1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the MemorySSA class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemorySSA.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/PassManager.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "memoryssa" 60 61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 62 true) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 66 true) 67 68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 69 "Memory SSA Printer", false, false) 70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 72 "Memory SSA Printer", false, false) 73 74 static cl::opt<unsigned> MaxCheckLimit( 75 "memssa-check-limit", cl::Hidden, cl::init(100), 76 cl::desc("The maximum number of stores/phis MemorySSA" 77 "will consider trying to walk past (default = 100)")); 78 79 static cl::opt<bool> 80 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, 81 cl::desc("Verify MemorySSA in legacy printer pass.")); 82 83 namespace llvm { 84 85 /// \brief An assembly annotator class to print Memory SSA information in 86 /// comments. 87 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 88 friend class MemorySSA; 89 90 const MemorySSA *MSSA; 91 92 public: 93 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 94 95 void emitBasicBlockStartAnnot(const BasicBlock *BB, 96 formatted_raw_ostream &OS) override { 97 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 98 OS << "; " << *MA << "\n"; 99 } 100 101 void emitInstructionAnnot(const Instruction *I, 102 formatted_raw_ostream &OS) override { 103 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 104 OS << "; " << *MA << "\n"; 105 } 106 }; 107 108 } // end namespace llvm 109 110 namespace { 111 112 /// Our current alias analysis API differentiates heavily between calls and 113 /// non-calls, and functions called on one usually assert on the other. 114 /// This class encapsulates the distinction to simplify other code that wants 115 /// "Memory affecting instructions and related data" to use as a key. 116 /// For example, this class is used as a densemap key in the use optimizer. 117 class MemoryLocOrCall { 118 public: 119 bool IsCall = false; 120 121 MemoryLocOrCall() = default; 122 MemoryLocOrCall(MemoryUseOrDef *MUD) 123 : MemoryLocOrCall(MUD->getMemoryInst()) {} 124 MemoryLocOrCall(const MemoryUseOrDef *MUD) 125 : MemoryLocOrCall(MUD->getMemoryInst()) {} 126 127 MemoryLocOrCall(Instruction *Inst) { 128 if (ImmutableCallSite(Inst)) { 129 IsCall = true; 130 CS = ImmutableCallSite(Inst); 131 } else { 132 IsCall = false; 133 // There is no such thing as a memorylocation for a fence inst, and it is 134 // unique in that regard. 135 if (!isa<FenceInst>(Inst)) 136 Loc = MemoryLocation::get(Inst); 137 } 138 } 139 140 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 141 142 ImmutableCallSite getCS() const { 143 assert(IsCall); 144 return CS; 145 } 146 147 MemoryLocation getLoc() const { 148 assert(!IsCall); 149 return Loc; 150 } 151 152 bool operator==(const MemoryLocOrCall &Other) const { 153 if (IsCall != Other.IsCall) 154 return false; 155 156 if (IsCall) 157 return CS.getCalledValue() == Other.CS.getCalledValue(); 158 return Loc == Other.Loc; 159 } 160 161 private: 162 union { 163 ImmutableCallSite CS; 164 MemoryLocation Loc; 165 }; 166 }; 167 168 } // end anonymous namespace 169 170 namespace llvm { 171 172 template <> struct DenseMapInfo<MemoryLocOrCall> { 173 static inline MemoryLocOrCall getEmptyKey() { 174 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 175 } 176 177 static inline MemoryLocOrCall getTombstoneKey() { 178 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 179 } 180 181 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 182 if (MLOC.IsCall) 183 return hash_combine(MLOC.IsCall, 184 DenseMapInfo<const Value *>::getHashValue( 185 MLOC.getCS().getCalledValue())); 186 return hash_combine( 187 MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 188 } 189 190 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 191 return LHS == RHS; 192 } 193 }; 194 195 enum class Reorderability { Always, IfNoAlias, Never }; 196 197 } // end namespace llvm 198 199 /// This does one-way checks to see if Use could theoretically be hoisted above 200 /// MayClobber. This will not check the other way around. 201 /// 202 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 203 /// MayClobber, with no potentially clobbering operations in between them. 204 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 205 static Reorderability getLoadReorderability(const LoadInst *Use, 206 const LoadInst *MayClobber) { 207 bool VolatileUse = Use->isVolatile(); 208 bool VolatileClobber = MayClobber->isVolatile(); 209 // Volatile operations may never be reordered with other volatile operations. 210 if (VolatileUse && VolatileClobber) 211 return Reorderability::Never; 212 213 // The lang ref allows reordering of volatile and non-volatile operations. 214 // Whether an aliasing nonvolatile load and volatile load can be reordered, 215 // though, is ambiguous. Because it may not be best to exploit this ambiguity, 216 // we only allow volatile/non-volatile reordering if the volatile and 217 // non-volatile operations don't alias. 218 Reorderability Result = VolatileUse || VolatileClobber 219 ? Reorderability::IfNoAlias 220 : Reorderability::Always; 221 222 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 223 // is weaker, it can be moved above other loads. We just need to be sure that 224 // MayClobber isn't an acquire load, because loads can't be moved above 225 // acquire loads. 226 // 227 // Note that this explicitly *does* allow the free reordering of monotonic (or 228 // weaker) loads of the same address. 229 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 230 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 231 AtomicOrdering::Acquire); 232 if (SeqCstUse || MayClobberIsAcquire) 233 return Reorderability::Never; 234 return Result; 235 } 236 237 static bool instructionClobbersQuery(MemoryDef *MD, 238 const MemoryLocation &UseLoc, 239 const Instruction *UseInst, 240 AliasAnalysis &AA) { 241 Instruction *DefInst = MD->getMemoryInst(); 242 assert(DefInst && "Defining instruction not actually an instruction"); 243 ImmutableCallSite UseCS(UseInst); 244 245 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 246 // These intrinsics will show up as affecting memory, but they are just 247 // markers. 248 switch (II->getIntrinsicID()) { 249 case Intrinsic::lifetime_start: 250 if (UseCS) 251 return false; 252 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc); 253 case Intrinsic::lifetime_end: 254 case Intrinsic::invariant_start: 255 case Intrinsic::invariant_end: 256 case Intrinsic::assume: 257 return false; 258 default: 259 break; 260 } 261 } 262 263 if (UseCS) { 264 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); 265 return I != MRI_NoModRef; 266 } 267 268 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) { 269 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) { 270 switch (getLoadReorderability(UseLoad, DefLoad)) { 271 case Reorderability::Always: 272 return false; 273 case Reorderability::Never: 274 return true; 275 case Reorderability::IfNoAlias: 276 return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad)); 277 } 278 } 279 } 280 281 return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod; 282 } 283 284 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, 285 const MemoryLocOrCall &UseMLOC, 286 AliasAnalysis &AA) { 287 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 288 // to exist while MemoryLocOrCall is pushed through places. 289 if (UseMLOC.IsCall) 290 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 291 AA); 292 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 293 AA); 294 } 295 296 // Return true when MD may alias MU, return false otherwise. 297 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 298 AliasAnalysis &AA) { 299 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); 300 } 301 302 namespace { 303 304 struct UpwardsMemoryQuery { 305 // True if our original query started off as a call 306 bool IsCall = false; 307 // The pointer location we started the query with. This will be empty if 308 // IsCall is true. 309 MemoryLocation StartingLoc; 310 // This is the instruction we were querying about. 311 const Instruction *Inst = nullptr; 312 // The MemoryAccess we actually got called with, used to test local domination 313 const MemoryAccess *OriginalAccess = nullptr; 314 315 UpwardsMemoryQuery() = default; 316 317 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 318 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { 319 if (!IsCall) 320 StartingLoc = MemoryLocation::get(Inst); 321 } 322 }; 323 324 } // end anonymous namespace 325 326 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 327 AliasAnalysis &AA) { 328 Instruction *Inst = MD->getMemoryInst(); 329 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 330 switch (II->getIntrinsicID()) { 331 case Intrinsic::lifetime_end: 332 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); 333 default: 334 return false; 335 } 336 } 337 return false; 338 } 339 340 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, 341 const Instruction *I) { 342 // If the memory can't be changed, then loads of the memory can't be 343 // clobbered. 344 // 345 // FIXME: We should handle invariant groups, as well. It's a bit harder, 346 // because we need to pay close attention to invariant group barriers. 347 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 348 AA.pointsToConstantMemory(cast<LoadInst>(I)-> 349 getPointerOperand())); 350 } 351 352 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 353 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 354 /// 355 /// This is meant to be as simple and self-contained as possible. Because it 356 /// uses no cache, etc., it can be relatively expensive. 357 /// 358 /// \param Start The MemoryAccess that we want to walk from. 359 /// \param ClobberAt A clobber for Start. 360 /// \param StartLoc The MemoryLocation for Start. 361 /// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. 362 /// \param Query The UpwardsMemoryQuery we used for our search. 363 /// \param AA The AliasAnalysis we used for our search. 364 static void LLVM_ATTRIBUTE_UNUSED 365 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, 366 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 367 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { 368 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 369 370 if (MSSA.isLiveOnEntryDef(Start)) { 371 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 372 "liveOnEntry must clobber itself"); 373 return; 374 } 375 376 bool FoundClobber = false; 377 DenseSet<MemoryAccessPair> VisitedPhis; 378 SmallVector<MemoryAccessPair, 8> Worklist; 379 Worklist.emplace_back(Start, StartLoc); 380 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 381 // is found, complain. 382 while (!Worklist.empty()) { 383 MemoryAccessPair MAP = Worklist.pop_back_val(); 384 // All we care about is that nothing from Start to ClobberAt clobbers Start. 385 // We learn nothing from revisiting nodes. 386 if (!VisitedPhis.insert(MAP).second) 387 continue; 388 389 for (MemoryAccess *MA : def_chain(MAP.first)) { 390 if (MA == ClobberAt) { 391 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 392 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 393 // since it won't let us short-circuit. 394 // 395 // Also, note that this can't be hoisted out of the `Worklist` loop, 396 // since MD may only act as a clobber for 1 of N MemoryLocations. 397 FoundClobber = 398 FoundClobber || MSSA.isLiveOnEntryDef(MD) || 399 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 400 } 401 break; 402 } 403 404 // We should never hit liveOnEntry, unless it's the clobber. 405 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 406 407 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 408 (void)MD; 409 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && 410 "Found clobber before reaching ClobberAt!"); 411 continue; 412 } 413 414 assert(isa<MemoryPhi>(MA)); 415 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); 416 } 417 } 418 419 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 420 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 421 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 422 "ClobberAt never acted as a clobber"); 423 } 424 425 namespace { 426 427 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 428 /// in one class. 429 class ClobberWalker { 430 /// Save a few bytes by using unsigned instead of size_t. 431 using ListIndex = unsigned; 432 433 /// Represents a span of contiguous MemoryDefs, potentially ending in a 434 /// MemoryPhi. 435 struct DefPath { 436 MemoryLocation Loc; 437 // Note that, because we always walk in reverse, Last will always dominate 438 // First. Also note that First and Last are inclusive. 439 MemoryAccess *First; 440 MemoryAccess *Last; 441 Optional<ListIndex> Previous; 442 443 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 444 Optional<ListIndex> Previous) 445 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 446 447 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 448 Optional<ListIndex> Previous) 449 : DefPath(Loc, Init, Init, Previous) {} 450 }; 451 452 const MemorySSA &MSSA; 453 AliasAnalysis &AA; 454 DominatorTree &DT; 455 UpwardsMemoryQuery *Query; 456 457 // Phi optimization bookkeeping 458 SmallVector<DefPath, 32> Paths; 459 DenseSet<ConstMemoryAccessPair> VisitedPhis; 460 461 /// Find the nearest def or phi that `From` can legally be optimized to. 462 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 463 assert(From->getNumOperands() && "Phi with no operands?"); 464 465 BasicBlock *BB = From->getBlock(); 466 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 467 DomTreeNode *Node = DT.getNode(BB); 468 while ((Node = Node->getIDom())) { 469 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 470 if (Defs) 471 return &*Defs->rbegin(); 472 } 473 return Result; 474 } 475 476 /// Result of calling walkToPhiOrClobber. 477 struct UpwardsWalkResult { 478 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 479 /// both. 480 MemoryAccess *Result; 481 bool IsKnownClobber; 482 }; 483 484 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 485 /// This will update Desc.Last as it walks. It will (optionally) also stop at 486 /// StopAt. 487 /// 488 /// This does not test for whether StopAt is a clobber 489 UpwardsWalkResult 490 walkToPhiOrClobber(DefPath &Desc, 491 const MemoryAccess *StopAt = nullptr) const { 492 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 493 494 for (MemoryAccess *Current : def_chain(Desc.Last)) { 495 Desc.Last = Current; 496 if (Current == StopAt) 497 return {Current, false}; 498 499 if (auto *MD = dyn_cast<MemoryDef>(Current)) 500 if (MSSA.isLiveOnEntryDef(MD) || 501 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA)) 502 return {MD, true}; 503 } 504 505 assert(isa<MemoryPhi>(Desc.Last) && 506 "Ended at a non-clobber that's not a phi?"); 507 return {Desc.Last, false}; 508 } 509 510 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 511 ListIndex PriorNode) { 512 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 513 upward_defs_end()); 514 for (const MemoryAccessPair &P : UpwardDefs) { 515 PausedSearches.push_back(Paths.size()); 516 Paths.emplace_back(P.second, P.first, PriorNode); 517 } 518 } 519 520 /// Represents a search that terminated after finding a clobber. This clobber 521 /// may or may not be present in the path of defs from LastNode..SearchStart, 522 /// since it may have been retrieved from cache. 523 struct TerminatedPath { 524 MemoryAccess *Clobber; 525 ListIndex LastNode; 526 }; 527 528 /// Get an access that keeps us from optimizing to the given phi. 529 /// 530 /// PausedSearches is an array of indices into the Paths array. Its incoming 531 /// value is the indices of searches that stopped at the last phi optimization 532 /// target. It's left in an unspecified state. 533 /// 534 /// If this returns None, NewPaused is a vector of searches that terminated 535 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 536 Optional<TerminatedPath> 537 getBlockingAccess(const MemoryAccess *StopWhere, 538 SmallVectorImpl<ListIndex> &PausedSearches, 539 SmallVectorImpl<ListIndex> &NewPaused, 540 SmallVectorImpl<TerminatedPath> &Terminated) { 541 assert(!PausedSearches.empty() && "No searches to continue?"); 542 543 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 544 // PausedSearches as our stack. 545 while (!PausedSearches.empty()) { 546 ListIndex PathIndex = PausedSearches.pop_back_val(); 547 DefPath &Node = Paths[PathIndex]; 548 549 // If we've already visited this path with this MemoryLocation, we don't 550 // need to do so again. 551 // 552 // NOTE: That we just drop these paths on the ground makes caching 553 // behavior sporadic. e.g. given a diamond: 554 // A 555 // B C 556 // D 557 // 558 // ...If we walk D, B, A, C, we'll only cache the result of phi 559 // optimization for A, B, and D; C will be skipped because it dies here. 560 // This arguably isn't the worst thing ever, since: 561 // - We generally query things in a top-down order, so if we got below D 562 // without needing cache entries for {C, MemLoc}, then chances are 563 // that those cache entries would end up ultimately unused. 564 // - We still cache things for A, so C only needs to walk up a bit. 565 // If this behavior becomes problematic, we can fix without a ton of extra 566 // work. 567 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 568 continue; 569 570 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); 571 if (Res.IsKnownClobber) { 572 assert(Res.Result != StopWhere); 573 // If this wasn't a cache hit, we hit a clobber when walking. That's a 574 // failure. 575 TerminatedPath Term{Res.Result, PathIndex}; 576 if (!MSSA.dominates(Res.Result, StopWhere)) 577 return Term; 578 579 // Otherwise, it's a valid thing to potentially optimize to. 580 Terminated.push_back(Term); 581 continue; 582 } 583 584 if (Res.Result == StopWhere) { 585 // We've hit our target. Save this path off for if we want to continue 586 // walking. 587 NewPaused.push_back(PathIndex); 588 continue; 589 } 590 591 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 592 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 593 } 594 595 return None; 596 } 597 598 template <typename T, typename Walker> 599 struct generic_def_path_iterator 600 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 601 std::forward_iterator_tag, T *> { 602 generic_def_path_iterator() = default; 603 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 604 605 T &operator*() const { return curNode(); } 606 607 generic_def_path_iterator &operator++() { 608 N = curNode().Previous; 609 return *this; 610 } 611 612 bool operator==(const generic_def_path_iterator &O) const { 613 if (N.hasValue() != O.N.hasValue()) 614 return false; 615 return !N.hasValue() || *N == *O.N; 616 } 617 618 private: 619 T &curNode() const { return W->Paths[*N]; } 620 621 Walker *W = nullptr; 622 Optional<ListIndex> N = None; 623 }; 624 625 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 626 using const_def_path_iterator = 627 generic_def_path_iterator<const DefPath, const ClobberWalker>; 628 629 iterator_range<def_path_iterator> def_path(ListIndex From) { 630 return make_range(def_path_iterator(this, From), def_path_iterator()); 631 } 632 633 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 634 return make_range(const_def_path_iterator(this, From), 635 const_def_path_iterator()); 636 } 637 638 struct OptznResult { 639 /// The path that contains our result. 640 TerminatedPath PrimaryClobber; 641 /// The paths that we can legally cache back from, but that aren't 642 /// necessarily the result of the Phi optimization. 643 SmallVector<TerminatedPath, 4> OtherClobbers; 644 }; 645 646 ListIndex defPathIndex(const DefPath &N) const { 647 // The assert looks nicer if we don't need to do &N 648 const DefPath *NP = &N; 649 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 650 "Out of bounds DefPath!"); 651 return NP - &Paths.front(); 652 } 653 654 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 655 /// that act as legal clobbers. Note that this won't return *all* clobbers. 656 /// 657 /// Phi optimization algorithm tl;dr: 658 /// - Find the earliest def/phi, A, we can optimize to 659 /// - Find if all paths from the starting memory access ultimately reach A 660 /// - If not, optimization isn't possible. 661 /// - Otherwise, walk from A to another clobber or phi, A'. 662 /// - If A' is a def, we're done. 663 /// - If A' is a phi, try to optimize it. 664 /// 665 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 666 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 667 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 668 const MemoryLocation &Loc) { 669 assert(Paths.empty() && VisitedPhis.empty() && 670 "Reset the optimization state."); 671 672 Paths.emplace_back(Loc, Start, Phi, None); 673 // Stores how many "valid" optimization nodes we had prior to calling 674 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 675 auto PriorPathsSize = Paths.size(); 676 677 SmallVector<ListIndex, 16> PausedSearches; 678 SmallVector<ListIndex, 8> NewPaused; 679 SmallVector<TerminatedPath, 4> TerminatedPaths; 680 681 addSearches(Phi, PausedSearches, 0); 682 683 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 684 // Paths. 685 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 686 assert(!Paths.empty() && "Need a path to move"); 687 auto Dom = Paths.begin(); 688 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 689 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 690 Dom = I; 691 auto Last = Paths.end() - 1; 692 if (Last != Dom) 693 std::iter_swap(Last, Dom); 694 }; 695 696 MemoryPhi *Current = Phi; 697 while (true) { 698 assert(!MSSA.isLiveOnEntryDef(Current) && 699 "liveOnEntry wasn't treated as a clobber?"); 700 701 const auto *Target = getWalkTarget(Current); 702 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 703 // optimization for the prior phi. 704 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 705 return MSSA.dominates(P.Clobber, Target); 706 })); 707 708 // FIXME: This is broken, because the Blocker may be reported to be 709 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 710 // For the moment, this is fine, since we do nothing with blocker info. 711 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 712 Target, PausedSearches, NewPaused, TerminatedPaths)) { 713 714 // Find the node we started at. We can't search based on N->Last, since 715 // we may have gone around a loop with a different MemoryLocation. 716 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 717 return defPathIndex(N) < PriorPathsSize; 718 }); 719 assert(Iter != def_path_iterator()); 720 721 DefPath &CurNode = *Iter; 722 assert(CurNode.Last == Current); 723 724 // Two things: 725 // A. We can't reliably cache all of NewPaused back. Consider a case 726 // where we have two paths in NewPaused; one of which can't optimize 727 // above this phi, whereas the other can. If we cache the second path 728 // back, we'll end up with suboptimal cache entries. We can handle 729 // cases like this a bit better when we either try to find all 730 // clobbers that block phi optimization, or when our cache starts 731 // supporting unfinished searches. 732 // B. We can't reliably cache TerminatedPaths back here without doing 733 // extra checks; consider a case like: 734 // T 735 // / \ 736 // D C 737 // \ / 738 // S 739 // Where T is our target, C is a node with a clobber on it, D is a 740 // diamond (with a clobber *only* on the left or right node, N), and 741 // S is our start. Say we walk to D, through the node opposite N 742 // (read: ignoring the clobber), and see a cache entry in the top 743 // node of D. That cache entry gets put into TerminatedPaths. We then 744 // walk up to C (N is later in our worklist), find the clobber, and 745 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 746 // the bottom part of D to the cached clobber, ignoring the clobber 747 // in N. Again, this problem goes away if we start tracking all 748 // blockers for a given phi optimization. 749 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 750 return {Result, {}}; 751 } 752 753 // If there's nothing left to search, then all paths led to valid clobbers 754 // that we got from our cache; pick the nearest to the start, and allow 755 // the rest to be cached back. 756 if (NewPaused.empty()) { 757 MoveDominatedPathToEnd(TerminatedPaths); 758 TerminatedPath Result = TerminatedPaths.pop_back_val(); 759 return {Result, std::move(TerminatedPaths)}; 760 } 761 762 MemoryAccess *DefChainEnd = nullptr; 763 SmallVector<TerminatedPath, 4> Clobbers; 764 for (ListIndex Paused : NewPaused) { 765 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 766 if (WR.IsKnownClobber) 767 Clobbers.push_back({WR.Result, Paused}); 768 else 769 // Micro-opt: If we hit the end of the chain, save it. 770 DefChainEnd = WR.Result; 771 } 772 773 if (!TerminatedPaths.empty()) { 774 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 775 // do it now. 776 if (!DefChainEnd) 777 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 778 DefChainEnd = MA; 779 780 // If any of the terminated paths don't dominate the phi we'll try to 781 // optimize, we need to figure out what they are and quit. 782 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 783 for (const TerminatedPath &TP : TerminatedPaths) { 784 // Because we know that DefChainEnd is as "high" as we can go, we 785 // don't need local dominance checks; BB dominance is sufficient. 786 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 787 Clobbers.push_back(TP); 788 } 789 } 790 791 // If we have clobbers in the def chain, find the one closest to Current 792 // and quit. 793 if (!Clobbers.empty()) { 794 MoveDominatedPathToEnd(Clobbers); 795 TerminatedPath Result = Clobbers.pop_back_val(); 796 return {Result, std::move(Clobbers)}; 797 } 798 799 assert(all_of(NewPaused, 800 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 801 802 // Because liveOnEntry is a clobber, this must be a phi. 803 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 804 805 PriorPathsSize = Paths.size(); 806 PausedSearches.clear(); 807 for (ListIndex I : NewPaused) 808 addSearches(DefChainPhi, PausedSearches, I); 809 NewPaused.clear(); 810 811 Current = DefChainPhi; 812 } 813 } 814 815 void verifyOptResult(const OptznResult &R) const { 816 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 817 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 818 })); 819 } 820 821 void resetPhiOptznState() { 822 Paths.clear(); 823 VisitedPhis.clear(); 824 } 825 826 public: 827 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) 828 : MSSA(MSSA), AA(AA), DT(DT) {} 829 830 void reset() {} 831 832 /// Finds the nearest clobber for the given query, optimizing phis if 833 /// possible. 834 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { 835 Query = &Q; 836 837 MemoryAccess *Current = Start; 838 // This walker pretends uses don't exist. If we're handed one, silently grab 839 // its def. (This has the nice side-effect of ensuring we never cache uses) 840 if (auto *MU = dyn_cast<MemoryUse>(Start)) 841 Current = MU->getDefiningAccess(); 842 843 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 844 // Fast path for the overly-common case (no crazy phi optimization 845 // necessary) 846 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 847 MemoryAccess *Result; 848 if (WalkResult.IsKnownClobber) { 849 Result = WalkResult.Result; 850 } else { 851 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 852 Current, Q.StartingLoc); 853 verifyOptResult(OptRes); 854 resetPhiOptznState(); 855 Result = OptRes.PrimaryClobber.Clobber; 856 } 857 858 #ifdef EXPENSIVE_CHECKS 859 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 860 #endif 861 return Result; 862 } 863 864 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } 865 }; 866 867 struct RenamePassData { 868 DomTreeNode *DTN; 869 DomTreeNode::const_iterator ChildIt; 870 MemoryAccess *IncomingVal; 871 872 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 873 MemoryAccess *M) 874 : DTN(D), ChildIt(It), IncomingVal(M) {} 875 876 void swap(RenamePassData &RHS) { 877 std::swap(DTN, RHS.DTN); 878 std::swap(ChildIt, RHS.ChildIt); 879 std::swap(IncomingVal, RHS.IncomingVal); 880 } 881 }; 882 883 } // end anonymous namespace 884 885 namespace llvm { 886 887 /// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no 888 /// longer does caching on its own, 889 /// but the name has been retained for the moment. 890 class MemorySSA::CachingWalker final : public MemorySSAWalker { 891 ClobberWalker Walker; 892 bool AutoResetWalker = true; 893 894 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); 895 896 public: 897 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); 898 ~CachingWalker() override = default; 899 900 using MemorySSAWalker::getClobberingMemoryAccess; 901 902 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; 903 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 904 const MemoryLocation &) override; 905 void invalidateInfo(MemoryAccess *) override; 906 907 /// Whether we call resetClobberWalker() after each time we *actually* walk to 908 /// answer a clobber query. 909 void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } 910 911 /// Drop the walker's persistent data structures. 912 void resetClobberWalker() { Walker.reset(); } 913 914 void verify(const MemorySSA *MSSA) override { 915 MemorySSAWalker::verify(MSSA); 916 Walker.verify(MSSA); 917 } 918 }; 919 920 } // end namespace llvm 921 922 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 923 bool RenameAllUses) { 924 // Pass through values to our successors 925 for (const BasicBlock *S : successors(BB)) { 926 auto It = PerBlockAccesses.find(S); 927 // Rename the phi nodes in our successor block 928 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 929 continue; 930 AccessList *Accesses = It->second.get(); 931 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 932 if (RenameAllUses) { 933 int PhiIndex = Phi->getBasicBlockIndex(BB); 934 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 935 Phi->setIncomingValue(PhiIndex, IncomingVal); 936 } else 937 Phi->addIncoming(IncomingVal, BB); 938 } 939 } 940 941 /// \brief Rename a single basic block into MemorySSA form. 942 /// Uses the standard SSA renaming algorithm. 943 /// \returns The new incoming value. 944 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 945 bool RenameAllUses) { 946 auto It = PerBlockAccesses.find(BB); 947 // Skip most processing if the list is empty. 948 if (It != PerBlockAccesses.end()) { 949 AccessList *Accesses = It->second.get(); 950 for (MemoryAccess &L : *Accesses) { 951 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 952 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 953 MUD->setDefiningAccess(IncomingVal); 954 if (isa<MemoryDef>(&L)) 955 IncomingVal = &L; 956 } else { 957 IncomingVal = &L; 958 } 959 } 960 } 961 return IncomingVal; 962 } 963 964 /// \brief This is the standard SSA renaming algorithm. 965 /// 966 /// We walk the dominator tree in preorder, renaming accesses, and then filling 967 /// in phi nodes in our successors. 968 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 969 SmallPtrSetImpl<BasicBlock *> &Visited, 970 bool SkipVisited, bool RenameAllUses) { 971 SmallVector<RenamePassData, 32> WorkStack; 972 // Skip everything if we already renamed this block and we are skipping. 973 // Note: You can't sink this into the if, because we need it to occur 974 // regardless of whether we skip blocks or not. 975 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 976 if (SkipVisited && AlreadyVisited) 977 return; 978 979 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 980 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 981 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 982 983 while (!WorkStack.empty()) { 984 DomTreeNode *Node = WorkStack.back().DTN; 985 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 986 IncomingVal = WorkStack.back().IncomingVal; 987 988 if (ChildIt == Node->end()) { 989 WorkStack.pop_back(); 990 } else { 991 DomTreeNode *Child = *ChildIt; 992 ++WorkStack.back().ChildIt; 993 BasicBlock *BB = Child->getBlock(); 994 // Note: You can't sink this into the if, because we need it to occur 995 // regardless of whether we skip blocks or not. 996 AlreadyVisited = !Visited.insert(BB).second; 997 if (SkipVisited && AlreadyVisited) { 998 // We already visited this during our renaming, which can happen when 999 // being asked to rename multiple blocks. Figure out the incoming val, 1000 // which is the last def. 1001 // Incoming value can only change if there is a block def, and in that 1002 // case, it's the last block def in the list. 1003 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1004 IncomingVal = &*BlockDefs->rbegin(); 1005 } else 1006 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1007 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1008 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1009 } 1010 } 1011 } 1012 1013 /// \brief This handles unreachable block accesses by deleting phi nodes in 1014 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1015 /// being uses of the live on entry definition. 1016 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1017 assert(!DT->isReachableFromEntry(BB) && 1018 "Reachable block found while handling unreachable blocks"); 1019 1020 // Make sure phi nodes in our reachable successors end up with a 1021 // LiveOnEntryDef for our incoming edge, even though our block is forward 1022 // unreachable. We could just disconnect these blocks from the CFG fully, 1023 // but we do not right now. 1024 for (const BasicBlock *S : successors(BB)) { 1025 if (!DT->isReachableFromEntry(S)) 1026 continue; 1027 auto It = PerBlockAccesses.find(S); 1028 // Rename the phi nodes in our successor block 1029 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1030 continue; 1031 AccessList *Accesses = It->second.get(); 1032 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1033 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1034 } 1035 1036 auto It = PerBlockAccesses.find(BB); 1037 if (It == PerBlockAccesses.end()) 1038 return; 1039 1040 auto &Accesses = It->second; 1041 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1042 auto Next = std::next(AI); 1043 // If we have a phi, just remove it. We are going to replace all 1044 // users with live on entry. 1045 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1046 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1047 else 1048 Accesses->erase(AI); 1049 AI = Next; 1050 } 1051 } 1052 1053 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1054 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1055 NextID(INVALID_MEMORYACCESS_ID) { 1056 buildMemorySSA(); 1057 } 1058 1059 MemorySSA::~MemorySSA() { 1060 // Drop all our references 1061 for (const auto &Pair : PerBlockAccesses) 1062 for (MemoryAccess &MA : *Pair.second) 1063 MA.dropAllReferences(); 1064 } 1065 1066 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1067 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1068 1069 if (Res.second) 1070 Res.first->second = llvm::make_unique<AccessList>(); 1071 return Res.first->second.get(); 1072 } 1073 1074 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1075 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1076 1077 if (Res.second) 1078 Res.first->second = llvm::make_unique<DefsList>(); 1079 return Res.first->second.get(); 1080 } 1081 1082 namespace llvm { 1083 1084 /// This class is a batch walker of all MemoryUse's in the program, and points 1085 /// their defining access at the thing that actually clobbers them. Because it 1086 /// is a batch walker that touches everything, it does not operate like the 1087 /// other walkers. This walker is basically performing a top-down SSA renaming 1088 /// pass, where the version stack is used as the cache. This enables it to be 1089 /// significantly more time and memory efficient than using the regular walker, 1090 /// which is walking bottom-up. 1091 class MemorySSA::OptimizeUses { 1092 public: 1093 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, 1094 DominatorTree *DT) 1095 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { 1096 Walker = MSSA->getWalker(); 1097 } 1098 1099 void optimizeUses(); 1100 1101 private: 1102 /// This represents where a given memorylocation is in the stack. 1103 struct MemlocStackInfo { 1104 // This essentially is keeping track of versions of the stack. Whenever 1105 // the stack changes due to pushes or pops, these versions increase. 1106 unsigned long StackEpoch; 1107 unsigned long PopEpoch; 1108 // This is the lower bound of places on the stack to check. It is equal to 1109 // the place the last stack walk ended. 1110 // Note: Correctness depends on this being initialized to 0, which densemap 1111 // does 1112 unsigned long LowerBound; 1113 const BasicBlock *LowerBoundBlock; 1114 // This is where the last walk for this memory location ended. 1115 unsigned long LastKill; 1116 bool LastKillValid; 1117 }; 1118 1119 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1120 SmallVectorImpl<MemoryAccess *> &, 1121 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1122 1123 MemorySSA *MSSA; 1124 MemorySSAWalker *Walker; 1125 AliasAnalysis *AA; 1126 DominatorTree *DT; 1127 }; 1128 1129 } // end namespace llvm 1130 1131 /// Optimize the uses in a given block This is basically the SSA renaming 1132 /// algorithm, with one caveat: We are able to use a single stack for all 1133 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1134 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1135 /// going to be some position in that stack of possible ones. 1136 /// 1137 /// We track the stack positions that each MemoryLocation needs 1138 /// to check, and last ended at. This is because we only want to check the 1139 /// things that changed since last time. The same MemoryLocation should 1140 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1141 /// things like this, and if they start, we can modify MemoryLocOrCall to 1142 /// include relevant data) 1143 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1144 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1145 SmallVectorImpl<MemoryAccess *> &VersionStack, 1146 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1147 1148 /// If no accesses, nothing to do. 1149 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1150 if (Accesses == nullptr) 1151 return; 1152 1153 // Pop everything that doesn't dominate the current block off the stack, 1154 // increment the PopEpoch to account for this. 1155 while (true) { 1156 assert( 1157 !VersionStack.empty() && 1158 "Version stack should have liveOnEntry sentinel dominating everything"); 1159 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1160 if (DT->dominates(BackBlock, BB)) 1161 break; 1162 while (VersionStack.back()->getBlock() == BackBlock) 1163 VersionStack.pop_back(); 1164 ++PopEpoch; 1165 } 1166 1167 for (MemoryAccess &MA : *Accesses) { 1168 auto *MU = dyn_cast<MemoryUse>(&MA); 1169 if (!MU) { 1170 VersionStack.push_back(&MA); 1171 ++StackEpoch; 1172 continue; 1173 } 1174 1175 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1176 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true); 1177 continue; 1178 } 1179 1180 MemoryLocOrCall UseMLOC(MU); 1181 auto &LocInfo = LocStackInfo[UseMLOC]; 1182 // If the pop epoch changed, it means we've removed stuff from top of 1183 // stack due to changing blocks. We may have to reset the lower bound or 1184 // last kill info. 1185 if (LocInfo.PopEpoch != PopEpoch) { 1186 LocInfo.PopEpoch = PopEpoch; 1187 LocInfo.StackEpoch = StackEpoch; 1188 // If the lower bound was in something that no longer dominates us, we 1189 // have to reset it. 1190 // We can't simply track stack size, because the stack may have had 1191 // pushes/pops in the meantime. 1192 // XXX: This is non-optimal, but only is slower cases with heavily 1193 // branching dominator trees. To get the optimal number of queries would 1194 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1195 // the top of that stack dominates us. This does not seem worth it ATM. 1196 // A much cheaper optimization would be to always explore the deepest 1197 // branch of the dominator tree first. This will guarantee this resets on 1198 // the smallest set of blocks. 1199 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1200 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1201 // Reset the lower bound of things to check. 1202 // TODO: Some day we should be able to reset to last kill, rather than 1203 // 0. 1204 LocInfo.LowerBound = 0; 1205 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1206 LocInfo.LastKillValid = false; 1207 } 1208 } else if (LocInfo.StackEpoch != StackEpoch) { 1209 // If all that has changed is the StackEpoch, we only have to check the 1210 // new things on the stack, because we've checked everything before. In 1211 // this case, the lower bound of things to check remains the same. 1212 LocInfo.PopEpoch = PopEpoch; 1213 LocInfo.StackEpoch = StackEpoch; 1214 } 1215 if (!LocInfo.LastKillValid) { 1216 LocInfo.LastKill = VersionStack.size() - 1; 1217 LocInfo.LastKillValid = true; 1218 } 1219 1220 // At this point, we should have corrected last kill and LowerBound to be 1221 // in bounds. 1222 assert(LocInfo.LowerBound < VersionStack.size() && 1223 "Lower bound out of range"); 1224 assert(LocInfo.LastKill < VersionStack.size() && 1225 "Last kill info out of range"); 1226 // In any case, the new upper bound is the top of the stack. 1227 unsigned long UpperBound = VersionStack.size() - 1; 1228 1229 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1230 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1231 << *(MU->getMemoryInst()) << ")" 1232 << " because there are " << UpperBound - LocInfo.LowerBound 1233 << " stores to disambiguate\n"); 1234 // Because we did not walk, LastKill is no longer valid, as this may 1235 // have been a kill. 1236 LocInfo.LastKillValid = false; 1237 continue; 1238 } 1239 bool FoundClobberResult = false; 1240 while (UpperBound > LocInfo.LowerBound) { 1241 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1242 // For phis, use the walker, see where we ended up, go there 1243 Instruction *UseInst = MU->getMemoryInst(); 1244 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); 1245 // We are guaranteed to find it or something is wrong 1246 while (VersionStack[UpperBound] != Result) { 1247 assert(UpperBound != 0); 1248 --UpperBound; 1249 } 1250 FoundClobberResult = true; 1251 break; 1252 } 1253 1254 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1255 // If the lifetime of the pointer ends at this instruction, it's live on 1256 // entry. 1257 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1258 // Reset UpperBound to liveOnEntryDef's place in the stack 1259 UpperBound = 0; 1260 FoundClobberResult = true; 1261 break; 1262 } 1263 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { 1264 FoundClobberResult = true; 1265 break; 1266 } 1267 --UpperBound; 1268 } 1269 // At the end of this loop, UpperBound is either a clobber, or lower bound 1270 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1271 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1272 MU->setDefiningAccess(VersionStack[UpperBound], true); 1273 // We were last killed now by where we got to 1274 LocInfo.LastKill = UpperBound; 1275 } else { 1276 // Otherwise, we checked all the new ones, and now we know we can get to 1277 // LastKill. 1278 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); 1279 } 1280 LocInfo.LowerBound = VersionStack.size() - 1; 1281 LocInfo.LowerBoundBlock = BB; 1282 } 1283 } 1284 1285 /// Optimize uses to point to their actual clobbering definitions. 1286 void MemorySSA::OptimizeUses::optimizeUses() { 1287 SmallVector<MemoryAccess *, 16> VersionStack; 1288 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1289 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1290 1291 unsigned long StackEpoch = 1; 1292 unsigned long PopEpoch = 1; 1293 // We perform a non-recursive top-down dominator tree walk. 1294 for (const auto *DomNode : depth_first(DT->getRootNode())) 1295 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1296 LocStackInfo); 1297 } 1298 1299 void MemorySSA::placePHINodes( 1300 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks, 1301 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) { 1302 // Determine where our MemoryPhi's should go 1303 ForwardIDFCalculator IDFs(*DT); 1304 IDFs.setDefiningBlocks(DefiningBlocks); 1305 SmallVector<BasicBlock *, 32> IDFBlocks; 1306 IDFs.calculate(IDFBlocks); 1307 1308 std::sort(IDFBlocks.begin(), IDFBlocks.end(), 1309 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) { 1310 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 1311 }); 1312 1313 // Now place MemoryPhi nodes. 1314 for (auto &BB : IDFBlocks) 1315 createMemoryPhi(BB); 1316 } 1317 1318 void MemorySSA::buildMemorySSA() { 1319 // We create an access to represent "live on entry", for things like 1320 // arguments or users of globals, where the memory they use is defined before 1321 // the beginning of the function. We do not actually insert it into the IR. 1322 // We do not define a live on exit for the immediate uses, and thus our 1323 // semantics do *not* imply that something with no immediate uses can simply 1324 // be removed. 1325 BasicBlock &StartingPoint = F.getEntryBlock(); 1326 LiveOnEntryDef = 1327 llvm::make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, 1328 &StartingPoint, NextID++); 1329 DenseMap<const BasicBlock *, unsigned int> BBNumbers; 1330 unsigned NextBBNum = 0; 1331 1332 // We maintain lists of memory accesses per-block, trading memory for time. We 1333 // could just look up the memory access for every possible instruction in the 1334 // stream. 1335 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1336 // Go through each block, figure out where defs occur, and chain together all 1337 // the accesses. 1338 for (BasicBlock &B : F) { 1339 BBNumbers[&B] = NextBBNum++; 1340 bool InsertIntoDef = false; 1341 AccessList *Accesses = nullptr; 1342 DefsList *Defs = nullptr; 1343 for (Instruction &I : B) { 1344 MemoryUseOrDef *MUD = createNewAccess(&I); 1345 if (!MUD) 1346 continue; 1347 1348 if (!Accesses) 1349 Accesses = getOrCreateAccessList(&B); 1350 Accesses->push_back(MUD); 1351 if (isa<MemoryDef>(MUD)) { 1352 InsertIntoDef = true; 1353 if (!Defs) 1354 Defs = getOrCreateDefsList(&B); 1355 Defs->push_back(*MUD); 1356 } 1357 } 1358 if (InsertIntoDef) 1359 DefiningBlocks.insert(&B); 1360 } 1361 placePHINodes(DefiningBlocks, BBNumbers); 1362 1363 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1364 // filled in with all blocks. 1365 SmallPtrSet<BasicBlock *, 16> Visited; 1366 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1367 1368 CachingWalker *Walker = getWalkerImpl(); 1369 1370 // We're doing a batch of updates; don't drop useful caches between them. 1371 Walker->setAutoResetWalker(false); 1372 OptimizeUses(this, Walker, AA, DT).optimizeUses(); 1373 Walker->setAutoResetWalker(true); 1374 Walker->resetClobberWalker(); 1375 1376 // Mark the uses in unreachable blocks as live on entry, so that they go 1377 // somewhere. 1378 for (auto &BB : F) 1379 if (!Visited.count(&BB)) 1380 markUnreachableAsLiveOnEntry(&BB); 1381 } 1382 1383 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1384 1385 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1386 if (Walker) 1387 return Walker.get(); 1388 1389 Walker = llvm::make_unique<CachingWalker>(this, AA, DT); 1390 return Walker.get(); 1391 } 1392 1393 // This is a helper function used by the creation routines. It places NewAccess 1394 // into the access and defs lists for a given basic block, at the given 1395 // insertion point. 1396 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1397 const BasicBlock *BB, 1398 InsertionPlace Point) { 1399 auto *Accesses = getOrCreateAccessList(BB); 1400 if (Point == Beginning) { 1401 // If it's a phi node, it goes first, otherwise, it goes after any phi 1402 // nodes. 1403 if (isa<MemoryPhi>(NewAccess)) { 1404 Accesses->push_front(NewAccess); 1405 auto *Defs = getOrCreateDefsList(BB); 1406 Defs->push_front(*NewAccess); 1407 } else { 1408 auto AI = find_if_not( 1409 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1410 Accesses->insert(AI, NewAccess); 1411 if (!isa<MemoryUse>(NewAccess)) { 1412 auto *Defs = getOrCreateDefsList(BB); 1413 auto DI = find_if_not( 1414 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1415 Defs->insert(DI, *NewAccess); 1416 } 1417 } 1418 } else { 1419 Accesses->push_back(NewAccess); 1420 if (!isa<MemoryUse>(NewAccess)) { 1421 auto *Defs = getOrCreateDefsList(BB); 1422 Defs->push_back(*NewAccess); 1423 } 1424 } 1425 BlockNumberingValid.erase(BB); 1426 } 1427 1428 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1429 AccessList::iterator InsertPt) { 1430 auto *Accesses = getWritableBlockAccesses(BB); 1431 bool WasEnd = InsertPt == Accesses->end(); 1432 Accesses->insert(AccessList::iterator(InsertPt), What); 1433 if (!isa<MemoryUse>(What)) { 1434 auto *Defs = getOrCreateDefsList(BB); 1435 // If we got asked to insert at the end, we have an easy job, just shove it 1436 // at the end. If we got asked to insert before an existing def, we also get 1437 // an terator. If we got asked to insert before a use, we have to hunt for 1438 // the next def. 1439 if (WasEnd) { 1440 Defs->push_back(*What); 1441 } else if (isa<MemoryDef>(InsertPt)) { 1442 Defs->insert(InsertPt->getDefsIterator(), *What); 1443 } else { 1444 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1445 ++InsertPt; 1446 // Either we found a def, or we are inserting at the end 1447 if (InsertPt == Accesses->end()) 1448 Defs->push_back(*What); 1449 else 1450 Defs->insert(InsertPt->getDefsIterator(), *What); 1451 } 1452 } 1453 BlockNumberingValid.erase(BB); 1454 } 1455 1456 // Move What before Where in the IR. The end result is taht What will belong to 1457 // the right lists and have the right Block set, but will not otherwise be 1458 // correct. It will not have the right defining access, and if it is a def, 1459 // things below it will not properly be updated. 1460 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1461 AccessList::iterator Where) { 1462 // Keep it in the lookup tables, remove from the lists 1463 removeFromLists(What, false); 1464 What->setBlock(BB); 1465 insertIntoListsBefore(What, BB, Where); 1466 } 1467 1468 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1469 InsertionPlace Point) { 1470 removeFromLists(What, false); 1471 What->setBlock(BB); 1472 insertIntoListsForBlock(What, BB, Point); 1473 } 1474 1475 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1476 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1477 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1478 // Phi's always are placed at the front of the block. 1479 insertIntoListsForBlock(Phi, BB, Beginning); 1480 ValueToMemoryAccess[BB] = Phi; 1481 return Phi; 1482 } 1483 1484 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1485 MemoryAccess *Definition) { 1486 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1487 MemoryUseOrDef *NewAccess = createNewAccess(I); 1488 assert( 1489 NewAccess != nullptr && 1490 "Tried to create a memory access for a non-memory touching instruction"); 1491 NewAccess->setDefiningAccess(Definition); 1492 return NewAccess; 1493 } 1494 1495 // Return true if the instruction has ordering constraints. 1496 // Note specifically that this only considers stores and loads 1497 // because others are still considered ModRef by getModRefInfo. 1498 static inline bool isOrdered(const Instruction *I) { 1499 if (auto *SI = dyn_cast<StoreInst>(I)) { 1500 if (!SI->isUnordered()) 1501 return true; 1502 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1503 if (!LI->isUnordered()) 1504 return true; 1505 } 1506 return false; 1507 } 1508 1509 /// \brief Helper function to create new memory accesses 1510 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { 1511 // The assume intrinsic has a control dependency which we model by claiming 1512 // that it writes arbitrarily. Ignore that fake memory dependency here. 1513 // FIXME: Replace this special casing with a more accurate modelling of 1514 // assume's control dependency. 1515 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1516 if (II->getIntrinsicID() == Intrinsic::assume) 1517 return nullptr; 1518 1519 // Find out what affect this instruction has on memory. 1520 ModRefInfo ModRef = AA->getModRefInfo(I, None); 1521 // The isOrdered check is used to ensure that volatiles end up as defs 1522 // (atomics end up as ModRef right now anyway). Until we separate the 1523 // ordering chain from the memory chain, this enables people to see at least 1524 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1525 // will still give an answer that bypasses other volatile loads. TODO: 1526 // Separate memory aliasing and ordering into two different chains so that we 1527 // can precisely represent both "what memory will this read/write/is clobbered 1528 // by" and "what instructions can I move this past". 1529 bool Def = bool(ModRef & MRI_Mod) || isOrdered(I); 1530 bool Use = bool(ModRef & MRI_Ref); 1531 1532 // It's possible for an instruction to not modify memory at all. During 1533 // construction, we ignore them. 1534 if (!Def && !Use) 1535 return nullptr; 1536 1537 assert((Def || Use) && 1538 "Trying to create a memory access with a non-memory instruction"); 1539 1540 MemoryUseOrDef *MUD; 1541 if (Def) 1542 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1543 else 1544 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1545 ValueToMemoryAccess[I] = MUD; 1546 return MUD; 1547 } 1548 1549 /// \brief Returns true if \p Replacer dominates \p Replacee . 1550 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1551 const MemoryAccess *Replacee) const { 1552 if (isa<MemoryUseOrDef>(Replacee)) 1553 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1554 const auto *MP = cast<MemoryPhi>(Replacee); 1555 // For a phi node, the use occurs in the predecessor block of the phi node. 1556 // Since we may occur multiple times in the phi node, we have to check each 1557 // operand to ensure Replacer dominates each operand where Replacee occurs. 1558 for (const Use &Arg : MP->operands()) { 1559 if (Arg.get() != Replacee && 1560 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1561 return false; 1562 } 1563 return true; 1564 } 1565 1566 /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. 1567 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1568 assert(MA->use_empty() && 1569 "Trying to remove memory access that still has uses"); 1570 BlockNumbering.erase(MA); 1571 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1572 MUD->setDefiningAccess(nullptr); 1573 // Invalidate our walker's cache if necessary 1574 if (!isa<MemoryUse>(MA)) 1575 Walker->invalidateInfo(MA); 1576 // The call below to erase will destroy MA, so we can't change the order we 1577 // are doing things here 1578 Value *MemoryInst; 1579 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { 1580 MemoryInst = MUD->getMemoryInst(); 1581 } else { 1582 MemoryInst = MA->getBlock(); 1583 } 1584 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1585 if (VMA->second == MA) 1586 ValueToMemoryAccess.erase(VMA); 1587 } 1588 1589 /// \brief Properly remove \p MA from all of MemorySSA's lists. 1590 /// 1591 /// Because of the way the intrusive list and use lists work, it is important to 1592 /// do removal in the right order. 1593 /// ShouldDelete defaults to true, and will cause the memory access to also be 1594 /// deleted, not just removed. 1595 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1596 // The access list owns the reference, so we erase it from the non-owning list 1597 // first. 1598 if (!isa<MemoryUse>(MA)) { 1599 auto DefsIt = PerBlockDefs.find(MA->getBlock()); 1600 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1601 Defs->remove(*MA); 1602 if (Defs->empty()) 1603 PerBlockDefs.erase(DefsIt); 1604 } 1605 1606 // The erase call here will delete it. If we don't want it deleted, we call 1607 // remove instead. 1608 auto AccessIt = PerBlockAccesses.find(MA->getBlock()); 1609 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1610 if (ShouldDelete) 1611 Accesses->erase(MA); 1612 else 1613 Accesses->remove(MA); 1614 1615 if (Accesses->empty()) 1616 PerBlockAccesses.erase(AccessIt); 1617 } 1618 1619 void MemorySSA::print(raw_ostream &OS) const { 1620 MemorySSAAnnotatedWriter Writer(this); 1621 F.print(OS, &Writer); 1622 } 1623 1624 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1625 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1626 #endif 1627 1628 void MemorySSA::verifyMemorySSA() const { 1629 verifyDefUses(F); 1630 verifyDomination(F); 1631 verifyOrdering(F); 1632 Walker->verify(this); 1633 } 1634 1635 /// \brief Verify that the order and existence of MemoryAccesses matches the 1636 /// order and existence of memory affecting instructions. 1637 void MemorySSA::verifyOrdering(Function &F) const { 1638 // Walk all the blocks, comparing what the lookups think and what the access 1639 // lists think, as well as the order in the blocks vs the order in the access 1640 // lists. 1641 SmallVector<MemoryAccess *, 32> ActualAccesses; 1642 SmallVector<MemoryAccess *, 32> ActualDefs; 1643 for (BasicBlock &B : F) { 1644 const AccessList *AL = getBlockAccesses(&B); 1645 const auto *DL = getBlockDefs(&B); 1646 MemoryAccess *Phi = getMemoryAccess(&B); 1647 if (Phi) { 1648 ActualAccesses.push_back(Phi); 1649 ActualDefs.push_back(Phi); 1650 } 1651 1652 for (Instruction &I : B) { 1653 MemoryAccess *MA = getMemoryAccess(&I); 1654 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1655 "We have memory affecting instructions " 1656 "in this block but they are not in the " 1657 "access list or defs list"); 1658 if (MA) { 1659 ActualAccesses.push_back(MA); 1660 if (isa<MemoryDef>(MA)) 1661 ActualDefs.push_back(MA); 1662 } 1663 } 1664 // Either we hit the assert, really have no accesses, or we have both 1665 // accesses and an access list. 1666 // Same with defs. 1667 if (!AL && !DL) 1668 continue; 1669 assert(AL->size() == ActualAccesses.size() && 1670 "We don't have the same number of accesses in the block as on the " 1671 "access list"); 1672 assert((DL || ActualDefs.size() == 0) && 1673 "Either we should have a defs list, or we should have no defs"); 1674 assert((!DL || DL->size() == ActualDefs.size()) && 1675 "We don't have the same number of defs in the block as on the " 1676 "def list"); 1677 auto ALI = AL->begin(); 1678 auto AAI = ActualAccesses.begin(); 1679 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1680 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1681 ++ALI; 1682 ++AAI; 1683 } 1684 ActualAccesses.clear(); 1685 if (DL) { 1686 auto DLI = DL->begin(); 1687 auto ADI = ActualDefs.begin(); 1688 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1689 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1690 ++DLI; 1691 ++ADI; 1692 } 1693 } 1694 ActualDefs.clear(); 1695 } 1696 } 1697 1698 /// \brief Verify the domination properties of MemorySSA by checking that each 1699 /// definition dominates all of its uses. 1700 void MemorySSA::verifyDomination(Function &F) const { 1701 #ifndef NDEBUG 1702 for (BasicBlock &B : F) { 1703 // Phi nodes are attached to basic blocks 1704 if (MemoryPhi *MP = getMemoryAccess(&B)) 1705 for (const Use &U : MP->uses()) 1706 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1707 1708 for (Instruction &I : B) { 1709 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1710 if (!MD) 1711 continue; 1712 1713 for (const Use &U : MD->uses()) 1714 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1715 } 1716 } 1717 #endif 1718 } 1719 1720 /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use 1721 /// appears in the use list of \p Def. 1722 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1723 #ifndef NDEBUG 1724 // The live on entry use may cause us to get a NULL def here 1725 if (!Def) 1726 assert(isLiveOnEntryDef(Use) && 1727 "Null def but use not point to live on entry def"); 1728 else 1729 assert(is_contained(Def->users(), Use) && 1730 "Did not find use in def's use list"); 1731 #endif 1732 } 1733 1734 /// \brief Verify the immediate use information, by walking all the memory 1735 /// accesses and verifying that, for each use, it appears in the 1736 /// appropriate def's use list 1737 void MemorySSA::verifyDefUses(Function &F) const { 1738 for (BasicBlock &B : F) { 1739 // Phi nodes are attached to basic blocks 1740 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 1741 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1742 pred_begin(&B), pred_end(&B))) && 1743 "Incomplete MemoryPhi Node"); 1744 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1745 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1746 } 1747 1748 for (Instruction &I : B) { 1749 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 1750 verifyUseInDefs(MA->getDefiningAccess(), MA); 1751 } 1752 } 1753 } 1754 } 1755 1756 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { 1757 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); 1758 } 1759 1760 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { 1761 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); 1762 } 1763 1764 /// Perform a local numbering on blocks so that instruction ordering can be 1765 /// determined in constant time. 1766 /// TODO: We currently just number in order. If we numbered by N, we could 1767 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 1768 /// log2(N) sequences of mixed before and after) without needing to invalidate 1769 /// the numbering. 1770 void MemorySSA::renumberBlock(const BasicBlock *B) const { 1771 // The pre-increment ensures the numbers really start at 1. 1772 unsigned long CurrentNumber = 0; 1773 const AccessList *AL = getBlockAccesses(B); 1774 assert(AL != nullptr && "Asking to renumber an empty block"); 1775 for (const auto &I : *AL) 1776 BlockNumbering[&I] = ++CurrentNumber; 1777 BlockNumberingValid.insert(B); 1778 } 1779 1780 /// \brief Determine, for two memory accesses in the same block, 1781 /// whether \p Dominator dominates \p Dominatee. 1782 /// \returns True if \p Dominator dominates \p Dominatee. 1783 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 1784 const MemoryAccess *Dominatee) const { 1785 const BasicBlock *DominatorBlock = Dominator->getBlock(); 1786 1787 assert((DominatorBlock == Dominatee->getBlock()) && 1788 "Asking for local domination when accesses are in different blocks!"); 1789 // A node dominates itself. 1790 if (Dominatee == Dominator) 1791 return true; 1792 1793 // When Dominatee is defined on function entry, it is not dominated by another 1794 // memory access. 1795 if (isLiveOnEntryDef(Dominatee)) 1796 return false; 1797 1798 // When Dominator is defined on function entry, it dominates the other memory 1799 // access. 1800 if (isLiveOnEntryDef(Dominator)) 1801 return true; 1802 1803 if (!BlockNumberingValid.count(DominatorBlock)) 1804 renumberBlock(DominatorBlock); 1805 1806 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 1807 // All numbers start with 1 1808 assert(DominatorNum != 0 && "Block was not numbered properly"); 1809 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 1810 assert(DominateeNum != 0 && "Block was not numbered properly"); 1811 return DominatorNum < DominateeNum; 1812 } 1813 1814 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1815 const MemoryAccess *Dominatee) const { 1816 if (Dominator == Dominatee) 1817 return true; 1818 1819 if (isLiveOnEntryDef(Dominatee)) 1820 return false; 1821 1822 if (Dominator->getBlock() != Dominatee->getBlock()) 1823 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 1824 return locallyDominates(Dominator, Dominatee); 1825 } 1826 1827 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1828 const Use &Dominatee) const { 1829 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 1830 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 1831 // The def must dominate the incoming block of the phi. 1832 if (UseBB != Dominator->getBlock()) 1833 return DT->dominates(Dominator->getBlock(), UseBB); 1834 // If the UseBB and the DefBB are the same, compare locally. 1835 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 1836 } 1837 // If it's not a PHI node use, the normal dominates can already handle it. 1838 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 1839 } 1840 1841 const static char LiveOnEntryStr[] = "liveOnEntry"; 1842 1843 void MemoryAccess::print(raw_ostream &OS) const { 1844 switch (getValueID()) { 1845 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 1846 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 1847 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 1848 } 1849 llvm_unreachable("invalid value id"); 1850 } 1851 1852 void MemoryDef::print(raw_ostream &OS) const { 1853 MemoryAccess *UO = getDefiningAccess(); 1854 1855 OS << getID() << " = MemoryDef("; 1856 if (UO && UO->getID()) 1857 OS << UO->getID(); 1858 else 1859 OS << LiveOnEntryStr; 1860 OS << ')'; 1861 } 1862 1863 void MemoryPhi::print(raw_ostream &OS) const { 1864 bool First = true; 1865 OS << getID() << " = MemoryPhi("; 1866 for (const auto &Op : operands()) { 1867 BasicBlock *BB = getIncomingBlock(Op); 1868 MemoryAccess *MA = cast<MemoryAccess>(Op); 1869 if (!First) 1870 OS << ','; 1871 else 1872 First = false; 1873 1874 OS << '{'; 1875 if (BB->hasName()) 1876 OS << BB->getName(); 1877 else 1878 BB->printAsOperand(OS, false); 1879 OS << ','; 1880 if (unsigned ID = MA->getID()) 1881 OS << ID; 1882 else 1883 OS << LiveOnEntryStr; 1884 OS << '}'; 1885 } 1886 OS << ')'; 1887 } 1888 1889 void MemoryUse::print(raw_ostream &OS) const { 1890 MemoryAccess *UO = getDefiningAccess(); 1891 OS << "MemoryUse("; 1892 if (UO && UO->getID()) 1893 OS << UO->getID(); 1894 else 1895 OS << LiveOnEntryStr; 1896 OS << ')'; 1897 } 1898 1899 void MemoryAccess::dump() const { 1900 // Cannot completely remove virtual function even in release mode. 1901 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1902 print(dbgs()); 1903 dbgs() << "\n"; 1904 #endif 1905 } 1906 1907 char MemorySSAPrinterLegacyPass::ID = 0; 1908 1909 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 1910 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 1911 } 1912 1913 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 1914 AU.setPreservesAll(); 1915 AU.addRequired<MemorySSAWrapperPass>(); 1916 } 1917 1918 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 1919 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1920 MSSA.print(dbgs()); 1921 if (VerifyMemorySSA) 1922 MSSA.verifyMemorySSA(); 1923 return false; 1924 } 1925 1926 AnalysisKey MemorySSAAnalysis::Key; 1927 1928 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 1929 FunctionAnalysisManager &AM) { 1930 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1931 auto &AA = AM.getResult<AAManager>(F); 1932 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 1933 } 1934 1935 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 1936 FunctionAnalysisManager &AM) { 1937 OS << "MemorySSA for function: " << F.getName() << "\n"; 1938 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 1939 1940 return PreservedAnalyses::all(); 1941 } 1942 1943 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 1944 FunctionAnalysisManager &AM) { 1945 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 1946 1947 return PreservedAnalyses::all(); 1948 } 1949 1950 char MemorySSAWrapperPass::ID = 0; 1951 1952 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 1953 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 1954 } 1955 1956 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 1957 1958 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1959 AU.setPreservesAll(); 1960 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1961 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1962 } 1963 1964 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 1965 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1966 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1967 MSSA.reset(new MemorySSA(F, &AA, &DT)); 1968 return false; 1969 } 1970 1971 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 1972 1973 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 1974 MSSA->print(OS); 1975 } 1976 1977 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 1978 1979 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, 1980 DominatorTree *D) 1981 : MemorySSAWalker(M), Walker(*M, *A, *D) {} 1982 1983 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { 1984 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1985 MUD->resetOptimized(); 1986 } 1987 1988 /// \brief Walk the use-def chains starting at \p MA and find 1989 /// the MemoryAccess that actually clobbers Loc. 1990 /// 1991 /// \returns our clobbering memory access 1992 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 1993 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { 1994 MemoryAccess *New = Walker.findClobber(StartingAccess, Q); 1995 #ifdef EXPENSIVE_CHECKS 1996 MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q); 1997 assert(NewNoCache == New && "Cache made us hand back a different result?"); 1998 (void)NewNoCache; 1999 #endif 2000 if (AutoResetWalker) 2001 resetClobberWalker(); 2002 return New; 2003 } 2004 2005 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 2006 MemoryAccess *StartingAccess, const MemoryLocation &Loc) { 2007 if (isa<MemoryPhi>(StartingAccess)) 2008 return StartingAccess; 2009 2010 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2011 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2012 return StartingUseOrDef; 2013 2014 Instruction *I = StartingUseOrDef->getMemoryInst(); 2015 2016 // Conservatively, fences are always clobbers, so don't perform the walk if we 2017 // hit a fence. 2018 if (!ImmutableCallSite(I) && I->isFenceLike()) 2019 return StartingUseOrDef; 2020 2021 UpwardsMemoryQuery Q; 2022 Q.OriginalAccess = StartingUseOrDef; 2023 Q.StartingLoc = Loc; 2024 Q.Inst = I; 2025 Q.IsCall = false; 2026 2027 // Unlike the other function, do not walk to the def of a def, because we are 2028 // handed something we already believe is the clobbering access. 2029 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2030 ? StartingUseOrDef->getDefiningAccess() 2031 : StartingUseOrDef; 2032 2033 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); 2034 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2035 DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2036 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2037 DEBUG(dbgs() << *Clobber << "\n"); 2038 return Clobber; 2039 } 2040 2041 MemoryAccess * 2042 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2043 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2044 // If this is a MemoryPhi, we can't do anything. 2045 if (!StartingAccess) 2046 return MA; 2047 2048 // If this is an already optimized use or def, return the optimized result. 2049 // Note: Currently, we do not store the optimized def result because we'd need 2050 // a separate field, since we can't use it as the defining access. 2051 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2052 if (MUD->isOptimized()) 2053 return MUD->getOptimized(); 2054 2055 const Instruction *I = StartingAccess->getMemoryInst(); 2056 UpwardsMemoryQuery Q(I, StartingAccess); 2057 // We can't sanely do anything with a fences, they conservatively 2058 // clobber all memory, and have no locations to get pointers from to 2059 // try to disambiguate. 2060 if (!Q.IsCall && I->isFenceLike()) 2061 return StartingAccess; 2062 2063 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { 2064 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2065 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2066 MUD->setOptimized(LiveOnEntry); 2067 return LiveOnEntry; 2068 } 2069 2070 // Start with the thing we already think clobbers this location 2071 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2072 2073 // At this point, DefiningAccess may be the live on entry def. 2074 // If it is, we will not get a better result. 2075 if (MSSA->isLiveOnEntryDef(DefiningAccess)) 2076 return DefiningAccess; 2077 2078 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); 2079 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2080 DEBUG(dbgs() << *DefiningAccess << "\n"); 2081 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2082 DEBUG(dbgs() << *Result << "\n"); 2083 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2084 MUD->setOptimized(Result); 2085 2086 return Result; 2087 } 2088 2089 MemoryAccess * 2090 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2091 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2092 return Use->getDefiningAccess(); 2093 return MA; 2094 } 2095 2096 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2097 MemoryAccess *StartingAccess, const MemoryLocation &) { 2098 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2099 return Use->getDefiningAccess(); 2100 return StartingAccess; 2101 } 2102 2103 void MemoryPhi::deleteMe(DerivedUser *Self) { 2104 delete static_cast<MemoryPhi *>(Self); 2105 } 2106 2107 void MemoryDef::deleteMe(DerivedUser *Self) { 2108 delete static_cast<MemoryDef *>(Self); 2109 } 2110 2111 void MemoryUse::deleteMe(DerivedUser *Self) { 2112 delete static_cast<MemoryUse *>(Self); 2113 } 2114