1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFGPrinter.h" 29 #include "llvm/Analysis/IteratedDominanceFrontier.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/AtomicOrdering.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdlib> 56 #include <iterator> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "memoryssa" 63 64 static cl::opt<std::string> 65 DotCFGMSSA("dot-cfg-mssa", 66 cl::value_desc("file name for generated dot file"), 67 cl::desc("file name for generated dot file"), cl::init("")); 68 69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 70 true) 71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 73 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 74 true) 75 76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 77 "Memory SSA Printer", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 80 "Memory SSA Printer", false, false) 81 82 static cl::opt<unsigned> MaxCheckLimit( 83 "memssa-check-limit", cl::Hidden, cl::init(100), 84 cl::desc("The maximum number of stores/phis MemorySSA" 85 "will consider trying to walk past (default = 100)")); 86 87 // Always verify MemorySSA if expensive checking is enabled. 88 #ifdef EXPENSIVE_CHECKS 89 bool llvm::VerifyMemorySSA = true; 90 #else 91 bool llvm::VerifyMemorySSA = false; 92 #endif 93 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 94 cl::opt<bool> llvm::EnableMSSALoopDependency( 95 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 96 cl::desc("Enable MemorySSA dependency for loop pass manager")); 97 98 static cl::opt<bool, true> 99 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 100 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 101 102 namespace llvm { 103 104 /// An assembly annotator class to print Memory SSA information in 105 /// comments. 106 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 107 friend class MemorySSA; 108 109 const MemorySSA *MSSA; 110 111 public: 112 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 113 114 void emitBasicBlockStartAnnot(const BasicBlock *BB, 115 formatted_raw_ostream &OS) override { 116 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 117 OS << "; " << *MA << "\n"; 118 } 119 120 void emitInstructionAnnot(const Instruction *I, 121 formatted_raw_ostream &OS) override { 122 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 123 OS << "; " << *MA << "\n"; 124 } 125 }; 126 127 } // end namespace llvm 128 129 namespace { 130 131 /// Our current alias analysis API differentiates heavily between calls and 132 /// non-calls, and functions called on one usually assert on the other. 133 /// This class encapsulates the distinction to simplify other code that wants 134 /// "Memory affecting instructions and related data" to use as a key. 135 /// For example, this class is used as a densemap key in the use optimizer. 136 class MemoryLocOrCall { 137 public: 138 bool IsCall = false; 139 140 MemoryLocOrCall(MemoryUseOrDef *MUD) 141 : MemoryLocOrCall(MUD->getMemoryInst()) {} 142 MemoryLocOrCall(const MemoryUseOrDef *MUD) 143 : MemoryLocOrCall(MUD->getMemoryInst()) {} 144 145 MemoryLocOrCall(Instruction *Inst) { 146 if (auto *C = dyn_cast<CallBase>(Inst)) { 147 IsCall = true; 148 Call = C; 149 } else { 150 IsCall = false; 151 // There is no such thing as a memorylocation for a fence inst, and it is 152 // unique in that regard. 153 if (!isa<FenceInst>(Inst)) 154 Loc = MemoryLocation::get(Inst); 155 } 156 } 157 158 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 159 160 const CallBase *getCall() const { 161 assert(IsCall); 162 return Call; 163 } 164 165 MemoryLocation getLoc() const { 166 assert(!IsCall); 167 return Loc; 168 } 169 170 bool operator==(const MemoryLocOrCall &Other) const { 171 if (IsCall != Other.IsCall) 172 return false; 173 174 if (!IsCall) 175 return Loc == Other.Loc; 176 177 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 178 return false; 179 180 return Call->arg_size() == Other.Call->arg_size() && 181 std::equal(Call->arg_begin(), Call->arg_end(), 182 Other.Call->arg_begin()); 183 } 184 185 private: 186 union { 187 const CallBase *Call; 188 MemoryLocation Loc; 189 }; 190 }; 191 192 } // end anonymous namespace 193 194 namespace llvm { 195 196 template <> struct DenseMapInfo<MemoryLocOrCall> { 197 static inline MemoryLocOrCall getEmptyKey() { 198 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 199 } 200 201 static inline MemoryLocOrCall getTombstoneKey() { 202 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 203 } 204 205 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 206 if (!MLOC.IsCall) 207 return hash_combine( 208 MLOC.IsCall, 209 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 210 211 hash_code hash = 212 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 213 MLOC.getCall()->getCalledOperand())); 214 215 for (const Value *Arg : MLOC.getCall()->args()) 216 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 217 return hash; 218 } 219 220 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 221 return LHS == RHS; 222 } 223 }; 224 225 } // end namespace llvm 226 227 /// This does one-way checks to see if Use could theoretically be hoisted above 228 /// MayClobber. This will not check the other way around. 229 /// 230 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 231 /// MayClobber, with no potentially clobbering operations in between them. 232 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 233 static bool areLoadsReorderable(const LoadInst *Use, 234 const LoadInst *MayClobber) { 235 bool VolatileUse = Use->isVolatile(); 236 bool VolatileClobber = MayClobber->isVolatile(); 237 // Volatile operations may never be reordered with other volatile operations. 238 if (VolatileUse && VolatileClobber) 239 return false; 240 // Otherwise, volatile doesn't matter here. From the language reference: 241 // 'optimizers may change the order of volatile operations relative to 242 // non-volatile operations.'" 243 244 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 245 // is weaker, it can be moved above other loads. We just need to be sure that 246 // MayClobber isn't an acquire load, because loads can't be moved above 247 // acquire loads. 248 // 249 // Note that this explicitly *does* allow the free reordering of monotonic (or 250 // weaker) loads of the same address. 251 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 252 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 253 AtomicOrdering::Acquire); 254 return !(SeqCstUse || MayClobberIsAcquire); 255 } 256 257 namespace { 258 259 struct ClobberAlias { 260 bool IsClobber; 261 Optional<AliasResult> AR; 262 }; 263 264 } // end anonymous namespace 265 266 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 267 // ignored if IsClobber = false. 268 template <typename AliasAnalysisType> 269 static ClobberAlias 270 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 271 const Instruction *UseInst, AliasAnalysisType &AA) { 272 Instruction *DefInst = MD->getMemoryInst(); 273 assert(DefInst && "Defining instruction not actually an instruction"); 274 Optional<AliasResult> AR; 275 276 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 277 // These intrinsics will show up as affecting memory, but they are just 278 // markers, mostly. 279 // 280 // FIXME: We probably don't actually want MemorySSA to model these at all 281 // (including creating MemoryAccesses for them): we just end up inventing 282 // clobbers where they don't really exist at all. Please see D43269 for 283 // context. 284 switch (II->getIntrinsicID()) { 285 case Intrinsic::lifetime_end: 286 case Intrinsic::invariant_start: 287 case Intrinsic::invariant_end: 288 case Intrinsic::assume: 289 case Intrinsic::experimental_noalias_scope_decl: 290 return {false, NoAlias}; 291 case Intrinsic::dbg_addr: 292 case Intrinsic::dbg_declare: 293 case Intrinsic::dbg_label: 294 case Intrinsic::dbg_value: 295 llvm_unreachable("debuginfo shouldn't have associated defs!"); 296 default: 297 break; 298 } 299 } 300 301 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 302 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 303 AR = isMustSet(I) ? MustAlias : MayAlias; 304 return {isModOrRefSet(I), AR}; 305 } 306 307 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 308 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 309 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 310 311 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 312 AR = isMustSet(I) ? MustAlias : MayAlias; 313 return {isModSet(I), AR}; 314 } 315 316 template <typename AliasAnalysisType> 317 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 318 const MemoryUseOrDef *MU, 319 const MemoryLocOrCall &UseMLOC, 320 AliasAnalysisType &AA) { 321 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 322 // to exist while MemoryLocOrCall is pushed through places. 323 if (UseMLOC.IsCall) 324 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 325 AA); 326 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 327 AA); 328 } 329 330 // Return true when MD may alias MU, return false otherwise. 331 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 332 AliasAnalysis &AA) { 333 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 334 } 335 336 namespace { 337 338 struct UpwardsMemoryQuery { 339 // True if our original query started off as a call 340 bool IsCall = false; 341 // The pointer location we started the query with. This will be empty if 342 // IsCall is true. 343 MemoryLocation StartingLoc; 344 // This is the instruction we were querying about. 345 const Instruction *Inst = nullptr; 346 // The MemoryAccess we actually got called with, used to test local domination 347 const MemoryAccess *OriginalAccess = nullptr; 348 Optional<AliasResult> AR = MayAlias; 349 bool SkipSelfAccess = false; 350 351 UpwardsMemoryQuery() = default; 352 353 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 354 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 355 if (!IsCall) 356 StartingLoc = MemoryLocation::get(Inst); 357 } 358 }; 359 360 } // end anonymous namespace 361 362 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 363 BatchAAResults &AA) { 364 Instruction *Inst = MD->getMemoryInst(); 365 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 366 switch (II->getIntrinsicID()) { 367 case Intrinsic::lifetime_end: { 368 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1)); 369 return AA.alias(ArgLoc, Loc) == MustAlias; 370 } 371 default: 372 return false; 373 } 374 } 375 return false; 376 } 377 378 template <typename AliasAnalysisType> 379 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 380 const Instruction *I) { 381 // If the memory can't be changed, then loads of the memory can't be 382 // clobbered. 383 if (auto *LI = dyn_cast<LoadInst>(I)) 384 return I->hasMetadata(LLVMContext::MD_invariant_load) || 385 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 386 return false; 387 } 388 389 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 390 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 391 /// 392 /// This is meant to be as simple and self-contained as possible. Because it 393 /// uses no cache, etc., it can be relatively expensive. 394 /// 395 /// \param Start The MemoryAccess that we want to walk from. 396 /// \param ClobberAt A clobber for Start. 397 /// \param StartLoc The MemoryLocation for Start. 398 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 399 /// \param Query The UpwardsMemoryQuery we used for our search. 400 /// \param AA The AliasAnalysis we used for our search. 401 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 402 403 template <typename AliasAnalysisType> 404 LLVM_ATTRIBUTE_UNUSED static void 405 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 406 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 407 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 408 bool AllowImpreciseClobber = false) { 409 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 410 411 if (MSSA.isLiveOnEntryDef(Start)) { 412 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 413 "liveOnEntry must clobber itself"); 414 return; 415 } 416 417 bool FoundClobber = false; 418 DenseSet<ConstMemoryAccessPair> VisitedPhis; 419 SmallVector<ConstMemoryAccessPair, 8> Worklist; 420 Worklist.emplace_back(Start, StartLoc); 421 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 422 // is found, complain. 423 while (!Worklist.empty()) { 424 auto MAP = Worklist.pop_back_val(); 425 // All we care about is that nothing from Start to ClobberAt clobbers Start. 426 // We learn nothing from revisiting nodes. 427 if (!VisitedPhis.insert(MAP).second) 428 continue; 429 430 for (const auto *MA : def_chain(MAP.first)) { 431 if (MA == ClobberAt) { 432 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 433 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 434 // since it won't let us short-circuit. 435 // 436 // Also, note that this can't be hoisted out of the `Worklist` loop, 437 // since MD may only act as a clobber for 1 of N MemoryLocations. 438 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 439 if (!FoundClobber) { 440 ClobberAlias CA = 441 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 442 if (CA.IsClobber) { 443 FoundClobber = true; 444 // Not used: CA.AR; 445 } 446 } 447 } 448 break; 449 } 450 451 // We should never hit liveOnEntry, unless it's the clobber. 452 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 453 454 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 455 // If Start is a Def, skip self. 456 if (MD == Start) 457 continue; 458 459 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 460 .IsClobber && 461 "Found clobber before reaching ClobberAt!"); 462 continue; 463 } 464 465 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 466 (void)MU; 467 assert (MU == Start && 468 "Can only find use in def chain if Start is a use"); 469 continue; 470 } 471 472 assert(isa<MemoryPhi>(MA)); 473 474 // Add reachable phi predecessors 475 for (auto ItB = upward_defs_begin( 476 {const_cast<MemoryAccess *>(MA), MAP.second}, 477 MSSA.getDomTree()), 478 ItE = upward_defs_end(); 479 ItB != ItE; ++ItB) 480 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 481 Worklist.emplace_back(*ItB); 482 } 483 } 484 485 // If the verify is done following an optimization, it's possible that 486 // ClobberAt was a conservative clobbering, that we can now infer is not a 487 // true clobbering access. Don't fail the verify if that's the case. 488 // We do have accesses that claim they're optimized, but could be optimized 489 // further. Updating all these can be expensive, so allow it for now (FIXME). 490 if (AllowImpreciseClobber) 491 return; 492 493 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 494 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 495 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 496 "ClobberAt never acted as a clobber"); 497 } 498 499 namespace { 500 501 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 502 /// in one class. 503 template <class AliasAnalysisType> class ClobberWalker { 504 /// Save a few bytes by using unsigned instead of size_t. 505 using ListIndex = unsigned; 506 507 /// Represents a span of contiguous MemoryDefs, potentially ending in a 508 /// MemoryPhi. 509 struct DefPath { 510 MemoryLocation Loc; 511 // Note that, because we always walk in reverse, Last will always dominate 512 // First. Also note that First and Last are inclusive. 513 MemoryAccess *First; 514 MemoryAccess *Last; 515 Optional<ListIndex> Previous; 516 517 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 518 Optional<ListIndex> Previous) 519 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 520 521 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 522 Optional<ListIndex> Previous) 523 : DefPath(Loc, Init, Init, Previous) {} 524 }; 525 526 const MemorySSA &MSSA; 527 AliasAnalysisType &AA; 528 DominatorTree &DT; 529 UpwardsMemoryQuery *Query; 530 unsigned *UpwardWalkLimit; 531 532 // Phi optimization bookkeeping: 533 // List of DefPath to process during the current phi optimization walk. 534 SmallVector<DefPath, 32> Paths; 535 // List of visited <Access, Location> pairs; we can skip paths already 536 // visited with the same memory location. 537 DenseSet<ConstMemoryAccessPair> VisitedPhis; 538 // Record if phi translation has been performed during the current phi 539 // optimization walk, as merging alias results after phi translation can 540 // yield incorrect results. Context in PR46156. 541 bool PerformedPhiTranslation = false; 542 543 /// Find the nearest def or phi that `From` can legally be optimized to. 544 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 545 assert(From->getNumOperands() && "Phi with no operands?"); 546 547 BasicBlock *BB = From->getBlock(); 548 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 549 DomTreeNode *Node = DT.getNode(BB); 550 while ((Node = Node->getIDom())) { 551 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 552 if (Defs) 553 return &*Defs->rbegin(); 554 } 555 return Result; 556 } 557 558 /// Result of calling walkToPhiOrClobber. 559 struct UpwardsWalkResult { 560 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 561 /// both. Include alias info when clobber found. 562 MemoryAccess *Result; 563 bool IsKnownClobber; 564 Optional<AliasResult> AR; 565 }; 566 567 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 568 /// This will update Desc.Last as it walks. It will (optionally) also stop at 569 /// StopAt. 570 /// 571 /// This does not test for whether StopAt is a clobber 572 UpwardsWalkResult 573 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 574 const MemoryAccess *SkipStopAt = nullptr) const { 575 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 576 assert(UpwardWalkLimit && "Need a valid walk limit"); 577 bool LimitAlreadyReached = false; 578 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 579 // it to 1. This will not do any alias() calls. It either returns in the 580 // first iteration in the loop below, or is set back to 0 if all def chains 581 // are free of MemoryDefs. 582 if (!*UpwardWalkLimit) { 583 *UpwardWalkLimit = 1; 584 LimitAlreadyReached = true; 585 } 586 587 for (MemoryAccess *Current : def_chain(Desc.Last)) { 588 Desc.Last = Current; 589 if (Current == StopAt || Current == SkipStopAt) 590 return {Current, false, MayAlias}; 591 592 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 593 if (MSSA.isLiveOnEntryDef(MD)) 594 return {MD, true, MustAlias}; 595 596 if (!--*UpwardWalkLimit) 597 return {Current, true, MayAlias}; 598 599 ClobberAlias CA = 600 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 601 if (CA.IsClobber) 602 return {MD, true, CA.AR}; 603 } 604 } 605 606 if (LimitAlreadyReached) 607 *UpwardWalkLimit = 0; 608 609 assert(isa<MemoryPhi>(Desc.Last) && 610 "Ended at a non-clobber that's not a phi?"); 611 return {Desc.Last, false, MayAlias}; 612 } 613 614 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 615 ListIndex PriorNode) { 616 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 617 &PerformedPhiTranslation); 618 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 619 for (const MemoryAccessPair &P : UpwardDefs) { 620 PausedSearches.push_back(Paths.size()); 621 Paths.emplace_back(P.second, P.first, PriorNode); 622 } 623 } 624 625 /// Represents a search that terminated after finding a clobber. This clobber 626 /// may or may not be present in the path of defs from LastNode..SearchStart, 627 /// since it may have been retrieved from cache. 628 struct TerminatedPath { 629 MemoryAccess *Clobber; 630 ListIndex LastNode; 631 }; 632 633 /// Get an access that keeps us from optimizing to the given phi. 634 /// 635 /// PausedSearches is an array of indices into the Paths array. Its incoming 636 /// value is the indices of searches that stopped at the last phi optimization 637 /// target. It's left in an unspecified state. 638 /// 639 /// If this returns None, NewPaused is a vector of searches that terminated 640 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 641 Optional<TerminatedPath> 642 getBlockingAccess(const MemoryAccess *StopWhere, 643 SmallVectorImpl<ListIndex> &PausedSearches, 644 SmallVectorImpl<ListIndex> &NewPaused, 645 SmallVectorImpl<TerminatedPath> &Terminated) { 646 assert(!PausedSearches.empty() && "No searches to continue?"); 647 648 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 649 // PausedSearches as our stack. 650 while (!PausedSearches.empty()) { 651 ListIndex PathIndex = PausedSearches.pop_back_val(); 652 DefPath &Node = Paths[PathIndex]; 653 654 // If we've already visited this path with this MemoryLocation, we don't 655 // need to do so again. 656 // 657 // NOTE: That we just drop these paths on the ground makes caching 658 // behavior sporadic. e.g. given a diamond: 659 // A 660 // B C 661 // D 662 // 663 // ...If we walk D, B, A, C, we'll only cache the result of phi 664 // optimization for A, B, and D; C will be skipped because it dies here. 665 // This arguably isn't the worst thing ever, since: 666 // - We generally query things in a top-down order, so if we got below D 667 // without needing cache entries for {C, MemLoc}, then chances are 668 // that those cache entries would end up ultimately unused. 669 // - We still cache things for A, so C only needs to walk up a bit. 670 // If this behavior becomes problematic, we can fix without a ton of extra 671 // work. 672 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 673 if (PerformedPhiTranslation) { 674 // If visiting this path performed Phi translation, don't continue, 675 // since it may not be correct to merge results from two paths if one 676 // relies on the phi translation. 677 TerminatedPath Term{Node.Last, PathIndex}; 678 return Term; 679 } 680 continue; 681 } 682 683 const MemoryAccess *SkipStopWhere = nullptr; 684 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 685 assert(isa<MemoryDef>(Query->OriginalAccess)); 686 SkipStopWhere = Query->OriginalAccess; 687 } 688 689 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 690 /*StopAt=*/StopWhere, 691 /*SkipStopAt=*/SkipStopWhere); 692 if (Res.IsKnownClobber) { 693 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 694 695 // If this wasn't a cache hit, we hit a clobber when walking. That's a 696 // failure. 697 TerminatedPath Term{Res.Result, PathIndex}; 698 if (!MSSA.dominates(Res.Result, StopWhere)) 699 return Term; 700 701 // Otherwise, it's a valid thing to potentially optimize to. 702 Terminated.push_back(Term); 703 continue; 704 } 705 706 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 707 // We've hit our target. Save this path off for if we want to continue 708 // walking. If we are in the mode of skipping the OriginalAccess, and 709 // we've reached back to the OriginalAccess, do not save path, we've 710 // just looped back to self. 711 if (Res.Result != SkipStopWhere) 712 NewPaused.push_back(PathIndex); 713 continue; 714 } 715 716 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 717 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 718 } 719 720 return None; 721 } 722 723 template <typename T, typename Walker> 724 struct generic_def_path_iterator 725 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 726 std::forward_iterator_tag, T *> { 727 generic_def_path_iterator() {} 728 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 729 730 T &operator*() const { return curNode(); } 731 732 generic_def_path_iterator &operator++() { 733 N = curNode().Previous; 734 return *this; 735 } 736 737 bool operator==(const generic_def_path_iterator &O) const { 738 if (N.hasValue() != O.N.hasValue()) 739 return false; 740 return !N.hasValue() || *N == *O.N; 741 } 742 743 private: 744 T &curNode() const { return W->Paths[*N]; } 745 746 Walker *W = nullptr; 747 Optional<ListIndex> N = None; 748 }; 749 750 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 751 using const_def_path_iterator = 752 generic_def_path_iterator<const DefPath, const ClobberWalker>; 753 754 iterator_range<def_path_iterator> def_path(ListIndex From) { 755 return make_range(def_path_iterator(this, From), def_path_iterator()); 756 } 757 758 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 759 return make_range(const_def_path_iterator(this, From), 760 const_def_path_iterator()); 761 } 762 763 struct OptznResult { 764 /// The path that contains our result. 765 TerminatedPath PrimaryClobber; 766 /// The paths that we can legally cache back from, but that aren't 767 /// necessarily the result of the Phi optimization. 768 SmallVector<TerminatedPath, 4> OtherClobbers; 769 }; 770 771 ListIndex defPathIndex(const DefPath &N) const { 772 // The assert looks nicer if we don't need to do &N 773 const DefPath *NP = &N; 774 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 775 "Out of bounds DefPath!"); 776 return NP - &Paths.front(); 777 } 778 779 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 780 /// that act as legal clobbers. Note that this won't return *all* clobbers. 781 /// 782 /// Phi optimization algorithm tl;dr: 783 /// - Find the earliest def/phi, A, we can optimize to 784 /// - Find if all paths from the starting memory access ultimately reach A 785 /// - If not, optimization isn't possible. 786 /// - Otherwise, walk from A to another clobber or phi, A'. 787 /// - If A' is a def, we're done. 788 /// - If A' is a phi, try to optimize it. 789 /// 790 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 791 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 792 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 793 const MemoryLocation &Loc) { 794 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 795 "Reset the optimization state."); 796 797 Paths.emplace_back(Loc, Start, Phi, None); 798 // Stores how many "valid" optimization nodes we had prior to calling 799 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 800 auto PriorPathsSize = Paths.size(); 801 802 SmallVector<ListIndex, 16> PausedSearches; 803 SmallVector<ListIndex, 8> NewPaused; 804 SmallVector<TerminatedPath, 4> TerminatedPaths; 805 806 addSearches(Phi, PausedSearches, 0); 807 808 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 809 // Paths. 810 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 811 assert(!Paths.empty() && "Need a path to move"); 812 auto Dom = Paths.begin(); 813 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 814 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 815 Dom = I; 816 auto Last = Paths.end() - 1; 817 if (Last != Dom) 818 std::iter_swap(Last, Dom); 819 }; 820 821 MemoryPhi *Current = Phi; 822 while (true) { 823 assert(!MSSA.isLiveOnEntryDef(Current) && 824 "liveOnEntry wasn't treated as a clobber?"); 825 826 const auto *Target = getWalkTarget(Current); 827 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 828 // optimization for the prior phi. 829 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 830 return MSSA.dominates(P.Clobber, Target); 831 })); 832 833 // FIXME: This is broken, because the Blocker may be reported to be 834 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 835 // For the moment, this is fine, since we do nothing with blocker info. 836 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 837 Target, PausedSearches, NewPaused, TerminatedPaths)) { 838 839 // Find the node we started at. We can't search based on N->Last, since 840 // we may have gone around a loop with a different MemoryLocation. 841 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 842 return defPathIndex(N) < PriorPathsSize; 843 }); 844 assert(Iter != def_path_iterator()); 845 846 DefPath &CurNode = *Iter; 847 assert(CurNode.Last == Current); 848 849 // Two things: 850 // A. We can't reliably cache all of NewPaused back. Consider a case 851 // where we have two paths in NewPaused; one of which can't optimize 852 // above this phi, whereas the other can. If we cache the second path 853 // back, we'll end up with suboptimal cache entries. We can handle 854 // cases like this a bit better when we either try to find all 855 // clobbers that block phi optimization, or when our cache starts 856 // supporting unfinished searches. 857 // B. We can't reliably cache TerminatedPaths back here without doing 858 // extra checks; consider a case like: 859 // T 860 // / \ 861 // D C 862 // \ / 863 // S 864 // Where T is our target, C is a node with a clobber on it, D is a 865 // diamond (with a clobber *only* on the left or right node, N), and 866 // S is our start. Say we walk to D, through the node opposite N 867 // (read: ignoring the clobber), and see a cache entry in the top 868 // node of D. That cache entry gets put into TerminatedPaths. We then 869 // walk up to C (N is later in our worklist), find the clobber, and 870 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 871 // the bottom part of D to the cached clobber, ignoring the clobber 872 // in N. Again, this problem goes away if we start tracking all 873 // blockers for a given phi optimization. 874 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 875 return {Result, {}}; 876 } 877 878 // If there's nothing left to search, then all paths led to valid clobbers 879 // that we got from our cache; pick the nearest to the start, and allow 880 // the rest to be cached back. 881 if (NewPaused.empty()) { 882 MoveDominatedPathToEnd(TerminatedPaths); 883 TerminatedPath Result = TerminatedPaths.pop_back_val(); 884 return {Result, std::move(TerminatedPaths)}; 885 } 886 887 MemoryAccess *DefChainEnd = nullptr; 888 SmallVector<TerminatedPath, 4> Clobbers; 889 for (ListIndex Paused : NewPaused) { 890 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 891 if (WR.IsKnownClobber) 892 Clobbers.push_back({WR.Result, Paused}); 893 else 894 // Micro-opt: If we hit the end of the chain, save it. 895 DefChainEnd = WR.Result; 896 } 897 898 if (!TerminatedPaths.empty()) { 899 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 900 // do it now. 901 if (!DefChainEnd) 902 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 903 DefChainEnd = MA; 904 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 905 906 // If any of the terminated paths don't dominate the phi we'll try to 907 // optimize, we need to figure out what they are and quit. 908 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 909 for (const TerminatedPath &TP : TerminatedPaths) { 910 // Because we know that DefChainEnd is as "high" as we can go, we 911 // don't need local dominance checks; BB dominance is sufficient. 912 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 913 Clobbers.push_back(TP); 914 } 915 } 916 917 // If we have clobbers in the def chain, find the one closest to Current 918 // and quit. 919 if (!Clobbers.empty()) { 920 MoveDominatedPathToEnd(Clobbers); 921 TerminatedPath Result = Clobbers.pop_back_val(); 922 return {Result, std::move(Clobbers)}; 923 } 924 925 assert(all_of(NewPaused, 926 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 927 928 // Because liveOnEntry is a clobber, this must be a phi. 929 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 930 931 PriorPathsSize = Paths.size(); 932 PausedSearches.clear(); 933 for (ListIndex I : NewPaused) 934 addSearches(DefChainPhi, PausedSearches, I); 935 NewPaused.clear(); 936 937 Current = DefChainPhi; 938 } 939 } 940 941 void verifyOptResult(const OptznResult &R) const { 942 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 943 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 944 })); 945 } 946 947 void resetPhiOptznState() { 948 Paths.clear(); 949 VisitedPhis.clear(); 950 PerformedPhiTranslation = false; 951 } 952 953 public: 954 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 955 : MSSA(MSSA), AA(AA), DT(DT) {} 956 957 AliasAnalysisType *getAA() { return &AA; } 958 /// Finds the nearest clobber for the given query, optimizing phis if 959 /// possible. 960 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 961 unsigned &UpWalkLimit) { 962 Query = &Q; 963 UpwardWalkLimit = &UpWalkLimit; 964 // Starting limit must be > 0. 965 if (!UpWalkLimit) 966 UpWalkLimit++; 967 968 MemoryAccess *Current = Start; 969 // This walker pretends uses don't exist. If we're handed one, silently grab 970 // its def. (This has the nice side-effect of ensuring we never cache uses) 971 if (auto *MU = dyn_cast<MemoryUse>(Start)) 972 Current = MU->getDefiningAccess(); 973 974 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 975 // Fast path for the overly-common case (no crazy phi optimization 976 // necessary) 977 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 978 MemoryAccess *Result; 979 if (WalkResult.IsKnownClobber) { 980 Result = WalkResult.Result; 981 Q.AR = WalkResult.AR; 982 } else { 983 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 984 Current, Q.StartingLoc); 985 verifyOptResult(OptRes); 986 resetPhiOptznState(); 987 Result = OptRes.PrimaryClobber.Clobber; 988 } 989 990 #ifdef EXPENSIVE_CHECKS 991 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 992 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 993 #endif 994 return Result; 995 } 996 }; 997 998 struct RenamePassData { 999 DomTreeNode *DTN; 1000 DomTreeNode::const_iterator ChildIt; 1001 MemoryAccess *IncomingVal; 1002 1003 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 1004 MemoryAccess *M) 1005 : DTN(D), ChildIt(It), IncomingVal(M) {} 1006 1007 void swap(RenamePassData &RHS) { 1008 std::swap(DTN, RHS.DTN); 1009 std::swap(ChildIt, RHS.ChildIt); 1010 std::swap(IncomingVal, RHS.IncomingVal); 1011 } 1012 }; 1013 1014 } // end anonymous namespace 1015 1016 namespace llvm { 1017 1018 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1019 ClobberWalker<AliasAnalysisType> Walker; 1020 MemorySSA *MSSA; 1021 1022 public: 1023 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1024 : Walker(*M, *A, *D), MSSA(M) {} 1025 1026 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1027 const MemoryLocation &, 1028 unsigned &); 1029 // Third argument (bool), defines whether the clobber search should skip the 1030 // original queried access. If true, there will be a follow-up query searching 1031 // for a clobber access past "self". Note that the Optimized access is not 1032 // updated if a new clobber is found by this SkipSelf search. If this 1033 // additional query becomes heavily used we may decide to cache the result. 1034 // Walker instantiations will decide how to set the SkipSelf bool. 1035 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1036 }; 1037 1038 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1039 /// longer does caching on its own, but the name has been retained for the 1040 /// moment. 1041 template <class AliasAnalysisType> 1042 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1043 ClobberWalkerBase<AliasAnalysisType> *Walker; 1044 1045 public: 1046 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1047 : MemorySSAWalker(M), Walker(W) {} 1048 ~CachingWalker() override = default; 1049 1050 using MemorySSAWalker::getClobberingMemoryAccess; 1051 1052 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1053 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1054 } 1055 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1056 const MemoryLocation &Loc, 1057 unsigned &UWL) { 1058 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1059 } 1060 1061 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1062 unsigned UpwardWalkLimit = MaxCheckLimit; 1063 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1064 } 1065 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1066 const MemoryLocation &Loc) override { 1067 unsigned UpwardWalkLimit = MaxCheckLimit; 1068 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1069 } 1070 1071 void invalidateInfo(MemoryAccess *MA) override { 1072 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1073 MUD->resetOptimized(); 1074 } 1075 }; 1076 1077 template <class AliasAnalysisType> 1078 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1079 ClobberWalkerBase<AliasAnalysisType> *Walker; 1080 1081 public: 1082 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1083 : MemorySSAWalker(M), Walker(W) {} 1084 ~SkipSelfWalker() override = default; 1085 1086 using MemorySSAWalker::getClobberingMemoryAccess; 1087 1088 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1089 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1090 } 1091 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1092 const MemoryLocation &Loc, 1093 unsigned &UWL) { 1094 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1095 } 1096 1097 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1098 unsigned UpwardWalkLimit = MaxCheckLimit; 1099 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1100 } 1101 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1102 const MemoryLocation &Loc) override { 1103 unsigned UpwardWalkLimit = MaxCheckLimit; 1104 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1105 } 1106 1107 void invalidateInfo(MemoryAccess *MA) override { 1108 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1109 MUD->resetOptimized(); 1110 } 1111 }; 1112 1113 } // end namespace llvm 1114 1115 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1116 bool RenameAllUses) { 1117 // Pass through values to our successors 1118 for (const BasicBlock *S : successors(BB)) { 1119 auto It = PerBlockAccesses.find(S); 1120 // Rename the phi nodes in our successor block 1121 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1122 continue; 1123 AccessList *Accesses = It->second.get(); 1124 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1125 if (RenameAllUses) { 1126 bool ReplacementDone = false; 1127 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1128 if (Phi->getIncomingBlock(I) == BB) { 1129 Phi->setIncomingValue(I, IncomingVal); 1130 ReplacementDone = true; 1131 } 1132 (void) ReplacementDone; 1133 assert(ReplacementDone && "Incomplete phi during partial rename"); 1134 } else 1135 Phi->addIncoming(IncomingVal, BB); 1136 } 1137 } 1138 1139 /// Rename a single basic block into MemorySSA form. 1140 /// Uses the standard SSA renaming algorithm. 1141 /// \returns The new incoming value. 1142 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1143 bool RenameAllUses) { 1144 auto It = PerBlockAccesses.find(BB); 1145 // Skip most processing if the list is empty. 1146 if (It != PerBlockAccesses.end()) { 1147 AccessList *Accesses = It->second.get(); 1148 for (MemoryAccess &L : *Accesses) { 1149 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1150 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1151 MUD->setDefiningAccess(IncomingVal); 1152 if (isa<MemoryDef>(&L)) 1153 IncomingVal = &L; 1154 } else { 1155 IncomingVal = &L; 1156 } 1157 } 1158 } 1159 return IncomingVal; 1160 } 1161 1162 /// This is the standard SSA renaming algorithm. 1163 /// 1164 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1165 /// in phi nodes in our successors. 1166 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1167 SmallPtrSetImpl<BasicBlock *> &Visited, 1168 bool SkipVisited, bool RenameAllUses) { 1169 assert(Root && "Trying to rename accesses in an unreachable block"); 1170 1171 SmallVector<RenamePassData, 32> WorkStack; 1172 // Skip everything if we already renamed this block and we are skipping. 1173 // Note: You can't sink this into the if, because we need it to occur 1174 // regardless of whether we skip blocks or not. 1175 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1176 if (SkipVisited && AlreadyVisited) 1177 return; 1178 1179 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1180 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1181 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1182 1183 while (!WorkStack.empty()) { 1184 DomTreeNode *Node = WorkStack.back().DTN; 1185 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1186 IncomingVal = WorkStack.back().IncomingVal; 1187 1188 if (ChildIt == Node->end()) { 1189 WorkStack.pop_back(); 1190 } else { 1191 DomTreeNode *Child = *ChildIt; 1192 ++WorkStack.back().ChildIt; 1193 BasicBlock *BB = Child->getBlock(); 1194 // Note: You can't sink this into the if, because we need it to occur 1195 // regardless of whether we skip blocks or not. 1196 AlreadyVisited = !Visited.insert(BB).second; 1197 if (SkipVisited && AlreadyVisited) { 1198 // We already visited this during our renaming, which can happen when 1199 // being asked to rename multiple blocks. Figure out the incoming val, 1200 // which is the last def. 1201 // Incoming value can only change if there is a block def, and in that 1202 // case, it's the last block def in the list. 1203 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1204 IncomingVal = &*BlockDefs->rbegin(); 1205 } else 1206 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1207 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1208 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1209 } 1210 } 1211 } 1212 1213 /// This handles unreachable block accesses by deleting phi nodes in 1214 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1215 /// being uses of the live on entry definition. 1216 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1217 assert(!DT->isReachableFromEntry(BB) && 1218 "Reachable block found while handling unreachable blocks"); 1219 1220 // Make sure phi nodes in our reachable successors end up with a 1221 // LiveOnEntryDef for our incoming edge, even though our block is forward 1222 // unreachable. We could just disconnect these blocks from the CFG fully, 1223 // but we do not right now. 1224 for (const BasicBlock *S : successors(BB)) { 1225 if (!DT->isReachableFromEntry(S)) 1226 continue; 1227 auto It = PerBlockAccesses.find(S); 1228 // Rename the phi nodes in our successor block 1229 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1230 continue; 1231 AccessList *Accesses = It->second.get(); 1232 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1233 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1234 } 1235 1236 auto It = PerBlockAccesses.find(BB); 1237 if (It == PerBlockAccesses.end()) 1238 return; 1239 1240 auto &Accesses = It->second; 1241 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1242 auto Next = std::next(AI); 1243 // If we have a phi, just remove it. We are going to replace all 1244 // users with live on entry. 1245 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1246 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1247 else 1248 Accesses->erase(AI); 1249 AI = Next; 1250 } 1251 } 1252 1253 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1254 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1255 SkipWalker(nullptr), NextID(0) { 1256 // Build MemorySSA using a batch alias analysis. This reuses the internal 1257 // state that AA collects during an alias()/getModRefInfo() call. This is 1258 // safe because there are no CFG changes while building MemorySSA and can 1259 // significantly reduce the time spent by the compiler in AA, because we will 1260 // make queries about all the instructions in the Function. 1261 assert(AA && "No alias analysis?"); 1262 BatchAAResults BatchAA(*AA); 1263 buildMemorySSA(BatchAA); 1264 // Intentionally leave AA to nullptr while building so we don't accidently 1265 // use non-batch AliasAnalysis. 1266 this->AA = AA; 1267 // Also create the walker here. 1268 getWalker(); 1269 } 1270 1271 MemorySSA::~MemorySSA() { 1272 // Drop all our references 1273 for (const auto &Pair : PerBlockAccesses) 1274 for (MemoryAccess &MA : *Pair.second) 1275 MA.dropAllReferences(); 1276 } 1277 1278 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1279 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1280 1281 if (Res.second) 1282 Res.first->second = std::make_unique<AccessList>(); 1283 return Res.first->second.get(); 1284 } 1285 1286 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1287 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1288 1289 if (Res.second) 1290 Res.first->second = std::make_unique<DefsList>(); 1291 return Res.first->second.get(); 1292 } 1293 1294 namespace llvm { 1295 1296 /// This class is a batch walker of all MemoryUse's in the program, and points 1297 /// their defining access at the thing that actually clobbers them. Because it 1298 /// is a batch walker that touches everything, it does not operate like the 1299 /// other walkers. This walker is basically performing a top-down SSA renaming 1300 /// pass, where the version stack is used as the cache. This enables it to be 1301 /// significantly more time and memory efficient than using the regular walker, 1302 /// which is walking bottom-up. 1303 class MemorySSA::OptimizeUses { 1304 public: 1305 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1306 BatchAAResults *BAA, DominatorTree *DT) 1307 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1308 1309 void optimizeUses(); 1310 1311 private: 1312 /// This represents where a given memorylocation is in the stack. 1313 struct MemlocStackInfo { 1314 // This essentially is keeping track of versions of the stack. Whenever 1315 // the stack changes due to pushes or pops, these versions increase. 1316 unsigned long StackEpoch; 1317 unsigned long PopEpoch; 1318 // This is the lower bound of places on the stack to check. It is equal to 1319 // the place the last stack walk ended. 1320 // Note: Correctness depends on this being initialized to 0, which densemap 1321 // does 1322 unsigned long LowerBound; 1323 const BasicBlock *LowerBoundBlock; 1324 // This is where the last walk for this memory location ended. 1325 unsigned long LastKill; 1326 bool LastKillValid; 1327 Optional<AliasResult> AR; 1328 }; 1329 1330 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1331 SmallVectorImpl<MemoryAccess *> &, 1332 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1333 1334 MemorySSA *MSSA; 1335 CachingWalker<BatchAAResults> *Walker; 1336 BatchAAResults *AA; 1337 DominatorTree *DT; 1338 }; 1339 1340 } // end namespace llvm 1341 1342 /// Optimize the uses in a given block This is basically the SSA renaming 1343 /// algorithm, with one caveat: We are able to use a single stack for all 1344 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1345 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1346 /// going to be some position in that stack of possible ones. 1347 /// 1348 /// We track the stack positions that each MemoryLocation needs 1349 /// to check, and last ended at. This is because we only want to check the 1350 /// things that changed since last time. The same MemoryLocation should 1351 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1352 /// things like this, and if they start, we can modify MemoryLocOrCall to 1353 /// include relevant data) 1354 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1355 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1356 SmallVectorImpl<MemoryAccess *> &VersionStack, 1357 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1358 1359 /// If no accesses, nothing to do. 1360 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1361 if (Accesses == nullptr) 1362 return; 1363 1364 // Pop everything that doesn't dominate the current block off the stack, 1365 // increment the PopEpoch to account for this. 1366 while (true) { 1367 assert( 1368 !VersionStack.empty() && 1369 "Version stack should have liveOnEntry sentinel dominating everything"); 1370 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1371 if (DT->dominates(BackBlock, BB)) 1372 break; 1373 while (VersionStack.back()->getBlock() == BackBlock) 1374 VersionStack.pop_back(); 1375 ++PopEpoch; 1376 } 1377 1378 for (MemoryAccess &MA : *Accesses) { 1379 auto *MU = dyn_cast<MemoryUse>(&MA); 1380 if (!MU) { 1381 VersionStack.push_back(&MA); 1382 ++StackEpoch; 1383 continue; 1384 } 1385 1386 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1387 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1388 continue; 1389 } 1390 1391 MemoryLocOrCall UseMLOC(MU); 1392 auto &LocInfo = LocStackInfo[UseMLOC]; 1393 // If the pop epoch changed, it means we've removed stuff from top of 1394 // stack due to changing blocks. We may have to reset the lower bound or 1395 // last kill info. 1396 if (LocInfo.PopEpoch != PopEpoch) { 1397 LocInfo.PopEpoch = PopEpoch; 1398 LocInfo.StackEpoch = StackEpoch; 1399 // If the lower bound was in something that no longer dominates us, we 1400 // have to reset it. 1401 // We can't simply track stack size, because the stack may have had 1402 // pushes/pops in the meantime. 1403 // XXX: This is non-optimal, but only is slower cases with heavily 1404 // branching dominator trees. To get the optimal number of queries would 1405 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1406 // the top of that stack dominates us. This does not seem worth it ATM. 1407 // A much cheaper optimization would be to always explore the deepest 1408 // branch of the dominator tree first. This will guarantee this resets on 1409 // the smallest set of blocks. 1410 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1411 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1412 // Reset the lower bound of things to check. 1413 // TODO: Some day we should be able to reset to last kill, rather than 1414 // 0. 1415 LocInfo.LowerBound = 0; 1416 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1417 LocInfo.LastKillValid = false; 1418 } 1419 } else if (LocInfo.StackEpoch != StackEpoch) { 1420 // If all that has changed is the StackEpoch, we only have to check the 1421 // new things on the stack, because we've checked everything before. In 1422 // this case, the lower bound of things to check remains the same. 1423 LocInfo.PopEpoch = PopEpoch; 1424 LocInfo.StackEpoch = StackEpoch; 1425 } 1426 if (!LocInfo.LastKillValid) { 1427 LocInfo.LastKill = VersionStack.size() - 1; 1428 LocInfo.LastKillValid = true; 1429 LocInfo.AR = MayAlias; 1430 } 1431 1432 // At this point, we should have corrected last kill and LowerBound to be 1433 // in bounds. 1434 assert(LocInfo.LowerBound < VersionStack.size() && 1435 "Lower bound out of range"); 1436 assert(LocInfo.LastKill < VersionStack.size() && 1437 "Last kill info out of range"); 1438 // In any case, the new upper bound is the top of the stack. 1439 unsigned long UpperBound = VersionStack.size() - 1; 1440 1441 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1442 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1443 << *(MU->getMemoryInst()) << ")" 1444 << " because there are " 1445 << UpperBound - LocInfo.LowerBound 1446 << " stores to disambiguate\n"); 1447 // Because we did not walk, LastKill is no longer valid, as this may 1448 // have been a kill. 1449 LocInfo.LastKillValid = false; 1450 continue; 1451 } 1452 bool FoundClobberResult = false; 1453 unsigned UpwardWalkLimit = MaxCheckLimit; 1454 while (UpperBound > LocInfo.LowerBound) { 1455 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1456 // For phis, use the walker, see where we ended up, go there 1457 MemoryAccess *Result = 1458 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1459 // We are guaranteed to find it or something is wrong 1460 while (VersionStack[UpperBound] != Result) { 1461 assert(UpperBound != 0); 1462 --UpperBound; 1463 } 1464 FoundClobberResult = true; 1465 break; 1466 } 1467 1468 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1469 // If the lifetime of the pointer ends at this instruction, it's live on 1470 // entry. 1471 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1472 // Reset UpperBound to liveOnEntryDef's place in the stack 1473 UpperBound = 0; 1474 FoundClobberResult = true; 1475 LocInfo.AR = MustAlias; 1476 break; 1477 } 1478 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1479 if (CA.IsClobber) { 1480 FoundClobberResult = true; 1481 LocInfo.AR = CA.AR; 1482 break; 1483 } 1484 --UpperBound; 1485 } 1486 1487 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1488 1489 // At the end of this loop, UpperBound is either a clobber, or lower bound 1490 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1491 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1492 // We were last killed now by where we got to 1493 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1494 LocInfo.AR = None; 1495 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1496 LocInfo.LastKill = UpperBound; 1497 } else { 1498 // Otherwise, we checked all the new ones, and now we know we can get to 1499 // LastKill. 1500 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1501 } 1502 LocInfo.LowerBound = VersionStack.size() - 1; 1503 LocInfo.LowerBoundBlock = BB; 1504 } 1505 } 1506 1507 /// Optimize uses to point to their actual clobbering definitions. 1508 void MemorySSA::OptimizeUses::optimizeUses() { 1509 SmallVector<MemoryAccess *, 16> VersionStack; 1510 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1511 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1512 1513 unsigned long StackEpoch = 1; 1514 unsigned long PopEpoch = 1; 1515 // We perform a non-recursive top-down dominator tree walk. 1516 for (const auto *DomNode : depth_first(DT->getRootNode())) 1517 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1518 LocStackInfo); 1519 } 1520 1521 void MemorySSA::placePHINodes( 1522 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1523 // Determine where our MemoryPhi's should go 1524 ForwardIDFCalculator IDFs(*DT); 1525 IDFs.setDefiningBlocks(DefiningBlocks); 1526 SmallVector<BasicBlock *, 32> IDFBlocks; 1527 IDFs.calculate(IDFBlocks); 1528 1529 // Now place MemoryPhi nodes. 1530 for (auto &BB : IDFBlocks) 1531 createMemoryPhi(BB); 1532 } 1533 1534 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1535 // We create an access to represent "live on entry", for things like 1536 // arguments or users of globals, where the memory they use is defined before 1537 // the beginning of the function. We do not actually insert it into the IR. 1538 // We do not define a live on exit for the immediate uses, and thus our 1539 // semantics do *not* imply that something with no immediate uses can simply 1540 // be removed. 1541 BasicBlock &StartingPoint = F.getEntryBlock(); 1542 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1543 &StartingPoint, NextID++)); 1544 1545 // We maintain lists of memory accesses per-block, trading memory for time. We 1546 // could just look up the memory access for every possible instruction in the 1547 // stream. 1548 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1549 // Go through each block, figure out where defs occur, and chain together all 1550 // the accesses. 1551 for (BasicBlock &B : F) { 1552 bool InsertIntoDef = false; 1553 AccessList *Accesses = nullptr; 1554 DefsList *Defs = nullptr; 1555 for (Instruction &I : B) { 1556 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1557 if (!MUD) 1558 continue; 1559 1560 if (!Accesses) 1561 Accesses = getOrCreateAccessList(&B); 1562 Accesses->push_back(MUD); 1563 if (isa<MemoryDef>(MUD)) { 1564 InsertIntoDef = true; 1565 if (!Defs) 1566 Defs = getOrCreateDefsList(&B); 1567 Defs->push_back(*MUD); 1568 } 1569 } 1570 if (InsertIntoDef) 1571 DefiningBlocks.insert(&B); 1572 } 1573 placePHINodes(DefiningBlocks); 1574 1575 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1576 // filled in with all blocks. 1577 SmallPtrSet<BasicBlock *, 16> Visited; 1578 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1579 1580 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1581 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1582 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1583 1584 // Mark the uses in unreachable blocks as live on entry, so that they go 1585 // somewhere. 1586 for (auto &BB : F) 1587 if (!Visited.count(&BB)) 1588 markUnreachableAsLiveOnEntry(&BB); 1589 } 1590 1591 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1592 1593 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1594 if (Walker) 1595 return Walker.get(); 1596 1597 if (!WalkerBase) 1598 WalkerBase = 1599 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1600 1601 Walker = 1602 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1603 return Walker.get(); 1604 } 1605 1606 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1607 if (SkipWalker) 1608 return SkipWalker.get(); 1609 1610 if (!WalkerBase) 1611 WalkerBase = 1612 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1613 1614 SkipWalker = 1615 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1616 return SkipWalker.get(); 1617 } 1618 1619 1620 // This is a helper function used by the creation routines. It places NewAccess 1621 // into the access and defs lists for a given basic block, at the given 1622 // insertion point. 1623 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1624 const BasicBlock *BB, 1625 InsertionPlace Point) { 1626 auto *Accesses = getOrCreateAccessList(BB); 1627 if (Point == Beginning) { 1628 // If it's a phi node, it goes first, otherwise, it goes after any phi 1629 // nodes. 1630 if (isa<MemoryPhi>(NewAccess)) { 1631 Accesses->push_front(NewAccess); 1632 auto *Defs = getOrCreateDefsList(BB); 1633 Defs->push_front(*NewAccess); 1634 } else { 1635 auto AI = find_if_not( 1636 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1637 Accesses->insert(AI, NewAccess); 1638 if (!isa<MemoryUse>(NewAccess)) { 1639 auto *Defs = getOrCreateDefsList(BB); 1640 auto DI = find_if_not( 1641 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1642 Defs->insert(DI, *NewAccess); 1643 } 1644 } 1645 } else { 1646 Accesses->push_back(NewAccess); 1647 if (!isa<MemoryUse>(NewAccess)) { 1648 auto *Defs = getOrCreateDefsList(BB); 1649 Defs->push_back(*NewAccess); 1650 } 1651 } 1652 BlockNumberingValid.erase(BB); 1653 } 1654 1655 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1656 AccessList::iterator InsertPt) { 1657 auto *Accesses = getWritableBlockAccesses(BB); 1658 bool WasEnd = InsertPt == Accesses->end(); 1659 Accesses->insert(AccessList::iterator(InsertPt), What); 1660 if (!isa<MemoryUse>(What)) { 1661 auto *Defs = getOrCreateDefsList(BB); 1662 // If we got asked to insert at the end, we have an easy job, just shove it 1663 // at the end. If we got asked to insert before an existing def, we also get 1664 // an iterator. If we got asked to insert before a use, we have to hunt for 1665 // the next def. 1666 if (WasEnd) { 1667 Defs->push_back(*What); 1668 } else if (isa<MemoryDef>(InsertPt)) { 1669 Defs->insert(InsertPt->getDefsIterator(), *What); 1670 } else { 1671 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1672 ++InsertPt; 1673 // Either we found a def, or we are inserting at the end 1674 if (InsertPt == Accesses->end()) 1675 Defs->push_back(*What); 1676 else 1677 Defs->insert(InsertPt->getDefsIterator(), *What); 1678 } 1679 } 1680 BlockNumberingValid.erase(BB); 1681 } 1682 1683 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1684 // Keep it in the lookup tables, remove from the lists 1685 removeFromLists(What, false); 1686 1687 // Note that moving should implicitly invalidate the optimized state of a 1688 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1689 // MemoryDef. 1690 if (auto *MD = dyn_cast<MemoryDef>(What)) 1691 MD->resetOptimized(); 1692 What->setBlock(BB); 1693 } 1694 1695 // Move What before Where in the IR. The end result is that What will belong to 1696 // the right lists and have the right Block set, but will not otherwise be 1697 // correct. It will not have the right defining access, and if it is a def, 1698 // things below it will not properly be updated. 1699 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1700 AccessList::iterator Where) { 1701 prepareForMoveTo(What, BB); 1702 insertIntoListsBefore(What, BB, Where); 1703 } 1704 1705 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1706 InsertionPlace Point) { 1707 if (isa<MemoryPhi>(What)) { 1708 assert(Point == Beginning && 1709 "Can only move a Phi at the beginning of the block"); 1710 // Update lookup table entry 1711 ValueToMemoryAccess.erase(What->getBlock()); 1712 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1713 (void)Inserted; 1714 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1715 } 1716 1717 prepareForMoveTo(What, BB); 1718 insertIntoListsForBlock(What, BB, Point); 1719 } 1720 1721 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1722 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1723 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1724 // Phi's always are placed at the front of the block. 1725 insertIntoListsForBlock(Phi, BB, Beginning); 1726 ValueToMemoryAccess[BB] = Phi; 1727 return Phi; 1728 } 1729 1730 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1731 MemoryAccess *Definition, 1732 const MemoryUseOrDef *Template, 1733 bool CreationMustSucceed) { 1734 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1735 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1736 if (CreationMustSucceed) 1737 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1738 "non-memory touching instruction"); 1739 if (NewAccess) { 1740 assert((!Definition || !isa<MemoryUse>(Definition)) && 1741 "A use cannot be a defining access"); 1742 NewAccess->setDefiningAccess(Definition); 1743 } 1744 return NewAccess; 1745 } 1746 1747 // Return true if the instruction has ordering constraints. 1748 // Note specifically that this only considers stores and loads 1749 // because others are still considered ModRef by getModRefInfo. 1750 static inline bool isOrdered(const Instruction *I) { 1751 if (auto *SI = dyn_cast<StoreInst>(I)) { 1752 if (!SI->isUnordered()) 1753 return true; 1754 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1755 if (!LI->isUnordered()) 1756 return true; 1757 } 1758 return false; 1759 } 1760 1761 /// Helper function to create new memory accesses 1762 template <typename AliasAnalysisType> 1763 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1764 AliasAnalysisType *AAP, 1765 const MemoryUseOrDef *Template) { 1766 // The assume intrinsic has a control dependency which we model by claiming 1767 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1768 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1769 // dependencies here. 1770 // FIXME: Replace this special casing with a more accurate modelling of 1771 // assume's control dependency. 1772 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1773 switch (II->getIntrinsicID()) { 1774 default: 1775 break; 1776 case Intrinsic::assume: 1777 case Intrinsic::experimental_noalias_scope_decl: 1778 return nullptr; 1779 } 1780 } 1781 1782 // Using a nonstandard AA pipelines might leave us with unexpected modref 1783 // results for I, so add a check to not model instructions that may not read 1784 // from or write to memory. This is necessary for correctness. 1785 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1786 return nullptr; 1787 1788 bool Def, Use; 1789 if (Template) { 1790 Def = isa<MemoryDef>(Template); 1791 Use = isa<MemoryUse>(Template); 1792 #if !defined(NDEBUG) 1793 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1794 bool DefCheck, UseCheck; 1795 DefCheck = isModSet(ModRef) || isOrdered(I); 1796 UseCheck = isRefSet(ModRef); 1797 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1798 #endif 1799 } else { 1800 // Find out what affect this instruction has on memory. 1801 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1802 // The isOrdered check is used to ensure that volatiles end up as defs 1803 // (atomics end up as ModRef right now anyway). Until we separate the 1804 // ordering chain from the memory chain, this enables people to see at least 1805 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1806 // will still give an answer that bypasses other volatile loads. TODO: 1807 // Separate memory aliasing and ordering into two different chains so that 1808 // we can precisely represent both "what memory will this read/write/is 1809 // clobbered by" and "what instructions can I move this past". 1810 Def = isModSet(ModRef) || isOrdered(I); 1811 Use = isRefSet(ModRef); 1812 } 1813 1814 // It's possible for an instruction to not modify memory at all. During 1815 // construction, we ignore them. 1816 if (!Def && !Use) 1817 return nullptr; 1818 1819 MemoryUseOrDef *MUD; 1820 if (Def) 1821 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1822 else 1823 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1824 ValueToMemoryAccess[I] = MUD; 1825 return MUD; 1826 } 1827 1828 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1829 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1830 assert(MA->use_empty() && 1831 "Trying to remove memory access that still has uses"); 1832 BlockNumbering.erase(MA); 1833 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1834 MUD->setDefiningAccess(nullptr); 1835 // Invalidate our walker's cache if necessary 1836 if (!isa<MemoryUse>(MA)) 1837 getWalker()->invalidateInfo(MA); 1838 1839 Value *MemoryInst; 1840 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1841 MemoryInst = MUD->getMemoryInst(); 1842 else 1843 MemoryInst = MA->getBlock(); 1844 1845 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1846 if (VMA->second == MA) 1847 ValueToMemoryAccess.erase(VMA); 1848 } 1849 1850 /// Properly remove \p MA from all of MemorySSA's lists. 1851 /// 1852 /// Because of the way the intrusive list and use lists work, it is important to 1853 /// do removal in the right order. 1854 /// ShouldDelete defaults to true, and will cause the memory access to also be 1855 /// deleted, not just removed. 1856 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1857 BasicBlock *BB = MA->getBlock(); 1858 // The access list owns the reference, so we erase it from the non-owning list 1859 // first. 1860 if (!isa<MemoryUse>(MA)) { 1861 auto DefsIt = PerBlockDefs.find(BB); 1862 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1863 Defs->remove(*MA); 1864 if (Defs->empty()) 1865 PerBlockDefs.erase(DefsIt); 1866 } 1867 1868 // The erase call here will delete it. If we don't want it deleted, we call 1869 // remove instead. 1870 auto AccessIt = PerBlockAccesses.find(BB); 1871 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1872 if (ShouldDelete) 1873 Accesses->erase(MA); 1874 else 1875 Accesses->remove(MA); 1876 1877 if (Accesses->empty()) { 1878 PerBlockAccesses.erase(AccessIt); 1879 BlockNumberingValid.erase(BB); 1880 } 1881 } 1882 1883 void MemorySSA::print(raw_ostream &OS) const { 1884 MemorySSAAnnotatedWriter Writer(this); 1885 F.print(OS, &Writer); 1886 } 1887 1888 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1889 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1890 #endif 1891 1892 void MemorySSA::verifyMemorySSA() const { 1893 verifyOrderingDominationAndDefUses(F); 1894 verifyDominationNumbers(F); 1895 verifyPrevDefInPhis(F); 1896 // Previously, the verification used to also verify that the clobberingAccess 1897 // cached by MemorySSA is the same as the clobberingAccess found at a later 1898 // query to AA. This does not hold true in general due to the current fragility 1899 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1900 // up. As a result, transformations that are correct, will lead to BasicAA 1901 // returning different Alias answers before and after that transformation. 1902 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1903 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1904 // every transformation, which defeats the purpose of using it. For such an 1905 // example, see test4 added in D51960. 1906 } 1907 1908 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1909 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1910 for (const BasicBlock &BB : F) { 1911 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1912 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1913 auto *Pred = Phi->getIncomingBlock(I); 1914 auto *IncAcc = Phi->getIncomingValue(I); 1915 // If Pred has no unreachable predecessors, get last def looking at 1916 // IDoms. If, while walkings IDoms, any of these has an unreachable 1917 // predecessor, then the incoming def can be any access. 1918 if (auto *DTNode = DT->getNode(Pred)) { 1919 while (DTNode) { 1920 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1921 auto *LastAcc = &*(--DefList->end()); 1922 assert(LastAcc == IncAcc && 1923 "Incorrect incoming access into phi."); 1924 break; 1925 } 1926 DTNode = DTNode->getIDom(); 1927 } 1928 } else { 1929 // If Pred has unreachable predecessors, but has at least a Def, the 1930 // incoming access can be the last Def in Pred, or it could have been 1931 // optimized to LoE. After an update, though, the LoE may have been 1932 // replaced by another access, so IncAcc may be any access. 1933 // If Pred has unreachable predecessors and no Defs, incoming access 1934 // should be LoE; However, after an update, it may be any access. 1935 } 1936 } 1937 } 1938 } 1939 #endif 1940 } 1941 1942 /// Verify that all of the blocks we believe to have valid domination numbers 1943 /// actually have valid domination numbers. 1944 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1945 #ifndef NDEBUG 1946 if (BlockNumberingValid.empty()) 1947 return; 1948 1949 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1950 for (const BasicBlock &BB : F) { 1951 if (!ValidBlocks.count(&BB)) 1952 continue; 1953 1954 ValidBlocks.erase(&BB); 1955 1956 const AccessList *Accesses = getBlockAccesses(&BB); 1957 // It's correct to say an empty block has valid numbering. 1958 if (!Accesses) 1959 continue; 1960 1961 // Block numbering starts at 1. 1962 unsigned long LastNumber = 0; 1963 for (const MemoryAccess &MA : *Accesses) { 1964 auto ThisNumberIter = BlockNumbering.find(&MA); 1965 assert(ThisNumberIter != BlockNumbering.end() && 1966 "MemoryAccess has no domination number in a valid block!"); 1967 1968 unsigned long ThisNumber = ThisNumberIter->second; 1969 assert(ThisNumber > LastNumber && 1970 "Domination numbers should be strictly increasing!"); 1971 LastNumber = ThisNumber; 1972 } 1973 } 1974 1975 assert(ValidBlocks.empty() && 1976 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1977 #endif 1978 } 1979 1980 /// Verify ordering: the order and existence of MemoryAccesses matches the 1981 /// order and existence of memory affecting instructions. 1982 /// Verify domination: each definition dominates all of its uses. 1983 /// Verify def-uses: the immediate use information - walk all the memory 1984 /// accesses and verifying that, for each use, it appears in the appropriate 1985 /// def's use list 1986 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1987 #if !defined(NDEBUG) 1988 // Walk all the blocks, comparing what the lookups think and what the access 1989 // lists think, as well as the order in the blocks vs the order in the access 1990 // lists. 1991 SmallVector<MemoryAccess *, 32> ActualAccesses; 1992 SmallVector<MemoryAccess *, 32> ActualDefs; 1993 for (BasicBlock &B : F) { 1994 const AccessList *AL = getBlockAccesses(&B); 1995 const auto *DL = getBlockDefs(&B); 1996 MemoryPhi *Phi = getMemoryAccess(&B); 1997 if (Phi) { 1998 // Verify ordering. 1999 ActualAccesses.push_back(Phi); 2000 ActualDefs.push_back(Phi); 2001 // Verify domination 2002 for (const Use &U : Phi->uses()) 2003 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2004 #if defined(EXPENSIVE_CHECKS) 2005 // Verify def-uses. 2006 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2007 pred_begin(&B), pred_end(&B))) && 2008 "Incomplete MemoryPhi Node"); 2009 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2010 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2011 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 2012 "Incoming phi block not a block predecessor"); 2013 } 2014 #endif 2015 } 2016 2017 for (Instruction &I : B) { 2018 MemoryUseOrDef *MA = getMemoryAccess(&I); 2019 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2020 "We have memory affecting instructions " 2021 "in this block but they are not in the " 2022 "access list or defs list"); 2023 if (MA) { 2024 // Verify ordering. 2025 ActualAccesses.push_back(MA); 2026 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2027 // Verify ordering. 2028 ActualDefs.push_back(MA); 2029 // Verify domination. 2030 for (const Use &U : MD->uses()) 2031 assert(dominates(MD, U) && 2032 "Memory Def does not dominate it's uses"); 2033 } 2034 #if defined(EXPENSIVE_CHECKS) 2035 // Verify def-uses. 2036 verifyUseInDefs(MA->getDefiningAccess(), MA); 2037 #endif 2038 } 2039 } 2040 // Either we hit the assert, really have no accesses, or we have both 2041 // accesses and an access list. Same with defs. 2042 if (!AL && !DL) 2043 continue; 2044 // Verify ordering. 2045 assert(AL->size() == ActualAccesses.size() && 2046 "We don't have the same number of accesses in the block as on the " 2047 "access list"); 2048 assert((DL || ActualDefs.size() == 0) && 2049 "Either we should have a defs list, or we should have no defs"); 2050 assert((!DL || DL->size() == ActualDefs.size()) && 2051 "We don't have the same number of defs in the block as on the " 2052 "def list"); 2053 auto ALI = AL->begin(); 2054 auto AAI = ActualAccesses.begin(); 2055 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2056 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2057 ++ALI; 2058 ++AAI; 2059 } 2060 ActualAccesses.clear(); 2061 if (DL) { 2062 auto DLI = DL->begin(); 2063 auto ADI = ActualDefs.begin(); 2064 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2065 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2066 ++DLI; 2067 ++ADI; 2068 } 2069 } 2070 ActualDefs.clear(); 2071 } 2072 #endif 2073 } 2074 2075 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2076 /// appears in the use list of \p Def. 2077 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2078 #ifndef NDEBUG 2079 // The live on entry use may cause us to get a NULL def here 2080 if (!Def) 2081 assert(isLiveOnEntryDef(Use) && 2082 "Null def but use not point to live on entry def"); 2083 else 2084 assert(is_contained(Def->users(), Use) && 2085 "Did not find use in def's use list"); 2086 #endif 2087 } 2088 2089 /// Perform a local numbering on blocks so that instruction ordering can be 2090 /// determined in constant time. 2091 /// TODO: We currently just number in order. If we numbered by N, we could 2092 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2093 /// log2(N) sequences of mixed before and after) without needing to invalidate 2094 /// the numbering. 2095 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2096 // The pre-increment ensures the numbers really start at 1. 2097 unsigned long CurrentNumber = 0; 2098 const AccessList *AL = getBlockAccesses(B); 2099 assert(AL != nullptr && "Asking to renumber an empty block"); 2100 for (const auto &I : *AL) 2101 BlockNumbering[&I] = ++CurrentNumber; 2102 BlockNumberingValid.insert(B); 2103 } 2104 2105 /// Determine, for two memory accesses in the same block, 2106 /// whether \p Dominator dominates \p Dominatee. 2107 /// \returns True if \p Dominator dominates \p Dominatee. 2108 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2109 const MemoryAccess *Dominatee) const { 2110 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2111 2112 assert((DominatorBlock == Dominatee->getBlock()) && 2113 "Asking for local domination when accesses are in different blocks!"); 2114 // A node dominates itself. 2115 if (Dominatee == Dominator) 2116 return true; 2117 2118 // When Dominatee is defined on function entry, it is not dominated by another 2119 // memory access. 2120 if (isLiveOnEntryDef(Dominatee)) 2121 return false; 2122 2123 // When Dominator is defined on function entry, it dominates the other memory 2124 // access. 2125 if (isLiveOnEntryDef(Dominator)) 2126 return true; 2127 2128 if (!BlockNumberingValid.count(DominatorBlock)) 2129 renumberBlock(DominatorBlock); 2130 2131 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2132 // All numbers start with 1 2133 assert(DominatorNum != 0 && "Block was not numbered properly"); 2134 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2135 assert(DominateeNum != 0 && "Block was not numbered properly"); 2136 return DominatorNum < DominateeNum; 2137 } 2138 2139 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2140 const MemoryAccess *Dominatee) const { 2141 if (Dominator == Dominatee) 2142 return true; 2143 2144 if (isLiveOnEntryDef(Dominatee)) 2145 return false; 2146 2147 if (Dominator->getBlock() != Dominatee->getBlock()) 2148 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2149 return locallyDominates(Dominator, Dominatee); 2150 } 2151 2152 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2153 const Use &Dominatee) const { 2154 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2155 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2156 // The def must dominate the incoming block of the phi. 2157 if (UseBB != Dominator->getBlock()) 2158 return DT->dominates(Dominator->getBlock(), UseBB); 2159 // If the UseBB and the DefBB are the same, compare locally. 2160 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2161 } 2162 // If it's not a PHI node use, the normal dominates can already handle it. 2163 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2164 } 2165 2166 const static char LiveOnEntryStr[] = "liveOnEntry"; 2167 2168 void MemoryAccess::print(raw_ostream &OS) const { 2169 switch (getValueID()) { 2170 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2171 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2172 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2173 } 2174 llvm_unreachable("invalid value id"); 2175 } 2176 2177 void MemoryDef::print(raw_ostream &OS) const { 2178 MemoryAccess *UO = getDefiningAccess(); 2179 2180 auto printID = [&OS](MemoryAccess *A) { 2181 if (A && A->getID()) 2182 OS << A->getID(); 2183 else 2184 OS << LiveOnEntryStr; 2185 }; 2186 2187 OS << getID() << " = MemoryDef("; 2188 printID(UO); 2189 OS << ")"; 2190 2191 if (isOptimized()) { 2192 OS << "->"; 2193 printID(getOptimized()); 2194 2195 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2196 OS << " " << *AR; 2197 } 2198 } 2199 2200 void MemoryPhi::print(raw_ostream &OS) const { 2201 ListSeparator LS(","); 2202 OS << getID() << " = MemoryPhi("; 2203 for (const auto &Op : operands()) { 2204 BasicBlock *BB = getIncomingBlock(Op); 2205 MemoryAccess *MA = cast<MemoryAccess>(Op); 2206 2207 OS << LS << '{'; 2208 if (BB->hasName()) 2209 OS << BB->getName(); 2210 else 2211 BB->printAsOperand(OS, false); 2212 OS << ','; 2213 if (unsigned ID = MA->getID()) 2214 OS << ID; 2215 else 2216 OS << LiveOnEntryStr; 2217 OS << '}'; 2218 } 2219 OS << ')'; 2220 } 2221 2222 void MemoryUse::print(raw_ostream &OS) const { 2223 MemoryAccess *UO = getDefiningAccess(); 2224 OS << "MemoryUse("; 2225 if (UO && UO->getID()) 2226 OS << UO->getID(); 2227 else 2228 OS << LiveOnEntryStr; 2229 OS << ')'; 2230 2231 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2232 OS << " " << *AR; 2233 } 2234 2235 void MemoryAccess::dump() const { 2236 // Cannot completely remove virtual function even in release mode. 2237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2238 print(dbgs()); 2239 dbgs() << "\n"; 2240 #endif 2241 } 2242 2243 char MemorySSAPrinterLegacyPass::ID = 0; 2244 2245 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2246 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2247 } 2248 2249 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2250 AU.setPreservesAll(); 2251 AU.addRequired<MemorySSAWrapperPass>(); 2252 } 2253 2254 class DOTFuncMSSAInfo { 2255 private: 2256 const Function &F; 2257 MemorySSAAnnotatedWriter MSSAWriter; 2258 2259 public: 2260 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2261 : F(F), MSSAWriter(&MSSA) {} 2262 2263 const Function *getFunction() { return &F; } 2264 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2265 }; 2266 2267 namespace llvm { 2268 2269 template <> 2270 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2271 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2272 return &(CFGInfo->getFunction()->getEntryBlock()); 2273 } 2274 2275 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2276 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2277 2278 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2279 return nodes_iterator(CFGInfo->getFunction()->begin()); 2280 } 2281 2282 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2283 return nodes_iterator(CFGInfo->getFunction()->end()); 2284 } 2285 2286 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2287 return CFGInfo->getFunction()->size(); 2288 } 2289 }; 2290 2291 template <> 2292 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2293 2294 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2295 2296 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2297 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2298 "' function"; 2299 } 2300 2301 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2302 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2303 Node, nullptr, 2304 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2305 BB.print(OS, &CFGInfo->getWriter(), true, true); 2306 }, 2307 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2308 std::string Str = S.substr(I, Idx - I); 2309 StringRef SR = Str; 2310 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2311 SR.count("MemoryUse(")) 2312 return; 2313 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2314 }); 2315 } 2316 2317 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2318 const_succ_iterator I) { 2319 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2320 } 2321 2322 /// Display the raw branch weights from PGO. 2323 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2324 DOTFuncMSSAInfo *CFGInfo) { 2325 return ""; 2326 } 2327 2328 std::string getNodeAttributes(const BasicBlock *Node, 2329 DOTFuncMSSAInfo *CFGInfo) { 2330 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2331 ? "style=filled, fillcolor=lightpink" 2332 : ""; 2333 } 2334 }; 2335 2336 } // namespace llvm 2337 2338 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2339 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2340 if (DotCFGMSSA != "") { 2341 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2342 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2343 } else 2344 MSSA.print(dbgs()); 2345 2346 if (VerifyMemorySSA) 2347 MSSA.verifyMemorySSA(); 2348 return false; 2349 } 2350 2351 AnalysisKey MemorySSAAnalysis::Key; 2352 2353 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2354 FunctionAnalysisManager &AM) { 2355 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2356 auto &AA = AM.getResult<AAManager>(F); 2357 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2358 } 2359 2360 bool MemorySSAAnalysis::Result::invalidate( 2361 Function &F, const PreservedAnalyses &PA, 2362 FunctionAnalysisManager::Invalidator &Inv) { 2363 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2364 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2365 Inv.invalidate<AAManager>(F, PA) || 2366 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2367 } 2368 2369 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2370 FunctionAnalysisManager &AM) { 2371 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2372 if (DotCFGMSSA != "") { 2373 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2374 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2375 } else { 2376 OS << "MemorySSA for function: " << F.getName() << "\n"; 2377 MSSA.print(OS); 2378 } 2379 2380 return PreservedAnalyses::all(); 2381 } 2382 2383 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2384 FunctionAnalysisManager &AM) { 2385 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2386 2387 return PreservedAnalyses::all(); 2388 } 2389 2390 char MemorySSAWrapperPass::ID = 0; 2391 2392 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2393 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2394 } 2395 2396 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2397 2398 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2399 AU.setPreservesAll(); 2400 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2401 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2402 } 2403 2404 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2405 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2406 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2407 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2408 return false; 2409 } 2410 2411 void MemorySSAWrapperPass::verifyAnalysis() const { 2412 if (VerifyMemorySSA) 2413 MSSA->verifyMemorySSA(); 2414 } 2415 2416 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2417 MSSA->print(OS); 2418 } 2419 2420 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2421 2422 /// Walk the use-def chains starting at \p StartingAccess and find 2423 /// the MemoryAccess that actually clobbers Loc. 2424 /// 2425 /// \returns our clobbering memory access 2426 template <typename AliasAnalysisType> 2427 MemoryAccess * 2428 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2429 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2430 unsigned &UpwardWalkLimit) { 2431 if (isa<MemoryPhi>(StartingAccess)) 2432 return StartingAccess; 2433 2434 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2435 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2436 return StartingUseOrDef; 2437 2438 Instruction *I = StartingUseOrDef->getMemoryInst(); 2439 2440 // Conservatively, fences are always clobbers, so don't perform the walk if we 2441 // hit a fence. 2442 if (!isa<CallBase>(I) && I->isFenceLike()) 2443 return StartingUseOrDef; 2444 2445 UpwardsMemoryQuery Q; 2446 Q.OriginalAccess = StartingUseOrDef; 2447 Q.StartingLoc = Loc; 2448 Q.Inst = nullptr; 2449 Q.IsCall = false; 2450 2451 // Unlike the other function, do not walk to the def of a def, because we are 2452 // handed something we already believe is the clobbering access. 2453 // We never set SkipSelf to true in Q in this method. 2454 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2455 ? StartingUseOrDef->getDefiningAccess() 2456 : StartingUseOrDef; 2457 2458 MemoryAccess *Clobber = 2459 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2460 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2461 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2462 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2463 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2464 return Clobber; 2465 } 2466 2467 template <typename AliasAnalysisType> 2468 MemoryAccess * 2469 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2470 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2471 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2472 // If this is a MemoryPhi, we can't do anything. 2473 if (!StartingAccess) 2474 return MA; 2475 2476 bool IsOptimized = false; 2477 2478 // If this is an already optimized use or def, return the optimized result. 2479 // Note: Currently, we store the optimized def result in a separate field, 2480 // since we can't use the defining access. 2481 if (StartingAccess->isOptimized()) { 2482 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2483 return StartingAccess->getOptimized(); 2484 IsOptimized = true; 2485 } 2486 2487 const Instruction *I = StartingAccess->getMemoryInst(); 2488 // We can't sanely do anything with a fence, since they conservatively clobber 2489 // all memory, and have no locations to get pointers from to try to 2490 // disambiguate. 2491 if (!isa<CallBase>(I) && I->isFenceLike()) 2492 return StartingAccess; 2493 2494 UpwardsMemoryQuery Q(I, StartingAccess); 2495 2496 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2497 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2498 StartingAccess->setOptimized(LiveOnEntry); 2499 StartingAccess->setOptimizedAccessType(None); 2500 return LiveOnEntry; 2501 } 2502 2503 MemoryAccess *OptimizedAccess; 2504 if (!IsOptimized) { 2505 // Start with the thing we already think clobbers this location 2506 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2507 2508 // At this point, DefiningAccess may be the live on entry def. 2509 // If it is, we will not get a better result. 2510 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2511 StartingAccess->setOptimized(DefiningAccess); 2512 StartingAccess->setOptimizedAccessType(None); 2513 return DefiningAccess; 2514 } 2515 2516 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2517 StartingAccess->setOptimized(OptimizedAccess); 2518 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2519 StartingAccess->setOptimizedAccessType(None); 2520 else if (Q.AR == MustAlias) 2521 StartingAccess->setOptimizedAccessType(MustAlias); 2522 } else 2523 OptimizedAccess = StartingAccess->getOptimized(); 2524 2525 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2526 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2527 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2528 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2529 2530 MemoryAccess *Result; 2531 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2532 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2533 assert(isa<MemoryDef>(Q.OriginalAccess)); 2534 Q.SkipSelfAccess = true; 2535 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2536 } else 2537 Result = OptimizedAccess; 2538 2539 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2540 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2541 2542 return Result; 2543 } 2544 2545 MemoryAccess * 2546 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2547 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2548 return Use->getDefiningAccess(); 2549 return MA; 2550 } 2551 2552 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2553 MemoryAccess *StartingAccess, const MemoryLocation &) { 2554 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2555 return Use->getDefiningAccess(); 2556 return StartingAccess; 2557 } 2558 2559 void MemoryPhi::deleteMe(DerivedUser *Self) { 2560 delete static_cast<MemoryPhi *>(Self); 2561 } 2562 2563 void MemoryDef::deleteMe(DerivedUser *Self) { 2564 delete static_cast<MemoryDef *>(Self); 2565 } 2566 2567 void MemoryUse::deleteMe(DerivedUser *Self) { 2568 delete static_cast<MemoryUse *>(Self); 2569 } 2570 2571 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { 2572 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { 2573 Ptr = Ptr->stripPointerCasts(); 2574 if (!isa<Instruction>(Ptr)) 2575 return true; 2576 return isa<AllocaInst>(Ptr); 2577 }; 2578 2579 Ptr = Ptr->stripPointerCasts(); 2580 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2581 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2582 GEP->hasAllConstantIndices(); 2583 } 2584 return IsGuaranteedLoopInvariantBase(Ptr); 2585 } 2586