1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFGPrinter.h" 29 #include "llvm/Analysis/IteratedDominanceFrontier.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/AtomicOrdering.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdlib> 56 #include <iterator> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "memoryssa" 63 64 static cl::opt<std::string> 65 DotCFGMSSA("dot-cfg-mssa", 66 cl::value_desc("file name for generated dot file"), 67 cl::desc("file name for generated dot file"), cl::init("")); 68 69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 70 true) 71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 73 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 74 true) 75 76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 77 "Memory SSA Printer", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 80 "Memory SSA Printer", false, false) 81 82 static cl::opt<unsigned> MaxCheckLimit( 83 "memssa-check-limit", cl::Hidden, cl::init(100), 84 cl::desc("The maximum number of stores/phis MemorySSA" 85 "will consider trying to walk past (default = 100)")); 86 87 // Always verify MemorySSA if expensive checking is enabled. 88 #ifdef EXPENSIVE_CHECKS 89 bool llvm::VerifyMemorySSA = true; 90 #else 91 bool llvm::VerifyMemorySSA = false; 92 #endif 93 94 static cl::opt<bool, true> 95 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 96 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 97 98 namespace llvm { 99 100 /// An assembly annotator class to print Memory SSA information in 101 /// comments. 102 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 103 friend class MemorySSA; 104 105 const MemorySSA *MSSA; 106 107 public: 108 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 109 110 void emitBasicBlockStartAnnot(const BasicBlock *BB, 111 formatted_raw_ostream &OS) override { 112 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 113 OS << "; " << *MA << "\n"; 114 } 115 116 void emitInstructionAnnot(const Instruction *I, 117 formatted_raw_ostream &OS) override { 118 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 119 OS << "; " << *MA << "\n"; 120 } 121 }; 122 123 } // end namespace llvm 124 125 namespace { 126 127 /// Our current alias analysis API differentiates heavily between calls and 128 /// non-calls, and functions called on one usually assert on the other. 129 /// This class encapsulates the distinction to simplify other code that wants 130 /// "Memory affecting instructions and related data" to use as a key. 131 /// For example, this class is used as a densemap key in the use optimizer. 132 class MemoryLocOrCall { 133 public: 134 bool IsCall = false; 135 136 MemoryLocOrCall(MemoryUseOrDef *MUD) 137 : MemoryLocOrCall(MUD->getMemoryInst()) {} 138 MemoryLocOrCall(const MemoryUseOrDef *MUD) 139 : MemoryLocOrCall(MUD->getMemoryInst()) {} 140 141 MemoryLocOrCall(Instruction *Inst) { 142 if (auto *C = dyn_cast<CallBase>(Inst)) { 143 IsCall = true; 144 Call = C; 145 } else { 146 IsCall = false; 147 // There is no such thing as a memorylocation for a fence inst, and it is 148 // unique in that regard. 149 if (!isa<FenceInst>(Inst)) 150 Loc = MemoryLocation::get(Inst); 151 } 152 } 153 154 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 155 156 const CallBase *getCall() const { 157 assert(IsCall); 158 return Call; 159 } 160 161 MemoryLocation getLoc() const { 162 assert(!IsCall); 163 return Loc; 164 } 165 166 bool operator==(const MemoryLocOrCall &Other) const { 167 if (IsCall != Other.IsCall) 168 return false; 169 170 if (!IsCall) 171 return Loc == Other.Loc; 172 173 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 174 return false; 175 176 return Call->arg_size() == Other.Call->arg_size() && 177 std::equal(Call->arg_begin(), Call->arg_end(), 178 Other.Call->arg_begin()); 179 } 180 181 private: 182 union { 183 const CallBase *Call; 184 MemoryLocation Loc; 185 }; 186 }; 187 188 } // end anonymous namespace 189 190 namespace llvm { 191 192 template <> struct DenseMapInfo<MemoryLocOrCall> { 193 static inline MemoryLocOrCall getEmptyKey() { 194 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 195 } 196 197 static inline MemoryLocOrCall getTombstoneKey() { 198 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 199 } 200 201 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 202 if (!MLOC.IsCall) 203 return hash_combine( 204 MLOC.IsCall, 205 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 206 207 hash_code hash = 208 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 209 MLOC.getCall()->getCalledOperand())); 210 211 for (const Value *Arg : MLOC.getCall()->args()) 212 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 213 return hash; 214 } 215 216 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 217 return LHS == RHS; 218 } 219 }; 220 221 } // end namespace llvm 222 223 /// This does one-way checks to see if Use could theoretically be hoisted above 224 /// MayClobber. This will not check the other way around. 225 /// 226 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 227 /// MayClobber, with no potentially clobbering operations in between them. 228 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 229 static bool areLoadsReorderable(const LoadInst *Use, 230 const LoadInst *MayClobber) { 231 bool VolatileUse = Use->isVolatile(); 232 bool VolatileClobber = MayClobber->isVolatile(); 233 // Volatile operations may never be reordered with other volatile operations. 234 if (VolatileUse && VolatileClobber) 235 return false; 236 // Otherwise, volatile doesn't matter here. From the language reference: 237 // 'optimizers may change the order of volatile operations relative to 238 // non-volatile operations.'" 239 240 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 241 // is weaker, it can be moved above other loads. We just need to be sure that 242 // MayClobber isn't an acquire load, because loads can't be moved above 243 // acquire loads. 244 // 245 // Note that this explicitly *does* allow the free reordering of monotonic (or 246 // weaker) loads of the same address. 247 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 248 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 249 AtomicOrdering::Acquire); 250 return !(SeqCstUse || MayClobberIsAcquire); 251 } 252 253 namespace { 254 255 struct ClobberAlias { 256 bool IsClobber; 257 Optional<AliasResult> AR; 258 }; 259 260 } // end anonymous namespace 261 262 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 263 // ignored if IsClobber = false. 264 template <typename AliasAnalysisType> 265 static ClobberAlias 266 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 267 const Instruction *UseInst, AliasAnalysisType &AA) { 268 Instruction *DefInst = MD->getMemoryInst(); 269 assert(DefInst && "Defining instruction not actually an instruction"); 270 Optional<AliasResult> AR; 271 272 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 273 // These intrinsics will show up as affecting memory, but they are just 274 // markers, mostly. 275 // 276 // FIXME: We probably don't actually want MemorySSA to model these at all 277 // (including creating MemoryAccesses for them): we just end up inventing 278 // clobbers where they don't really exist at all. Please see D43269 for 279 // context. 280 switch (II->getIntrinsicID()) { 281 case Intrinsic::invariant_start: 282 case Intrinsic::invariant_end: 283 case Intrinsic::assume: 284 case Intrinsic::experimental_noalias_scope_decl: 285 return {false, AliasResult(AliasResult::NoAlias)}; 286 case Intrinsic::dbg_addr: 287 case Intrinsic::dbg_declare: 288 case Intrinsic::dbg_label: 289 case Intrinsic::dbg_value: 290 llvm_unreachable("debuginfo shouldn't have associated defs!"); 291 default: 292 break; 293 } 294 } 295 296 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 297 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 298 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 299 return {isModOrRefSet(I), AR}; 300 } 301 302 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 303 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 304 return {!areLoadsReorderable(UseLoad, DefLoad), 305 AliasResult(AliasResult::MayAlias)}; 306 307 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 308 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 309 return {isModSet(I), AR}; 310 } 311 312 template <typename AliasAnalysisType> 313 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 314 const MemoryUseOrDef *MU, 315 const MemoryLocOrCall &UseMLOC, 316 AliasAnalysisType &AA) { 317 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 318 // to exist while MemoryLocOrCall is pushed through places. 319 if (UseMLOC.IsCall) 320 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 321 AA); 322 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 323 AA); 324 } 325 326 // Return true when MD may alias MU, return false otherwise. 327 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 328 AliasAnalysis &AA) { 329 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 330 } 331 332 namespace { 333 334 struct UpwardsMemoryQuery { 335 // True if our original query started off as a call 336 bool IsCall = false; 337 // The pointer location we started the query with. This will be empty if 338 // IsCall is true. 339 MemoryLocation StartingLoc; 340 // This is the instruction we were querying about. 341 const Instruction *Inst = nullptr; 342 // The MemoryAccess we actually got called with, used to test local domination 343 const MemoryAccess *OriginalAccess = nullptr; 344 Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias); 345 bool SkipSelfAccess = false; 346 347 UpwardsMemoryQuery() = default; 348 349 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 350 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 351 if (!IsCall) 352 StartingLoc = MemoryLocation::get(Inst); 353 } 354 }; 355 356 } // end anonymous namespace 357 358 template <typename AliasAnalysisType> 359 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 360 const Instruction *I) { 361 // If the memory can't be changed, then loads of the memory can't be 362 // clobbered. 363 if (auto *LI = dyn_cast<LoadInst>(I)) 364 return I->hasMetadata(LLVMContext::MD_invariant_load) || 365 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 366 return false; 367 } 368 369 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 370 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 371 /// 372 /// This is meant to be as simple and self-contained as possible. Because it 373 /// uses no cache, etc., it can be relatively expensive. 374 /// 375 /// \param Start The MemoryAccess that we want to walk from. 376 /// \param ClobberAt A clobber for Start. 377 /// \param StartLoc The MemoryLocation for Start. 378 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 379 /// \param Query The UpwardsMemoryQuery we used for our search. 380 /// \param AA The AliasAnalysis we used for our search. 381 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 382 383 template <typename AliasAnalysisType> 384 LLVM_ATTRIBUTE_UNUSED static void 385 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 386 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 387 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 388 bool AllowImpreciseClobber = false) { 389 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 390 391 if (MSSA.isLiveOnEntryDef(Start)) { 392 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 393 "liveOnEntry must clobber itself"); 394 return; 395 } 396 397 bool FoundClobber = false; 398 DenseSet<ConstMemoryAccessPair> VisitedPhis; 399 SmallVector<ConstMemoryAccessPair, 8> Worklist; 400 Worklist.emplace_back(Start, StartLoc); 401 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 402 // is found, complain. 403 while (!Worklist.empty()) { 404 auto MAP = Worklist.pop_back_val(); 405 // All we care about is that nothing from Start to ClobberAt clobbers Start. 406 // We learn nothing from revisiting nodes. 407 if (!VisitedPhis.insert(MAP).second) 408 continue; 409 410 for (const auto *MA : def_chain(MAP.first)) { 411 if (MA == ClobberAt) { 412 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 413 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 414 // since it won't let us short-circuit. 415 // 416 // Also, note that this can't be hoisted out of the `Worklist` loop, 417 // since MD may only act as a clobber for 1 of N MemoryLocations. 418 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 419 if (!FoundClobber) { 420 ClobberAlias CA = 421 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 422 if (CA.IsClobber) { 423 FoundClobber = true; 424 // Not used: CA.AR; 425 } 426 } 427 } 428 break; 429 } 430 431 // We should never hit liveOnEntry, unless it's the clobber. 432 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 433 434 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 435 // If Start is a Def, skip self. 436 if (MD == Start) 437 continue; 438 439 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 440 .IsClobber && 441 "Found clobber before reaching ClobberAt!"); 442 continue; 443 } 444 445 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 446 (void)MU; 447 assert (MU == Start && 448 "Can only find use in def chain if Start is a use"); 449 continue; 450 } 451 452 assert(isa<MemoryPhi>(MA)); 453 454 // Add reachable phi predecessors 455 for (auto ItB = upward_defs_begin( 456 {const_cast<MemoryAccess *>(MA), MAP.second}, 457 MSSA.getDomTree()), 458 ItE = upward_defs_end(); 459 ItB != ItE; ++ItB) 460 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 461 Worklist.emplace_back(*ItB); 462 } 463 } 464 465 // If the verify is done following an optimization, it's possible that 466 // ClobberAt was a conservative clobbering, that we can now infer is not a 467 // true clobbering access. Don't fail the verify if that's the case. 468 // We do have accesses that claim they're optimized, but could be optimized 469 // further. Updating all these can be expensive, so allow it for now (FIXME). 470 if (AllowImpreciseClobber) 471 return; 472 473 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 474 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 475 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 476 "ClobberAt never acted as a clobber"); 477 } 478 479 namespace { 480 481 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 482 /// in one class. 483 template <class AliasAnalysisType> class ClobberWalker { 484 /// Save a few bytes by using unsigned instead of size_t. 485 using ListIndex = unsigned; 486 487 /// Represents a span of contiguous MemoryDefs, potentially ending in a 488 /// MemoryPhi. 489 struct DefPath { 490 MemoryLocation Loc; 491 // Note that, because we always walk in reverse, Last will always dominate 492 // First. Also note that First and Last are inclusive. 493 MemoryAccess *First; 494 MemoryAccess *Last; 495 Optional<ListIndex> Previous; 496 497 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 498 Optional<ListIndex> Previous) 499 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 500 501 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 502 Optional<ListIndex> Previous) 503 : DefPath(Loc, Init, Init, Previous) {} 504 }; 505 506 const MemorySSA &MSSA; 507 AliasAnalysisType &AA; 508 DominatorTree &DT; 509 UpwardsMemoryQuery *Query; 510 unsigned *UpwardWalkLimit; 511 512 // Phi optimization bookkeeping: 513 // List of DefPath to process during the current phi optimization walk. 514 SmallVector<DefPath, 32> Paths; 515 // List of visited <Access, Location> pairs; we can skip paths already 516 // visited with the same memory location. 517 DenseSet<ConstMemoryAccessPair> VisitedPhis; 518 // Record if phi translation has been performed during the current phi 519 // optimization walk, as merging alias results after phi translation can 520 // yield incorrect results. Context in PR46156. 521 bool PerformedPhiTranslation = false; 522 523 /// Find the nearest def or phi that `From` can legally be optimized to. 524 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 525 assert(From->getNumOperands() && "Phi with no operands?"); 526 527 BasicBlock *BB = From->getBlock(); 528 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 529 DomTreeNode *Node = DT.getNode(BB); 530 while ((Node = Node->getIDom())) { 531 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 532 if (Defs) 533 return &*Defs->rbegin(); 534 } 535 return Result; 536 } 537 538 /// Result of calling walkToPhiOrClobber. 539 struct UpwardsWalkResult { 540 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 541 /// both. Include alias info when clobber found. 542 MemoryAccess *Result; 543 bool IsKnownClobber; 544 Optional<AliasResult> AR; 545 }; 546 547 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 548 /// This will update Desc.Last as it walks. It will (optionally) also stop at 549 /// StopAt. 550 /// 551 /// This does not test for whether StopAt is a clobber 552 UpwardsWalkResult 553 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 554 const MemoryAccess *SkipStopAt = nullptr) const { 555 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 556 assert(UpwardWalkLimit && "Need a valid walk limit"); 557 bool LimitAlreadyReached = false; 558 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 559 // it to 1. This will not do any alias() calls. It either returns in the 560 // first iteration in the loop below, or is set back to 0 if all def chains 561 // are free of MemoryDefs. 562 if (!*UpwardWalkLimit) { 563 *UpwardWalkLimit = 1; 564 LimitAlreadyReached = true; 565 } 566 567 for (MemoryAccess *Current : def_chain(Desc.Last)) { 568 Desc.Last = Current; 569 if (Current == StopAt || Current == SkipStopAt) 570 return {Current, false, AliasResult(AliasResult::MayAlias)}; 571 572 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 573 if (MSSA.isLiveOnEntryDef(MD)) 574 return {MD, true, AliasResult(AliasResult::MustAlias)}; 575 576 if (!--*UpwardWalkLimit) 577 return {Current, true, AliasResult(AliasResult::MayAlias)}; 578 579 ClobberAlias CA = 580 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 581 if (CA.IsClobber) 582 return {MD, true, CA.AR}; 583 } 584 } 585 586 if (LimitAlreadyReached) 587 *UpwardWalkLimit = 0; 588 589 assert(isa<MemoryPhi>(Desc.Last) && 590 "Ended at a non-clobber that's not a phi?"); 591 return {Desc.Last, false, AliasResult(AliasResult::MayAlias)}; 592 } 593 594 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 595 ListIndex PriorNode) { 596 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 597 &PerformedPhiTranslation); 598 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 599 for (const MemoryAccessPair &P : UpwardDefs) { 600 PausedSearches.push_back(Paths.size()); 601 Paths.emplace_back(P.second, P.first, PriorNode); 602 } 603 } 604 605 /// Represents a search that terminated after finding a clobber. This clobber 606 /// may or may not be present in the path of defs from LastNode..SearchStart, 607 /// since it may have been retrieved from cache. 608 struct TerminatedPath { 609 MemoryAccess *Clobber; 610 ListIndex LastNode; 611 }; 612 613 /// Get an access that keeps us from optimizing to the given phi. 614 /// 615 /// PausedSearches is an array of indices into the Paths array. Its incoming 616 /// value is the indices of searches that stopped at the last phi optimization 617 /// target. It's left in an unspecified state. 618 /// 619 /// If this returns None, NewPaused is a vector of searches that terminated 620 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 621 Optional<TerminatedPath> 622 getBlockingAccess(const MemoryAccess *StopWhere, 623 SmallVectorImpl<ListIndex> &PausedSearches, 624 SmallVectorImpl<ListIndex> &NewPaused, 625 SmallVectorImpl<TerminatedPath> &Terminated) { 626 assert(!PausedSearches.empty() && "No searches to continue?"); 627 628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 629 // PausedSearches as our stack. 630 while (!PausedSearches.empty()) { 631 ListIndex PathIndex = PausedSearches.pop_back_val(); 632 DefPath &Node = Paths[PathIndex]; 633 634 // If we've already visited this path with this MemoryLocation, we don't 635 // need to do so again. 636 // 637 // NOTE: That we just drop these paths on the ground makes caching 638 // behavior sporadic. e.g. given a diamond: 639 // A 640 // B C 641 // D 642 // 643 // ...If we walk D, B, A, C, we'll only cache the result of phi 644 // optimization for A, B, and D; C will be skipped because it dies here. 645 // This arguably isn't the worst thing ever, since: 646 // - We generally query things in a top-down order, so if we got below D 647 // without needing cache entries for {C, MemLoc}, then chances are 648 // that those cache entries would end up ultimately unused. 649 // - We still cache things for A, so C only needs to walk up a bit. 650 // If this behavior becomes problematic, we can fix without a ton of extra 651 // work. 652 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 653 if (PerformedPhiTranslation) { 654 // If visiting this path performed Phi translation, don't continue, 655 // since it may not be correct to merge results from two paths if one 656 // relies on the phi translation. 657 TerminatedPath Term{Node.Last, PathIndex}; 658 return Term; 659 } 660 continue; 661 } 662 663 const MemoryAccess *SkipStopWhere = nullptr; 664 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 665 assert(isa<MemoryDef>(Query->OriginalAccess)); 666 SkipStopWhere = Query->OriginalAccess; 667 } 668 669 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 670 /*StopAt=*/StopWhere, 671 /*SkipStopAt=*/SkipStopWhere); 672 if (Res.IsKnownClobber) { 673 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 674 675 // If this wasn't a cache hit, we hit a clobber when walking. That's a 676 // failure. 677 TerminatedPath Term{Res.Result, PathIndex}; 678 if (!MSSA.dominates(Res.Result, StopWhere)) 679 return Term; 680 681 // Otherwise, it's a valid thing to potentially optimize to. 682 Terminated.push_back(Term); 683 continue; 684 } 685 686 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 687 // We've hit our target. Save this path off for if we want to continue 688 // walking. If we are in the mode of skipping the OriginalAccess, and 689 // we've reached back to the OriginalAccess, do not save path, we've 690 // just looped back to self. 691 if (Res.Result != SkipStopWhere) 692 NewPaused.push_back(PathIndex); 693 continue; 694 } 695 696 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 697 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 698 } 699 700 return None; 701 } 702 703 template <typename T, typename Walker> 704 struct generic_def_path_iterator 705 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 706 std::forward_iterator_tag, T *> { 707 generic_def_path_iterator() {} 708 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 709 710 T &operator*() const { return curNode(); } 711 712 generic_def_path_iterator &operator++() { 713 N = curNode().Previous; 714 return *this; 715 } 716 717 bool operator==(const generic_def_path_iterator &O) const { 718 if (N.hasValue() != O.N.hasValue()) 719 return false; 720 return !N.hasValue() || *N == *O.N; 721 } 722 723 private: 724 T &curNode() const { return W->Paths[*N]; } 725 726 Walker *W = nullptr; 727 Optional<ListIndex> N = None; 728 }; 729 730 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 731 using const_def_path_iterator = 732 generic_def_path_iterator<const DefPath, const ClobberWalker>; 733 734 iterator_range<def_path_iterator> def_path(ListIndex From) { 735 return make_range(def_path_iterator(this, From), def_path_iterator()); 736 } 737 738 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 739 return make_range(const_def_path_iterator(this, From), 740 const_def_path_iterator()); 741 } 742 743 struct OptznResult { 744 /// The path that contains our result. 745 TerminatedPath PrimaryClobber; 746 /// The paths that we can legally cache back from, but that aren't 747 /// necessarily the result of the Phi optimization. 748 SmallVector<TerminatedPath, 4> OtherClobbers; 749 }; 750 751 ListIndex defPathIndex(const DefPath &N) const { 752 // The assert looks nicer if we don't need to do &N 753 const DefPath *NP = &N; 754 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 755 "Out of bounds DefPath!"); 756 return NP - &Paths.front(); 757 } 758 759 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 760 /// that act as legal clobbers. Note that this won't return *all* clobbers. 761 /// 762 /// Phi optimization algorithm tl;dr: 763 /// - Find the earliest def/phi, A, we can optimize to 764 /// - Find if all paths from the starting memory access ultimately reach A 765 /// - If not, optimization isn't possible. 766 /// - Otherwise, walk from A to another clobber or phi, A'. 767 /// - If A' is a def, we're done. 768 /// - If A' is a phi, try to optimize it. 769 /// 770 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 771 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 772 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 773 const MemoryLocation &Loc) { 774 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 775 "Reset the optimization state."); 776 777 Paths.emplace_back(Loc, Start, Phi, None); 778 // Stores how many "valid" optimization nodes we had prior to calling 779 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 780 auto PriorPathsSize = Paths.size(); 781 782 SmallVector<ListIndex, 16> PausedSearches; 783 SmallVector<ListIndex, 8> NewPaused; 784 SmallVector<TerminatedPath, 4> TerminatedPaths; 785 786 addSearches(Phi, PausedSearches, 0); 787 788 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 789 // Paths. 790 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 791 assert(!Paths.empty() && "Need a path to move"); 792 auto Dom = Paths.begin(); 793 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 794 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 795 Dom = I; 796 auto Last = Paths.end() - 1; 797 if (Last != Dom) 798 std::iter_swap(Last, Dom); 799 }; 800 801 MemoryPhi *Current = Phi; 802 while (true) { 803 assert(!MSSA.isLiveOnEntryDef(Current) && 804 "liveOnEntry wasn't treated as a clobber?"); 805 806 const auto *Target = getWalkTarget(Current); 807 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 808 // optimization for the prior phi. 809 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 810 return MSSA.dominates(P.Clobber, Target); 811 })); 812 813 // FIXME: This is broken, because the Blocker may be reported to be 814 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 815 // For the moment, this is fine, since we do nothing with blocker info. 816 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 817 Target, PausedSearches, NewPaused, TerminatedPaths)) { 818 819 // Find the node we started at. We can't search based on N->Last, since 820 // we may have gone around a loop with a different MemoryLocation. 821 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 822 return defPathIndex(N) < PriorPathsSize; 823 }); 824 assert(Iter != def_path_iterator()); 825 826 DefPath &CurNode = *Iter; 827 assert(CurNode.Last == Current); 828 829 // Two things: 830 // A. We can't reliably cache all of NewPaused back. Consider a case 831 // where we have two paths in NewPaused; one of which can't optimize 832 // above this phi, whereas the other can. If we cache the second path 833 // back, we'll end up with suboptimal cache entries. We can handle 834 // cases like this a bit better when we either try to find all 835 // clobbers that block phi optimization, or when our cache starts 836 // supporting unfinished searches. 837 // B. We can't reliably cache TerminatedPaths back here without doing 838 // extra checks; consider a case like: 839 // T 840 // / \ 841 // D C 842 // \ / 843 // S 844 // Where T is our target, C is a node with a clobber on it, D is a 845 // diamond (with a clobber *only* on the left or right node, N), and 846 // S is our start. Say we walk to D, through the node opposite N 847 // (read: ignoring the clobber), and see a cache entry in the top 848 // node of D. That cache entry gets put into TerminatedPaths. We then 849 // walk up to C (N is later in our worklist), find the clobber, and 850 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 851 // the bottom part of D to the cached clobber, ignoring the clobber 852 // in N. Again, this problem goes away if we start tracking all 853 // blockers for a given phi optimization. 854 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 855 return {Result, {}}; 856 } 857 858 // If there's nothing left to search, then all paths led to valid clobbers 859 // that we got from our cache; pick the nearest to the start, and allow 860 // the rest to be cached back. 861 if (NewPaused.empty()) { 862 MoveDominatedPathToEnd(TerminatedPaths); 863 TerminatedPath Result = TerminatedPaths.pop_back_val(); 864 return {Result, std::move(TerminatedPaths)}; 865 } 866 867 MemoryAccess *DefChainEnd = nullptr; 868 SmallVector<TerminatedPath, 4> Clobbers; 869 for (ListIndex Paused : NewPaused) { 870 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 871 if (WR.IsKnownClobber) 872 Clobbers.push_back({WR.Result, Paused}); 873 else 874 // Micro-opt: If we hit the end of the chain, save it. 875 DefChainEnd = WR.Result; 876 } 877 878 if (!TerminatedPaths.empty()) { 879 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 880 // do it now. 881 if (!DefChainEnd) 882 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 883 DefChainEnd = MA; 884 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 885 886 // If any of the terminated paths don't dominate the phi we'll try to 887 // optimize, we need to figure out what they are and quit. 888 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 889 for (const TerminatedPath &TP : TerminatedPaths) { 890 // Because we know that DefChainEnd is as "high" as we can go, we 891 // don't need local dominance checks; BB dominance is sufficient. 892 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 893 Clobbers.push_back(TP); 894 } 895 } 896 897 // If we have clobbers in the def chain, find the one closest to Current 898 // and quit. 899 if (!Clobbers.empty()) { 900 MoveDominatedPathToEnd(Clobbers); 901 TerminatedPath Result = Clobbers.pop_back_val(); 902 return {Result, std::move(Clobbers)}; 903 } 904 905 assert(all_of(NewPaused, 906 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 907 908 // Because liveOnEntry is a clobber, this must be a phi. 909 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 910 911 PriorPathsSize = Paths.size(); 912 PausedSearches.clear(); 913 for (ListIndex I : NewPaused) 914 addSearches(DefChainPhi, PausedSearches, I); 915 NewPaused.clear(); 916 917 Current = DefChainPhi; 918 } 919 } 920 921 void verifyOptResult(const OptznResult &R) const { 922 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 923 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 924 })); 925 } 926 927 void resetPhiOptznState() { 928 Paths.clear(); 929 VisitedPhis.clear(); 930 PerformedPhiTranslation = false; 931 } 932 933 public: 934 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 935 : MSSA(MSSA), AA(AA), DT(DT) {} 936 937 AliasAnalysisType *getAA() { return &AA; } 938 /// Finds the nearest clobber for the given query, optimizing phis if 939 /// possible. 940 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 941 unsigned &UpWalkLimit) { 942 Query = &Q; 943 UpwardWalkLimit = &UpWalkLimit; 944 // Starting limit must be > 0. 945 if (!UpWalkLimit) 946 UpWalkLimit++; 947 948 MemoryAccess *Current = Start; 949 // This walker pretends uses don't exist. If we're handed one, silently grab 950 // its def. (This has the nice side-effect of ensuring we never cache uses) 951 if (auto *MU = dyn_cast<MemoryUse>(Start)) 952 Current = MU->getDefiningAccess(); 953 954 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 955 // Fast path for the overly-common case (no crazy phi optimization 956 // necessary) 957 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 958 MemoryAccess *Result; 959 if (WalkResult.IsKnownClobber) { 960 Result = WalkResult.Result; 961 Q.AR = WalkResult.AR; 962 } else { 963 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 964 Current, Q.StartingLoc); 965 verifyOptResult(OptRes); 966 resetPhiOptznState(); 967 Result = OptRes.PrimaryClobber.Clobber; 968 } 969 970 #ifdef EXPENSIVE_CHECKS 971 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 972 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 973 #endif 974 return Result; 975 } 976 }; 977 978 struct RenamePassData { 979 DomTreeNode *DTN; 980 DomTreeNode::const_iterator ChildIt; 981 MemoryAccess *IncomingVal; 982 983 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 984 MemoryAccess *M) 985 : DTN(D), ChildIt(It), IncomingVal(M) {} 986 987 void swap(RenamePassData &RHS) { 988 std::swap(DTN, RHS.DTN); 989 std::swap(ChildIt, RHS.ChildIt); 990 std::swap(IncomingVal, RHS.IncomingVal); 991 } 992 }; 993 994 } // end anonymous namespace 995 996 namespace llvm { 997 998 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 999 ClobberWalker<AliasAnalysisType> Walker; 1000 MemorySSA *MSSA; 1001 1002 public: 1003 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1004 : Walker(*M, *A, *D), MSSA(M) {} 1005 1006 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1007 const MemoryLocation &, 1008 unsigned &); 1009 // Third argument (bool), defines whether the clobber search should skip the 1010 // original queried access. If true, there will be a follow-up query searching 1011 // for a clobber access past "self". Note that the Optimized access is not 1012 // updated if a new clobber is found by this SkipSelf search. If this 1013 // additional query becomes heavily used we may decide to cache the result. 1014 // Walker instantiations will decide how to set the SkipSelf bool. 1015 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1016 }; 1017 1018 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1019 /// longer does caching on its own, but the name has been retained for the 1020 /// moment. 1021 template <class AliasAnalysisType> 1022 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1023 ClobberWalkerBase<AliasAnalysisType> *Walker; 1024 1025 public: 1026 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1027 : MemorySSAWalker(M), Walker(W) {} 1028 ~CachingWalker() override = default; 1029 1030 using MemorySSAWalker::getClobberingMemoryAccess; 1031 1032 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1033 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1034 } 1035 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1036 const MemoryLocation &Loc, 1037 unsigned &UWL) { 1038 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1039 } 1040 1041 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1042 unsigned UpwardWalkLimit = MaxCheckLimit; 1043 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1044 } 1045 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1046 const MemoryLocation &Loc) override { 1047 unsigned UpwardWalkLimit = MaxCheckLimit; 1048 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1049 } 1050 1051 void invalidateInfo(MemoryAccess *MA) override { 1052 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1053 MUD->resetOptimized(); 1054 } 1055 }; 1056 1057 template <class AliasAnalysisType> 1058 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1059 ClobberWalkerBase<AliasAnalysisType> *Walker; 1060 1061 public: 1062 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1063 : MemorySSAWalker(M), Walker(W) {} 1064 ~SkipSelfWalker() override = default; 1065 1066 using MemorySSAWalker::getClobberingMemoryAccess; 1067 1068 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1069 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1070 } 1071 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1072 const MemoryLocation &Loc, 1073 unsigned &UWL) { 1074 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1075 } 1076 1077 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1078 unsigned UpwardWalkLimit = MaxCheckLimit; 1079 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1080 } 1081 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1082 const MemoryLocation &Loc) override { 1083 unsigned UpwardWalkLimit = MaxCheckLimit; 1084 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1085 } 1086 1087 void invalidateInfo(MemoryAccess *MA) override { 1088 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1089 MUD->resetOptimized(); 1090 } 1091 }; 1092 1093 } // end namespace llvm 1094 1095 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1096 bool RenameAllUses) { 1097 // Pass through values to our successors 1098 for (const BasicBlock *S : successors(BB)) { 1099 auto It = PerBlockAccesses.find(S); 1100 // Rename the phi nodes in our successor block 1101 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1102 continue; 1103 AccessList *Accesses = It->second.get(); 1104 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1105 if (RenameAllUses) { 1106 bool ReplacementDone = false; 1107 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1108 if (Phi->getIncomingBlock(I) == BB) { 1109 Phi->setIncomingValue(I, IncomingVal); 1110 ReplacementDone = true; 1111 } 1112 (void) ReplacementDone; 1113 assert(ReplacementDone && "Incomplete phi during partial rename"); 1114 } else 1115 Phi->addIncoming(IncomingVal, BB); 1116 } 1117 } 1118 1119 /// Rename a single basic block into MemorySSA form. 1120 /// Uses the standard SSA renaming algorithm. 1121 /// \returns The new incoming value. 1122 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1123 bool RenameAllUses) { 1124 auto It = PerBlockAccesses.find(BB); 1125 // Skip most processing if the list is empty. 1126 if (It != PerBlockAccesses.end()) { 1127 AccessList *Accesses = It->second.get(); 1128 for (MemoryAccess &L : *Accesses) { 1129 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1130 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1131 MUD->setDefiningAccess(IncomingVal); 1132 if (isa<MemoryDef>(&L)) 1133 IncomingVal = &L; 1134 } else { 1135 IncomingVal = &L; 1136 } 1137 } 1138 } 1139 return IncomingVal; 1140 } 1141 1142 /// This is the standard SSA renaming algorithm. 1143 /// 1144 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1145 /// in phi nodes in our successors. 1146 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1147 SmallPtrSetImpl<BasicBlock *> &Visited, 1148 bool SkipVisited, bool RenameAllUses) { 1149 assert(Root && "Trying to rename accesses in an unreachable block"); 1150 1151 SmallVector<RenamePassData, 32> WorkStack; 1152 // Skip everything if we already renamed this block and we are skipping. 1153 // Note: You can't sink this into the if, because we need it to occur 1154 // regardless of whether we skip blocks or not. 1155 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1156 if (SkipVisited && AlreadyVisited) 1157 return; 1158 1159 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1160 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1161 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1162 1163 while (!WorkStack.empty()) { 1164 DomTreeNode *Node = WorkStack.back().DTN; 1165 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1166 IncomingVal = WorkStack.back().IncomingVal; 1167 1168 if (ChildIt == Node->end()) { 1169 WorkStack.pop_back(); 1170 } else { 1171 DomTreeNode *Child = *ChildIt; 1172 ++WorkStack.back().ChildIt; 1173 BasicBlock *BB = Child->getBlock(); 1174 // Note: You can't sink this into the if, because we need it to occur 1175 // regardless of whether we skip blocks or not. 1176 AlreadyVisited = !Visited.insert(BB).second; 1177 if (SkipVisited && AlreadyVisited) { 1178 // We already visited this during our renaming, which can happen when 1179 // being asked to rename multiple blocks. Figure out the incoming val, 1180 // which is the last def. 1181 // Incoming value can only change if there is a block def, and in that 1182 // case, it's the last block def in the list. 1183 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1184 IncomingVal = &*BlockDefs->rbegin(); 1185 } else 1186 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1187 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1188 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1189 } 1190 } 1191 } 1192 1193 /// This handles unreachable block accesses by deleting phi nodes in 1194 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1195 /// being uses of the live on entry definition. 1196 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1197 assert(!DT->isReachableFromEntry(BB) && 1198 "Reachable block found while handling unreachable blocks"); 1199 1200 // Make sure phi nodes in our reachable successors end up with a 1201 // LiveOnEntryDef for our incoming edge, even though our block is forward 1202 // unreachable. We could just disconnect these blocks from the CFG fully, 1203 // but we do not right now. 1204 for (const BasicBlock *S : successors(BB)) { 1205 if (!DT->isReachableFromEntry(S)) 1206 continue; 1207 auto It = PerBlockAccesses.find(S); 1208 // Rename the phi nodes in our successor block 1209 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1210 continue; 1211 AccessList *Accesses = It->second.get(); 1212 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1213 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1214 } 1215 1216 auto It = PerBlockAccesses.find(BB); 1217 if (It == PerBlockAccesses.end()) 1218 return; 1219 1220 auto &Accesses = It->second; 1221 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1222 auto Next = std::next(AI); 1223 // If we have a phi, just remove it. We are going to replace all 1224 // users with live on entry. 1225 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1226 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1227 else 1228 Accesses->erase(AI); 1229 AI = Next; 1230 } 1231 } 1232 1233 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1234 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1235 SkipWalker(nullptr), NextID(0) { 1236 // Build MemorySSA using a batch alias analysis. This reuses the internal 1237 // state that AA collects during an alias()/getModRefInfo() call. This is 1238 // safe because there are no CFG changes while building MemorySSA and can 1239 // significantly reduce the time spent by the compiler in AA, because we will 1240 // make queries about all the instructions in the Function. 1241 assert(AA && "No alias analysis?"); 1242 BatchAAResults BatchAA(*AA); 1243 buildMemorySSA(BatchAA); 1244 // Intentionally leave AA to nullptr while building so we don't accidently 1245 // use non-batch AliasAnalysis. 1246 this->AA = AA; 1247 // Also create the walker here. 1248 getWalker(); 1249 } 1250 1251 MemorySSA::~MemorySSA() { 1252 // Drop all our references 1253 for (const auto &Pair : PerBlockAccesses) 1254 for (MemoryAccess &MA : *Pair.second) 1255 MA.dropAllReferences(); 1256 } 1257 1258 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1259 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1260 1261 if (Res.second) 1262 Res.first->second = std::make_unique<AccessList>(); 1263 return Res.first->second.get(); 1264 } 1265 1266 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1267 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1268 1269 if (Res.second) 1270 Res.first->second = std::make_unique<DefsList>(); 1271 return Res.first->second.get(); 1272 } 1273 1274 namespace llvm { 1275 1276 /// This class is a batch walker of all MemoryUse's in the program, and points 1277 /// their defining access at the thing that actually clobbers them. Because it 1278 /// is a batch walker that touches everything, it does not operate like the 1279 /// other walkers. This walker is basically performing a top-down SSA renaming 1280 /// pass, where the version stack is used as the cache. This enables it to be 1281 /// significantly more time and memory efficient than using the regular walker, 1282 /// which is walking bottom-up. 1283 class MemorySSA::OptimizeUses { 1284 public: 1285 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1286 BatchAAResults *BAA, DominatorTree *DT) 1287 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1288 1289 void optimizeUses(); 1290 1291 private: 1292 /// This represents where a given memorylocation is in the stack. 1293 struct MemlocStackInfo { 1294 // This essentially is keeping track of versions of the stack. Whenever 1295 // the stack changes due to pushes or pops, these versions increase. 1296 unsigned long StackEpoch; 1297 unsigned long PopEpoch; 1298 // This is the lower bound of places on the stack to check. It is equal to 1299 // the place the last stack walk ended. 1300 // Note: Correctness depends on this being initialized to 0, which densemap 1301 // does 1302 unsigned long LowerBound; 1303 const BasicBlock *LowerBoundBlock; 1304 // This is where the last walk for this memory location ended. 1305 unsigned long LastKill; 1306 bool LastKillValid; 1307 Optional<AliasResult> AR; 1308 }; 1309 1310 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1311 SmallVectorImpl<MemoryAccess *> &, 1312 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1313 1314 MemorySSA *MSSA; 1315 CachingWalker<BatchAAResults> *Walker; 1316 BatchAAResults *AA; 1317 DominatorTree *DT; 1318 }; 1319 1320 } // end namespace llvm 1321 1322 /// Optimize the uses in a given block This is basically the SSA renaming 1323 /// algorithm, with one caveat: We are able to use a single stack for all 1324 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1325 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1326 /// going to be some position in that stack of possible ones. 1327 /// 1328 /// We track the stack positions that each MemoryLocation needs 1329 /// to check, and last ended at. This is because we only want to check the 1330 /// things that changed since last time. The same MemoryLocation should 1331 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1332 /// things like this, and if they start, we can modify MemoryLocOrCall to 1333 /// include relevant data) 1334 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1335 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1336 SmallVectorImpl<MemoryAccess *> &VersionStack, 1337 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1338 1339 /// If no accesses, nothing to do. 1340 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1341 if (Accesses == nullptr) 1342 return; 1343 1344 // Pop everything that doesn't dominate the current block off the stack, 1345 // increment the PopEpoch to account for this. 1346 while (true) { 1347 assert( 1348 !VersionStack.empty() && 1349 "Version stack should have liveOnEntry sentinel dominating everything"); 1350 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1351 if (DT->dominates(BackBlock, BB)) 1352 break; 1353 while (VersionStack.back()->getBlock() == BackBlock) 1354 VersionStack.pop_back(); 1355 ++PopEpoch; 1356 } 1357 1358 for (MemoryAccess &MA : *Accesses) { 1359 auto *MU = dyn_cast<MemoryUse>(&MA); 1360 if (!MU) { 1361 VersionStack.push_back(&MA); 1362 ++StackEpoch; 1363 continue; 1364 } 1365 1366 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1367 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1368 continue; 1369 } 1370 1371 MemoryLocOrCall UseMLOC(MU); 1372 auto &LocInfo = LocStackInfo[UseMLOC]; 1373 // If the pop epoch changed, it means we've removed stuff from top of 1374 // stack due to changing blocks. We may have to reset the lower bound or 1375 // last kill info. 1376 if (LocInfo.PopEpoch != PopEpoch) { 1377 LocInfo.PopEpoch = PopEpoch; 1378 LocInfo.StackEpoch = StackEpoch; 1379 // If the lower bound was in something that no longer dominates us, we 1380 // have to reset it. 1381 // We can't simply track stack size, because the stack may have had 1382 // pushes/pops in the meantime. 1383 // XXX: This is non-optimal, but only is slower cases with heavily 1384 // branching dominator trees. To get the optimal number of queries would 1385 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1386 // the top of that stack dominates us. This does not seem worth it ATM. 1387 // A much cheaper optimization would be to always explore the deepest 1388 // branch of the dominator tree first. This will guarantee this resets on 1389 // the smallest set of blocks. 1390 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1391 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1392 // Reset the lower bound of things to check. 1393 // TODO: Some day we should be able to reset to last kill, rather than 1394 // 0. 1395 LocInfo.LowerBound = 0; 1396 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1397 LocInfo.LastKillValid = false; 1398 } 1399 } else if (LocInfo.StackEpoch != StackEpoch) { 1400 // If all that has changed is the StackEpoch, we only have to check the 1401 // new things on the stack, because we've checked everything before. In 1402 // this case, the lower bound of things to check remains the same. 1403 LocInfo.PopEpoch = PopEpoch; 1404 LocInfo.StackEpoch = StackEpoch; 1405 } 1406 if (!LocInfo.LastKillValid) { 1407 LocInfo.LastKill = VersionStack.size() - 1; 1408 LocInfo.LastKillValid = true; 1409 LocInfo.AR = AliasResult::MayAlias; 1410 } 1411 1412 // At this point, we should have corrected last kill and LowerBound to be 1413 // in bounds. 1414 assert(LocInfo.LowerBound < VersionStack.size() && 1415 "Lower bound out of range"); 1416 assert(LocInfo.LastKill < VersionStack.size() && 1417 "Last kill info out of range"); 1418 // In any case, the new upper bound is the top of the stack. 1419 unsigned long UpperBound = VersionStack.size() - 1; 1420 1421 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1422 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1423 << *(MU->getMemoryInst()) << ")" 1424 << " because there are " 1425 << UpperBound - LocInfo.LowerBound 1426 << " stores to disambiguate\n"); 1427 // Because we did not walk, LastKill is no longer valid, as this may 1428 // have been a kill. 1429 LocInfo.LastKillValid = false; 1430 continue; 1431 } 1432 bool FoundClobberResult = false; 1433 unsigned UpwardWalkLimit = MaxCheckLimit; 1434 while (UpperBound > LocInfo.LowerBound) { 1435 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1436 // For phis, use the walker, see where we ended up, go there 1437 MemoryAccess *Result = 1438 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1439 // We are guaranteed to find it or something is wrong 1440 while (VersionStack[UpperBound] != Result) { 1441 assert(UpperBound != 0); 1442 --UpperBound; 1443 } 1444 FoundClobberResult = true; 1445 break; 1446 } 1447 1448 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1449 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1450 if (CA.IsClobber) { 1451 FoundClobberResult = true; 1452 LocInfo.AR = CA.AR; 1453 break; 1454 } 1455 --UpperBound; 1456 } 1457 1458 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1459 1460 // At the end of this loop, UpperBound is either a clobber, or lower bound 1461 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1462 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1463 // We were last killed now by where we got to 1464 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1465 LocInfo.AR = None; 1466 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1467 LocInfo.LastKill = UpperBound; 1468 } else { 1469 // Otherwise, we checked all the new ones, and now we know we can get to 1470 // LastKill. 1471 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1472 } 1473 LocInfo.LowerBound = VersionStack.size() - 1; 1474 LocInfo.LowerBoundBlock = BB; 1475 } 1476 } 1477 1478 /// Optimize uses to point to their actual clobbering definitions. 1479 void MemorySSA::OptimizeUses::optimizeUses() { 1480 SmallVector<MemoryAccess *, 16> VersionStack; 1481 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1482 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1483 1484 unsigned long StackEpoch = 1; 1485 unsigned long PopEpoch = 1; 1486 // We perform a non-recursive top-down dominator tree walk. 1487 for (const auto *DomNode : depth_first(DT->getRootNode())) 1488 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1489 LocStackInfo); 1490 } 1491 1492 void MemorySSA::placePHINodes( 1493 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1494 // Determine where our MemoryPhi's should go 1495 ForwardIDFCalculator IDFs(*DT); 1496 IDFs.setDefiningBlocks(DefiningBlocks); 1497 SmallVector<BasicBlock *, 32> IDFBlocks; 1498 IDFs.calculate(IDFBlocks); 1499 1500 // Now place MemoryPhi nodes. 1501 for (auto &BB : IDFBlocks) 1502 createMemoryPhi(BB); 1503 } 1504 1505 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1506 // We create an access to represent "live on entry", for things like 1507 // arguments or users of globals, where the memory they use is defined before 1508 // the beginning of the function. We do not actually insert it into the IR. 1509 // We do not define a live on exit for the immediate uses, and thus our 1510 // semantics do *not* imply that something with no immediate uses can simply 1511 // be removed. 1512 BasicBlock &StartingPoint = F.getEntryBlock(); 1513 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1514 &StartingPoint, NextID++)); 1515 1516 // We maintain lists of memory accesses per-block, trading memory for time. We 1517 // could just look up the memory access for every possible instruction in the 1518 // stream. 1519 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1520 // Go through each block, figure out where defs occur, and chain together all 1521 // the accesses. 1522 for (BasicBlock &B : F) { 1523 bool InsertIntoDef = false; 1524 AccessList *Accesses = nullptr; 1525 DefsList *Defs = nullptr; 1526 for (Instruction &I : B) { 1527 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1528 if (!MUD) 1529 continue; 1530 1531 if (!Accesses) 1532 Accesses = getOrCreateAccessList(&B); 1533 Accesses->push_back(MUD); 1534 if (isa<MemoryDef>(MUD)) { 1535 InsertIntoDef = true; 1536 if (!Defs) 1537 Defs = getOrCreateDefsList(&B); 1538 Defs->push_back(*MUD); 1539 } 1540 } 1541 if (InsertIntoDef) 1542 DefiningBlocks.insert(&B); 1543 } 1544 placePHINodes(DefiningBlocks); 1545 1546 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1547 // filled in with all blocks. 1548 SmallPtrSet<BasicBlock *, 16> Visited; 1549 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1550 1551 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1552 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1553 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1554 1555 // Mark the uses in unreachable blocks as live on entry, so that they go 1556 // somewhere. 1557 for (auto &BB : F) 1558 if (!Visited.count(&BB)) 1559 markUnreachableAsLiveOnEntry(&BB); 1560 } 1561 1562 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1563 1564 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1565 if (Walker) 1566 return Walker.get(); 1567 1568 if (!WalkerBase) 1569 WalkerBase = 1570 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1571 1572 Walker = 1573 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1574 return Walker.get(); 1575 } 1576 1577 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1578 if (SkipWalker) 1579 return SkipWalker.get(); 1580 1581 if (!WalkerBase) 1582 WalkerBase = 1583 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1584 1585 SkipWalker = 1586 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1587 return SkipWalker.get(); 1588 } 1589 1590 1591 // This is a helper function used by the creation routines. It places NewAccess 1592 // into the access and defs lists for a given basic block, at the given 1593 // insertion point. 1594 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1595 const BasicBlock *BB, 1596 InsertionPlace Point) { 1597 auto *Accesses = getOrCreateAccessList(BB); 1598 if (Point == Beginning) { 1599 // If it's a phi node, it goes first, otherwise, it goes after any phi 1600 // nodes. 1601 if (isa<MemoryPhi>(NewAccess)) { 1602 Accesses->push_front(NewAccess); 1603 auto *Defs = getOrCreateDefsList(BB); 1604 Defs->push_front(*NewAccess); 1605 } else { 1606 auto AI = find_if_not( 1607 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1608 Accesses->insert(AI, NewAccess); 1609 if (!isa<MemoryUse>(NewAccess)) { 1610 auto *Defs = getOrCreateDefsList(BB); 1611 auto DI = find_if_not( 1612 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1613 Defs->insert(DI, *NewAccess); 1614 } 1615 } 1616 } else { 1617 Accesses->push_back(NewAccess); 1618 if (!isa<MemoryUse>(NewAccess)) { 1619 auto *Defs = getOrCreateDefsList(BB); 1620 Defs->push_back(*NewAccess); 1621 } 1622 } 1623 BlockNumberingValid.erase(BB); 1624 } 1625 1626 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1627 AccessList::iterator InsertPt) { 1628 auto *Accesses = getWritableBlockAccesses(BB); 1629 bool WasEnd = InsertPt == Accesses->end(); 1630 Accesses->insert(AccessList::iterator(InsertPt), What); 1631 if (!isa<MemoryUse>(What)) { 1632 auto *Defs = getOrCreateDefsList(BB); 1633 // If we got asked to insert at the end, we have an easy job, just shove it 1634 // at the end. If we got asked to insert before an existing def, we also get 1635 // an iterator. If we got asked to insert before a use, we have to hunt for 1636 // the next def. 1637 if (WasEnd) { 1638 Defs->push_back(*What); 1639 } else if (isa<MemoryDef>(InsertPt)) { 1640 Defs->insert(InsertPt->getDefsIterator(), *What); 1641 } else { 1642 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1643 ++InsertPt; 1644 // Either we found a def, or we are inserting at the end 1645 if (InsertPt == Accesses->end()) 1646 Defs->push_back(*What); 1647 else 1648 Defs->insert(InsertPt->getDefsIterator(), *What); 1649 } 1650 } 1651 BlockNumberingValid.erase(BB); 1652 } 1653 1654 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1655 // Keep it in the lookup tables, remove from the lists 1656 removeFromLists(What, false); 1657 1658 // Note that moving should implicitly invalidate the optimized state of a 1659 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1660 // MemoryDef. 1661 if (auto *MD = dyn_cast<MemoryDef>(What)) 1662 MD->resetOptimized(); 1663 What->setBlock(BB); 1664 } 1665 1666 // Move What before Where in the IR. The end result is that What will belong to 1667 // the right lists and have the right Block set, but will not otherwise be 1668 // correct. It will not have the right defining access, and if it is a def, 1669 // things below it will not properly be updated. 1670 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1671 AccessList::iterator Where) { 1672 prepareForMoveTo(What, BB); 1673 insertIntoListsBefore(What, BB, Where); 1674 } 1675 1676 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1677 InsertionPlace Point) { 1678 if (isa<MemoryPhi>(What)) { 1679 assert(Point == Beginning && 1680 "Can only move a Phi at the beginning of the block"); 1681 // Update lookup table entry 1682 ValueToMemoryAccess.erase(What->getBlock()); 1683 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1684 (void)Inserted; 1685 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1686 } 1687 1688 prepareForMoveTo(What, BB); 1689 insertIntoListsForBlock(What, BB, Point); 1690 } 1691 1692 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1693 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1694 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1695 // Phi's always are placed at the front of the block. 1696 insertIntoListsForBlock(Phi, BB, Beginning); 1697 ValueToMemoryAccess[BB] = Phi; 1698 return Phi; 1699 } 1700 1701 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1702 MemoryAccess *Definition, 1703 const MemoryUseOrDef *Template, 1704 bool CreationMustSucceed) { 1705 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1706 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1707 if (CreationMustSucceed) 1708 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1709 "non-memory touching instruction"); 1710 if (NewAccess) { 1711 assert((!Definition || !isa<MemoryUse>(Definition)) && 1712 "A use cannot be a defining access"); 1713 NewAccess->setDefiningAccess(Definition); 1714 } 1715 return NewAccess; 1716 } 1717 1718 // Return true if the instruction has ordering constraints. 1719 // Note specifically that this only considers stores and loads 1720 // because others are still considered ModRef by getModRefInfo. 1721 static inline bool isOrdered(const Instruction *I) { 1722 if (auto *SI = dyn_cast<StoreInst>(I)) { 1723 if (!SI->isUnordered()) 1724 return true; 1725 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1726 if (!LI->isUnordered()) 1727 return true; 1728 } 1729 return false; 1730 } 1731 1732 /// Helper function to create new memory accesses 1733 template <typename AliasAnalysisType> 1734 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1735 AliasAnalysisType *AAP, 1736 const MemoryUseOrDef *Template) { 1737 // The assume intrinsic has a control dependency which we model by claiming 1738 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1739 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1740 // dependencies here. 1741 // FIXME: Replace this special casing with a more accurate modelling of 1742 // assume's control dependency. 1743 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1744 switch (II->getIntrinsicID()) { 1745 default: 1746 break; 1747 case Intrinsic::assume: 1748 case Intrinsic::experimental_noalias_scope_decl: 1749 return nullptr; 1750 } 1751 } 1752 1753 // Using a nonstandard AA pipelines might leave us with unexpected modref 1754 // results for I, so add a check to not model instructions that may not read 1755 // from or write to memory. This is necessary for correctness. 1756 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1757 return nullptr; 1758 1759 bool Def, Use; 1760 if (Template) { 1761 Def = isa<MemoryDef>(Template); 1762 Use = isa<MemoryUse>(Template); 1763 #if !defined(NDEBUG) 1764 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1765 bool DefCheck, UseCheck; 1766 DefCheck = isModSet(ModRef) || isOrdered(I); 1767 UseCheck = isRefSet(ModRef); 1768 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1769 #endif 1770 } else { 1771 // Find out what affect this instruction has on memory. 1772 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1773 // The isOrdered check is used to ensure that volatiles end up as defs 1774 // (atomics end up as ModRef right now anyway). Until we separate the 1775 // ordering chain from the memory chain, this enables people to see at least 1776 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1777 // will still give an answer that bypasses other volatile loads. TODO: 1778 // Separate memory aliasing and ordering into two different chains so that 1779 // we can precisely represent both "what memory will this read/write/is 1780 // clobbered by" and "what instructions can I move this past". 1781 Def = isModSet(ModRef) || isOrdered(I); 1782 Use = isRefSet(ModRef); 1783 } 1784 1785 // It's possible for an instruction to not modify memory at all. During 1786 // construction, we ignore them. 1787 if (!Def && !Use) 1788 return nullptr; 1789 1790 MemoryUseOrDef *MUD; 1791 if (Def) 1792 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1793 else 1794 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1795 ValueToMemoryAccess[I] = MUD; 1796 return MUD; 1797 } 1798 1799 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1800 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1801 assert(MA->use_empty() && 1802 "Trying to remove memory access that still has uses"); 1803 BlockNumbering.erase(MA); 1804 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1805 MUD->setDefiningAccess(nullptr); 1806 // Invalidate our walker's cache if necessary 1807 if (!isa<MemoryUse>(MA)) 1808 getWalker()->invalidateInfo(MA); 1809 1810 Value *MemoryInst; 1811 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1812 MemoryInst = MUD->getMemoryInst(); 1813 else 1814 MemoryInst = MA->getBlock(); 1815 1816 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1817 if (VMA->second == MA) 1818 ValueToMemoryAccess.erase(VMA); 1819 } 1820 1821 /// Properly remove \p MA from all of MemorySSA's lists. 1822 /// 1823 /// Because of the way the intrusive list and use lists work, it is important to 1824 /// do removal in the right order. 1825 /// ShouldDelete defaults to true, and will cause the memory access to also be 1826 /// deleted, not just removed. 1827 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1828 BasicBlock *BB = MA->getBlock(); 1829 // The access list owns the reference, so we erase it from the non-owning list 1830 // first. 1831 if (!isa<MemoryUse>(MA)) { 1832 auto DefsIt = PerBlockDefs.find(BB); 1833 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1834 Defs->remove(*MA); 1835 if (Defs->empty()) 1836 PerBlockDefs.erase(DefsIt); 1837 } 1838 1839 // The erase call here will delete it. If we don't want it deleted, we call 1840 // remove instead. 1841 auto AccessIt = PerBlockAccesses.find(BB); 1842 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1843 if (ShouldDelete) 1844 Accesses->erase(MA); 1845 else 1846 Accesses->remove(MA); 1847 1848 if (Accesses->empty()) { 1849 PerBlockAccesses.erase(AccessIt); 1850 BlockNumberingValid.erase(BB); 1851 } 1852 } 1853 1854 void MemorySSA::print(raw_ostream &OS) const { 1855 MemorySSAAnnotatedWriter Writer(this); 1856 F.print(OS, &Writer); 1857 } 1858 1859 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1860 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1861 #endif 1862 1863 void MemorySSA::verifyMemorySSA() const { 1864 verifyOrderingDominationAndDefUses(F); 1865 verifyDominationNumbers(F); 1866 verifyPrevDefInPhis(F); 1867 // Previously, the verification used to also verify that the clobberingAccess 1868 // cached by MemorySSA is the same as the clobberingAccess found at a later 1869 // query to AA. This does not hold true in general due to the current fragility 1870 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1871 // up. As a result, transformations that are correct, will lead to BasicAA 1872 // returning different Alias answers before and after that transformation. 1873 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1874 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1875 // every transformation, which defeats the purpose of using it. For such an 1876 // example, see test4 added in D51960. 1877 } 1878 1879 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1880 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1881 for (const BasicBlock &BB : F) { 1882 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1883 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1884 auto *Pred = Phi->getIncomingBlock(I); 1885 auto *IncAcc = Phi->getIncomingValue(I); 1886 // If Pred has no unreachable predecessors, get last def looking at 1887 // IDoms. If, while walkings IDoms, any of these has an unreachable 1888 // predecessor, then the incoming def can be any access. 1889 if (auto *DTNode = DT->getNode(Pred)) { 1890 while (DTNode) { 1891 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1892 auto *LastAcc = &*(--DefList->end()); 1893 assert(LastAcc == IncAcc && 1894 "Incorrect incoming access into phi."); 1895 break; 1896 } 1897 DTNode = DTNode->getIDom(); 1898 } 1899 } else { 1900 // If Pred has unreachable predecessors, but has at least a Def, the 1901 // incoming access can be the last Def in Pred, or it could have been 1902 // optimized to LoE. After an update, though, the LoE may have been 1903 // replaced by another access, so IncAcc may be any access. 1904 // If Pred has unreachable predecessors and no Defs, incoming access 1905 // should be LoE; However, after an update, it may be any access. 1906 } 1907 } 1908 } 1909 } 1910 #endif 1911 } 1912 1913 /// Verify that all of the blocks we believe to have valid domination numbers 1914 /// actually have valid domination numbers. 1915 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1916 #ifndef NDEBUG 1917 if (BlockNumberingValid.empty()) 1918 return; 1919 1920 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1921 for (const BasicBlock &BB : F) { 1922 if (!ValidBlocks.count(&BB)) 1923 continue; 1924 1925 ValidBlocks.erase(&BB); 1926 1927 const AccessList *Accesses = getBlockAccesses(&BB); 1928 // It's correct to say an empty block has valid numbering. 1929 if (!Accesses) 1930 continue; 1931 1932 // Block numbering starts at 1. 1933 unsigned long LastNumber = 0; 1934 for (const MemoryAccess &MA : *Accesses) { 1935 auto ThisNumberIter = BlockNumbering.find(&MA); 1936 assert(ThisNumberIter != BlockNumbering.end() && 1937 "MemoryAccess has no domination number in a valid block!"); 1938 1939 unsigned long ThisNumber = ThisNumberIter->second; 1940 assert(ThisNumber > LastNumber && 1941 "Domination numbers should be strictly increasing!"); 1942 LastNumber = ThisNumber; 1943 } 1944 } 1945 1946 assert(ValidBlocks.empty() && 1947 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1948 #endif 1949 } 1950 1951 /// Verify ordering: the order and existence of MemoryAccesses matches the 1952 /// order and existence of memory affecting instructions. 1953 /// Verify domination: each definition dominates all of its uses. 1954 /// Verify def-uses: the immediate use information - walk all the memory 1955 /// accesses and verifying that, for each use, it appears in the appropriate 1956 /// def's use list 1957 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1958 #if !defined(NDEBUG) 1959 // Walk all the blocks, comparing what the lookups think and what the access 1960 // lists think, as well as the order in the blocks vs the order in the access 1961 // lists. 1962 SmallVector<MemoryAccess *, 32> ActualAccesses; 1963 SmallVector<MemoryAccess *, 32> ActualDefs; 1964 for (BasicBlock &B : F) { 1965 const AccessList *AL = getBlockAccesses(&B); 1966 const auto *DL = getBlockDefs(&B); 1967 MemoryPhi *Phi = getMemoryAccess(&B); 1968 if (Phi) { 1969 // Verify ordering. 1970 ActualAccesses.push_back(Phi); 1971 ActualDefs.push_back(Phi); 1972 // Verify domination 1973 for (const Use &U : Phi->uses()) 1974 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 1975 #if defined(EXPENSIVE_CHECKS) 1976 // Verify def-uses. 1977 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1978 pred_begin(&B), pred_end(&B))) && 1979 "Incomplete MemoryPhi Node"); 1980 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1981 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1982 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 1983 "Incoming phi block not a block predecessor"); 1984 } 1985 #endif 1986 } 1987 1988 for (Instruction &I : B) { 1989 MemoryUseOrDef *MA = getMemoryAccess(&I); 1990 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1991 "We have memory affecting instructions " 1992 "in this block but they are not in the " 1993 "access list or defs list"); 1994 if (MA) { 1995 // Verify ordering. 1996 ActualAccesses.push_back(MA); 1997 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 1998 // Verify ordering. 1999 ActualDefs.push_back(MA); 2000 // Verify domination. 2001 for (const Use &U : MD->uses()) 2002 assert(dominates(MD, U) && 2003 "Memory Def does not dominate it's uses"); 2004 } 2005 #if defined(EXPENSIVE_CHECKS) 2006 // Verify def-uses. 2007 verifyUseInDefs(MA->getDefiningAccess(), MA); 2008 #endif 2009 } 2010 } 2011 // Either we hit the assert, really have no accesses, or we have both 2012 // accesses and an access list. Same with defs. 2013 if (!AL && !DL) 2014 continue; 2015 // Verify ordering. 2016 assert(AL->size() == ActualAccesses.size() && 2017 "We don't have the same number of accesses in the block as on the " 2018 "access list"); 2019 assert((DL || ActualDefs.size() == 0) && 2020 "Either we should have a defs list, or we should have no defs"); 2021 assert((!DL || DL->size() == ActualDefs.size()) && 2022 "We don't have the same number of defs in the block as on the " 2023 "def list"); 2024 auto ALI = AL->begin(); 2025 auto AAI = ActualAccesses.begin(); 2026 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2027 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2028 ++ALI; 2029 ++AAI; 2030 } 2031 ActualAccesses.clear(); 2032 if (DL) { 2033 auto DLI = DL->begin(); 2034 auto ADI = ActualDefs.begin(); 2035 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2036 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2037 ++DLI; 2038 ++ADI; 2039 } 2040 } 2041 ActualDefs.clear(); 2042 } 2043 #endif 2044 } 2045 2046 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2047 /// appears in the use list of \p Def. 2048 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2049 #ifndef NDEBUG 2050 // The live on entry use may cause us to get a NULL def here 2051 if (!Def) 2052 assert(isLiveOnEntryDef(Use) && 2053 "Null def but use not point to live on entry def"); 2054 else 2055 assert(is_contained(Def->users(), Use) && 2056 "Did not find use in def's use list"); 2057 #endif 2058 } 2059 2060 /// Perform a local numbering on blocks so that instruction ordering can be 2061 /// determined in constant time. 2062 /// TODO: We currently just number in order. If we numbered by N, we could 2063 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2064 /// log2(N) sequences of mixed before and after) without needing to invalidate 2065 /// the numbering. 2066 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2067 // The pre-increment ensures the numbers really start at 1. 2068 unsigned long CurrentNumber = 0; 2069 const AccessList *AL = getBlockAccesses(B); 2070 assert(AL != nullptr && "Asking to renumber an empty block"); 2071 for (const auto &I : *AL) 2072 BlockNumbering[&I] = ++CurrentNumber; 2073 BlockNumberingValid.insert(B); 2074 } 2075 2076 /// Determine, for two memory accesses in the same block, 2077 /// whether \p Dominator dominates \p Dominatee. 2078 /// \returns True if \p Dominator dominates \p Dominatee. 2079 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2080 const MemoryAccess *Dominatee) const { 2081 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2082 2083 assert((DominatorBlock == Dominatee->getBlock()) && 2084 "Asking for local domination when accesses are in different blocks!"); 2085 // A node dominates itself. 2086 if (Dominatee == Dominator) 2087 return true; 2088 2089 // When Dominatee is defined on function entry, it is not dominated by another 2090 // memory access. 2091 if (isLiveOnEntryDef(Dominatee)) 2092 return false; 2093 2094 // When Dominator is defined on function entry, it dominates the other memory 2095 // access. 2096 if (isLiveOnEntryDef(Dominator)) 2097 return true; 2098 2099 if (!BlockNumberingValid.count(DominatorBlock)) 2100 renumberBlock(DominatorBlock); 2101 2102 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2103 // All numbers start with 1 2104 assert(DominatorNum != 0 && "Block was not numbered properly"); 2105 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2106 assert(DominateeNum != 0 && "Block was not numbered properly"); 2107 return DominatorNum < DominateeNum; 2108 } 2109 2110 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2111 const MemoryAccess *Dominatee) const { 2112 if (Dominator == Dominatee) 2113 return true; 2114 2115 if (isLiveOnEntryDef(Dominatee)) 2116 return false; 2117 2118 if (Dominator->getBlock() != Dominatee->getBlock()) 2119 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2120 return locallyDominates(Dominator, Dominatee); 2121 } 2122 2123 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2124 const Use &Dominatee) const { 2125 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2126 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2127 // The def must dominate the incoming block of the phi. 2128 if (UseBB != Dominator->getBlock()) 2129 return DT->dominates(Dominator->getBlock(), UseBB); 2130 // If the UseBB and the DefBB are the same, compare locally. 2131 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2132 } 2133 // If it's not a PHI node use, the normal dominates can already handle it. 2134 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2135 } 2136 2137 const static char LiveOnEntryStr[] = "liveOnEntry"; 2138 2139 void MemoryAccess::print(raw_ostream &OS) const { 2140 switch (getValueID()) { 2141 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2142 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2143 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2144 } 2145 llvm_unreachable("invalid value id"); 2146 } 2147 2148 void MemoryDef::print(raw_ostream &OS) const { 2149 MemoryAccess *UO = getDefiningAccess(); 2150 2151 auto printID = [&OS](MemoryAccess *A) { 2152 if (A && A->getID()) 2153 OS << A->getID(); 2154 else 2155 OS << LiveOnEntryStr; 2156 }; 2157 2158 OS << getID() << " = MemoryDef("; 2159 printID(UO); 2160 OS << ")"; 2161 2162 if (isOptimized()) { 2163 OS << "->"; 2164 printID(getOptimized()); 2165 2166 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2167 OS << " " << *AR; 2168 } 2169 } 2170 2171 void MemoryPhi::print(raw_ostream &OS) const { 2172 ListSeparator LS(","); 2173 OS << getID() << " = MemoryPhi("; 2174 for (const auto &Op : operands()) { 2175 BasicBlock *BB = getIncomingBlock(Op); 2176 MemoryAccess *MA = cast<MemoryAccess>(Op); 2177 2178 OS << LS << '{'; 2179 if (BB->hasName()) 2180 OS << BB->getName(); 2181 else 2182 BB->printAsOperand(OS, false); 2183 OS << ','; 2184 if (unsigned ID = MA->getID()) 2185 OS << ID; 2186 else 2187 OS << LiveOnEntryStr; 2188 OS << '}'; 2189 } 2190 OS << ')'; 2191 } 2192 2193 void MemoryUse::print(raw_ostream &OS) const { 2194 MemoryAccess *UO = getDefiningAccess(); 2195 OS << "MemoryUse("; 2196 if (UO && UO->getID()) 2197 OS << UO->getID(); 2198 else 2199 OS << LiveOnEntryStr; 2200 OS << ')'; 2201 2202 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2203 OS << " " << *AR; 2204 } 2205 2206 void MemoryAccess::dump() const { 2207 // Cannot completely remove virtual function even in release mode. 2208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2209 print(dbgs()); 2210 dbgs() << "\n"; 2211 #endif 2212 } 2213 2214 char MemorySSAPrinterLegacyPass::ID = 0; 2215 2216 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2217 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2218 } 2219 2220 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2221 AU.setPreservesAll(); 2222 AU.addRequired<MemorySSAWrapperPass>(); 2223 } 2224 2225 class DOTFuncMSSAInfo { 2226 private: 2227 const Function &F; 2228 MemorySSAAnnotatedWriter MSSAWriter; 2229 2230 public: 2231 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2232 : F(F), MSSAWriter(&MSSA) {} 2233 2234 const Function *getFunction() { return &F; } 2235 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2236 }; 2237 2238 namespace llvm { 2239 2240 template <> 2241 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2242 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2243 return &(CFGInfo->getFunction()->getEntryBlock()); 2244 } 2245 2246 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2247 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2248 2249 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2250 return nodes_iterator(CFGInfo->getFunction()->begin()); 2251 } 2252 2253 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2254 return nodes_iterator(CFGInfo->getFunction()->end()); 2255 } 2256 2257 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2258 return CFGInfo->getFunction()->size(); 2259 } 2260 }; 2261 2262 template <> 2263 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2264 2265 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2266 2267 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2268 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2269 "' function"; 2270 } 2271 2272 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2273 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2274 Node, nullptr, 2275 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2276 BB.print(OS, &CFGInfo->getWriter(), true, true); 2277 }, 2278 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2279 std::string Str = S.substr(I, Idx - I); 2280 StringRef SR = Str; 2281 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2282 SR.count("MemoryUse(")) 2283 return; 2284 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2285 }); 2286 } 2287 2288 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2289 const_succ_iterator I) { 2290 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2291 } 2292 2293 /// Display the raw branch weights from PGO. 2294 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2295 DOTFuncMSSAInfo *CFGInfo) { 2296 return ""; 2297 } 2298 2299 std::string getNodeAttributes(const BasicBlock *Node, 2300 DOTFuncMSSAInfo *CFGInfo) { 2301 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2302 ? "style=filled, fillcolor=lightpink" 2303 : ""; 2304 } 2305 }; 2306 2307 } // namespace llvm 2308 2309 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2310 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2311 if (DotCFGMSSA != "") { 2312 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2313 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2314 } else 2315 MSSA.print(dbgs()); 2316 2317 if (VerifyMemorySSA) 2318 MSSA.verifyMemorySSA(); 2319 return false; 2320 } 2321 2322 AnalysisKey MemorySSAAnalysis::Key; 2323 2324 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2325 FunctionAnalysisManager &AM) { 2326 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2327 auto &AA = AM.getResult<AAManager>(F); 2328 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2329 } 2330 2331 bool MemorySSAAnalysis::Result::invalidate( 2332 Function &F, const PreservedAnalyses &PA, 2333 FunctionAnalysisManager::Invalidator &Inv) { 2334 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2335 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2336 Inv.invalidate<AAManager>(F, PA) || 2337 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2338 } 2339 2340 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2341 FunctionAnalysisManager &AM) { 2342 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2343 if (DotCFGMSSA != "") { 2344 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2345 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2346 } else { 2347 OS << "MemorySSA for function: " << F.getName() << "\n"; 2348 MSSA.print(OS); 2349 } 2350 2351 return PreservedAnalyses::all(); 2352 } 2353 2354 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2355 FunctionAnalysisManager &AM) { 2356 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2357 2358 return PreservedAnalyses::all(); 2359 } 2360 2361 char MemorySSAWrapperPass::ID = 0; 2362 2363 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2364 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2365 } 2366 2367 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2368 2369 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2370 AU.setPreservesAll(); 2371 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2372 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2373 } 2374 2375 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2376 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2377 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2378 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2379 return false; 2380 } 2381 2382 void MemorySSAWrapperPass::verifyAnalysis() const { 2383 if (VerifyMemorySSA) 2384 MSSA->verifyMemorySSA(); 2385 } 2386 2387 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2388 MSSA->print(OS); 2389 } 2390 2391 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2392 2393 /// Walk the use-def chains starting at \p StartingAccess and find 2394 /// the MemoryAccess that actually clobbers Loc. 2395 /// 2396 /// \returns our clobbering memory access 2397 template <typename AliasAnalysisType> 2398 MemoryAccess * 2399 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2400 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2401 unsigned &UpwardWalkLimit) { 2402 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access"); 2403 2404 Instruction *I = nullptr; 2405 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) { 2406 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2407 return StartingUseOrDef; 2408 2409 I = StartingUseOrDef->getMemoryInst(); 2410 2411 // Conservatively, fences are always clobbers, so don't perform the walk if 2412 // we hit a fence. 2413 if (!isa<CallBase>(I) && I->isFenceLike()) 2414 return StartingUseOrDef; 2415 } 2416 2417 UpwardsMemoryQuery Q; 2418 Q.OriginalAccess = StartingAccess; 2419 Q.StartingLoc = Loc; 2420 Q.Inst = nullptr; 2421 Q.IsCall = false; 2422 2423 // Unlike the other function, do not walk to the def of a def, because we are 2424 // handed something we already believe is the clobbering access. 2425 // We never set SkipSelf to true in Q in this method. 2426 MemoryAccess *Clobber = 2427 Walker.findClobber(StartingAccess, Q, UpwardWalkLimit); 2428 LLVM_DEBUG({ 2429 dbgs() << "Clobber starting at access " << *StartingAccess << "\n"; 2430 if (I) 2431 dbgs() << " for instruction " << *I << "\n"; 2432 dbgs() << " is " << *Clobber << "\n"; 2433 }); 2434 return Clobber; 2435 } 2436 2437 template <typename AliasAnalysisType> 2438 MemoryAccess * 2439 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2440 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2441 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2442 // If this is a MemoryPhi, we can't do anything. 2443 if (!StartingAccess) 2444 return MA; 2445 2446 bool IsOptimized = false; 2447 2448 // If this is an already optimized use or def, return the optimized result. 2449 // Note: Currently, we store the optimized def result in a separate field, 2450 // since we can't use the defining access. 2451 if (StartingAccess->isOptimized()) { 2452 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2453 return StartingAccess->getOptimized(); 2454 IsOptimized = true; 2455 } 2456 2457 const Instruction *I = StartingAccess->getMemoryInst(); 2458 // We can't sanely do anything with a fence, since they conservatively clobber 2459 // all memory, and have no locations to get pointers from to try to 2460 // disambiguate. 2461 if (!isa<CallBase>(I) && I->isFenceLike()) 2462 return StartingAccess; 2463 2464 UpwardsMemoryQuery Q(I, StartingAccess); 2465 2466 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2467 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2468 StartingAccess->setOptimized(LiveOnEntry); 2469 StartingAccess->setOptimizedAccessType(None); 2470 return LiveOnEntry; 2471 } 2472 2473 MemoryAccess *OptimizedAccess; 2474 if (!IsOptimized) { 2475 // Start with the thing we already think clobbers this location 2476 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2477 2478 // At this point, DefiningAccess may be the live on entry def. 2479 // If it is, we will not get a better result. 2480 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2481 StartingAccess->setOptimized(DefiningAccess); 2482 StartingAccess->setOptimizedAccessType(None); 2483 return DefiningAccess; 2484 } 2485 2486 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2487 StartingAccess->setOptimized(OptimizedAccess); 2488 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2489 StartingAccess->setOptimizedAccessType(None); 2490 else if (Q.AR && *Q.AR == AliasResult::MustAlias) 2491 StartingAccess->setOptimizedAccessType( 2492 AliasResult(AliasResult::MustAlias)); 2493 } else 2494 OptimizedAccess = StartingAccess->getOptimized(); 2495 2496 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2497 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2498 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2499 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2500 2501 MemoryAccess *Result; 2502 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2503 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2504 assert(isa<MemoryDef>(Q.OriginalAccess)); 2505 Q.SkipSelfAccess = true; 2506 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2507 } else 2508 Result = OptimizedAccess; 2509 2510 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2511 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2512 2513 return Result; 2514 } 2515 2516 MemoryAccess * 2517 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2518 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2519 return Use->getDefiningAccess(); 2520 return MA; 2521 } 2522 2523 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2524 MemoryAccess *StartingAccess, const MemoryLocation &) { 2525 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2526 return Use->getDefiningAccess(); 2527 return StartingAccess; 2528 } 2529 2530 void MemoryPhi::deleteMe(DerivedUser *Self) { 2531 delete static_cast<MemoryPhi *>(Self); 2532 } 2533 2534 void MemoryDef::deleteMe(DerivedUser *Self) { 2535 delete static_cast<MemoryDef *>(Self); 2536 } 2537 2538 void MemoryUse::deleteMe(DerivedUser *Self) { 2539 delete static_cast<MemoryUse *>(Self); 2540 } 2541 2542 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { 2543 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { 2544 Ptr = Ptr->stripPointerCasts(); 2545 if (!isa<Instruction>(Ptr)) 2546 return true; 2547 return isa<AllocaInst>(Ptr); 2548 }; 2549 2550 Ptr = Ptr->stripPointerCasts(); 2551 if (auto *I = dyn_cast<Instruction>(Ptr)) { 2552 if (I->getParent()->isEntryBlock()) 2553 return true; 2554 } 2555 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2556 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2557 GEP->hasAllConstantIndices(); 2558 } 2559 return IsGuaranteedLoopInvariantBase(Ptr); 2560 } 2561