1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFGPrinter.h" 29 #include "llvm/Analysis/IteratedDominanceFrontier.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/AtomicOrdering.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdlib> 56 #include <iterator> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "memoryssa" 63 64 static cl::opt<std::string> 65 DotCFGMSSA("dot-cfg-mssa", 66 cl::value_desc("file name for generated dot file"), 67 cl::desc("file name for generated dot file"), cl::init("")); 68 69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 70 true) 71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 73 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 74 true) 75 76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 77 "Memory SSA Printer", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 80 "Memory SSA Printer", false, false) 81 82 static cl::opt<unsigned> MaxCheckLimit( 83 "memssa-check-limit", cl::Hidden, cl::init(100), 84 cl::desc("The maximum number of stores/phis MemorySSA" 85 "will consider trying to walk past (default = 100)")); 86 87 // Always verify MemorySSA if expensive checking is enabled. 88 #ifdef EXPENSIVE_CHECKS 89 bool llvm::VerifyMemorySSA = true; 90 #else 91 bool llvm::VerifyMemorySSA = false; 92 #endif 93 94 static cl::opt<bool, true> 95 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 96 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 97 98 const static char LiveOnEntryStr[] = "liveOnEntry"; 99 100 namespace { 101 102 /// An assembly annotator class to print Memory SSA information in 103 /// comments. 104 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 105 const MemorySSA *MSSA; 106 107 public: 108 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 109 110 void emitBasicBlockStartAnnot(const BasicBlock *BB, 111 formatted_raw_ostream &OS) override { 112 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 113 OS << "; " << *MA << "\n"; 114 } 115 116 void emitInstructionAnnot(const Instruction *I, 117 formatted_raw_ostream &OS) override { 118 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 119 OS << "; " << *MA << "\n"; 120 } 121 }; 122 123 /// An assembly annotator class to print Memory SSA information in 124 /// comments. 125 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter { 126 MemorySSA *MSSA; 127 MemorySSAWalker *Walker; 128 129 public: 130 MemorySSAWalkerAnnotatedWriter(MemorySSA *M) 131 : MSSA(M), Walker(M->getWalker()) {} 132 133 void emitInstructionAnnot(const Instruction *I, 134 formatted_raw_ostream &OS) override { 135 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) { 136 MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA); 137 OS << "; " << *MA; 138 if (Clobber) { 139 OS << " - clobbered by "; 140 if (MSSA->isLiveOnEntryDef(Clobber)) 141 OS << LiveOnEntryStr; 142 else 143 OS << *Clobber; 144 } 145 OS << "\n"; 146 } 147 } 148 }; 149 150 } // namespace 151 152 namespace { 153 154 /// Our current alias analysis API differentiates heavily between calls and 155 /// non-calls, and functions called on one usually assert on the other. 156 /// This class encapsulates the distinction to simplify other code that wants 157 /// "Memory affecting instructions and related data" to use as a key. 158 /// For example, this class is used as a densemap key in the use optimizer. 159 class MemoryLocOrCall { 160 public: 161 bool IsCall = false; 162 163 MemoryLocOrCall(MemoryUseOrDef *MUD) 164 : MemoryLocOrCall(MUD->getMemoryInst()) {} 165 MemoryLocOrCall(const MemoryUseOrDef *MUD) 166 : MemoryLocOrCall(MUD->getMemoryInst()) {} 167 168 MemoryLocOrCall(Instruction *Inst) { 169 if (auto *C = dyn_cast<CallBase>(Inst)) { 170 IsCall = true; 171 Call = C; 172 } else { 173 IsCall = false; 174 // There is no such thing as a memorylocation for a fence inst, and it is 175 // unique in that regard. 176 if (!isa<FenceInst>(Inst)) 177 Loc = MemoryLocation::get(Inst); 178 } 179 } 180 181 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 182 183 const CallBase *getCall() const { 184 assert(IsCall); 185 return Call; 186 } 187 188 MemoryLocation getLoc() const { 189 assert(!IsCall); 190 return Loc; 191 } 192 193 bool operator==(const MemoryLocOrCall &Other) const { 194 if (IsCall != Other.IsCall) 195 return false; 196 197 if (!IsCall) 198 return Loc == Other.Loc; 199 200 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 201 return false; 202 203 return Call->arg_size() == Other.Call->arg_size() && 204 std::equal(Call->arg_begin(), Call->arg_end(), 205 Other.Call->arg_begin()); 206 } 207 208 private: 209 union { 210 const CallBase *Call; 211 MemoryLocation Loc; 212 }; 213 }; 214 215 } // end anonymous namespace 216 217 namespace llvm { 218 219 template <> struct DenseMapInfo<MemoryLocOrCall> { 220 static inline MemoryLocOrCall getEmptyKey() { 221 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 222 } 223 224 static inline MemoryLocOrCall getTombstoneKey() { 225 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 226 } 227 228 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 229 if (!MLOC.IsCall) 230 return hash_combine( 231 MLOC.IsCall, 232 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 233 234 hash_code hash = 235 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 236 MLOC.getCall()->getCalledOperand())); 237 238 for (const Value *Arg : MLOC.getCall()->args()) 239 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 240 return hash; 241 } 242 243 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 244 return LHS == RHS; 245 } 246 }; 247 248 } // end namespace llvm 249 250 /// This does one-way checks to see if Use could theoretically be hoisted above 251 /// MayClobber. This will not check the other way around. 252 /// 253 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 254 /// MayClobber, with no potentially clobbering operations in between them. 255 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 256 static bool areLoadsReorderable(const LoadInst *Use, 257 const LoadInst *MayClobber) { 258 bool VolatileUse = Use->isVolatile(); 259 bool VolatileClobber = MayClobber->isVolatile(); 260 // Volatile operations may never be reordered with other volatile operations. 261 if (VolatileUse && VolatileClobber) 262 return false; 263 // Otherwise, volatile doesn't matter here. From the language reference: 264 // 'optimizers may change the order of volatile operations relative to 265 // non-volatile operations.'" 266 267 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 268 // is weaker, it can be moved above other loads. We just need to be sure that 269 // MayClobber isn't an acquire load, because loads can't be moved above 270 // acquire loads. 271 // 272 // Note that this explicitly *does* allow the free reordering of monotonic (or 273 // weaker) loads of the same address. 274 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 275 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 276 AtomicOrdering::Acquire); 277 return !(SeqCstUse || MayClobberIsAcquire); 278 } 279 280 namespace { 281 282 struct ClobberAlias { 283 bool IsClobber; 284 Optional<AliasResult> AR; 285 }; 286 287 } // end anonymous namespace 288 289 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 290 // ignored if IsClobber = false. 291 template <typename AliasAnalysisType> 292 static ClobberAlias 293 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 294 const Instruction *UseInst, AliasAnalysisType &AA) { 295 Instruction *DefInst = MD->getMemoryInst(); 296 assert(DefInst && "Defining instruction not actually an instruction"); 297 Optional<AliasResult> AR; 298 299 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 300 // These intrinsics will show up as affecting memory, but they are just 301 // markers, mostly. 302 // 303 // FIXME: We probably don't actually want MemorySSA to model these at all 304 // (including creating MemoryAccesses for them): we just end up inventing 305 // clobbers where they don't really exist at all. Please see D43269 for 306 // context. 307 switch (II->getIntrinsicID()) { 308 case Intrinsic::invariant_start: 309 case Intrinsic::invariant_end: 310 case Intrinsic::assume: 311 case Intrinsic::experimental_noalias_scope_decl: 312 return {false, AliasResult(AliasResult::NoAlias)}; 313 case Intrinsic::dbg_addr: 314 case Intrinsic::dbg_declare: 315 case Intrinsic::dbg_label: 316 case Intrinsic::dbg_value: 317 llvm_unreachable("debuginfo shouldn't have associated defs!"); 318 default: 319 break; 320 } 321 } 322 323 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 324 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 325 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 326 return {isModOrRefSet(I), AR}; 327 } 328 329 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 330 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 331 return {!areLoadsReorderable(UseLoad, DefLoad), 332 AliasResult(AliasResult::MayAlias)}; 333 334 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 335 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 336 return {isModSet(I), AR}; 337 } 338 339 template <typename AliasAnalysisType> 340 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 341 const MemoryUseOrDef *MU, 342 const MemoryLocOrCall &UseMLOC, 343 AliasAnalysisType &AA) { 344 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 345 // to exist while MemoryLocOrCall is pushed through places. 346 if (UseMLOC.IsCall) 347 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 348 AA); 349 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 350 AA); 351 } 352 353 // Return true when MD may alias MU, return false otherwise. 354 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 355 AliasAnalysis &AA) { 356 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 357 } 358 359 namespace { 360 361 struct UpwardsMemoryQuery { 362 // True if our original query started off as a call 363 bool IsCall = false; 364 // The pointer location we started the query with. This will be empty if 365 // IsCall is true. 366 MemoryLocation StartingLoc; 367 // This is the instruction we were querying about. 368 const Instruction *Inst = nullptr; 369 // The MemoryAccess we actually got called with, used to test local domination 370 const MemoryAccess *OriginalAccess = nullptr; 371 Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias); 372 bool SkipSelfAccess = false; 373 374 UpwardsMemoryQuery() = default; 375 376 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 377 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 378 if (!IsCall) 379 StartingLoc = MemoryLocation::get(Inst); 380 } 381 }; 382 383 } // end anonymous namespace 384 385 template <typename AliasAnalysisType> 386 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 387 const Instruction *I) { 388 // If the memory can't be changed, then loads of the memory can't be 389 // clobbered. 390 if (auto *LI = dyn_cast<LoadInst>(I)) 391 return I->hasMetadata(LLVMContext::MD_invariant_load) || 392 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 393 return false; 394 } 395 396 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 397 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 398 /// 399 /// This is meant to be as simple and self-contained as possible. Because it 400 /// uses no cache, etc., it can be relatively expensive. 401 /// 402 /// \param Start The MemoryAccess that we want to walk from. 403 /// \param ClobberAt A clobber for Start. 404 /// \param StartLoc The MemoryLocation for Start. 405 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 406 /// \param Query The UpwardsMemoryQuery we used for our search. 407 /// \param AA The AliasAnalysis we used for our search. 408 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 409 410 template <typename AliasAnalysisType> 411 LLVM_ATTRIBUTE_UNUSED static void 412 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 413 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 414 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 415 bool AllowImpreciseClobber = false) { 416 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 417 418 if (MSSA.isLiveOnEntryDef(Start)) { 419 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 420 "liveOnEntry must clobber itself"); 421 return; 422 } 423 424 bool FoundClobber = false; 425 DenseSet<ConstMemoryAccessPair> VisitedPhis; 426 SmallVector<ConstMemoryAccessPair, 8> Worklist; 427 Worklist.emplace_back(Start, StartLoc); 428 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 429 // is found, complain. 430 while (!Worklist.empty()) { 431 auto MAP = Worklist.pop_back_val(); 432 // All we care about is that nothing from Start to ClobberAt clobbers Start. 433 // We learn nothing from revisiting nodes. 434 if (!VisitedPhis.insert(MAP).second) 435 continue; 436 437 for (const auto *MA : def_chain(MAP.first)) { 438 if (MA == ClobberAt) { 439 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 440 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 441 // since it won't let us short-circuit. 442 // 443 // Also, note that this can't be hoisted out of the `Worklist` loop, 444 // since MD may only act as a clobber for 1 of N MemoryLocations. 445 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 446 if (!FoundClobber) { 447 ClobberAlias CA = 448 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 449 if (CA.IsClobber) { 450 FoundClobber = true; 451 // Not used: CA.AR; 452 } 453 } 454 } 455 break; 456 } 457 458 // We should never hit liveOnEntry, unless it's the clobber. 459 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 460 461 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 462 // If Start is a Def, skip self. 463 if (MD == Start) 464 continue; 465 466 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 467 .IsClobber && 468 "Found clobber before reaching ClobberAt!"); 469 continue; 470 } 471 472 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 473 (void)MU; 474 assert (MU == Start && 475 "Can only find use in def chain if Start is a use"); 476 continue; 477 } 478 479 assert(isa<MemoryPhi>(MA)); 480 481 // Add reachable phi predecessors 482 for (auto ItB = upward_defs_begin( 483 {const_cast<MemoryAccess *>(MA), MAP.second}, 484 MSSA.getDomTree()), 485 ItE = upward_defs_end(); 486 ItB != ItE; ++ItB) 487 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 488 Worklist.emplace_back(*ItB); 489 } 490 } 491 492 // If the verify is done following an optimization, it's possible that 493 // ClobberAt was a conservative clobbering, that we can now infer is not a 494 // true clobbering access. Don't fail the verify if that's the case. 495 // We do have accesses that claim they're optimized, but could be optimized 496 // further. Updating all these can be expensive, so allow it for now (FIXME). 497 if (AllowImpreciseClobber) 498 return; 499 500 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 501 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 502 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 503 "ClobberAt never acted as a clobber"); 504 } 505 506 namespace { 507 508 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 509 /// in one class. 510 template <class AliasAnalysisType> class ClobberWalker { 511 /// Save a few bytes by using unsigned instead of size_t. 512 using ListIndex = unsigned; 513 514 /// Represents a span of contiguous MemoryDefs, potentially ending in a 515 /// MemoryPhi. 516 struct DefPath { 517 MemoryLocation Loc; 518 // Note that, because we always walk in reverse, Last will always dominate 519 // First. Also note that First and Last are inclusive. 520 MemoryAccess *First; 521 MemoryAccess *Last; 522 Optional<ListIndex> Previous; 523 524 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 525 Optional<ListIndex> Previous) 526 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 527 528 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 529 Optional<ListIndex> Previous) 530 : DefPath(Loc, Init, Init, Previous) {} 531 }; 532 533 const MemorySSA &MSSA; 534 AliasAnalysisType &AA; 535 DominatorTree &DT; 536 UpwardsMemoryQuery *Query; 537 unsigned *UpwardWalkLimit; 538 539 // Phi optimization bookkeeping: 540 // List of DefPath to process during the current phi optimization walk. 541 SmallVector<DefPath, 32> Paths; 542 // List of visited <Access, Location> pairs; we can skip paths already 543 // visited with the same memory location. 544 DenseSet<ConstMemoryAccessPair> VisitedPhis; 545 // Record if phi translation has been performed during the current phi 546 // optimization walk, as merging alias results after phi translation can 547 // yield incorrect results. Context in PR46156. 548 bool PerformedPhiTranslation = false; 549 550 /// Find the nearest def or phi that `From` can legally be optimized to. 551 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 552 assert(From->getNumOperands() && "Phi with no operands?"); 553 554 BasicBlock *BB = From->getBlock(); 555 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 556 DomTreeNode *Node = DT.getNode(BB); 557 while ((Node = Node->getIDom())) { 558 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 559 if (Defs) 560 return &*Defs->rbegin(); 561 } 562 return Result; 563 } 564 565 /// Result of calling walkToPhiOrClobber. 566 struct UpwardsWalkResult { 567 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 568 /// both. Include alias info when clobber found. 569 MemoryAccess *Result; 570 bool IsKnownClobber; 571 Optional<AliasResult> AR; 572 }; 573 574 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 575 /// This will update Desc.Last as it walks. It will (optionally) also stop at 576 /// StopAt. 577 /// 578 /// This does not test for whether StopAt is a clobber 579 UpwardsWalkResult 580 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 581 const MemoryAccess *SkipStopAt = nullptr) const { 582 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 583 assert(UpwardWalkLimit && "Need a valid walk limit"); 584 bool LimitAlreadyReached = false; 585 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 586 // it to 1. This will not do any alias() calls. It either returns in the 587 // first iteration in the loop below, or is set back to 0 if all def chains 588 // are free of MemoryDefs. 589 if (!*UpwardWalkLimit) { 590 *UpwardWalkLimit = 1; 591 LimitAlreadyReached = true; 592 } 593 594 for (MemoryAccess *Current : def_chain(Desc.Last)) { 595 Desc.Last = Current; 596 if (Current == StopAt || Current == SkipStopAt) 597 return {Current, false, AliasResult(AliasResult::MayAlias)}; 598 599 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 600 if (MSSA.isLiveOnEntryDef(MD)) 601 return {MD, true, AliasResult(AliasResult::MustAlias)}; 602 603 if (!--*UpwardWalkLimit) 604 return {Current, true, AliasResult(AliasResult::MayAlias)}; 605 606 ClobberAlias CA = 607 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 608 if (CA.IsClobber) 609 return {MD, true, CA.AR}; 610 } 611 } 612 613 if (LimitAlreadyReached) 614 *UpwardWalkLimit = 0; 615 616 assert(isa<MemoryPhi>(Desc.Last) && 617 "Ended at a non-clobber that's not a phi?"); 618 return {Desc.Last, false, AliasResult(AliasResult::MayAlias)}; 619 } 620 621 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 622 ListIndex PriorNode) { 623 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 624 &PerformedPhiTranslation); 625 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 626 for (const MemoryAccessPair &P : UpwardDefs) { 627 PausedSearches.push_back(Paths.size()); 628 Paths.emplace_back(P.second, P.first, PriorNode); 629 } 630 } 631 632 /// Represents a search that terminated after finding a clobber. This clobber 633 /// may or may not be present in the path of defs from LastNode..SearchStart, 634 /// since it may have been retrieved from cache. 635 struct TerminatedPath { 636 MemoryAccess *Clobber; 637 ListIndex LastNode; 638 }; 639 640 /// Get an access that keeps us from optimizing to the given phi. 641 /// 642 /// PausedSearches is an array of indices into the Paths array. Its incoming 643 /// value is the indices of searches that stopped at the last phi optimization 644 /// target. It's left in an unspecified state. 645 /// 646 /// If this returns None, NewPaused is a vector of searches that terminated 647 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 648 Optional<TerminatedPath> 649 getBlockingAccess(const MemoryAccess *StopWhere, 650 SmallVectorImpl<ListIndex> &PausedSearches, 651 SmallVectorImpl<ListIndex> &NewPaused, 652 SmallVectorImpl<TerminatedPath> &Terminated) { 653 assert(!PausedSearches.empty() && "No searches to continue?"); 654 655 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 656 // PausedSearches as our stack. 657 while (!PausedSearches.empty()) { 658 ListIndex PathIndex = PausedSearches.pop_back_val(); 659 DefPath &Node = Paths[PathIndex]; 660 661 // If we've already visited this path with this MemoryLocation, we don't 662 // need to do so again. 663 // 664 // NOTE: That we just drop these paths on the ground makes caching 665 // behavior sporadic. e.g. given a diamond: 666 // A 667 // B C 668 // D 669 // 670 // ...If we walk D, B, A, C, we'll only cache the result of phi 671 // optimization for A, B, and D; C will be skipped because it dies here. 672 // This arguably isn't the worst thing ever, since: 673 // - We generally query things in a top-down order, so if we got below D 674 // without needing cache entries for {C, MemLoc}, then chances are 675 // that those cache entries would end up ultimately unused. 676 // - We still cache things for A, so C only needs to walk up a bit. 677 // If this behavior becomes problematic, we can fix without a ton of extra 678 // work. 679 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 680 if (PerformedPhiTranslation) { 681 // If visiting this path performed Phi translation, don't continue, 682 // since it may not be correct to merge results from two paths if one 683 // relies on the phi translation. 684 TerminatedPath Term{Node.Last, PathIndex}; 685 return Term; 686 } 687 continue; 688 } 689 690 const MemoryAccess *SkipStopWhere = nullptr; 691 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 692 assert(isa<MemoryDef>(Query->OriginalAccess)); 693 SkipStopWhere = Query->OriginalAccess; 694 } 695 696 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 697 /*StopAt=*/StopWhere, 698 /*SkipStopAt=*/SkipStopWhere); 699 if (Res.IsKnownClobber) { 700 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 701 702 // If this wasn't a cache hit, we hit a clobber when walking. That's a 703 // failure. 704 TerminatedPath Term{Res.Result, PathIndex}; 705 if (!MSSA.dominates(Res.Result, StopWhere)) 706 return Term; 707 708 // Otherwise, it's a valid thing to potentially optimize to. 709 Terminated.push_back(Term); 710 continue; 711 } 712 713 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 714 // We've hit our target. Save this path off for if we want to continue 715 // walking. If we are in the mode of skipping the OriginalAccess, and 716 // we've reached back to the OriginalAccess, do not save path, we've 717 // just looped back to self. 718 if (Res.Result != SkipStopWhere) 719 NewPaused.push_back(PathIndex); 720 continue; 721 } 722 723 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 724 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 725 } 726 727 return None; 728 } 729 730 template <typename T, typename Walker> 731 struct generic_def_path_iterator 732 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 733 std::forward_iterator_tag, T *> { 734 generic_def_path_iterator() {} 735 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 736 737 T &operator*() const { return curNode(); } 738 739 generic_def_path_iterator &operator++() { 740 N = curNode().Previous; 741 return *this; 742 } 743 744 bool operator==(const generic_def_path_iterator &O) const { 745 if (N.hasValue() != O.N.hasValue()) 746 return false; 747 return !N.hasValue() || *N == *O.N; 748 } 749 750 private: 751 T &curNode() const { return W->Paths[*N]; } 752 753 Walker *W = nullptr; 754 Optional<ListIndex> N = None; 755 }; 756 757 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 758 using const_def_path_iterator = 759 generic_def_path_iterator<const DefPath, const ClobberWalker>; 760 761 iterator_range<def_path_iterator> def_path(ListIndex From) { 762 return make_range(def_path_iterator(this, From), def_path_iterator()); 763 } 764 765 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 766 return make_range(const_def_path_iterator(this, From), 767 const_def_path_iterator()); 768 } 769 770 struct OptznResult { 771 /// The path that contains our result. 772 TerminatedPath PrimaryClobber; 773 /// The paths that we can legally cache back from, but that aren't 774 /// necessarily the result of the Phi optimization. 775 SmallVector<TerminatedPath, 4> OtherClobbers; 776 }; 777 778 ListIndex defPathIndex(const DefPath &N) const { 779 // The assert looks nicer if we don't need to do &N 780 const DefPath *NP = &N; 781 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 782 "Out of bounds DefPath!"); 783 return NP - &Paths.front(); 784 } 785 786 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 787 /// that act as legal clobbers. Note that this won't return *all* clobbers. 788 /// 789 /// Phi optimization algorithm tl;dr: 790 /// - Find the earliest def/phi, A, we can optimize to 791 /// - Find if all paths from the starting memory access ultimately reach A 792 /// - If not, optimization isn't possible. 793 /// - Otherwise, walk from A to another clobber or phi, A'. 794 /// - If A' is a def, we're done. 795 /// - If A' is a phi, try to optimize it. 796 /// 797 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 798 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 799 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 800 const MemoryLocation &Loc) { 801 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 802 "Reset the optimization state."); 803 804 Paths.emplace_back(Loc, Start, Phi, None); 805 // Stores how many "valid" optimization nodes we had prior to calling 806 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 807 auto PriorPathsSize = Paths.size(); 808 809 SmallVector<ListIndex, 16> PausedSearches; 810 SmallVector<ListIndex, 8> NewPaused; 811 SmallVector<TerminatedPath, 4> TerminatedPaths; 812 813 addSearches(Phi, PausedSearches, 0); 814 815 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 816 // Paths. 817 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 818 assert(!Paths.empty() && "Need a path to move"); 819 auto Dom = Paths.begin(); 820 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 821 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 822 Dom = I; 823 auto Last = Paths.end() - 1; 824 if (Last != Dom) 825 std::iter_swap(Last, Dom); 826 }; 827 828 MemoryPhi *Current = Phi; 829 while (true) { 830 assert(!MSSA.isLiveOnEntryDef(Current) && 831 "liveOnEntry wasn't treated as a clobber?"); 832 833 const auto *Target = getWalkTarget(Current); 834 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 835 // optimization for the prior phi. 836 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 837 return MSSA.dominates(P.Clobber, Target); 838 })); 839 840 // FIXME: This is broken, because the Blocker may be reported to be 841 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 842 // For the moment, this is fine, since we do nothing with blocker info. 843 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 844 Target, PausedSearches, NewPaused, TerminatedPaths)) { 845 846 // Find the node we started at. We can't search based on N->Last, since 847 // we may have gone around a loop with a different MemoryLocation. 848 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 849 return defPathIndex(N) < PriorPathsSize; 850 }); 851 assert(Iter != def_path_iterator()); 852 853 DefPath &CurNode = *Iter; 854 assert(CurNode.Last == Current); 855 856 // Two things: 857 // A. We can't reliably cache all of NewPaused back. Consider a case 858 // where we have two paths in NewPaused; one of which can't optimize 859 // above this phi, whereas the other can. If we cache the second path 860 // back, we'll end up with suboptimal cache entries. We can handle 861 // cases like this a bit better when we either try to find all 862 // clobbers that block phi optimization, or when our cache starts 863 // supporting unfinished searches. 864 // B. We can't reliably cache TerminatedPaths back here without doing 865 // extra checks; consider a case like: 866 // T 867 // / \ 868 // D C 869 // \ / 870 // S 871 // Where T is our target, C is a node with a clobber on it, D is a 872 // diamond (with a clobber *only* on the left or right node, N), and 873 // S is our start. Say we walk to D, through the node opposite N 874 // (read: ignoring the clobber), and see a cache entry in the top 875 // node of D. That cache entry gets put into TerminatedPaths. We then 876 // walk up to C (N is later in our worklist), find the clobber, and 877 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 878 // the bottom part of D to the cached clobber, ignoring the clobber 879 // in N. Again, this problem goes away if we start tracking all 880 // blockers for a given phi optimization. 881 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 882 return {Result, {}}; 883 } 884 885 // If there's nothing left to search, then all paths led to valid clobbers 886 // that we got from our cache; pick the nearest to the start, and allow 887 // the rest to be cached back. 888 if (NewPaused.empty()) { 889 MoveDominatedPathToEnd(TerminatedPaths); 890 TerminatedPath Result = TerminatedPaths.pop_back_val(); 891 return {Result, std::move(TerminatedPaths)}; 892 } 893 894 MemoryAccess *DefChainEnd = nullptr; 895 SmallVector<TerminatedPath, 4> Clobbers; 896 for (ListIndex Paused : NewPaused) { 897 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 898 if (WR.IsKnownClobber) 899 Clobbers.push_back({WR.Result, Paused}); 900 else 901 // Micro-opt: If we hit the end of the chain, save it. 902 DefChainEnd = WR.Result; 903 } 904 905 if (!TerminatedPaths.empty()) { 906 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 907 // do it now. 908 if (!DefChainEnd) 909 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 910 DefChainEnd = MA; 911 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 912 913 // If any of the terminated paths don't dominate the phi we'll try to 914 // optimize, we need to figure out what they are and quit. 915 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 916 for (const TerminatedPath &TP : TerminatedPaths) { 917 // Because we know that DefChainEnd is as "high" as we can go, we 918 // don't need local dominance checks; BB dominance is sufficient. 919 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 920 Clobbers.push_back(TP); 921 } 922 } 923 924 // If we have clobbers in the def chain, find the one closest to Current 925 // and quit. 926 if (!Clobbers.empty()) { 927 MoveDominatedPathToEnd(Clobbers); 928 TerminatedPath Result = Clobbers.pop_back_val(); 929 return {Result, std::move(Clobbers)}; 930 } 931 932 assert(all_of(NewPaused, 933 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 934 935 // Because liveOnEntry is a clobber, this must be a phi. 936 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 937 938 PriorPathsSize = Paths.size(); 939 PausedSearches.clear(); 940 for (ListIndex I : NewPaused) 941 addSearches(DefChainPhi, PausedSearches, I); 942 NewPaused.clear(); 943 944 Current = DefChainPhi; 945 } 946 } 947 948 void verifyOptResult(const OptznResult &R) const { 949 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 950 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 951 })); 952 } 953 954 void resetPhiOptznState() { 955 Paths.clear(); 956 VisitedPhis.clear(); 957 PerformedPhiTranslation = false; 958 } 959 960 public: 961 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 962 : MSSA(MSSA), AA(AA), DT(DT) {} 963 964 AliasAnalysisType *getAA() { return &AA; } 965 /// Finds the nearest clobber for the given query, optimizing phis if 966 /// possible. 967 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 968 unsigned &UpWalkLimit) { 969 Query = &Q; 970 UpwardWalkLimit = &UpWalkLimit; 971 // Starting limit must be > 0. 972 if (!UpWalkLimit) 973 UpWalkLimit++; 974 975 MemoryAccess *Current = Start; 976 // This walker pretends uses don't exist. If we're handed one, silently grab 977 // its def. (This has the nice side-effect of ensuring we never cache uses) 978 if (auto *MU = dyn_cast<MemoryUse>(Start)) 979 Current = MU->getDefiningAccess(); 980 981 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 982 // Fast path for the overly-common case (no crazy phi optimization 983 // necessary) 984 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 985 MemoryAccess *Result; 986 if (WalkResult.IsKnownClobber) { 987 Result = WalkResult.Result; 988 Q.AR = WalkResult.AR; 989 } else { 990 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 991 Current, Q.StartingLoc); 992 verifyOptResult(OptRes); 993 resetPhiOptznState(); 994 Result = OptRes.PrimaryClobber.Clobber; 995 } 996 997 #ifdef EXPENSIVE_CHECKS 998 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 999 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 1000 #endif 1001 return Result; 1002 } 1003 }; 1004 1005 struct RenamePassData { 1006 DomTreeNode *DTN; 1007 DomTreeNode::const_iterator ChildIt; 1008 MemoryAccess *IncomingVal; 1009 1010 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 1011 MemoryAccess *M) 1012 : DTN(D), ChildIt(It), IncomingVal(M) {} 1013 1014 void swap(RenamePassData &RHS) { 1015 std::swap(DTN, RHS.DTN); 1016 std::swap(ChildIt, RHS.ChildIt); 1017 std::swap(IncomingVal, RHS.IncomingVal); 1018 } 1019 }; 1020 1021 } // end anonymous namespace 1022 1023 namespace llvm { 1024 1025 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1026 ClobberWalker<AliasAnalysisType> Walker; 1027 MemorySSA *MSSA; 1028 1029 public: 1030 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1031 : Walker(*M, *A, *D), MSSA(M) {} 1032 1033 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1034 const MemoryLocation &, 1035 unsigned &); 1036 // Third argument (bool), defines whether the clobber search should skip the 1037 // original queried access. If true, there will be a follow-up query searching 1038 // for a clobber access past "self". Note that the Optimized access is not 1039 // updated if a new clobber is found by this SkipSelf search. If this 1040 // additional query becomes heavily used we may decide to cache the result. 1041 // Walker instantiations will decide how to set the SkipSelf bool. 1042 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1043 }; 1044 1045 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1046 /// longer does caching on its own, but the name has been retained for the 1047 /// moment. 1048 template <class AliasAnalysisType> 1049 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1050 ClobberWalkerBase<AliasAnalysisType> *Walker; 1051 1052 public: 1053 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1054 : MemorySSAWalker(M), Walker(W) {} 1055 ~CachingWalker() override = default; 1056 1057 using MemorySSAWalker::getClobberingMemoryAccess; 1058 1059 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1060 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1061 } 1062 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1063 const MemoryLocation &Loc, 1064 unsigned &UWL) { 1065 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1066 } 1067 1068 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1069 unsigned UpwardWalkLimit = MaxCheckLimit; 1070 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1071 } 1072 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1073 const MemoryLocation &Loc) override { 1074 unsigned UpwardWalkLimit = MaxCheckLimit; 1075 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1076 } 1077 1078 void invalidateInfo(MemoryAccess *MA) override { 1079 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1080 MUD->resetOptimized(); 1081 } 1082 }; 1083 1084 template <class AliasAnalysisType> 1085 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1086 ClobberWalkerBase<AliasAnalysisType> *Walker; 1087 1088 public: 1089 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1090 : MemorySSAWalker(M), Walker(W) {} 1091 ~SkipSelfWalker() override = default; 1092 1093 using MemorySSAWalker::getClobberingMemoryAccess; 1094 1095 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1096 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1097 } 1098 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1099 const MemoryLocation &Loc, 1100 unsigned &UWL) { 1101 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1102 } 1103 1104 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1105 unsigned UpwardWalkLimit = MaxCheckLimit; 1106 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1107 } 1108 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1109 const MemoryLocation &Loc) override { 1110 unsigned UpwardWalkLimit = MaxCheckLimit; 1111 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1112 } 1113 1114 void invalidateInfo(MemoryAccess *MA) override { 1115 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1116 MUD->resetOptimized(); 1117 } 1118 }; 1119 1120 } // end namespace llvm 1121 1122 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1123 bool RenameAllUses) { 1124 // Pass through values to our successors 1125 for (const BasicBlock *S : successors(BB)) { 1126 auto It = PerBlockAccesses.find(S); 1127 // Rename the phi nodes in our successor block 1128 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1129 continue; 1130 AccessList *Accesses = It->second.get(); 1131 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1132 if (RenameAllUses) { 1133 bool ReplacementDone = false; 1134 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1135 if (Phi->getIncomingBlock(I) == BB) { 1136 Phi->setIncomingValue(I, IncomingVal); 1137 ReplacementDone = true; 1138 } 1139 (void) ReplacementDone; 1140 assert(ReplacementDone && "Incomplete phi during partial rename"); 1141 } else 1142 Phi->addIncoming(IncomingVal, BB); 1143 } 1144 } 1145 1146 /// Rename a single basic block into MemorySSA form. 1147 /// Uses the standard SSA renaming algorithm. 1148 /// \returns The new incoming value. 1149 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1150 bool RenameAllUses) { 1151 auto It = PerBlockAccesses.find(BB); 1152 // Skip most processing if the list is empty. 1153 if (It != PerBlockAccesses.end()) { 1154 AccessList *Accesses = It->second.get(); 1155 for (MemoryAccess &L : *Accesses) { 1156 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1157 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1158 MUD->setDefiningAccess(IncomingVal); 1159 if (isa<MemoryDef>(&L)) 1160 IncomingVal = &L; 1161 } else { 1162 IncomingVal = &L; 1163 } 1164 } 1165 } 1166 return IncomingVal; 1167 } 1168 1169 /// This is the standard SSA renaming algorithm. 1170 /// 1171 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1172 /// in phi nodes in our successors. 1173 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1174 SmallPtrSetImpl<BasicBlock *> &Visited, 1175 bool SkipVisited, bool RenameAllUses) { 1176 assert(Root && "Trying to rename accesses in an unreachable block"); 1177 1178 SmallVector<RenamePassData, 32> WorkStack; 1179 // Skip everything if we already renamed this block and we are skipping. 1180 // Note: You can't sink this into the if, because we need it to occur 1181 // regardless of whether we skip blocks or not. 1182 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1183 if (SkipVisited && AlreadyVisited) 1184 return; 1185 1186 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1187 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1188 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1189 1190 while (!WorkStack.empty()) { 1191 DomTreeNode *Node = WorkStack.back().DTN; 1192 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1193 IncomingVal = WorkStack.back().IncomingVal; 1194 1195 if (ChildIt == Node->end()) { 1196 WorkStack.pop_back(); 1197 } else { 1198 DomTreeNode *Child = *ChildIt; 1199 ++WorkStack.back().ChildIt; 1200 BasicBlock *BB = Child->getBlock(); 1201 // Note: You can't sink this into the if, because we need it to occur 1202 // regardless of whether we skip blocks or not. 1203 AlreadyVisited = !Visited.insert(BB).second; 1204 if (SkipVisited && AlreadyVisited) { 1205 // We already visited this during our renaming, which can happen when 1206 // being asked to rename multiple blocks. Figure out the incoming val, 1207 // which is the last def. 1208 // Incoming value can only change if there is a block def, and in that 1209 // case, it's the last block def in the list. 1210 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1211 IncomingVal = &*BlockDefs->rbegin(); 1212 } else 1213 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1214 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1215 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1216 } 1217 } 1218 } 1219 1220 /// This handles unreachable block accesses by deleting phi nodes in 1221 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1222 /// being uses of the live on entry definition. 1223 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1224 assert(!DT->isReachableFromEntry(BB) && 1225 "Reachable block found while handling unreachable blocks"); 1226 1227 // Make sure phi nodes in our reachable successors end up with a 1228 // LiveOnEntryDef for our incoming edge, even though our block is forward 1229 // unreachable. We could just disconnect these blocks from the CFG fully, 1230 // but we do not right now. 1231 for (const BasicBlock *S : successors(BB)) { 1232 if (!DT->isReachableFromEntry(S)) 1233 continue; 1234 auto It = PerBlockAccesses.find(S); 1235 // Rename the phi nodes in our successor block 1236 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1237 continue; 1238 AccessList *Accesses = It->second.get(); 1239 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1240 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1241 } 1242 1243 auto It = PerBlockAccesses.find(BB); 1244 if (It == PerBlockAccesses.end()) 1245 return; 1246 1247 auto &Accesses = It->second; 1248 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1249 auto Next = std::next(AI); 1250 // If we have a phi, just remove it. We are going to replace all 1251 // users with live on entry. 1252 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1253 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1254 else 1255 Accesses->erase(AI); 1256 AI = Next; 1257 } 1258 } 1259 1260 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1261 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1262 SkipWalker(nullptr), NextID(0) { 1263 // Build MemorySSA using a batch alias analysis. This reuses the internal 1264 // state that AA collects during an alias()/getModRefInfo() call. This is 1265 // safe because there are no CFG changes while building MemorySSA and can 1266 // significantly reduce the time spent by the compiler in AA, because we will 1267 // make queries about all the instructions in the Function. 1268 assert(AA && "No alias analysis?"); 1269 BatchAAResults BatchAA(*AA); 1270 buildMemorySSA(BatchAA); 1271 // Intentionally leave AA to nullptr while building so we don't accidently 1272 // use non-batch AliasAnalysis. 1273 this->AA = AA; 1274 // Also create the walker here. 1275 getWalker(); 1276 } 1277 1278 MemorySSA::~MemorySSA() { 1279 // Drop all our references 1280 for (const auto &Pair : PerBlockAccesses) 1281 for (MemoryAccess &MA : *Pair.second) 1282 MA.dropAllReferences(); 1283 } 1284 1285 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1286 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1287 1288 if (Res.second) 1289 Res.first->second = std::make_unique<AccessList>(); 1290 return Res.first->second.get(); 1291 } 1292 1293 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1294 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1295 1296 if (Res.second) 1297 Res.first->second = std::make_unique<DefsList>(); 1298 return Res.first->second.get(); 1299 } 1300 1301 namespace llvm { 1302 1303 /// This class is a batch walker of all MemoryUse's in the program, and points 1304 /// their defining access at the thing that actually clobbers them. Because it 1305 /// is a batch walker that touches everything, it does not operate like the 1306 /// other walkers. This walker is basically performing a top-down SSA renaming 1307 /// pass, where the version stack is used as the cache. This enables it to be 1308 /// significantly more time and memory efficient than using the regular walker, 1309 /// which is walking bottom-up. 1310 class MemorySSA::OptimizeUses { 1311 public: 1312 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1313 BatchAAResults *BAA, DominatorTree *DT) 1314 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1315 1316 void optimizeUses(); 1317 1318 private: 1319 /// This represents where a given memorylocation is in the stack. 1320 struct MemlocStackInfo { 1321 // This essentially is keeping track of versions of the stack. Whenever 1322 // the stack changes due to pushes or pops, these versions increase. 1323 unsigned long StackEpoch; 1324 unsigned long PopEpoch; 1325 // This is the lower bound of places on the stack to check. It is equal to 1326 // the place the last stack walk ended. 1327 // Note: Correctness depends on this being initialized to 0, which densemap 1328 // does 1329 unsigned long LowerBound; 1330 const BasicBlock *LowerBoundBlock; 1331 // This is where the last walk for this memory location ended. 1332 unsigned long LastKill; 1333 bool LastKillValid; 1334 Optional<AliasResult> AR; 1335 }; 1336 1337 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1338 SmallVectorImpl<MemoryAccess *> &, 1339 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1340 1341 MemorySSA *MSSA; 1342 CachingWalker<BatchAAResults> *Walker; 1343 BatchAAResults *AA; 1344 DominatorTree *DT; 1345 }; 1346 1347 } // end namespace llvm 1348 1349 /// Optimize the uses in a given block This is basically the SSA renaming 1350 /// algorithm, with one caveat: We are able to use a single stack for all 1351 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1352 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1353 /// going to be some position in that stack of possible ones. 1354 /// 1355 /// We track the stack positions that each MemoryLocation needs 1356 /// to check, and last ended at. This is because we only want to check the 1357 /// things that changed since last time. The same MemoryLocation should 1358 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1359 /// things like this, and if they start, we can modify MemoryLocOrCall to 1360 /// include relevant data) 1361 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1362 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1363 SmallVectorImpl<MemoryAccess *> &VersionStack, 1364 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1365 1366 /// If no accesses, nothing to do. 1367 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1368 if (Accesses == nullptr) 1369 return; 1370 1371 // Pop everything that doesn't dominate the current block off the stack, 1372 // increment the PopEpoch to account for this. 1373 while (true) { 1374 assert( 1375 !VersionStack.empty() && 1376 "Version stack should have liveOnEntry sentinel dominating everything"); 1377 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1378 if (DT->dominates(BackBlock, BB)) 1379 break; 1380 while (VersionStack.back()->getBlock() == BackBlock) 1381 VersionStack.pop_back(); 1382 ++PopEpoch; 1383 } 1384 1385 for (MemoryAccess &MA : *Accesses) { 1386 auto *MU = dyn_cast<MemoryUse>(&MA); 1387 if (!MU) { 1388 VersionStack.push_back(&MA); 1389 ++StackEpoch; 1390 continue; 1391 } 1392 1393 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1394 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1395 continue; 1396 } 1397 1398 MemoryLocOrCall UseMLOC(MU); 1399 auto &LocInfo = LocStackInfo[UseMLOC]; 1400 // If the pop epoch changed, it means we've removed stuff from top of 1401 // stack due to changing blocks. We may have to reset the lower bound or 1402 // last kill info. 1403 if (LocInfo.PopEpoch != PopEpoch) { 1404 LocInfo.PopEpoch = PopEpoch; 1405 LocInfo.StackEpoch = StackEpoch; 1406 // If the lower bound was in something that no longer dominates us, we 1407 // have to reset it. 1408 // We can't simply track stack size, because the stack may have had 1409 // pushes/pops in the meantime. 1410 // XXX: This is non-optimal, but only is slower cases with heavily 1411 // branching dominator trees. To get the optimal number of queries would 1412 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1413 // the top of that stack dominates us. This does not seem worth it ATM. 1414 // A much cheaper optimization would be to always explore the deepest 1415 // branch of the dominator tree first. This will guarantee this resets on 1416 // the smallest set of blocks. 1417 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1418 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1419 // Reset the lower bound of things to check. 1420 // TODO: Some day we should be able to reset to last kill, rather than 1421 // 0. 1422 LocInfo.LowerBound = 0; 1423 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1424 LocInfo.LastKillValid = false; 1425 } 1426 } else if (LocInfo.StackEpoch != StackEpoch) { 1427 // If all that has changed is the StackEpoch, we only have to check the 1428 // new things on the stack, because we've checked everything before. In 1429 // this case, the lower bound of things to check remains the same. 1430 LocInfo.PopEpoch = PopEpoch; 1431 LocInfo.StackEpoch = StackEpoch; 1432 } 1433 if (!LocInfo.LastKillValid) { 1434 LocInfo.LastKill = VersionStack.size() - 1; 1435 LocInfo.LastKillValid = true; 1436 LocInfo.AR = AliasResult::MayAlias; 1437 } 1438 1439 // At this point, we should have corrected last kill and LowerBound to be 1440 // in bounds. 1441 assert(LocInfo.LowerBound < VersionStack.size() && 1442 "Lower bound out of range"); 1443 assert(LocInfo.LastKill < VersionStack.size() && 1444 "Last kill info out of range"); 1445 // In any case, the new upper bound is the top of the stack. 1446 unsigned long UpperBound = VersionStack.size() - 1; 1447 1448 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1449 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1450 << *(MU->getMemoryInst()) << ")" 1451 << " because there are " 1452 << UpperBound - LocInfo.LowerBound 1453 << " stores to disambiguate\n"); 1454 // Because we did not walk, LastKill is no longer valid, as this may 1455 // have been a kill. 1456 LocInfo.LastKillValid = false; 1457 continue; 1458 } 1459 bool FoundClobberResult = false; 1460 unsigned UpwardWalkLimit = MaxCheckLimit; 1461 while (UpperBound > LocInfo.LowerBound) { 1462 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1463 // For phis, use the walker, see where we ended up, go there 1464 MemoryAccess *Result = 1465 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1466 // We are guaranteed to find it or something is wrong 1467 while (VersionStack[UpperBound] != Result) { 1468 assert(UpperBound != 0); 1469 --UpperBound; 1470 } 1471 FoundClobberResult = true; 1472 break; 1473 } 1474 1475 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1476 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1477 if (CA.IsClobber) { 1478 FoundClobberResult = true; 1479 LocInfo.AR = CA.AR; 1480 break; 1481 } 1482 --UpperBound; 1483 } 1484 1485 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1486 1487 // At the end of this loop, UpperBound is either a clobber, or lower bound 1488 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1489 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1490 // We were last killed now by where we got to 1491 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1492 LocInfo.AR = None; 1493 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1494 LocInfo.LastKill = UpperBound; 1495 } else { 1496 // Otherwise, we checked all the new ones, and now we know we can get to 1497 // LastKill. 1498 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1499 } 1500 LocInfo.LowerBound = VersionStack.size() - 1; 1501 LocInfo.LowerBoundBlock = BB; 1502 } 1503 } 1504 1505 /// Optimize uses to point to their actual clobbering definitions. 1506 void MemorySSA::OptimizeUses::optimizeUses() { 1507 SmallVector<MemoryAccess *, 16> VersionStack; 1508 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1509 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1510 1511 unsigned long StackEpoch = 1; 1512 unsigned long PopEpoch = 1; 1513 // We perform a non-recursive top-down dominator tree walk. 1514 for (const auto *DomNode : depth_first(DT->getRootNode())) 1515 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1516 LocStackInfo); 1517 } 1518 1519 void MemorySSA::placePHINodes( 1520 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1521 // Determine where our MemoryPhi's should go 1522 ForwardIDFCalculator IDFs(*DT); 1523 IDFs.setDefiningBlocks(DefiningBlocks); 1524 SmallVector<BasicBlock *, 32> IDFBlocks; 1525 IDFs.calculate(IDFBlocks); 1526 1527 // Now place MemoryPhi nodes. 1528 for (auto &BB : IDFBlocks) 1529 createMemoryPhi(BB); 1530 } 1531 1532 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1533 // We create an access to represent "live on entry", for things like 1534 // arguments or users of globals, where the memory they use is defined before 1535 // the beginning of the function. We do not actually insert it into the IR. 1536 // We do not define a live on exit for the immediate uses, and thus our 1537 // semantics do *not* imply that something with no immediate uses can simply 1538 // be removed. 1539 BasicBlock &StartingPoint = F.getEntryBlock(); 1540 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1541 &StartingPoint, NextID++)); 1542 1543 // We maintain lists of memory accesses per-block, trading memory for time. We 1544 // could just look up the memory access for every possible instruction in the 1545 // stream. 1546 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1547 // Go through each block, figure out where defs occur, and chain together all 1548 // the accesses. 1549 for (BasicBlock &B : F) { 1550 bool InsertIntoDef = false; 1551 AccessList *Accesses = nullptr; 1552 DefsList *Defs = nullptr; 1553 for (Instruction &I : B) { 1554 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1555 if (!MUD) 1556 continue; 1557 1558 if (!Accesses) 1559 Accesses = getOrCreateAccessList(&B); 1560 Accesses->push_back(MUD); 1561 if (isa<MemoryDef>(MUD)) { 1562 InsertIntoDef = true; 1563 if (!Defs) 1564 Defs = getOrCreateDefsList(&B); 1565 Defs->push_back(*MUD); 1566 } 1567 } 1568 if (InsertIntoDef) 1569 DefiningBlocks.insert(&B); 1570 } 1571 placePHINodes(DefiningBlocks); 1572 1573 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1574 // filled in with all blocks. 1575 SmallPtrSet<BasicBlock *, 16> Visited; 1576 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1577 1578 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1579 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1580 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1581 1582 // Mark the uses in unreachable blocks as live on entry, so that they go 1583 // somewhere. 1584 for (auto &BB : F) 1585 if (!Visited.count(&BB)) 1586 markUnreachableAsLiveOnEntry(&BB); 1587 } 1588 1589 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1590 1591 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1592 if (Walker) 1593 return Walker.get(); 1594 1595 if (!WalkerBase) 1596 WalkerBase = 1597 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1598 1599 Walker = 1600 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1601 return Walker.get(); 1602 } 1603 1604 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1605 if (SkipWalker) 1606 return SkipWalker.get(); 1607 1608 if (!WalkerBase) 1609 WalkerBase = 1610 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1611 1612 SkipWalker = 1613 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1614 return SkipWalker.get(); 1615 } 1616 1617 1618 // This is a helper function used by the creation routines. It places NewAccess 1619 // into the access and defs lists for a given basic block, at the given 1620 // insertion point. 1621 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1622 const BasicBlock *BB, 1623 InsertionPlace Point) { 1624 auto *Accesses = getOrCreateAccessList(BB); 1625 if (Point == Beginning) { 1626 // If it's a phi node, it goes first, otherwise, it goes after any phi 1627 // nodes. 1628 if (isa<MemoryPhi>(NewAccess)) { 1629 Accesses->push_front(NewAccess); 1630 auto *Defs = getOrCreateDefsList(BB); 1631 Defs->push_front(*NewAccess); 1632 } else { 1633 auto AI = find_if_not( 1634 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1635 Accesses->insert(AI, NewAccess); 1636 if (!isa<MemoryUse>(NewAccess)) { 1637 auto *Defs = getOrCreateDefsList(BB); 1638 auto DI = find_if_not( 1639 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1640 Defs->insert(DI, *NewAccess); 1641 } 1642 } 1643 } else { 1644 Accesses->push_back(NewAccess); 1645 if (!isa<MemoryUse>(NewAccess)) { 1646 auto *Defs = getOrCreateDefsList(BB); 1647 Defs->push_back(*NewAccess); 1648 } 1649 } 1650 BlockNumberingValid.erase(BB); 1651 } 1652 1653 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1654 AccessList::iterator InsertPt) { 1655 auto *Accesses = getWritableBlockAccesses(BB); 1656 bool WasEnd = InsertPt == Accesses->end(); 1657 Accesses->insert(AccessList::iterator(InsertPt), What); 1658 if (!isa<MemoryUse>(What)) { 1659 auto *Defs = getOrCreateDefsList(BB); 1660 // If we got asked to insert at the end, we have an easy job, just shove it 1661 // at the end. If we got asked to insert before an existing def, we also get 1662 // an iterator. If we got asked to insert before a use, we have to hunt for 1663 // the next def. 1664 if (WasEnd) { 1665 Defs->push_back(*What); 1666 } else if (isa<MemoryDef>(InsertPt)) { 1667 Defs->insert(InsertPt->getDefsIterator(), *What); 1668 } else { 1669 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1670 ++InsertPt; 1671 // Either we found a def, or we are inserting at the end 1672 if (InsertPt == Accesses->end()) 1673 Defs->push_back(*What); 1674 else 1675 Defs->insert(InsertPt->getDefsIterator(), *What); 1676 } 1677 } 1678 BlockNumberingValid.erase(BB); 1679 } 1680 1681 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1682 // Keep it in the lookup tables, remove from the lists 1683 removeFromLists(What, false); 1684 1685 // Note that moving should implicitly invalidate the optimized state of a 1686 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1687 // MemoryDef. 1688 if (auto *MD = dyn_cast<MemoryDef>(What)) 1689 MD->resetOptimized(); 1690 What->setBlock(BB); 1691 } 1692 1693 // Move What before Where in the IR. The end result is that What will belong to 1694 // the right lists and have the right Block set, but will not otherwise be 1695 // correct. It will not have the right defining access, and if it is a def, 1696 // things below it will not properly be updated. 1697 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1698 AccessList::iterator Where) { 1699 prepareForMoveTo(What, BB); 1700 insertIntoListsBefore(What, BB, Where); 1701 } 1702 1703 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1704 InsertionPlace Point) { 1705 if (isa<MemoryPhi>(What)) { 1706 assert(Point == Beginning && 1707 "Can only move a Phi at the beginning of the block"); 1708 // Update lookup table entry 1709 ValueToMemoryAccess.erase(What->getBlock()); 1710 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1711 (void)Inserted; 1712 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1713 } 1714 1715 prepareForMoveTo(What, BB); 1716 insertIntoListsForBlock(What, BB, Point); 1717 } 1718 1719 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1720 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1721 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1722 // Phi's always are placed at the front of the block. 1723 insertIntoListsForBlock(Phi, BB, Beginning); 1724 ValueToMemoryAccess[BB] = Phi; 1725 return Phi; 1726 } 1727 1728 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1729 MemoryAccess *Definition, 1730 const MemoryUseOrDef *Template, 1731 bool CreationMustSucceed) { 1732 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1733 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1734 if (CreationMustSucceed) 1735 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1736 "non-memory touching instruction"); 1737 if (NewAccess) { 1738 assert((!Definition || !isa<MemoryUse>(Definition)) && 1739 "A use cannot be a defining access"); 1740 NewAccess->setDefiningAccess(Definition); 1741 } 1742 return NewAccess; 1743 } 1744 1745 // Return true if the instruction has ordering constraints. 1746 // Note specifically that this only considers stores and loads 1747 // because others are still considered ModRef by getModRefInfo. 1748 static inline bool isOrdered(const Instruction *I) { 1749 if (auto *SI = dyn_cast<StoreInst>(I)) { 1750 if (!SI->isUnordered()) 1751 return true; 1752 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1753 if (!LI->isUnordered()) 1754 return true; 1755 } 1756 return false; 1757 } 1758 1759 /// Helper function to create new memory accesses 1760 template <typename AliasAnalysisType> 1761 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1762 AliasAnalysisType *AAP, 1763 const MemoryUseOrDef *Template) { 1764 // The assume intrinsic has a control dependency which we model by claiming 1765 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1766 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1767 // dependencies here. 1768 // FIXME: Replace this special casing with a more accurate modelling of 1769 // assume's control dependency. 1770 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1771 switch (II->getIntrinsicID()) { 1772 default: 1773 break; 1774 case Intrinsic::assume: 1775 case Intrinsic::experimental_noalias_scope_decl: 1776 return nullptr; 1777 } 1778 } 1779 1780 // Using a nonstandard AA pipelines might leave us with unexpected modref 1781 // results for I, so add a check to not model instructions that may not read 1782 // from or write to memory. This is necessary for correctness. 1783 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1784 return nullptr; 1785 1786 bool Def, Use; 1787 if (Template) { 1788 Def = isa<MemoryDef>(Template); 1789 Use = isa<MemoryUse>(Template); 1790 #if !defined(NDEBUG) 1791 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1792 bool DefCheck, UseCheck; 1793 DefCheck = isModSet(ModRef) || isOrdered(I); 1794 UseCheck = isRefSet(ModRef); 1795 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1796 #endif 1797 } else { 1798 // Find out what affect this instruction has on memory. 1799 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1800 // The isOrdered check is used to ensure that volatiles end up as defs 1801 // (atomics end up as ModRef right now anyway). Until we separate the 1802 // ordering chain from the memory chain, this enables people to see at least 1803 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1804 // will still give an answer that bypasses other volatile loads. TODO: 1805 // Separate memory aliasing and ordering into two different chains so that 1806 // we can precisely represent both "what memory will this read/write/is 1807 // clobbered by" and "what instructions can I move this past". 1808 Def = isModSet(ModRef) || isOrdered(I); 1809 Use = isRefSet(ModRef); 1810 } 1811 1812 // It's possible for an instruction to not modify memory at all. During 1813 // construction, we ignore them. 1814 if (!Def && !Use) 1815 return nullptr; 1816 1817 MemoryUseOrDef *MUD; 1818 if (Def) 1819 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1820 else 1821 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1822 ValueToMemoryAccess[I] = MUD; 1823 return MUD; 1824 } 1825 1826 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1827 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1828 assert(MA->use_empty() && 1829 "Trying to remove memory access that still has uses"); 1830 BlockNumbering.erase(MA); 1831 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1832 MUD->setDefiningAccess(nullptr); 1833 // Invalidate our walker's cache if necessary 1834 if (!isa<MemoryUse>(MA)) 1835 getWalker()->invalidateInfo(MA); 1836 1837 Value *MemoryInst; 1838 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1839 MemoryInst = MUD->getMemoryInst(); 1840 else 1841 MemoryInst = MA->getBlock(); 1842 1843 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1844 if (VMA->second == MA) 1845 ValueToMemoryAccess.erase(VMA); 1846 } 1847 1848 /// Properly remove \p MA from all of MemorySSA's lists. 1849 /// 1850 /// Because of the way the intrusive list and use lists work, it is important to 1851 /// do removal in the right order. 1852 /// ShouldDelete defaults to true, and will cause the memory access to also be 1853 /// deleted, not just removed. 1854 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1855 BasicBlock *BB = MA->getBlock(); 1856 // The access list owns the reference, so we erase it from the non-owning list 1857 // first. 1858 if (!isa<MemoryUse>(MA)) { 1859 auto DefsIt = PerBlockDefs.find(BB); 1860 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1861 Defs->remove(*MA); 1862 if (Defs->empty()) 1863 PerBlockDefs.erase(DefsIt); 1864 } 1865 1866 // The erase call here will delete it. If we don't want it deleted, we call 1867 // remove instead. 1868 auto AccessIt = PerBlockAccesses.find(BB); 1869 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1870 if (ShouldDelete) 1871 Accesses->erase(MA); 1872 else 1873 Accesses->remove(MA); 1874 1875 if (Accesses->empty()) { 1876 PerBlockAccesses.erase(AccessIt); 1877 BlockNumberingValid.erase(BB); 1878 } 1879 } 1880 1881 void MemorySSA::print(raw_ostream &OS) const { 1882 MemorySSAAnnotatedWriter Writer(this); 1883 F.print(OS, &Writer); 1884 } 1885 1886 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1887 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1888 #endif 1889 1890 void MemorySSA::verifyMemorySSA() const { 1891 verifyOrderingDominationAndDefUses(F); 1892 verifyDominationNumbers(F); 1893 verifyPrevDefInPhis(F); 1894 // Previously, the verification used to also verify that the clobberingAccess 1895 // cached by MemorySSA is the same as the clobberingAccess found at a later 1896 // query to AA. This does not hold true in general due to the current fragility 1897 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1898 // up. As a result, transformations that are correct, will lead to BasicAA 1899 // returning different Alias answers before and after that transformation. 1900 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1901 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1902 // every transformation, which defeats the purpose of using it. For such an 1903 // example, see test4 added in D51960. 1904 } 1905 1906 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1907 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1908 for (const BasicBlock &BB : F) { 1909 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1910 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1911 auto *Pred = Phi->getIncomingBlock(I); 1912 auto *IncAcc = Phi->getIncomingValue(I); 1913 // If Pred has no unreachable predecessors, get last def looking at 1914 // IDoms. If, while walkings IDoms, any of these has an unreachable 1915 // predecessor, then the incoming def can be any access. 1916 if (auto *DTNode = DT->getNode(Pred)) { 1917 while (DTNode) { 1918 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1919 auto *LastAcc = &*(--DefList->end()); 1920 assert(LastAcc == IncAcc && 1921 "Incorrect incoming access into phi."); 1922 break; 1923 } 1924 DTNode = DTNode->getIDom(); 1925 } 1926 } else { 1927 // If Pred has unreachable predecessors, but has at least a Def, the 1928 // incoming access can be the last Def in Pred, or it could have been 1929 // optimized to LoE. After an update, though, the LoE may have been 1930 // replaced by another access, so IncAcc may be any access. 1931 // If Pred has unreachable predecessors and no Defs, incoming access 1932 // should be LoE; However, after an update, it may be any access. 1933 } 1934 } 1935 } 1936 } 1937 #endif 1938 } 1939 1940 /// Verify that all of the blocks we believe to have valid domination numbers 1941 /// actually have valid domination numbers. 1942 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1943 #ifndef NDEBUG 1944 if (BlockNumberingValid.empty()) 1945 return; 1946 1947 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1948 for (const BasicBlock &BB : F) { 1949 if (!ValidBlocks.count(&BB)) 1950 continue; 1951 1952 ValidBlocks.erase(&BB); 1953 1954 const AccessList *Accesses = getBlockAccesses(&BB); 1955 // It's correct to say an empty block has valid numbering. 1956 if (!Accesses) 1957 continue; 1958 1959 // Block numbering starts at 1. 1960 unsigned long LastNumber = 0; 1961 for (const MemoryAccess &MA : *Accesses) { 1962 auto ThisNumberIter = BlockNumbering.find(&MA); 1963 assert(ThisNumberIter != BlockNumbering.end() && 1964 "MemoryAccess has no domination number in a valid block!"); 1965 1966 unsigned long ThisNumber = ThisNumberIter->second; 1967 assert(ThisNumber > LastNumber && 1968 "Domination numbers should be strictly increasing!"); 1969 LastNumber = ThisNumber; 1970 } 1971 } 1972 1973 assert(ValidBlocks.empty() && 1974 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1975 #endif 1976 } 1977 1978 /// Verify ordering: the order and existence of MemoryAccesses matches the 1979 /// order and existence of memory affecting instructions. 1980 /// Verify domination: each definition dominates all of its uses. 1981 /// Verify def-uses: the immediate use information - walk all the memory 1982 /// accesses and verifying that, for each use, it appears in the appropriate 1983 /// def's use list 1984 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1985 #if !defined(NDEBUG) 1986 // Walk all the blocks, comparing what the lookups think and what the access 1987 // lists think, as well as the order in the blocks vs the order in the access 1988 // lists. 1989 SmallVector<MemoryAccess *, 32> ActualAccesses; 1990 SmallVector<MemoryAccess *, 32> ActualDefs; 1991 for (BasicBlock &B : F) { 1992 const AccessList *AL = getBlockAccesses(&B); 1993 const auto *DL = getBlockDefs(&B); 1994 MemoryPhi *Phi = getMemoryAccess(&B); 1995 if (Phi) { 1996 // Verify ordering. 1997 ActualAccesses.push_back(Phi); 1998 ActualDefs.push_back(Phi); 1999 // Verify domination 2000 for (const Use &U : Phi->uses()) 2001 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2002 #if defined(EXPENSIVE_CHECKS) 2003 // Verify def-uses. 2004 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2005 pred_begin(&B), pred_end(&B))) && 2006 "Incomplete MemoryPhi Node"); 2007 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2008 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2009 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 2010 "Incoming phi block not a block predecessor"); 2011 } 2012 #endif 2013 } 2014 2015 for (Instruction &I : B) { 2016 MemoryUseOrDef *MA = getMemoryAccess(&I); 2017 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2018 "We have memory affecting instructions " 2019 "in this block but they are not in the " 2020 "access list or defs list"); 2021 if (MA) { 2022 // Verify ordering. 2023 ActualAccesses.push_back(MA); 2024 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2025 // Verify ordering. 2026 ActualDefs.push_back(MA); 2027 // Verify domination. 2028 for (const Use &U : MD->uses()) 2029 assert(dominates(MD, U) && 2030 "Memory Def does not dominate it's uses"); 2031 } 2032 #if defined(EXPENSIVE_CHECKS) 2033 // Verify def-uses. 2034 verifyUseInDefs(MA->getDefiningAccess(), MA); 2035 #endif 2036 } 2037 } 2038 // Either we hit the assert, really have no accesses, or we have both 2039 // accesses and an access list. Same with defs. 2040 if (!AL && !DL) 2041 continue; 2042 // Verify ordering. 2043 assert(AL->size() == ActualAccesses.size() && 2044 "We don't have the same number of accesses in the block as on the " 2045 "access list"); 2046 assert((DL || ActualDefs.size() == 0) && 2047 "Either we should have a defs list, or we should have no defs"); 2048 assert((!DL || DL->size() == ActualDefs.size()) && 2049 "We don't have the same number of defs in the block as on the " 2050 "def list"); 2051 auto ALI = AL->begin(); 2052 auto AAI = ActualAccesses.begin(); 2053 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2054 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2055 ++ALI; 2056 ++AAI; 2057 } 2058 ActualAccesses.clear(); 2059 if (DL) { 2060 auto DLI = DL->begin(); 2061 auto ADI = ActualDefs.begin(); 2062 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2063 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2064 ++DLI; 2065 ++ADI; 2066 } 2067 } 2068 ActualDefs.clear(); 2069 } 2070 #endif 2071 } 2072 2073 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2074 /// appears in the use list of \p Def. 2075 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2076 #ifndef NDEBUG 2077 // The live on entry use may cause us to get a NULL def here 2078 if (!Def) 2079 assert(isLiveOnEntryDef(Use) && 2080 "Null def but use not point to live on entry def"); 2081 else 2082 assert(is_contained(Def->users(), Use) && 2083 "Did not find use in def's use list"); 2084 #endif 2085 } 2086 2087 /// Perform a local numbering on blocks so that instruction ordering can be 2088 /// determined in constant time. 2089 /// TODO: We currently just number in order. If we numbered by N, we could 2090 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2091 /// log2(N) sequences of mixed before and after) without needing to invalidate 2092 /// the numbering. 2093 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2094 // The pre-increment ensures the numbers really start at 1. 2095 unsigned long CurrentNumber = 0; 2096 const AccessList *AL = getBlockAccesses(B); 2097 assert(AL != nullptr && "Asking to renumber an empty block"); 2098 for (const auto &I : *AL) 2099 BlockNumbering[&I] = ++CurrentNumber; 2100 BlockNumberingValid.insert(B); 2101 } 2102 2103 /// Determine, for two memory accesses in the same block, 2104 /// whether \p Dominator dominates \p Dominatee. 2105 /// \returns True if \p Dominator dominates \p Dominatee. 2106 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2107 const MemoryAccess *Dominatee) const { 2108 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2109 2110 assert((DominatorBlock == Dominatee->getBlock()) && 2111 "Asking for local domination when accesses are in different blocks!"); 2112 // A node dominates itself. 2113 if (Dominatee == Dominator) 2114 return true; 2115 2116 // When Dominatee is defined on function entry, it is not dominated by another 2117 // memory access. 2118 if (isLiveOnEntryDef(Dominatee)) 2119 return false; 2120 2121 // When Dominator is defined on function entry, it dominates the other memory 2122 // access. 2123 if (isLiveOnEntryDef(Dominator)) 2124 return true; 2125 2126 if (!BlockNumberingValid.count(DominatorBlock)) 2127 renumberBlock(DominatorBlock); 2128 2129 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2130 // All numbers start with 1 2131 assert(DominatorNum != 0 && "Block was not numbered properly"); 2132 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2133 assert(DominateeNum != 0 && "Block was not numbered properly"); 2134 return DominatorNum < DominateeNum; 2135 } 2136 2137 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2138 const MemoryAccess *Dominatee) const { 2139 if (Dominator == Dominatee) 2140 return true; 2141 2142 if (isLiveOnEntryDef(Dominatee)) 2143 return false; 2144 2145 if (Dominator->getBlock() != Dominatee->getBlock()) 2146 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2147 return locallyDominates(Dominator, Dominatee); 2148 } 2149 2150 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2151 const Use &Dominatee) const { 2152 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2153 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2154 // The def must dominate the incoming block of the phi. 2155 if (UseBB != Dominator->getBlock()) 2156 return DT->dominates(Dominator->getBlock(), UseBB); 2157 // If the UseBB and the DefBB are the same, compare locally. 2158 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2159 } 2160 // If it's not a PHI node use, the normal dominates can already handle it. 2161 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2162 } 2163 2164 void MemoryAccess::print(raw_ostream &OS) const { 2165 switch (getValueID()) { 2166 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2167 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2168 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2169 } 2170 llvm_unreachable("invalid value id"); 2171 } 2172 2173 void MemoryDef::print(raw_ostream &OS) const { 2174 MemoryAccess *UO = getDefiningAccess(); 2175 2176 auto printID = [&OS](MemoryAccess *A) { 2177 if (A && A->getID()) 2178 OS << A->getID(); 2179 else 2180 OS << LiveOnEntryStr; 2181 }; 2182 2183 OS << getID() << " = MemoryDef("; 2184 printID(UO); 2185 OS << ")"; 2186 2187 if (isOptimized()) { 2188 OS << "->"; 2189 printID(getOptimized()); 2190 2191 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2192 OS << " " << *AR; 2193 } 2194 } 2195 2196 void MemoryPhi::print(raw_ostream &OS) const { 2197 ListSeparator LS(","); 2198 OS << getID() << " = MemoryPhi("; 2199 for (const auto &Op : operands()) { 2200 BasicBlock *BB = getIncomingBlock(Op); 2201 MemoryAccess *MA = cast<MemoryAccess>(Op); 2202 2203 OS << LS << '{'; 2204 if (BB->hasName()) 2205 OS << BB->getName(); 2206 else 2207 BB->printAsOperand(OS, false); 2208 OS << ','; 2209 if (unsigned ID = MA->getID()) 2210 OS << ID; 2211 else 2212 OS << LiveOnEntryStr; 2213 OS << '}'; 2214 } 2215 OS << ')'; 2216 } 2217 2218 void MemoryUse::print(raw_ostream &OS) const { 2219 MemoryAccess *UO = getDefiningAccess(); 2220 OS << "MemoryUse("; 2221 if (UO && UO->getID()) 2222 OS << UO->getID(); 2223 else 2224 OS << LiveOnEntryStr; 2225 OS << ')'; 2226 2227 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2228 OS << " " << *AR; 2229 } 2230 2231 void MemoryAccess::dump() const { 2232 // Cannot completely remove virtual function even in release mode. 2233 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2234 print(dbgs()); 2235 dbgs() << "\n"; 2236 #endif 2237 } 2238 2239 char MemorySSAPrinterLegacyPass::ID = 0; 2240 2241 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2242 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2243 } 2244 2245 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2246 AU.setPreservesAll(); 2247 AU.addRequired<MemorySSAWrapperPass>(); 2248 } 2249 2250 class DOTFuncMSSAInfo { 2251 private: 2252 const Function &F; 2253 MemorySSAAnnotatedWriter MSSAWriter; 2254 2255 public: 2256 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2257 : F(F), MSSAWriter(&MSSA) {} 2258 2259 const Function *getFunction() { return &F; } 2260 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2261 }; 2262 2263 namespace llvm { 2264 2265 template <> 2266 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2267 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2268 return &(CFGInfo->getFunction()->getEntryBlock()); 2269 } 2270 2271 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2272 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2273 2274 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2275 return nodes_iterator(CFGInfo->getFunction()->begin()); 2276 } 2277 2278 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2279 return nodes_iterator(CFGInfo->getFunction()->end()); 2280 } 2281 2282 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2283 return CFGInfo->getFunction()->size(); 2284 } 2285 }; 2286 2287 template <> 2288 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2289 2290 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2291 2292 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2293 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2294 "' function"; 2295 } 2296 2297 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2298 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2299 Node, nullptr, 2300 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2301 BB.print(OS, &CFGInfo->getWriter(), true, true); 2302 }, 2303 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2304 std::string Str = S.substr(I, Idx - I); 2305 StringRef SR = Str; 2306 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2307 SR.count("MemoryUse(")) 2308 return; 2309 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2310 }); 2311 } 2312 2313 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2314 const_succ_iterator I) { 2315 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2316 } 2317 2318 /// Display the raw branch weights from PGO. 2319 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2320 DOTFuncMSSAInfo *CFGInfo) { 2321 return ""; 2322 } 2323 2324 std::string getNodeAttributes(const BasicBlock *Node, 2325 DOTFuncMSSAInfo *CFGInfo) { 2326 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2327 ? "style=filled, fillcolor=lightpink" 2328 : ""; 2329 } 2330 }; 2331 2332 } // namespace llvm 2333 2334 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2335 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2336 if (DotCFGMSSA != "") { 2337 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2338 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2339 } else 2340 MSSA.print(dbgs()); 2341 2342 if (VerifyMemorySSA) 2343 MSSA.verifyMemorySSA(); 2344 return false; 2345 } 2346 2347 AnalysisKey MemorySSAAnalysis::Key; 2348 2349 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2350 FunctionAnalysisManager &AM) { 2351 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2352 auto &AA = AM.getResult<AAManager>(F); 2353 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2354 } 2355 2356 bool MemorySSAAnalysis::Result::invalidate( 2357 Function &F, const PreservedAnalyses &PA, 2358 FunctionAnalysisManager::Invalidator &Inv) { 2359 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2360 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2361 Inv.invalidate<AAManager>(F, PA) || 2362 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2363 } 2364 2365 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2366 FunctionAnalysisManager &AM) { 2367 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2368 if (DotCFGMSSA != "") { 2369 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2370 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2371 } else { 2372 OS << "MemorySSA for function: " << F.getName() << "\n"; 2373 MSSA.print(OS); 2374 } 2375 2376 return PreservedAnalyses::all(); 2377 } 2378 2379 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F, 2380 FunctionAnalysisManager &AM) { 2381 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2382 OS << "MemorySSA (walker) for function: " << F.getName() << "\n"; 2383 MemorySSAWalkerAnnotatedWriter Writer(&MSSA); 2384 F.print(OS, &Writer); 2385 2386 return PreservedAnalyses::all(); 2387 } 2388 2389 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2390 FunctionAnalysisManager &AM) { 2391 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2392 2393 return PreservedAnalyses::all(); 2394 } 2395 2396 char MemorySSAWrapperPass::ID = 0; 2397 2398 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2399 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2400 } 2401 2402 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2403 2404 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2405 AU.setPreservesAll(); 2406 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2407 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2408 } 2409 2410 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2411 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2412 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2413 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2414 return false; 2415 } 2416 2417 void MemorySSAWrapperPass::verifyAnalysis() const { 2418 if (VerifyMemorySSA) 2419 MSSA->verifyMemorySSA(); 2420 } 2421 2422 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2423 MSSA->print(OS); 2424 } 2425 2426 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2427 2428 /// Walk the use-def chains starting at \p StartingAccess and find 2429 /// the MemoryAccess that actually clobbers Loc. 2430 /// 2431 /// \returns our clobbering memory access 2432 template <typename AliasAnalysisType> 2433 MemoryAccess * 2434 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2435 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2436 unsigned &UpwardWalkLimit) { 2437 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access"); 2438 2439 Instruction *I = nullptr; 2440 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) { 2441 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2442 return StartingUseOrDef; 2443 2444 I = StartingUseOrDef->getMemoryInst(); 2445 2446 // Conservatively, fences are always clobbers, so don't perform the walk if 2447 // we hit a fence. 2448 if (!isa<CallBase>(I) && I->isFenceLike()) 2449 return StartingUseOrDef; 2450 } 2451 2452 UpwardsMemoryQuery Q; 2453 Q.OriginalAccess = StartingAccess; 2454 Q.StartingLoc = Loc; 2455 Q.Inst = nullptr; 2456 Q.IsCall = false; 2457 2458 // Unlike the other function, do not walk to the def of a def, because we are 2459 // handed something we already believe is the clobbering access. 2460 // We never set SkipSelf to true in Q in this method. 2461 MemoryAccess *Clobber = 2462 Walker.findClobber(StartingAccess, Q, UpwardWalkLimit); 2463 LLVM_DEBUG({ 2464 dbgs() << "Clobber starting at access " << *StartingAccess << "\n"; 2465 if (I) 2466 dbgs() << " for instruction " << *I << "\n"; 2467 dbgs() << " is " << *Clobber << "\n"; 2468 }); 2469 return Clobber; 2470 } 2471 2472 template <typename AliasAnalysisType> 2473 MemoryAccess * 2474 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2475 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2476 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2477 // If this is a MemoryPhi, we can't do anything. 2478 if (!StartingAccess) 2479 return MA; 2480 2481 bool IsOptimized = false; 2482 2483 // If this is an already optimized use or def, return the optimized result. 2484 // Note: Currently, we store the optimized def result in a separate field, 2485 // since we can't use the defining access. 2486 if (StartingAccess->isOptimized()) { 2487 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2488 return StartingAccess->getOptimized(); 2489 IsOptimized = true; 2490 } 2491 2492 const Instruction *I = StartingAccess->getMemoryInst(); 2493 // We can't sanely do anything with a fence, since they conservatively clobber 2494 // all memory, and have no locations to get pointers from to try to 2495 // disambiguate. 2496 if (!isa<CallBase>(I) && I->isFenceLike()) 2497 return StartingAccess; 2498 2499 UpwardsMemoryQuery Q(I, StartingAccess); 2500 2501 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2502 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2503 StartingAccess->setOptimized(LiveOnEntry); 2504 StartingAccess->setOptimizedAccessType(None); 2505 return LiveOnEntry; 2506 } 2507 2508 MemoryAccess *OptimizedAccess; 2509 if (!IsOptimized) { 2510 // Start with the thing we already think clobbers this location 2511 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2512 2513 // At this point, DefiningAccess may be the live on entry def. 2514 // If it is, we will not get a better result. 2515 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2516 StartingAccess->setOptimized(DefiningAccess); 2517 StartingAccess->setOptimizedAccessType(None); 2518 return DefiningAccess; 2519 } 2520 2521 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2522 StartingAccess->setOptimized(OptimizedAccess); 2523 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2524 StartingAccess->setOptimizedAccessType(None); 2525 else if (Q.AR && *Q.AR == AliasResult::MustAlias) 2526 StartingAccess->setOptimizedAccessType( 2527 AliasResult(AliasResult::MustAlias)); 2528 } else 2529 OptimizedAccess = StartingAccess->getOptimized(); 2530 2531 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2532 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2533 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2534 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2535 2536 MemoryAccess *Result; 2537 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2538 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2539 assert(isa<MemoryDef>(Q.OriginalAccess)); 2540 Q.SkipSelfAccess = true; 2541 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2542 } else 2543 Result = OptimizedAccess; 2544 2545 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2546 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2547 2548 return Result; 2549 } 2550 2551 MemoryAccess * 2552 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2553 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2554 return Use->getDefiningAccess(); 2555 return MA; 2556 } 2557 2558 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2559 MemoryAccess *StartingAccess, const MemoryLocation &) { 2560 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2561 return Use->getDefiningAccess(); 2562 return StartingAccess; 2563 } 2564 2565 void MemoryPhi::deleteMe(DerivedUser *Self) { 2566 delete static_cast<MemoryPhi *>(Self); 2567 } 2568 2569 void MemoryDef::deleteMe(DerivedUser *Self) { 2570 delete static_cast<MemoryDef *>(Self); 2571 } 2572 2573 void MemoryUse::deleteMe(DerivedUser *Self) { 2574 delete static_cast<MemoryUse *>(Self); 2575 } 2576 2577 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { 2578 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { 2579 Ptr = Ptr->stripPointerCasts(); 2580 if (!isa<Instruction>(Ptr)) 2581 return true; 2582 return isa<AllocaInst>(Ptr); 2583 }; 2584 2585 Ptr = Ptr->stripPointerCasts(); 2586 if (auto *I = dyn_cast<Instruction>(Ptr)) { 2587 if (I->getParent()->isEntryBlock()) 2588 return true; 2589 } 2590 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2591 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2592 GEP->hasAllConstantIndices(); 2593 } 2594 return IsGuaranteedLoopInvariantBase(Ptr); 2595 } 2596