 183 Phi->replaceAllUsesWith(Same); 184 removeMemoryAccess(Phi); 185 } 186 187 // We should only end up recursing in case we replaced something, in which 188 // case, we may have made other Phis trivial. 189 return recursePhi(Same); 190 } 191 192 void MemorySSAUpdater::insertUse(MemoryUse *MU) { 193 InsertedPHIs.clear(); 194 MU->setDefiningAccess(getPreviousDef(MU)); 195 // Unlike for defs, there is no extra work to do. Because uses do not create 196 // new may-defs, there are only two cases: 197 // 198 // 1. There was a def already below us, and therefore, we should not have 199 // created a phi node because it was already needed for the def. 200 // 201 // 2. There is no def below us, and therefore, there is no extra renaming work 202 // to do. 203 } 204 205 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 206 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 207 MemoryAccess *NewDef) { 208 // Replace any operand with us an incoming block with the new defining 209 // access. 210 int i = MP->getBasicBlockIndex(BB); 211 assert(i != -1 && "Should have found the basic block in the phi"); 212 // We can't just compare i against getNumOperands since one is signed and the 213 // other not. So use it to index into the block iterator. 214 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 215 ++BBIter) { 216 if (*BBIter != BB) 217 break; 218 MP->setIncomingValue(i, NewDef); 219 ++i; 220 } 221 } 222 223 // A brief description of the algorithm: 224 // First, we compute what should define the new def, using the SSA 225 // construction algorithm. 226 // Then, we update the defs below us (and any new phi nodes) in the graph to 227 // point to the correct new defs, to ensure we only have one variable, and no 228 // disconnected stores. 229 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 230 InsertedPHIs.clear(); 231 232 // See if we had a local def, and if not, go hunting. 233 MemoryAccess *DefBefore = getPreviousDefInBlock(MD); 234 bool DefBeforeSameBlock = DefBefore != nullptr; 235 if (!DefBefore) 236 DefBefore = getPreviousDefRecursive(MD->getBlock()); 237 238 // There is a def before us, which means we can replace any store/phi uses 239 // of that thing with us, since we are in the way of whatever was there 240 // before. 241 // We now define that def's memorydefs and memoryphis 242 if (DefBeforeSameBlock) { 243 for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); 244 UI != UE;) { 245 Use &U = *UI++; 246 // Leave the uses alone 247 if (isa<MemoryUse>(U.getUser())) 248 continue; 249 U.set(MD); 250 } 251 } 252 253 // and that def is now our defining access. 254 // We change them in this order otherwise we will appear in the use list 255 // above and reset ourselves. 256 MD->setDefiningAccess(DefBefore); 257 258 SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(), 259 InsertedPHIs.end()); 260 if (!DefBeforeSameBlock) { 261 // If there was a local def before us, we must have the same effect it 262 // did. Because every may-def is the same, any phis/etc we would create, it 263 // would also have created. If there was no local def before us, we 264 // performed a global update, and have to search all successors and make 265 // sure we update the first def in each of them (following all paths until 266 // we hit the first def along each path). This may also insert phi nodes. 267 // TODO: There are other cases we can skip this work, such as when we have a 268 // single successor, and only used a straight line of single pred blocks 269 // backwards to find the def. To make that work, we'd have to track whether 270 // getDefRecursive only ever used the single predecessor case. These types 271 // of paths also only exist in between CFG simplifications. 272 FixupList.push_back(MD); 273 } 274 275 while (!FixupList.empty()) { 276 unsigned StartingPHISize = InsertedPHIs.size(); 277 fixupDefs(FixupList); 278 FixupList.clear(); 279 // Put any new phis on the fixup list, and process them 280 FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end()); 281 } 282 // Now that all fixups are done, rename all uses if we are asked. 283 if (RenameUses) { 284 SmallPtrSet<BasicBlock *, 16> Visited; 285 BasicBlock *StartBlock = MD->getBlock(); 286 // We are guaranteed there is a def in the block, because we just got it 287 // handed to us in this function. 288 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 289 // Convert to incoming value if it's a memorydef. A phi *is* already an 290 // incoming value. 291 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 292 FirstDef = MD->getDefiningAccess(); 293 294 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 295 // We just inserted a phi into this block, so the incoming value will become 296 // the phi anyway, so it does not matter what we pass. 297 for (auto *MP : InsertedPHIs) 298 MSSA->renamePass(MP->getBlock(), nullptr, Visited); 299 } 300 } 301 302 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) { 303 SmallPtrSet<const BasicBlock *, 8> Seen; 304 SmallVector<const BasicBlock *, 16> Worklist; 305 for (auto *NewDef : Vars) { 306 // First, see if there is a local def after the operand. 307 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 308 auto DefIter = NewDef->getDefsIterator(); 309 310 // If there is a local def after us, we only have to rename that. 311 if (++DefIter != Defs->end()) { 312 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 313 continue; 314 } 315 316 // Otherwise, we need to search down through the CFG. 317 // For each of our successors, handle it directly if their is a phi, or 318 // place on the fixup worklist. 319 for (const auto *S : successors(NewDef->getBlock())) { 320 if (auto *MP = MSSA->getMemoryAccess(S)) 321 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 322 else 323 Worklist.push_back(S); 324 } 325 326 while (!Worklist.empty()) { 327 const BasicBlock *FixupBlock = Worklist.back(); 328 Worklist.pop_back(); 329 330 // Get the first def in the block that isn't a phi node. 331 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 332 auto *FirstDef = &*Defs->begin(); 333 // The loop above and below should have taken care of phi nodes 334 assert(!isa<MemoryPhi>(FirstDef) && 335 "Should have already handled phi nodes!"); 336 // We are now this def's defining access, make sure we actually dominate 337 // it 338 assert(MSSA->dominates(NewDef, FirstDef) && 339 "Should have dominated the new access"); 340 341 // This may insert new phi nodes, because we are not guaranteed the 342 // block we are processing has a single pred, and depending where the 343 // store was inserted, it may require phi nodes below it. 344 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 345 return; 346 } 347 // We didn't find a def, so we must continue. 348 for (const auto *S : successors(FixupBlock)) { 349 // If there is a phi node, handle it. 350 // Otherwise, put the block on the worklist 351 if (auto *MP = MSSA->getMemoryAccess(S)) 352 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 353 else { 354 // If we cycle, we should have ended up at a phi node that we already 355 // processed. FIXME: Double check this 356 if (!Seen.insert(S).second) 357 continue; 358 Worklist.push_back(S); 359 } 360 } 361 } 362 } 363 } 364 365 // Move What before Where in the MemorySSA IR. 366 template <class WhereType> 367 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 368 WhereType Where) { 369 // Replace all our users with our defining access. 370 What->replaceAllUsesWith(What->getDefiningAccess()); 371 372 // Let MemorySSA take care of moving it around in the lists. 373 MSSA->moveTo(What, BB, Where); 374 375 // Now reinsert it into the IR and do whatever fixups needed. 376 if (auto *MD = dyn_cast<MemoryDef>(What)) 377 insertDef(MD); 378 else 379 insertUse(cast<MemoryUse>(What)); 380 } 381 382 // Move What before Where in the MemorySSA IR. 383 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 384 moveTo(What, Where->getBlock(), Where->getIterator()); 385 } 386 387 // Move What after Where in the MemorySSA IR. 388 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 389 moveTo(What, Where->getBlock(), ++Where->getIterator()); 390 } 391 392 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 393 MemorySSA::InsertionPlace Where) { 394 return moveTo(What, BB, Where); 395 } 396 397 /// \brief If all arguments of a MemoryPHI are defined by the same incoming 398 /// argument, return that argument. 399 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 400 MemoryAccess *MA = nullptr; 401 402 for (auto &Arg : MP->operands()) { 403 if (!MA) 404 MA = cast<MemoryAccess>(Arg); 405 else if (MA != Arg) 406 return nullptr; 407 } 408 return MA; 409 } 410 411 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) { 412 assert(!MSSA->isLiveOnEntryDef(MA) && 413 "Trying to remove the live on entry def"); 414 // We can only delete phi nodes if they have no uses, or we can replace all 415 // uses with a single definition. 416 MemoryAccess *NewDefTarget = nullptr; 417 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 418 // Note that it is sufficient to know that all edges of the phi node have 419 // the same argument. If they do, by the definition of dominance frontiers 420 // (which we used to place this phi), that argument must dominate this phi, 421 // and thus, must dominate the phi's uses, and so we will not hit the assert 422 // below. 423 NewDefTarget = onlySingleValue(MP); 424 assert((NewDefTarget || MP->use_empty()) && 425 "We can't delete this memory phi"); 426 } else { 427 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 428 } 429 430 // Re-point the uses at our defining access 431 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 432 // Reset optimized on users of this store, and reset the uses. 433 // A few notes: 434 // 1. This is a slightly modified version of RAUW to avoid walking the 435 // uses twice here. 436 // 2. If we wanted to be complete, we would have to reset the optimized 437 // flags on users of phi nodes if doing the below makes a phi node have all 438 // the same arguments. Instead, we prefer users to removeMemoryAccess those 439 // phi nodes, because doing it here would be N^3. 440 if (MA->hasValueHandle()) 441 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 442 // Note: We assume MemorySSA is not used in metadata since it's not really 443 // part of the IR. 444 445 while (!MA->use_empty()) { 446 Use &U = *MA->use_begin(); 447 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 448 MUD->resetOptimized(); 449 U.set(NewDefTarget); 450 } 451 } 452 453 // The call below to erase will destroy MA, so we can't change the order we 454 // are doing things here 455 MSSA->removeFromLookups(MA); 456 MSSA->removeFromLists(MA); 457 } 458 459 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 460 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 461 MemorySSA::InsertionPlace Point) { 462 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 463 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 464 return NewAccess; 465 } 466 467 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 468 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 469 assert(I->getParent() == InsertPt->getBlock() && 470 "New and old access must be in the same block"); 471 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 472 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 473 InsertPt->getIterator()); 474 return NewAccess; 475 } 476 477 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 478 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 479 assert(I->getParent() == InsertPt->getBlock() && 480 "New and old access must be in the same block"); 481 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 482 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 483 ++InsertPt->getIterator()); 484 return NewAccess; 485 } 486