1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSA class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/AssemblyAnnotationWriter.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/FormattedStream.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "memoryssa"
61 
62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
63                       true)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67                     true)
68 
69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70                       "Memory SSA Printer", false, false)
71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73                     "Memory SSA Printer", false, false)
74 
75 static cl::opt<unsigned> MaxCheckLimit(
76     "memssa-check-limit", cl::Hidden, cl::init(100),
77     cl::desc("The maximum number of stores/phis MemorySSA"
78              "will consider trying to walk past (default = 100)"));
79 
80 // Always verify MemorySSA if expensive checking is enabled.
81 #ifdef EXPENSIVE_CHECKS
82 bool llvm::VerifyMemorySSA = true;
83 #else
84 bool llvm::VerifyMemorySSA = false;
85 #endif
86 static cl::opt<bool, true>
87     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
89 
90 namespace llvm {
91 
92 /// An assembly annotator class to print Memory SSA information in
93 /// comments.
94 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
95   friend class MemorySSA;
96 
97   const MemorySSA *MSSA;
98 
99 public:
100   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
101 
102   void emitBasicBlockStartAnnot(const BasicBlock *BB,
103                                 formatted_raw_ostream &OS) override {
104     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105       OS << "; " << *MA << "\n";
106   }
107 
108   void emitInstructionAnnot(const Instruction *I,
109                             formatted_raw_ostream &OS) override {
110     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111       OS << "; " << *MA << "\n";
112   }
113 };
114 
115 } // end namespace llvm
116 
117 namespace {
118 
119 /// Our current alias analysis API differentiates heavily between calls and
120 /// non-calls, and functions called on one usually assert on the other.
121 /// This class encapsulates the distinction to simplify other code that wants
122 /// "Memory affecting instructions and related data" to use as a key.
123 /// For example, this class is used as a densemap key in the use optimizer.
124 class MemoryLocOrCall {
125 public:
126   bool IsCall = false;
127 
128   MemoryLocOrCall() = default;
129   MemoryLocOrCall(MemoryUseOrDef *MUD)
130       : MemoryLocOrCall(MUD->getMemoryInst()) {}
131   MemoryLocOrCall(const MemoryUseOrDef *MUD)
132       : MemoryLocOrCall(MUD->getMemoryInst()) {}
133 
134   MemoryLocOrCall(Instruction *Inst) {
135     if (ImmutableCallSite(Inst)) {
136       IsCall = true;
137       CS = ImmutableCallSite(Inst);
138     } else {
139       IsCall = false;
140       // There is no such thing as a memorylocation for a fence inst, and it is
141       // unique in that regard.
142       if (!isa<FenceInst>(Inst))
143         Loc = MemoryLocation::get(Inst);
144     }
145   }
146 
147   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
148 
149   ImmutableCallSite getCS() const {
150     assert(IsCall);
151     return CS;
152   }
153 
154   MemoryLocation getLoc() const {
155     assert(!IsCall);
156     return Loc;
157   }
158 
159   bool operator==(const MemoryLocOrCall &Other) const {
160     if (IsCall != Other.IsCall)
161       return false;
162 
163     if (!IsCall)
164       return Loc == Other.Loc;
165 
166     if (CS.getCalledValue() != Other.CS.getCalledValue())
167       return false;
168 
169     return CS.arg_size() == Other.CS.arg_size() &&
170            std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
171   }
172 
173 private:
174   union {
175     ImmutableCallSite CS;
176     MemoryLocation Loc;
177   };
178 };
179 
180 } // end anonymous namespace
181 
182 namespace llvm {
183 
184 template <> struct DenseMapInfo<MemoryLocOrCall> {
185   static inline MemoryLocOrCall getEmptyKey() {
186     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
187   }
188 
189   static inline MemoryLocOrCall getTombstoneKey() {
190     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
191   }
192 
193   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
194     if (!MLOC.IsCall)
195       return hash_combine(
196           MLOC.IsCall,
197           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
198 
199     hash_code hash =
200         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
201                                       MLOC.getCS().getCalledValue()));
202 
203     for (const Value *Arg : MLOC.getCS().args())
204       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
205     return hash;
206   }
207 
208   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
209     return LHS == RHS;
210   }
211 };
212 
213 } // end namespace llvm
214 
215 /// This does one-way checks to see if Use could theoretically be hoisted above
216 /// MayClobber. This will not check the other way around.
217 ///
218 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
219 /// MayClobber, with no potentially clobbering operations in between them.
220 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
221 static bool areLoadsReorderable(const LoadInst *Use,
222                                 const LoadInst *MayClobber) {
223   bool VolatileUse = Use->isVolatile();
224   bool VolatileClobber = MayClobber->isVolatile();
225   // Volatile operations may never be reordered with other volatile operations.
226   if (VolatileUse && VolatileClobber)
227     return false;
228   // Otherwise, volatile doesn't matter here. From the language reference:
229   // 'optimizers may change the order of volatile operations relative to
230   // non-volatile operations.'"
231 
232   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
233   // is weaker, it can be moved above other loads. We just need to be sure that
234   // MayClobber isn't an acquire load, because loads can't be moved above
235   // acquire loads.
236   //
237   // Note that this explicitly *does* allow the free reordering of monotonic (or
238   // weaker) loads of the same address.
239   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
240   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
241                                                      AtomicOrdering::Acquire);
242   return !(SeqCstUse || MayClobberIsAcquire);
243 }
244 
245 namespace {
246 
247 struct ClobberAlias {
248   bool IsClobber;
249   Optional<AliasResult> AR;
250 };
251 
252 } // end anonymous namespace
253 
254 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
255 // ignored if IsClobber = false.
256 static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
257                                              const MemoryLocation &UseLoc,
258                                              const Instruction *UseInst,
259                                              AliasAnalysis &AA) {
260   Instruction *DefInst = MD->getMemoryInst();
261   assert(DefInst && "Defining instruction not actually an instruction");
262   ImmutableCallSite UseCS(UseInst);
263   Optional<AliasResult> AR;
264 
265   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
266     // These intrinsics will show up as affecting memory, but they are just
267     // markers, mostly.
268     //
269     // FIXME: We probably don't actually want MemorySSA to model these at all
270     // (including creating MemoryAccesses for them): we just end up inventing
271     // clobbers where they don't really exist at all. Please see D43269 for
272     // context.
273     switch (II->getIntrinsicID()) {
274     case Intrinsic::lifetime_start:
275       if (UseCS)
276         return {false, NoAlias};
277       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
278       return {AR != NoAlias, AR};
279     case Intrinsic::lifetime_end:
280     case Intrinsic::invariant_start:
281     case Intrinsic::invariant_end:
282     case Intrinsic::assume:
283       return {false, NoAlias};
284     default:
285       break;
286     }
287   }
288 
289   if (UseCS) {
290     ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
291     AR = isMustSet(I) ? MustAlias : MayAlias;
292     return {isModOrRefSet(I), AR};
293   }
294 
295   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
296     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
297       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
298 
299   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
300   AR = isMustSet(I) ? MustAlias : MayAlias;
301   return {isModSet(I), AR};
302 }
303 
304 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
305                                              const MemoryUseOrDef *MU,
306                                              const MemoryLocOrCall &UseMLOC,
307                                              AliasAnalysis &AA) {
308   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
309   // to exist while MemoryLocOrCall is pushed through places.
310   if (UseMLOC.IsCall)
311     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
312                                     AA);
313   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
314                                   AA);
315 }
316 
317 // Return true when MD may alias MU, return false otherwise.
318 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
319                                         AliasAnalysis &AA) {
320   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
321 }
322 
323 namespace {
324 
325 struct UpwardsMemoryQuery {
326   // True if our original query started off as a call
327   bool IsCall = false;
328   // The pointer location we started the query with. This will be empty if
329   // IsCall is true.
330   MemoryLocation StartingLoc;
331   // This is the instruction we were querying about.
332   const Instruction *Inst = nullptr;
333   // The MemoryAccess we actually got called with, used to test local domination
334   const MemoryAccess *OriginalAccess = nullptr;
335   Optional<AliasResult> AR = MayAlias;
336 
337   UpwardsMemoryQuery() = default;
338 
339   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
340       : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
341     if (!IsCall)
342       StartingLoc = MemoryLocation::get(Inst);
343   }
344 };
345 
346 } // end anonymous namespace
347 
348 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349                            AliasAnalysis &AA) {
350   Instruction *Inst = MD->getMemoryInst();
351   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352     switch (II->getIntrinsicID()) {
353     case Intrinsic::lifetime_end:
354       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
355     default:
356       return false;
357     }
358   }
359   return false;
360 }
361 
362 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
363                                                    const Instruction *I) {
364   // If the memory can't be changed, then loads of the memory can't be
365   // clobbered.
366   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
367                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
368                                                           getPointerOperand()));
369 }
370 
371 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
372 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373 ///
374 /// This is meant to be as simple and self-contained as possible. Because it
375 /// uses no cache, etc., it can be relatively expensive.
376 ///
377 /// \param Start     The MemoryAccess that we want to walk from.
378 /// \param ClobberAt A clobber for Start.
379 /// \param StartLoc  The MemoryLocation for Start.
380 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
381 /// \param Query     The UpwardsMemoryQuery we used for our search.
382 /// \param AA        The AliasAnalysis we used for our search.
383 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
384 static void
385 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
386                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
387                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA,
388                    bool AllowImpreciseClobber = false) {
389   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
390 
391   if (MSSA.isLiveOnEntryDef(Start)) {
392     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
393            "liveOnEntry must clobber itself");
394     return;
395   }
396 
397   bool FoundClobber = false;
398   DenseSet<ConstMemoryAccessPair> VisitedPhis;
399   SmallVector<ConstMemoryAccessPair, 8> Worklist;
400   Worklist.emplace_back(Start, StartLoc);
401   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
402   // is found, complain.
403   while (!Worklist.empty()) {
404     auto MAP = Worklist.pop_back_val();
405     // All we care about is that nothing from Start to ClobberAt clobbers Start.
406     // We learn nothing from revisiting nodes.
407     if (!VisitedPhis.insert(MAP).second)
408       continue;
409 
410     for (const auto *MA : def_chain(MAP.first)) {
411       if (MA == ClobberAt) {
412         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
413           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
414           // since it won't let us short-circuit.
415           //
416           // Also, note that this can't be hoisted out of the `Worklist` loop,
417           // since MD may only act as a clobber for 1 of N MemoryLocations.
418           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
419           if (!FoundClobber) {
420             ClobberAlias CA =
421                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
422             if (CA.IsClobber) {
423               FoundClobber = true;
424               // Not used: CA.AR;
425             }
426           }
427         }
428         break;
429       }
430 
431       // We should never hit liveOnEntry, unless it's the clobber.
432       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
433 
434       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
435         // If Start is a Def, skip self.
436         if (MD == Start)
437           continue;
438 
439         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
440                     .IsClobber &&
441                "Found clobber before reaching ClobberAt!");
442         continue;
443       }
444 
445       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
446         (void)MU;
447         assert (MU == Start &&
448                 "Can only find use in def chain if Start is a use");
449         continue;
450       }
451 
452       assert(isa<MemoryPhi>(MA));
453       Worklist.append(
454           upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
455           upward_defs_end());
456     }
457   }
458 
459   // If the verify is done following an optimization, it's possible that
460   // ClobberAt was a conservative clobbering, that we can now infer is not a
461   // true clobbering access. Don't fail the verify if that's the case.
462   // We do have accesses that claim they're optimized, but could be optimized
463   // further. Updating all these can be expensive, so allow it for now (FIXME).
464   if (AllowImpreciseClobber)
465     return;
466 
467   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
468   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
469   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
470          "ClobberAt never acted as a clobber");
471 }
472 
473 namespace {
474 
475 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
476 /// in one class.
477 class ClobberWalker {
478   /// Save a few bytes by using unsigned instead of size_t.
479   using ListIndex = unsigned;
480 
481   /// Represents a span of contiguous MemoryDefs, potentially ending in a
482   /// MemoryPhi.
483   struct DefPath {
484     MemoryLocation Loc;
485     // Note that, because we always walk in reverse, Last will always dominate
486     // First. Also note that First and Last are inclusive.
487     MemoryAccess *First;
488     MemoryAccess *Last;
489     Optional<ListIndex> Previous;
490 
491     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
492             Optional<ListIndex> Previous)
493         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
494 
495     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
496             Optional<ListIndex> Previous)
497         : DefPath(Loc, Init, Init, Previous) {}
498   };
499 
500   const MemorySSA &MSSA;
501   AliasAnalysis &AA;
502   DominatorTree &DT;
503   UpwardsMemoryQuery *Query;
504 
505   // Phi optimization bookkeeping
506   SmallVector<DefPath, 32> Paths;
507   DenseSet<ConstMemoryAccessPair> VisitedPhis;
508 
509   /// Find the nearest def or phi that `From` can legally be optimized to.
510   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
511     assert(From->getNumOperands() && "Phi with no operands?");
512 
513     BasicBlock *BB = From->getBlock();
514     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
515     DomTreeNode *Node = DT.getNode(BB);
516     while ((Node = Node->getIDom())) {
517       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
518       if (Defs)
519         return &*Defs->rbegin();
520     }
521     return Result;
522   }
523 
524   /// Result of calling walkToPhiOrClobber.
525   struct UpwardsWalkResult {
526     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
527     /// both. Include alias info when clobber found.
528     MemoryAccess *Result;
529     bool IsKnownClobber;
530     Optional<AliasResult> AR;
531   };
532 
533   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
534   /// This will update Desc.Last as it walks. It will (optionally) also stop at
535   /// StopAt.
536   ///
537   /// This does not test for whether StopAt is a clobber
538   UpwardsWalkResult
539   walkToPhiOrClobber(DefPath &Desc,
540                      const MemoryAccess *StopAt = nullptr) const {
541     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
542 
543     for (MemoryAccess *Current : def_chain(Desc.Last)) {
544       Desc.Last = Current;
545       if (Current == StopAt)
546         return {Current, false, MayAlias};
547 
548       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
549         if (MSSA.isLiveOnEntryDef(MD))
550           return {MD, true, MustAlias};
551         ClobberAlias CA =
552             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
553         if (CA.IsClobber)
554           return {MD, true, CA.AR};
555       }
556     }
557 
558     assert(isa<MemoryPhi>(Desc.Last) &&
559            "Ended at a non-clobber that's not a phi?");
560     return {Desc.Last, false, MayAlias};
561   }
562 
563   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
564                    ListIndex PriorNode) {
565     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
566                                  upward_defs_end());
567     for (const MemoryAccessPair &P : UpwardDefs) {
568       PausedSearches.push_back(Paths.size());
569       Paths.emplace_back(P.second, P.first, PriorNode);
570     }
571   }
572 
573   /// Represents a search that terminated after finding a clobber. This clobber
574   /// may or may not be present in the path of defs from LastNode..SearchStart,
575   /// since it may have been retrieved from cache.
576   struct TerminatedPath {
577     MemoryAccess *Clobber;
578     ListIndex LastNode;
579   };
580 
581   /// Get an access that keeps us from optimizing to the given phi.
582   ///
583   /// PausedSearches is an array of indices into the Paths array. Its incoming
584   /// value is the indices of searches that stopped at the last phi optimization
585   /// target. It's left in an unspecified state.
586   ///
587   /// If this returns None, NewPaused is a vector of searches that terminated
588   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
589   Optional<TerminatedPath>
590   getBlockingAccess(const MemoryAccess *StopWhere,
591                     SmallVectorImpl<ListIndex> &PausedSearches,
592                     SmallVectorImpl<ListIndex> &NewPaused,
593                     SmallVectorImpl<TerminatedPath> &Terminated) {
594     assert(!PausedSearches.empty() && "No searches to continue?");
595 
596     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
597     // PausedSearches as our stack.
598     while (!PausedSearches.empty()) {
599       ListIndex PathIndex = PausedSearches.pop_back_val();
600       DefPath &Node = Paths[PathIndex];
601 
602       // If we've already visited this path with this MemoryLocation, we don't
603       // need to do so again.
604       //
605       // NOTE: That we just drop these paths on the ground makes caching
606       // behavior sporadic. e.g. given a diamond:
607       //  A
608       // B C
609       //  D
610       //
611       // ...If we walk D, B, A, C, we'll only cache the result of phi
612       // optimization for A, B, and D; C will be skipped because it dies here.
613       // This arguably isn't the worst thing ever, since:
614       //   - We generally query things in a top-down order, so if we got below D
615       //     without needing cache entries for {C, MemLoc}, then chances are
616       //     that those cache entries would end up ultimately unused.
617       //   - We still cache things for A, so C only needs to walk up a bit.
618       // If this behavior becomes problematic, we can fix without a ton of extra
619       // work.
620       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
621         continue;
622 
623       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
624       if (Res.IsKnownClobber) {
625         assert(Res.Result != StopWhere);
626         // If this wasn't a cache hit, we hit a clobber when walking. That's a
627         // failure.
628         TerminatedPath Term{Res.Result, PathIndex};
629         if (!MSSA.dominates(Res.Result, StopWhere))
630           return Term;
631 
632         // Otherwise, it's a valid thing to potentially optimize to.
633         Terminated.push_back(Term);
634         continue;
635       }
636 
637       if (Res.Result == StopWhere) {
638         // We've hit our target. Save this path off for if we want to continue
639         // walking.
640         NewPaused.push_back(PathIndex);
641         continue;
642       }
643 
644       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
645       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
646     }
647 
648     return None;
649   }
650 
651   template <typename T, typename Walker>
652   struct generic_def_path_iterator
653       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
654                                     std::forward_iterator_tag, T *> {
655     generic_def_path_iterator() = default;
656     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
657 
658     T &operator*() const { return curNode(); }
659 
660     generic_def_path_iterator &operator++() {
661       N = curNode().Previous;
662       return *this;
663     }
664 
665     bool operator==(const generic_def_path_iterator &O) const {
666       if (N.hasValue() != O.N.hasValue())
667         return false;
668       return !N.hasValue() || *N == *O.N;
669     }
670 
671   private:
672     T &curNode() const { return W->Paths[*N]; }
673 
674     Walker *W = nullptr;
675     Optional<ListIndex> N = None;
676   };
677 
678   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
679   using const_def_path_iterator =
680       generic_def_path_iterator<const DefPath, const ClobberWalker>;
681 
682   iterator_range<def_path_iterator> def_path(ListIndex From) {
683     return make_range(def_path_iterator(this, From), def_path_iterator());
684   }
685 
686   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
687     return make_range(const_def_path_iterator(this, From),
688                       const_def_path_iterator());
689   }
690 
691   struct OptznResult {
692     /// The path that contains our result.
693     TerminatedPath PrimaryClobber;
694     /// The paths that we can legally cache back from, but that aren't
695     /// necessarily the result of the Phi optimization.
696     SmallVector<TerminatedPath, 4> OtherClobbers;
697   };
698 
699   ListIndex defPathIndex(const DefPath &N) const {
700     // The assert looks nicer if we don't need to do &N
701     const DefPath *NP = &N;
702     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
703            "Out of bounds DefPath!");
704     return NP - &Paths.front();
705   }
706 
707   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
708   /// that act as legal clobbers. Note that this won't return *all* clobbers.
709   ///
710   /// Phi optimization algorithm tl;dr:
711   ///   - Find the earliest def/phi, A, we can optimize to
712   ///   - Find if all paths from the starting memory access ultimately reach A
713   ///     - If not, optimization isn't possible.
714   ///     - Otherwise, walk from A to another clobber or phi, A'.
715   ///       - If A' is a def, we're done.
716   ///       - If A' is a phi, try to optimize it.
717   ///
718   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
719   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
720   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
721                              const MemoryLocation &Loc) {
722     assert(Paths.empty() && VisitedPhis.empty() &&
723            "Reset the optimization state.");
724 
725     Paths.emplace_back(Loc, Start, Phi, None);
726     // Stores how many "valid" optimization nodes we had prior to calling
727     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
728     auto PriorPathsSize = Paths.size();
729 
730     SmallVector<ListIndex, 16> PausedSearches;
731     SmallVector<ListIndex, 8> NewPaused;
732     SmallVector<TerminatedPath, 4> TerminatedPaths;
733 
734     addSearches(Phi, PausedSearches, 0);
735 
736     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
737     // Paths.
738     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
739       assert(!Paths.empty() && "Need a path to move");
740       auto Dom = Paths.begin();
741       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
742         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
743           Dom = I;
744       auto Last = Paths.end() - 1;
745       if (Last != Dom)
746         std::iter_swap(Last, Dom);
747     };
748 
749     MemoryPhi *Current = Phi;
750     while (true) {
751       assert(!MSSA.isLiveOnEntryDef(Current) &&
752              "liveOnEntry wasn't treated as a clobber?");
753 
754       const auto *Target = getWalkTarget(Current);
755       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
756       // optimization for the prior phi.
757       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
758         return MSSA.dominates(P.Clobber, Target);
759       }));
760 
761       // FIXME: This is broken, because the Blocker may be reported to be
762       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
763       // For the moment, this is fine, since we do nothing with blocker info.
764       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
765               Target, PausedSearches, NewPaused, TerminatedPaths)) {
766 
767         // Find the node we started at. We can't search based on N->Last, since
768         // we may have gone around a loop with a different MemoryLocation.
769         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
770           return defPathIndex(N) < PriorPathsSize;
771         });
772         assert(Iter != def_path_iterator());
773 
774         DefPath &CurNode = *Iter;
775         assert(CurNode.Last == Current);
776 
777         // Two things:
778         // A. We can't reliably cache all of NewPaused back. Consider a case
779         //    where we have two paths in NewPaused; one of which can't optimize
780         //    above this phi, whereas the other can. If we cache the second path
781         //    back, we'll end up with suboptimal cache entries. We can handle
782         //    cases like this a bit better when we either try to find all
783         //    clobbers that block phi optimization, or when our cache starts
784         //    supporting unfinished searches.
785         // B. We can't reliably cache TerminatedPaths back here without doing
786         //    extra checks; consider a case like:
787         //       T
788         //      / \
789         //     D   C
790         //      \ /
791         //       S
792         //    Where T is our target, C is a node with a clobber on it, D is a
793         //    diamond (with a clobber *only* on the left or right node, N), and
794         //    S is our start. Say we walk to D, through the node opposite N
795         //    (read: ignoring the clobber), and see a cache entry in the top
796         //    node of D. That cache entry gets put into TerminatedPaths. We then
797         //    walk up to C (N is later in our worklist), find the clobber, and
798         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
799         //    the bottom part of D to the cached clobber, ignoring the clobber
800         //    in N. Again, this problem goes away if we start tracking all
801         //    blockers for a given phi optimization.
802         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
803         return {Result, {}};
804       }
805 
806       // If there's nothing left to search, then all paths led to valid clobbers
807       // that we got from our cache; pick the nearest to the start, and allow
808       // the rest to be cached back.
809       if (NewPaused.empty()) {
810         MoveDominatedPathToEnd(TerminatedPaths);
811         TerminatedPath Result = TerminatedPaths.pop_back_val();
812         return {Result, std::move(TerminatedPaths)};
813       }
814 
815       MemoryAccess *DefChainEnd = nullptr;
816       SmallVector<TerminatedPath, 4> Clobbers;
817       for (ListIndex Paused : NewPaused) {
818         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
819         if (WR.IsKnownClobber)
820           Clobbers.push_back({WR.Result, Paused});
821         else
822           // Micro-opt: If we hit the end of the chain, save it.
823           DefChainEnd = WR.Result;
824       }
825 
826       if (!TerminatedPaths.empty()) {
827         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
828         // do it now.
829         if (!DefChainEnd)
830           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
831             DefChainEnd = MA;
832 
833         // If any of the terminated paths don't dominate the phi we'll try to
834         // optimize, we need to figure out what they are and quit.
835         const BasicBlock *ChainBB = DefChainEnd->getBlock();
836         for (const TerminatedPath &TP : TerminatedPaths) {
837           // Because we know that DefChainEnd is as "high" as we can go, we
838           // don't need local dominance checks; BB dominance is sufficient.
839           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
840             Clobbers.push_back(TP);
841         }
842       }
843 
844       // If we have clobbers in the def chain, find the one closest to Current
845       // and quit.
846       if (!Clobbers.empty()) {
847         MoveDominatedPathToEnd(Clobbers);
848         TerminatedPath Result = Clobbers.pop_back_val();
849         return {Result, std::move(Clobbers)};
850       }
851 
852       assert(all_of(NewPaused,
853                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
854 
855       // Because liveOnEntry is a clobber, this must be a phi.
856       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
857 
858       PriorPathsSize = Paths.size();
859       PausedSearches.clear();
860       for (ListIndex I : NewPaused)
861         addSearches(DefChainPhi, PausedSearches, I);
862       NewPaused.clear();
863 
864       Current = DefChainPhi;
865     }
866   }
867 
868   void verifyOptResult(const OptznResult &R) const {
869     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
870       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
871     }));
872   }
873 
874   void resetPhiOptznState() {
875     Paths.clear();
876     VisitedPhis.clear();
877   }
878 
879 public:
880   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
881       : MSSA(MSSA), AA(AA), DT(DT) {}
882 
883   /// Finds the nearest clobber for the given query, optimizing phis if
884   /// possible.
885   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
886     Query = &Q;
887 
888     MemoryAccess *Current = Start;
889     // This walker pretends uses don't exist. If we're handed one, silently grab
890     // its def. (This has the nice side-effect of ensuring we never cache uses)
891     if (auto *MU = dyn_cast<MemoryUse>(Start))
892       Current = MU->getDefiningAccess();
893 
894     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
895     // Fast path for the overly-common case (no crazy phi optimization
896     // necessary)
897     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
898     MemoryAccess *Result;
899     if (WalkResult.IsKnownClobber) {
900       Result = WalkResult.Result;
901       Q.AR = WalkResult.AR;
902     } else {
903       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
904                                           Current, Q.StartingLoc);
905       verifyOptResult(OptRes);
906       resetPhiOptznState();
907       Result = OptRes.PrimaryClobber.Clobber;
908     }
909 
910 #ifdef EXPENSIVE_CHECKS
911     checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
912 #endif
913     return Result;
914   }
915 
916   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
917 };
918 
919 struct RenamePassData {
920   DomTreeNode *DTN;
921   DomTreeNode::const_iterator ChildIt;
922   MemoryAccess *IncomingVal;
923 
924   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
925                  MemoryAccess *M)
926       : DTN(D), ChildIt(It), IncomingVal(M) {}
927 
928   void swap(RenamePassData &RHS) {
929     std::swap(DTN, RHS.DTN);
930     std::swap(ChildIt, RHS.ChildIt);
931     std::swap(IncomingVal, RHS.IncomingVal);
932   }
933 };
934 
935 } // end anonymous namespace
936 
937 namespace llvm {
938 
939 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
940 /// longer does caching on its own, but the name has been retained for the
941 /// moment.
942 class MemorySSA::CachingWalker final : public MemorySSAWalker {
943   ClobberWalker Walker;
944 
945   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
946 
947 public:
948   CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
949   ~CachingWalker() override = default;
950 
951   using MemorySSAWalker::getClobberingMemoryAccess;
952 
953   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
954   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
955                                           const MemoryLocation &) override;
956   void invalidateInfo(MemoryAccess *) override;
957 
958   void verify(const MemorySSA *MSSA) override {
959     MemorySSAWalker::verify(MSSA);
960     Walker.verify(MSSA);
961   }
962 };
963 
964 } // end namespace llvm
965 
966 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
967                                     bool RenameAllUses) {
968   // Pass through values to our successors
969   for (const BasicBlock *S : successors(BB)) {
970     auto It = PerBlockAccesses.find(S);
971     // Rename the phi nodes in our successor block
972     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
973       continue;
974     AccessList *Accesses = It->second.get();
975     auto *Phi = cast<MemoryPhi>(&Accesses->front());
976     if (RenameAllUses) {
977       int PhiIndex = Phi->getBasicBlockIndex(BB);
978       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
979       Phi->setIncomingValue(PhiIndex, IncomingVal);
980     } else
981       Phi->addIncoming(IncomingVal, BB);
982   }
983 }
984 
985 /// Rename a single basic block into MemorySSA form.
986 /// Uses the standard SSA renaming algorithm.
987 /// \returns The new incoming value.
988 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
989                                      bool RenameAllUses) {
990   auto It = PerBlockAccesses.find(BB);
991   // Skip most processing if the list is empty.
992   if (It != PerBlockAccesses.end()) {
993     AccessList *Accesses = It->second.get();
994     for (MemoryAccess &L : *Accesses) {
995       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
996         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
997           MUD->setDefiningAccess(IncomingVal);
998         if (isa<MemoryDef>(&L))
999           IncomingVal = &L;
1000       } else {
1001         IncomingVal = &L;
1002       }
1003     }
1004   }
1005   return IncomingVal;
1006 }
1007 
1008 /// This is the standard SSA renaming algorithm.
1009 ///
1010 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1011 /// in phi nodes in our successors.
1012 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1013                            SmallPtrSetImpl<BasicBlock *> &Visited,
1014                            bool SkipVisited, bool RenameAllUses) {
1015   SmallVector<RenamePassData, 32> WorkStack;
1016   // Skip everything if we already renamed this block and we are skipping.
1017   // Note: You can't sink this into the if, because we need it to occur
1018   // regardless of whether we skip blocks or not.
1019   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1020   if (SkipVisited && AlreadyVisited)
1021     return;
1022 
1023   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1024   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1025   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1026 
1027   while (!WorkStack.empty()) {
1028     DomTreeNode *Node = WorkStack.back().DTN;
1029     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1030     IncomingVal = WorkStack.back().IncomingVal;
1031 
1032     if (ChildIt == Node->end()) {
1033       WorkStack.pop_back();
1034     } else {
1035       DomTreeNode *Child = *ChildIt;
1036       ++WorkStack.back().ChildIt;
1037       BasicBlock *BB = Child->getBlock();
1038       // Note: You can't sink this into the if, because we need it to occur
1039       // regardless of whether we skip blocks or not.
1040       AlreadyVisited = !Visited.insert(BB).second;
1041       if (SkipVisited && AlreadyVisited) {
1042         // We already visited this during our renaming, which can happen when
1043         // being asked to rename multiple blocks. Figure out the incoming val,
1044         // which is the last def.
1045         // Incoming value can only change if there is a block def, and in that
1046         // case, it's the last block def in the list.
1047         if (auto *BlockDefs = getWritableBlockDefs(BB))
1048           IncomingVal = &*BlockDefs->rbegin();
1049       } else
1050         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1051       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1052       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1053     }
1054   }
1055 }
1056 
1057 /// This handles unreachable block accesses by deleting phi nodes in
1058 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1059 /// being uses of the live on entry definition.
1060 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1061   assert(!DT->isReachableFromEntry(BB) &&
1062          "Reachable block found while handling unreachable blocks");
1063 
1064   // Make sure phi nodes in our reachable successors end up with a
1065   // LiveOnEntryDef for our incoming edge, even though our block is forward
1066   // unreachable.  We could just disconnect these blocks from the CFG fully,
1067   // but we do not right now.
1068   for (const BasicBlock *S : successors(BB)) {
1069     if (!DT->isReachableFromEntry(S))
1070       continue;
1071     auto It = PerBlockAccesses.find(S);
1072     // Rename the phi nodes in our successor block
1073     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1074       continue;
1075     AccessList *Accesses = It->second.get();
1076     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1077     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1078   }
1079 
1080   auto It = PerBlockAccesses.find(BB);
1081   if (It == PerBlockAccesses.end())
1082     return;
1083 
1084   auto &Accesses = It->second;
1085   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1086     auto Next = std::next(AI);
1087     // If we have a phi, just remove it. We are going to replace all
1088     // users with live on entry.
1089     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1090       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1091     else
1092       Accesses->erase(AI);
1093     AI = Next;
1094   }
1095 }
1096 
1097 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1098     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1099       NextID(0) {
1100   buildMemorySSA();
1101 }
1102 
1103 MemorySSA::~MemorySSA() {
1104   // Drop all our references
1105   for (const auto &Pair : PerBlockAccesses)
1106     for (MemoryAccess &MA : *Pair.second)
1107       MA.dropAllReferences();
1108 }
1109 
1110 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1111   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1112 
1113   if (Res.second)
1114     Res.first->second = llvm::make_unique<AccessList>();
1115   return Res.first->second.get();
1116 }
1117 
1118 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1119   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1120 
1121   if (Res.second)
1122     Res.first->second = llvm::make_unique<DefsList>();
1123   return Res.first->second.get();
1124 }
1125 
1126 namespace llvm {
1127 
1128 /// This class is a batch walker of all MemoryUse's in the program, and points
1129 /// their defining access at the thing that actually clobbers them.  Because it
1130 /// is a batch walker that touches everything, it does not operate like the
1131 /// other walkers.  This walker is basically performing a top-down SSA renaming
1132 /// pass, where the version stack is used as the cache.  This enables it to be
1133 /// significantly more time and memory efficient than using the regular walker,
1134 /// which is walking bottom-up.
1135 class MemorySSA::OptimizeUses {
1136 public:
1137   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1138                DominatorTree *DT)
1139       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1140     Walker = MSSA->getWalker();
1141   }
1142 
1143   void optimizeUses();
1144 
1145 private:
1146   /// This represents where a given memorylocation is in the stack.
1147   struct MemlocStackInfo {
1148     // This essentially is keeping track of versions of the stack. Whenever
1149     // the stack changes due to pushes or pops, these versions increase.
1150     unsigned long StackEpoch;
1151     unsigned long PopEpoch;
1152     // This is the lower bound of places on the stack to check. It is equal to
1153     // the place the last stack walk ended.
1154     // Note: Correctness depends on this being initialized to 0, which densemap
1155     // does
1156     unsigned long LowerBound;
1157     const BasicBlock *LowerBoundBlock;
1158     // This is where the last walk for this memory location ended.
1159     unsigned long LastKill;
1160     bool LastKillValid;
1161     Optional<AliasResult> AR;
1162   };
1163 
1164   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1165                            SmallVectorImpl<MemoryAccess *> &,
1166                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1167 
1168   MemorySSA *MSSA;
1169   MemorySSAWalker *Walker;
1170   AliasAnalysis *AA;
1171   DominatorTree *DT;
1172 };
1173 
1174 } // end namespace llvm
1175 
1176 /// Optimize the uses in a given block This is basically the SSA renaming
1177 /// algorithm, with one caveat: We are able to use a single stack for all
1178 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1179 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1180 /// going to be some position in that stack of possible ones.
1181 ///
1182 /// We track the stack positions that each MemoryLocation needs
1183 /// to check, and last ended at.  This is because we only want to check the
1184 /// things that changed since last time.  The same MemoryLocation should
1185 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1186 /// things like this, and if they start, we can modify MemoryLocOrCall to
1187 /// include relevant data)
1188 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1189     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1190     SmallVectorImpl<MemoryAccess *> &VersionStack,
1191     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1192 
1193   /// If no accesses, nothing to do.
1194   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1195   if (Accesses == nullptr)
1196     return;
1197 
1198   // Pop everything that doesn't dominate the current block off the stack,
1199   // increment the PopEpoch to account for this.
1200   while (true) {
1201     assert(
1202         !VersionStack.empty() &&
1203         "Version stack should have liveOnEntry sentinel dominating everything");
1204     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1205     if (DT->dominates(BackBlock, BB))
1206       break;
1207     while (VersionStack.back()->getBlock() == BackBlock)
1208       VersionStack.pop_back();
1209     ++PopEpoch;
1210   }
1211 
1212   for (MemoryAccess &MA : *Accesses) {
1213     auto *MU = dyn_cast<MemoryUse>(&MA);
1214     if (!MU) {
1215       VersionStack.push_back(&MA);
1216       ++StackEpoch;
1217       continue;
1218     }
1219 
1220     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1221       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1222       continue;
1223     }
1224 
1225     MemoryLocOrCall UseMLOC(MU);
1226     auto &LocInfo = LocStackInfo[UseMLOC];
1227     // If the pop epoch changed, it means we've removed stuff from top of
1228     // stack due to changing blocks. We may have to reset the lower bound or
1229     // last kill info.
1230     if (LocInfo.PopEpoch != PopEpoch) {
1231       LocInfo.PopEpoch = PopEpoch;
1232       LocInfo.StackEpoch = StackEpoch;
1233       // If the lower bound was in something that no longer dominates us, we
1234       // have to reset it.
1235       // We can't simply track stack size, because the stack may have had
1236       // pushes/pops in the meantime.
1237       // XXX: This is non-optimal, but only is slower cases with heavily
1238       // branching dominator trees.  To get the optimal number of queries would
1239       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1240       // the top of that stack dominates us.  This does not seem worth it ATM.
1241       // A much cheaper optimization would be to always explore the deepest
1242       // branch of the dominator tree first. This will guarantee this resets on
1243       // the smallest set of blocks.
1244       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1245           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1246         // Reset the lower bound of things to check.
1247         // TODO: Some day we should be able to reset to last kill, rather than
1248         // 0.
1249         LocInfo.LowerBound = 0;
1250         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1251         LocInfo.LastKillValid = false;
1252       }
1253     } else if (LocInfo.StackEpoch != StackEpoch) {
1254       // If all that has changed is the StackEpoch, we only have to check the
1255       // new things on the stack, because we've checked everything before.  In
1256       // this case, the lower bound of things to check remains the same.
1257       LocInfo.PopEpoch = PopEpoch;
1258       LocInfo.StackEpoch = StackEpoch;
1259     }
1260     if (!LocInfo.LastKillValid) {
1261       LocInfo.LastKill = VersionStack.size() - 1;
1262       LocInfo.LastKillValid = true;
1263       LocInfo.AR = MayAlias;
1264     }
1265 
1266     // At this point, we should have corrected last kill and LowerBound to be
1267     // in bounds.
1268     assert(LocInfo.LowerBound < VersionStack.size() &&
1269            "Lower bound out of range");
1270     assert(LocInfo.LastKill < VersionStack.size() &&
1271            "Last kill info out of range");
1272     // In any case, the new upper bound is the top of the stack.
1273     unsigned long UpperBound = VersionStack.size() - 1;
1274 
1275     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1276       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1277                         << *(MU->getMemoryInst()) << ")"
1278                         << " because there are "
1279                         << UpperBound - LocInfo.LowerBound
1280                         << " stores to disambiguate\n");
1281       // Because we did not walk, LastKill is no longer valid, as this may
1282       // have been a kill.
1283       LocInfo.LastKillValid = false;
1284       continue;
1285     }
1286     bool FoundClobberResult = false;
1287     while (UpperBound > LocInfo.LowerBound) {
1288       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1289         // For phis, use the walker, see where we ended up, go there
1290         Instruction *UseInst = MU->getMemoryInst();
1291         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1292         // We are guaranteed to find it or something is wrong
1293         while (VersionStack[UpperBound] != Result) {
1294           assert(UpperBound != 0);
1295           --UpperBound;
1296         }
1297         FoundClobberResult = true;
1298         break;
1299       }
1300 
1301       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1302       // If the lifetime of the pointer ends at this instruction, it's live on
1303       // entry.
1304       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1305         // Reset UpperBound to liveOnEntryDef's place in the stack
1306         UpperBound = 0;
1307         FoundClobberResult = true;
1308         LocInfo.AR = MustAlias;
1309         break;
1310       }
1311       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1312       if (CA.IsClobber) {
1313         FoundClobberResult = true;
1314         LocInfo.AR = CA.AR;
1315         break;
1316       }
1317       --UpperBound;
1318     }
1319 
1320     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1321 
1322     // At the end of this loop, UpperBound is either a clobber, or lower bound
1323     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1324     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1325       // We were last killed now by where we got to
1326       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1327         LocInfo.AR = None;
1328       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1329       LocInfo.LastKill = UpperBound;
1330     } else {
1331       // Otherwise, we checked all the new ones, and now we know we can get to
1332       // LastKill.
1333       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1334     }
1335     LocInfo.LowerBound = VersionStack.size() - 1;
1336     LocInfo.LowerBoundBlock = BB;
1337   }
1338 }
1339 
1340 /// Optimize uses to point to their actual clobbering definitions.
1341 void MemorySSA::OptimizeUses::optimizeUses() {
1342   SmallVector<MemoryAccess *, 16> VersionStack;
1343   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1344   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1345 
1346   unsigned long StackEpoch = 1;
1347   unsigned long PopEpoch = 1;
1348   // We perform a non-recursive top-down dominator tree walk.
1349   for (const auto *DomNode : depth_first(DT->getRootNode()))
1350     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1351                         LocStackInfo);
1352 }
1353 
1354 void MemorySSA::placePHINodes(
1355     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1356   // Determine where our MemoryPhi's should go
1357   ForwardIDFCalculator IDFs(*DT);
1358   IDFs.setDefiningBlocks(DefiningBlocks);
1359   SmallVector<BasicBlock *, 32> IDFBlocks;
1360   IDFs.calculate(IDFBlocks);
1361 
1362   // Now place MemoryPhi nodes.
1363   for (auto &BB : IDFBlocks)
1364     createMemoryPhi(BB);
1365 }
1366 
1367 void MemorySSA::buildMemorySSA() {
1368   // We create an access to represent "live on entry", for things like
1369   // arguments or users of globals, where the memory they use is defined before
1370   // the beginning of the function. We do not actually insert it into the IR.
1371   // We do not define a live on exit for the immediate uses, and thus our
1372   // semantics do *not* imply that something with no immediate uses can simply
1373   // be removed.
1374   BasicBlock &StartingPoint = F.getEntryBlock();
1375   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1376                                      &StartingPoint, NextID++));
1377 
1378   // We maintain lists of memory accesses per-block, trading memory for time. We
1379   // could just look up the memory access for every possible instruction in the
1380   // stream.
1381   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1382   // Go through each block, figure out where defs occur, and chain together all
1383   // the accesses.
1384   for (BasicBlock &B : F) {
1385     bool InsertIntoDef = false;
1386     AccessList *Accesses = nullptr;
1387     DefsList *Defs = nullptr;
1388     for (Instruction &I : B) {
1389       MemoryUseOrDef *MUD = createNewAccess(&I);
1390       if (!MUD)
1391         continue;
1392 
1393       if (!Accesses)
1394         Accesses = getOrCreateAccessList(&B);
1395       Accesses->push_back(MUD);
1396       if (isa<MemoryDef>(MUD)) {
1397         InsertIntoDef = true;
1398         if (!Defs)
1399           Defs = getOrCreateDefsList(&B);
1400         Defs->push_back(*MUD);
1401       }
1402     }
1403     if (InsertIntoDef)
1404       DefiningBlocks.insert(&B);
1405   }
1406   placePHINodes(DefiningBlocks);
1407 
1408   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1409   // filled in with all blocks.
1410   SmallPtrSet<BasicBlock *, 16> Visited;
1411   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1412 
1413   CachingWalker *Walker = getWalkerImpl();
1414 
1415   OptimizeUses(this, Walker, AA, DT).optimizeUses();
1416 
1417   // Mark the uses in unreachable blocks as live on entry, so that they go
1418   // somewhere.
1419   for (auto &BB : F)
1420     if (!Visited.count(&BB))
1421       markUnreachableAsLiveOnEntry(&BB);
1422 }
1423 
1424 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1425 
1426 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1427   if (Walker)
1428     return Walker.get();
1429 
1430   Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
1431   return Walker.get();
1432 }
1433 
1434 // This is a helper function used by the creation routines. It places NewAccess
1435 // into the access and defs lists for a given basic block, at the given
1436 // insertion point.
1437 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1438                                         const BasicBlock *BB,
1439                                         InsertionPlace Point) {
1440   auto *Accesses = getOrCreateAccessList(BB);
1441   if (Point == Beginning) {
1442     // If it's a phi node, it goes first, otherwise, it goes after any phi
1443     // nodes.
1444     if (isa<MemoryPhi>(NewAccess)) {
1445       Accesses->push_front(NewAccess);
1446       auto *Defs = getOrCreateDefsList(BB);
1447       Defs->push_front(*NewAccess);
1448     } else {
1449       auto AI = find_if_not(
1450           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1451       Accesses->insert(AI, NewAccess);
1452       if (!isa<MemoryUse>(NewAccess)) {
1453         auto *Defs = getOrCreateDefsList(BB);
1454         auto DI = find_if_not(
1455             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1456         Defs->insert(DI, *NewAccess);
1457       }
1458     }
1459   } else {
1460     Accesses->push_back(NewAccess);
1461     if (!isa<MemoryUse>(NewAccess)) {
1462       auto *Defs = getOrCreateDefsList(BB);
1463       Defs->push_back(*NewAccess);
1464     }
1465   }
1466   BlockNumberingValid.erase(BB);
1467 }
1468 
1469 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1470                                       AccessList::iterator InsertPt) {
1471   auto *Accesses = getWritableBlockAccesses(BB);
1472   bool WasEnd = InsertPt == Accesses->end();
1473   Accesses->insert(AccessList::iterator(InsertPt), What);
1474   if (!isa<MemoryUse>(What)) {
1475     auto *Defs = getOrCreateDefsList(BB);
1476     // If we got asked to insert at the end, we have an easy job, just shove it
1477     // at the end. If we got asked to insert before an existing def, we also get
1478     // an iterator. If we got asked to insert before a use, we have to hunt for
1479     // the next def.
1480     if (WasEnd) {
1481       Defs->push_back(*What);
1482     } else if (isa<MemoryDef>(InsertPt)) {
1483       Defs->insert(InsertPt->getDefsIterator(), *What);
1484     } else {
1485       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1486         ++InsertPt;
1487       // Either we found a def, or we are inserting at the end
1488       if (InsertPt == Accesses->end())
1489         Defs->push_back(*What);
1490       else
1491         Defs->insert(InsertPt->getDefsIterator(), *What);
1492     }
1493   }
1494   BlockNumberingValid.erase(BB);
1495 }
1496 
1497 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1498   // Keep it in the lookup tables, remove from the lists
1499   removeFromLists(What, false);
1500 
1501   // Note that moving should implicitly invalidate the optimized state of a
1502   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1503   // MemoryDef.
1504   if (auto *MD = dyn_cast<MemoryDef>(What))
1505     MD->resetOptimized();
1506   What->setBlock(BB);
1507 }
1508 
1509 // Move What before Where in the IR.  The end result is that What will belong to
1510 // the right lists and have the right Block set, but will not otherwise be
1511 // correct. It will not have the right defining access, and if it is a def,
1512 // things below it will not properly be updated.
1513 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1514                        AccessList::iterator Where) {
1515   prepareForMoveTo(What, BB);
1516   insertIntoListsBefore(What, BB, Where);
1517 }
1518 
1519 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1520                        InsertionPlace Point) {
1521   if (isa<MemoryPhi>(What)) {
1522     assert(Point == Beginning &&
1523            "Can only move a Phi at the beginning of the block");
1524     // Update lookup table entry
1525     ValueToMemoryAccess.erase(What->getBlock());
1526     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1527     (void)Inserted;
1528     assert(Inserted && "Cannot move a Phi to a block that already has one");
1529   }
1530 
1531   prepareForMoveTo(What, BB);
1532   insertIntoListsForBlock(What, BB, Point);
1533 }
1534 
1535 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1536   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1537   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1538   // Phi's always are placed at the front of the block.
1539   insertIntoListsForBlock(Phi, BB, Beginning);
1540   ValueToMemoryAccess[BB] = Phi;
1541   return Phi;
1542 }
1543 
1544 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1545                                                MemoryAccess *Definition,
1546                                                const MemoryUseOrDef *Template) {
1547   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1548   MemoryUseOrDef *NewAccess = createNewAccess(I, Template);
1549   assert(
1550       NewAccess != nullptr &&
1551       "Tried to create a memory access for a non-memory touching instruction");
1552   NewAccess->setDefiningAccess(Definition);
1553   return NewAccess;
1554 }
1555 
1556 // Return true if the instruction has ordering constraints.
1557 // Note specifically that this only considers stores and loads
1558 // because others are still considered ModRef by getModRefInfo.
1559 static inline bool isOrdered(const Instruction *I) {
1560   if (auto *SI = dyn_cast<StoreInst>(I)) {
1561     if (!SI->isUnordered())
1562       return true;
1563   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1564     if (!LI->isUnordered())
1565       return true;
1566   }
1567   return false;
1568 }
1569 
1570 /// Helper function to create new memory accesses
1571 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1572                                            const MemoryUseOrDef *Template) {
1573   // The assume intrinsic has a control dependency which we model by claiming
1574   // that it writes arbitrarily. Ignore that fake memory dependency here.
1575   // FIXME: Replace this special casing with a more accurate modelling of
1576   // assume's control dependency.
1577   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1578     if (II->getIntrinsicID() == Intrinsic::assume)
1579       return nullptr;
1580 
1581   bool Def, Use;
1582   if (Template) {
1583     Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1584     Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1585 #if !defined(NDEBUG)
1586     ModRefInfo ModRef = AA->getModRefInfo(I, None);
1587     bool DefCheck, UseCheck;
1588     DefCheck = isModSet(ModRef) || isOrdered(I);
1589     UseCheck = isRefSet(ModRef);
1590     assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1591 #endif
1592   } else {
1593     // Find out what affect this instruction has on memory.
1594     ModRefInfo ModRef = AA->getModRefInfo(I, None);
1595     // The isOrdered check is used to ensure that volatiles end up as defs
1596     // (atomics end up as ModRef right now anyway).  Until we separate the
1597     // ordering chain from the memory chain, this enables people to see at least
1598     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1599     // will still give an answer that bypasses other volatile loads.  TODO:
1600     // Separate memory aliasing and ordering into two different chains so that
1601     // we can precisely represent both "what memory will this read/write/is
1602     // clobbered by" and "what instructions can I move this past".
1603     Def = isModSet(ModRef) || isOrdered(I);
1604     Use = isRefSet(ModRef);
1605   }
1606 
1607   // It's possible for an instruction to not modify memory at all. During
1608   // construction, we ignore them.
1609   if (!Def && !Use)
1610     return nullptr;
1611 
1612   MemoryUseOrDef *MUD;
1613   if (Def)
1614     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1615   else
1616     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1617   ValueToMemoryAccess[I] = MUD;
1618   return MUD;
1619 }
1620 
1621 /// Returns true if \p Replacer dominates \p Replacee .
1622 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1623                              const MemoryAccess *Replacee) const {
1624   if (isa<MemoryUseOrDef>(Replacee))
1625     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1626   const auto *MP = cast<MemoryPhi>(Replacee);
1627   // For a phi node, the use occurs in the predecessor block of the phi node.
1628   // Since we may occur multiple times in the phi node, we have to check each
1629   // operand to ensure Replacer dominates each operand where Replacee occurs.
1630   for (const Use &Arg : MP->operands()) {
1631     if (Arg.get() != Replacee &&
1632         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1633       return false;
1634   }
1635   return true;
1636 }
1637 
1638 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1639 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1640   assert(MA->use_empty() &&
1641          "Trying to remove memory access that still has uses");
1642   BlockNumbering.erase(MA);
1643   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1644     MUD->setDefiningAccess(nullptr);
1645   // Invalidate our walker's cache if necessary
1646   if (!isa<MemoryUse>(MA))
1647     Walker->invalidateInfo(MA);
1648 
1649   Value *MemoryInst;
1650   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1651     MemoryInst = MUD->getMemoryInst();
1652   else
1653     MemoryInst = MA->getBlock();
1654 
1655   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1656   if (VMA->second == MA)
1657     ValueToMemoryAccess.erase(VMA);
1658 }
1659 
1660 /// Properly remove \p MA from all of MemorySSA's lists.
1661 ///
1662 /// Because of the way the intrusive list and use lists work, it is important to
1663 /// do removal in the right order.
1664 /// ShouldDelete defaults to true, and will cause the memory access to also be
1665 /// deleted, not just removed.
1666 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1667   BasicBlock *BB = MA->getBlock();
1668   // The access list owns the reference, so we erase it from the non-owning list
1669   // first.
1670   if (!isa<MemoryUse>(MA)) {
1671     auto DefsIt = PerBlockDefs.find(BB);
1672     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1673     Defs->remove(*MA);
1674     if (Defs->empty())
1675       PerBlockDefs.erase(DefsIt);
1676   }
1677 
1678   // The erase call here will delete it. If we don't want it deleted, we call
1679   // remove instead.
1680   auto AccessIt = PerBlockAccesses.find(BB);
1681   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1682   if (ShouldDelete)
1683     Accesses->erase(MA);
1684   else
1685     Accesses->remove(MA);
1686 
1687   if (Accesses->empty()) {
1688     PerBlockAccesses.erase(AccessIt);
1689     BlockNumberingValid.erase(BB);
1690   }
1691 }
1692 
1693 void MemorySSA::print(raw_ostream &OS) const {
1694   MemorySSAAnnotatedWriter Writer(this);
1695   F.print(OS, &Writer);
1696 }
1697 
1698 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1699 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1700 #endif
1701 
1702 void MemorySSA::verifyMemorySSA() const {
1703   verifyDefUses(F);
1704   verifyDomination(F);
1705   verifyOrdering(F);
1706   verifyDominationNumbers(F);
1707   Walker->verify(this);
1708   verifyClobberSanity(F);
1709 }
1710 
1711 /// Check sanity of the clobbering instruction for access MA.
1712 void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const {
1713   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1714     if (!MUD->isOptimized())
1715       return;
1716     auto *I = MUD->getMemoryInst();
1717     auto Loc = MemoryLocation::getOrNone(I);
1718     if (Loc == None)
1719       return;
1720     auto *Clobber = MUD->getOptimized();
1721     UpwardsMemoryQuery Q(I, MUD);
1722     checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA, true);
1723   }
1724 }
1725 
1726 void MemorySSA::verifyClobberSanity(const Function &F) const {
1727 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1728   for (const BasicBlock &BB : F) {
1729     const AccessList *Accesses = getBlockAccesses(&BB);
1730     if (!Accesses)
1731       continue;
1732     for (const MemoryAccess &MA : *Accesses)
1733       checkClobberSanityAccess(&MA);
1734   }
1735 #endif
1736 }
1737 
1738 /// Verify that all of the blocks we believe to have valid domination numbers
1739 /// actually have valid domination numbers.
1740 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1741 #ifndef NDEBUG
1742   if (BlockNumberingValid.empty())
1743     return;
1744 
1745   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1746   for (const BasicBlock &BB : F) {
1747     if (!ValidBlocks.count(&BB))
1748       continue;
1749 
1750     ValidBlocks.erase(&BB);
1751 
1752     const AccessList *Accesses = getBlockAccesses(&BB);
1753     // It's correct to say an empty block has valid numbering.
1754     if (!Accesses)
1755       continue;
1756 
1757     // Block numbering starts at 1.
1758     unsigned long LastNumber = 0;
1759     for (const MemoryAccess &MA : *Accesses) {
1760       auto ThisNumberIter = BlockNumbering.find(&MA);
1761       assert(ThisNumberIter != BlockNumbering.end() &&
1762              "MemoryAccess has no domination number in a valid block!");
1763 
1764       unsigned long ThisNumber = ThisNumberIter->second;
1765       assert(ThisNumber > LastNumber &&
1766              "Domination numbers should be strictly increasing!");
1767       LastNumber = ThisNumber;
1768     }
1769   }
1770 
1771   assert(ValidBlocks.empty() &&
1772          "All valid BasicBlocks should exist in F -- dangling pointers?");
1773 #endif
1774 }
1775 
1776 /// Verify that the order and existence of MemoryAccesses matches the
1777 /// order and existence of memory affecting instructions.
1778 void MemorySSA::verifyOrdering(Function &F) const {
1779 #ifndef NDEBUG
1780   // Walk all the blocks, comparing what the lookups think and what the access
1781   // lists think, as well as the order in the blocks vs the order in the access
1782   // lists.
1783   SmallVector<MemoryAccess *, 32> ActualAccesses;
1784   SmallVector<MemoryAccess *, 32> ActualDefs;
1785   for (BasicBlock &B : F) {
1786     const AccessList *AL = getBlockAccesses(&B);
1787     const auto *DL = getBlockDefs(&B);
1788     MemoryAccess *Phi = getMemoryAccess(&B);
1789     if (Phi) {
1790       ActualAccesses.push_back(Phi);
1791       ActualDefs.push_back(Phi);
1792     }
1793 
1794     for (Instruction &I : B) {
1795       MemoryAccess *MA = getMemoryAccess(&I);
1796       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1797              "We have memory affecting instructions "
1798              "in this block but they are not in the "
1799              "access list or defs list");
1800       if (MA) {
1801         ActualAccesses.push_back(MA);
1802         if (isa<MemoryDef>(MA))
1803           ActualDefs.push_back(MA);
1804       }
1805     }
1806     // Either we hit the assert, really have no accesses, or we have both
1807     // accesses and an access list.
1808     // Same with defs.
1809     if (!AL && !DL)
1810       continue;
1811     assert(AL->size() == ActualAccesses.size() &&
1812            "We don't have the same number of accesses in the block as on the "
1813            "access list");
1814     assert((DL || ActualDefs.size() == 0) &&
1815            "Either we should have a defs list, or we should have no defs");
1816     assert((!DL || DL->size() == ActualDefs.size()) &&
1817            "We don't have the same number of defs in the block as on the "
1818            "def list");
1819     auto ALI = AL->begin();
1820     auto AAI = ActualAccesses.begin();
1821     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1822       assert(&*ALI == *AAI && "Not the same accesses in the same order");
1823       ++ALI;
1824       ++AAI;
1825     }
1826     ActualAccesses.clear();
1827     if (DL) {
1828       auto DLI = DL->begin();
1829       auto ADI = ActualDefs.begin();
1830       while (DLI != DL->end() && ADI != ActualDefs.end()) {
1831         assert(&*DLI == *ADI && "Not the same defs in the same order");
1832         ++DLI;
1833         ++ADI;
1834       }
1835     }
1836     ActualDefs.clear();
1837   }
1838 #endif
1839 }
1840 
1841 /// Verify the domination properties of MemorySSA by checking that each
1842 /// definition dominates all of its uses.
1843 void MemorySSA::verifyDomination(Function &F) const {
1844 #ifndef NDEBUG
1845   for (BasicBlock &B : F) {
1846     // Phi nodes are attached to basic blocks
1847     if (MemoryPhi *MP = getMemoryAccess(&B))
1848       for (const Use &U : MP->uses())
1849         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1850 
1851     for (Instruction &I : B) {
1852       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1853       if (!MD)
1854         continue;
1855 
1856       for (const Use &U : MD->uses())
1857         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1858     }
1859   }
1860 #endif
1861 }
1862 
1863 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1864 /// appears in the use list of \p Def.
1865 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1866 #ifndef NDEBUG
1867   // The live on entry use may cause us to get a NULL def here
1868   if (!Def)
1869     assert(isLiveOnEntryDef(Use) &&
1870            "Null def but use not point to live on entry def");
1871   else
1872     assert(is_contained(Def->users(), Use) &&
1873            "Did not find use in def's use list");
1874 #endif
1875 }
1876 
1877 /// Verify the immediate use information, by walking all the memory
1878 /// accesses and verifying that, for each use, it appears in the
1879 /// appropriate def's use list
1880 void MemorySSA::verifyDefUses(Function &F) const {
1881 #ifndef NDEBUG
1882   for (BasicBlock &B : F) {
1883     // Phi nodes are attached to basic blocks
1884     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1885       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1886                                           pred_begin(&B), pred_end(&B))) &&
1887              "Incomplete MemoryPhi Node");
1888       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1889         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1890         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1891                    pred_end(&B) &&
1892                "Incoming phi block not a block predecessor");
1893       }
1894     }
1895 
1896     for (Instruction &I : B) {
1897       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1898         verifyUseInDefs(MA->getDefiningAccess(), MA);
1899       }
1900     }
1901   }
1902 #endif
1903 }
1904 
1905 /// Perform a local numbering on blocks so that instruction ordering can be
1906 /// determined in constant time.
1907 /// TODO: We currently just number in order.  If we numbered by N, we could
1908 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1909 /// log2(N) sequences of mixed before and after) without needing to invalidate
1910 /// the numbering.
1911 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1912   // The pre-increment ensures the numbers really start at 1.
1913   unsigned long CurrentNumber = 0;
1914   const AccessList *AL = getBlockAccesses(B);
1915   assert(AL != nullptr && "Asking to renumber an empty block");
1916   for (const auto &I : *AL)
1917     BlockNumbering[&I] = ++CurrentNumber;
1918   BlockNumberingValid.insert(B);
1919 }
1920 
1921 /// Determine, for two memory accesses in the same block,
1922 /// whether \p Dominator dominates \p Dominatee.
1923 /// \returns True if \p Dominator dominates \p Dominatee.
1924 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1925                                  const MemoryAccess *Dominatee) const {
1926   const BasicBlock *DominatorBlock = Dominator->getBlock();
1927 
1928   assert((DominatorBlock == Dominatee->getBlock()) &&
1929          "Asking for local domination when accesses are in different blocks!");
1930   // A node dominates itself.
1931   if (Dominatee == Dominator)
1932     return true;
1933 
1934   // When Dominatee is defined on function entry, it is not dominated by another
1935   // memory access.
1936   if (isLiveOnEntryDef(Dominatee))
1937     return false;
1938 
1939   // When Dominator is defined on function entry, it dominates the other memory
1940   // access.
1941   if (isLiveOnEntryDef(Dominator))
1942     return true;
1943 
1944   if (!BlockNumberingValid.count(DominatorBlock))
1945     renumberBlock(DominatorBlock);
1946 
1947   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1948   // All numbers start with 1
1949   assert(DominatorNum != 0 && "Block was not numbered properly");
1950   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1951   assert(DominateeNum != 0 && "Block was not numbered properly");
1952   return DominatorNum < DominateeNum;
1953 }
1954 
1955 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1956                           const MemoryAccess *Dominatee) const {
1957   if (Dominator == Dominatee)
1958     return true;
1959 
1960   if (isLiveOnEntryDef(Dominatee))
1961     return false;
1962 
1963   if (Dominator->getBlock() != Dominatee->getBlock())
1964     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1965   return locallyDominates(Dominator, Dominatee);
1966 }
1967 
1968 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1969                           const Use &Dominatee) const {
1970   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1971     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1972     // The def must dominate the incoming block of the phi.
1973     if (UseBB != Dominator->getBlock())
1974       return DT->dominates(Dominator->getBlock(), UseBB);
1975     // If the UseBB and the DefBB are the same, compare locally.
1976     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1977   }
1978   // If it's not a PHI node use, the normal dominates can already handle it.
1979   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1980 }
1981 
1982 const static char LiveOnEntryStr[] = "liveOnEntry";
1983 
1984 void MemoryAccess::print(raw_ostream &OS) const {
1985   switch (getValueID()) {
1986   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1987   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1988   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1989   }
1990   llvm_unreachable("invalid value id");
1991 }
1992 
1993 void MemoryDef::print(raw_ostream &OS) const {
1994   MemoryAccess *UO = getDefiningAccess();
1995 
1996   auto printID = [&OS](MemoryAccess *A) {
1997     if (A && A->getID())
1998       OS << A->getID();
1999     else
2000       OS << LiveOnEntryStr;
2001   };
2002 
2003   OS << getID() << " = MemoryDef(";
2004   printID(UO);
2005   OS << ")";
2006 
2007   if (isOptimized()) {
2008     OS << "->";
2009     printID(getOptimized());
2010 
2011     if (Optional<AliasResult> AR = getOptimizedAccessType())
2012       OS << " " << *AR;
2013   }
2014 }
2015 
2016 void MemoryPhi::print(raw_ostream &OS) const {
2017   bool First = true;
2018   OS << getID() << " = MemoryPhi(";
2019   for (const auto &Op : operands()) {
2020     BasicBlock *BB = getIncomingBlock(Op);
2021     MemoryAccess *MA = cast<MemoryAccess>(Op);
2022     if (!First)
2023       OS << ',';
2024     else
2025       First = false;
2026 
2027     OS << '{';
2028     if (BB->hasName())
2029       OS << BB->getName();
2030     else
2031       BB->printAsOperand(OS, false);
2032     OS << ',';
2033     if (unsigned ID = MA->getID())
2034       OS << ID;
2035     else
2036       OS << LiveOnEntryStr;
2037     OS << '}';
2038   }
2039   OS << ')';
2040 }
2041 
2042 void MemoryUse::print(raw_ostream &OS) const {
2043   MemoryAccess *UO = getDefiningAccess();
2044   OS << "MemoryUse(";
2045   if (UO && UO->getID())
2046     OS << UO->getID();
2047   else
2048     OS << LiveOnEntryStr;
2049   OS << ')';
2050 
2051   if (Optional<AliasResult> AR = getOptimizedAccessType())
2052     OS << " " << *AR;
2053 }
2054 
2055 void MemoryAccess::dump() const {
2056 // Cannot completely remove virtual function even in release mode.
2057 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2058   print(dbgs());
2059   dbgs() << "\n";
2060 #endif
2061 }
2062 
2063 char MemorySSAPrinterLegacyPass::ID = 0;
2064 
2065 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2066   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2067 }
2068 
2069 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2070   AU.setPreservesAll();
2071   AU.addRequired<MemorySSAWrapperPass>();
2072 }
2073 
2074 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2075   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2076   MSSA.print(dbgs());
2077   if (VerifyMemorySSA)
2078     MSSA.verifyMemorySSA();
2079   return false;
2080 }
2081 
2082 AnalysisKey MemorySSAAnalysis::Key;
2083 
2084 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2085                                                  FunctionAnalysisManager &AM) {
2086   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2087   auto &AA = AM.getResult<AAManager>(F);
2088   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2089 }
2090 
2091 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2092                                             FunctionAnalysisManager &AM) {
2093   OS << "MemorySSA for function: " << F.getName() << "\n";
2094   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2095 
2096   return PreservedAnalyses::all();
2097 }
2098 
2099 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2100                                              FunctionAnalysisManager &AM) {
2101   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2102 
2103   return PreservedAnalyses::all();
2104 }
2105 
2106 char MemorySSAWrapperPass::ID = 0;
2107 
2108 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2109   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2110 }
2111 
2112 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2113 
2114 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2115   AU.setPreservesAll();
2116   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2117   AU.addRequiredTransitive<AAResultsWrapperPass>();
2118 }
2119 
2120 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2121   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2122   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2123   MSSA.reset(new MemorySSA(F, &AA, &DT));
2124   return false;
2125 }
2126 
2127 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2128 
2129 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2130   MSSA->print(OS);
2131 }
2132 
2133 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2134 
2135 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2136                                         DominatorTree *D)
2137     : MemorySSAWalker(M), Walker(*M, *A, *D) {}
2138 
2139 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
2140   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2141     MUD->resetOptimized();
2142 }
2143 
2144 /// Walk the use-def chains starting at \p MA and find
2145 /// the MemoryAccess that actually clobbers Loc.
2146 ///
2147 /// \returns our clobbering memory access
2148 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2149     MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
2150   return Walker.findClobber(StartingAccess, Q);
2151 }
2152 
2153 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2154     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2155   if (isa<MemoryPhi>(StartingAccess))
2156     return StartingAccess;
2157 
2158   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2159   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2160     return StartingUseOrDef;
2161 
2162   Instruction *I = StartingUseOrDef->getMemoryInst();
2163 
2164   // Conservatively, fences are always clobbers, so don't perform the walk if we
2165   // hit a fence.
2166   if (!ImmutableCallSite(I) && I->isFenceLike())
2167     return StartingUseOrDef;
2168 
2169   UpwardsMemoryQuery Q;
2170   Q.OriginalAccess = StartingUseOrDef;
2171   Q.StartingLoc = Loc;
2172   Q.Inst = I;
2173   Q.IsCall = false;
2174 
2175   // Unlike the other function, do not walk to the def of a def, because we are
2176   // handed something we already believe is the clobbering access.
2177   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2178                                      ? StartingUseOrDef->getDefiningAccess()
2179                                      : StartingUseOrDef;
2180 
2181   MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
2182   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2183   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2184   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2185   LLVM_DEBUG(dbgs() << *Clobber << "\n");
2186   return Clobber;
2187 }
2188 
2189 MemoryAccess *
2190 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2191   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2192   // If this is a MemoryPhi, we can't do anything.
2193   if (!StartingAccess)
2194     return MA;
2195 
2196   // If this is an already optimized use or def, return the optimized result.
2197   // Note: Currently, we store the optimized def result in a separate field,
2198   // since we can't use the defining access.
2199   if (StartingAccess->isOptimized())
2200     return StartingAccess->getOptimized();
2201 
2202   const Instruction *I = StartingAccess->getMemoryInst();
2203   UpwardsMemoryQuery Q(I, StartingAccess);
2204   // We can't sanely do anything with a fence, since they conservatively clobber
2205   // all memory, and have no locations to get pointers from to try to
2206   // disambiguate.
2207   if (!Q.IsCall && I->isFenceLike())
2208     return StartingAccess;
2209 
2210   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2211     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2212     StartingAccess->setOptimized(LiveOnEntry);
2213     StartingAccess->setOptimizedAccessType(None);
2214     return LiveOnEntry;
2215   }
2216 
2217   // Start with the thing we already think clobbers this location
2218   MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2219 
2220   // At this point, DefiningAccess may be the live on entry def.
2221   // If it is, we will not get a better result.
2222   if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2223     StartingAccess->setOptimized(DefiningAccess);
2224     StartingAccess->setOptimizedAccessType(None);
2225     return DefiningAccess;
2226   }
2227 
2228   MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
2229   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2230   LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2231   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2232   LLVM_DEBUG(dbgs() << *Result << "\n");
2233 
2234   StartingAccess->setOptimized(Result);
2235   if (MSSA->isLiveOnEntryDef(Result))
2236     StartingAccess->setOptimizedAccessType(None);
2237   else if (Q.AR == MustAlias)
2238     StartingAccess->setOptimizedAccessType(MustAlias);
2239 
2240   return Result;
2241 }
2242 
2243 MemoryAccess *
2244 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2245   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2246     return Use->getDefiningAccess();
2247   return MA;
2248 }
2249 
2250 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2251     MemoryAccess *StartingAccess, const MemoryLocation &) {
2252   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2253     return Use->getDefiningAccess();
2254   return StartingAccess;
2255 }
2256 
2257 void MemoryPhi::deleteMe(DerivedUser *Self) {
2258   delete static_cast<MemoryPhi *>(Self);
2259 }
2260 
2261 void MemoryDef::deleteMe(DerivedUser *Self) {
2262   delete static_cast<MemoryDef *>(Self);
2263 }
2264 
2265 void MemoryUse::deleteMe(DerivedUser *Self) {
2266   delete static_cast<MemoryUse *>(Self);
2267 }
2268