1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the MemorySSA class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemorySSA.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/PassManager.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "memoryssa" 60 61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 62 true) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 66 true) 67 68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 69 "Memory SSA Printer", false, false) 70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 72 "Memory SSA Printer", false, false) 73 74 static cl::opt<unsigned> MaxCheckLimit( 75 "memssa-check-limit", cl::Hidden, cl::init(100), 76 cl::desc("The maximum number of stores/phis MemorySSA" 77 "will consider trying to walk past (default = 100)")); 78 79 static cl::opt<bool> 80 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, 81 cl::desc("Verify MemorySSA in legacy printer pass.")); 82 83 namespace llvm { 84 85 /// \brief An assembly annotator class to print Memory SSA information in 86 /// comments. 87 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 88 friend class MemorySSA; 89 90 const MemorySSA *MSSA; 91 92 public: 93 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 94 95 void emitBasicBlockStartAnnot(const BasicBlock *BB, 96 formatted_raw_ostream &OS) override { 97 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 98 OS << "; " << *MA << "\n"; 99 } 100 101 void emitInstructionAnnot(const Instruction *I, 102 formatted_raw_ostream &OS) override { 103 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 104 OS << "; " << *MA << "\n"; 105 } 106 }; 107 108 } // end namespace llvm 109 110 namespace { 111 112 /// Our current alias analysis API differentiates heavily between calls and 113 /// non-calls, and functions called on one usually assert on the other. 114 /// This class encapsulates the distinction to simplify other code that wants 115 /// "Memory affecting instructions and related data" to use as a key. 116 /// For example, this class is used as a densemap key in the use optimizer. 117 class MemoryLocOrCall { 118 public: 119 bool IsCall = false; 120 121 MemoryLocOrCall() = default; 122 MemoryLocOrCall(MemoryUseOrDef *MUD) 123 : MemoryLocOrCall(MUD->getMemoryInst()) {} 124 MemoryLocOrCall(const MemoryUseOrDef *MUD) 125 : MemoryLocOrCall(MUD->getMemoryInst()) {} 126 127 MemoryLocOrCall(Instruction *Inst) { 128 if (ImmutableCallSite(Inst)) { 129 IsCall = true; 130 CS = ImmutableCallSite(Inst); 131 } else { 132 IsCall = false; 133 // There is no such thing as a memorylocation for a fence inst, and it is 134 // unique in that regard. 135 if (!isa<FenceInst>(Inst)) 136 Loc = MemoryLocation::get(Inst); 137 } 138 } 139 140 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 141 142 ImmutableCallSite getCS() const { 143 assert(IsCall); 144 return CS; 145 } 146 147 MemoryLocation getLoc() const { 148 assert(!IsCall); 149 return Loc; 150 } 151 152 bool operator==(const MemoryLocOrCall &Other) const { 153 if (IsCall != Other.IsCall) 154 return false; 155 156 if (IsCall) 157 return CS.getCalledValue() == Other.CS.getCalledValue(); 158 return Loc == Other.Loc; 159 } 160 161 private: 162 union { 163 ImmutableCallSite CS; 164 MemoryLocation Loc; 165 }; 166 }; 167 168 } // end anonymous namespace 169 170 namespace llvm { 171 172 template <> struct DenseMapInfo<MemoryLocOrCall> { 173 static inline MemoryLocOrCall getEmptyKey() { 174 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 175 } 176 177 static inline MemoryLocOrCall getTombstoneKey() { 178 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 179 } 180 181 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 182 if (MLOC.IsCall) 183 return hash_combine(MLOC.IsCall, 184 DenseMapInfo<const Value *>::getHashValue( 185 MLOC.getCS().getCalledValue())); 186 return hash_combine( 187 MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 188 } 189 190 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 191 return LHS == RHS; 192 } 193 }; 194 195 } // end namespace llvm 196 197 /// This does one-way checks to see if Use could theoretically be hoisted above 198 /// MayClobber. This will not check the other way around. 199 /// 200 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 201 /// MayClobber, with no potentially clobbering operations in between them. 202 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 203 static bool areLoadsReorderable(const LoadInst *Use, 204 const LoadInst *MayClobber) { 205 bool VolatileUse = Use->isVolatile(); 206 bool VolatileClobber = MayClobber->isVolatile(); 207 // Volatile operations may never be reordered with other volatile operations. 208 if (VolatileUse && VolatileClobber) 209 return false; 210 // Otherwise, volatile doesn't matter here. From the language reference: 211 // 'optimizers may change the order of volatile operations relative to 212 // non-volatile operations.'" 213 214 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 215 // is weaker, it can be moved above other loads. We just need to be sure that 216 // MayClobber isn't an acquire load, because loads can't be moved above 217 // acquire loads. 218 // 219 // Note that this explicitly *does* allow the free reordering of monotonic (or 220 // weaker) loads of the same address. 221 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 222 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 223 AtomicOrdering::Acquire); 224 return !(SeqCstUse || MayClobberIsAcquire); 225 } 226 227 static bool instructionClobbersQuery(MemoryDef *MD, 228 const MemoryLocation &UseLoc, 229 const Instruction *UseInst, 230 AliasAnalysis &AA) { 231 Instruction *DefInst = MD->getMemoryInst(); 232 assert(DefInst && "Defining instruction not actually an instruction"); 233 ImmutableCallSite UseCS(UseInst); 234 235 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 236 // These intrinsics will show up as affecting memory, but they are just 237 // markers. 238 switch (II->getIntrinsicID()) { 239 case Intrinsic::lifetime_start: 240 if (UseCS) 241 return false; 242 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc); 243 case Intrinsic::lifetime_end: 244 case Intrinsic::invariant_start: 245 case Intrinsic::invariant_end: 246 case Intrinsic::assume: 247 return false; 248 default: 249 break; 250 } 251 } 252 253 if (UseCS) { 254 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); 255 return isModOrRefSet(I); 256 } 257 258 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 259 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 260 return !areLoadsReorderable(UseLoad, DefLoad); 261 262 return isModSet(AA.getModRefInfo(DefInst, UseLoc)); 263 } 264 265 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, 266 const MemoryLocOrCall &UseMLOC, 267 AliasAnalysis &AA) { 268 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 269 // to exist while MemoryLocOrCall is pushed through places. 270 if (UseMLOC.IsCall) 271 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 272 AA); 273 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 274 AA); 275 } 276 277 // Return true when MD may alias MU, return false otherwise. 278 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 279 AliasAnalysis &AA) { 280 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); 281 } 282 283 namespace { 284 285 struct UpwardsMemoryQuery { 286 // True if our original query started off as a call 287 bool IsCall = false; 288 // The pointer location we started the query with. This will be empty if 289 // IsCall is true. 290 MemoryLocation StartingLoc; 291 // This is the instruction we were querying about. 292 const Instruction *Inst = nullptr; 293 // The MemoryAccess we actually got called with, used to test local domination 294 const MemoryAccess *OriginalAccess = nullptr; 295 296 UpwardsMemoryQuery() = default; 297 298 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 299 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { 300 if (!IsCall) 301 StartingLoc = MemoryLocation::get(Inst); 302 } 303 }; 304 305 } // end anonymous namespace 306 307 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 308 AliasAnalysis &AA) { 309 Instruction *Inst = MD->getMemoryInst(); 310 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 311 switch (II->getIntrinsicID()) { 312 case Intrinsic::lifetime_end: 313 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); 314 default: 315 return false; 316 } 317 } 318 return false; 319 } 320 321 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, 322 const Instruction *I) { 323 // If the memory can't be changed, then loads of the memory can't be 324 // clobbered. 325 // 326 // FIXME: We should handle invariant groups, as well. It's a bit harder, 327 // because we need to pay close attention to invariant group barriers. 328 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 329 AA.pointsToConstantMemory(cast<LoadInst>(I)-> 330 getPointerOperand())); 331 } 332 333 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 334 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 335 /// 336 /// This is meant to be as simple and self-contained as possible. Because it 337 /// uses no cache, etc., it can be relatively expensive. 338 /// 339 /// \param Start The MemoryAccess that we want to walk from. 340 /// \param ClobberAt A clobber for Start. 341 /// \param StartLoc The MemoryLocation for Start. 342 /// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. 343 /// \param Query The UpwardsMemoryQuery we used for our search. 344 /// \param AA The AliasAnalysis we used for our search. 345 static void LLVM_ATTRIBUTE_UNUSED 346 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, 347 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 348 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { 349 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 350 351 if (MSSA.isLiveOnEntryDef(Start)) { 352 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 353 "liveOnEntry must clobber itself"); 354 return; 355 } 356 357 bool FoundClobber = false; 358 DenseSet<MemoryAccessPair> VisitedPhis; 359 SmallVector<MemoryAccessPair, 8> Worklist; 360 Worklist.emplace_back(Start, StartLoc); 361 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 362 // is found, complain. 363 while (!Worklist.empty()) { 364 MemoryAccessPair MAP = Worklist.pop_back_val(); 365 // All we care about is that nothing from Start to ClobberAt clobbers Start. 366 // We learn nothing from revisiting nodes. 367 if (!VisitedPhis.insert(MAP).second) 368 continue; 369 370 for (MemoryAccess *MA : def_chain(MAP.first)) { 371 if (MA == ClobberAt) { 372 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 373 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 374 // since it won't let us short-circuit. 375 // 376 // Also, note that this can't be hoisted out of the `Worklist` loop, 377 // since MD may only act as a clobber for 1 of N MemoryLocations. 378 FoundClobber = 379 FoundClobber || MSSA.isLiveOnEntryDef(MD) || 380 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 381 } 382 break; 383 } 384 385 // We should never hit liveOnEntry, unless it's the clobber. 386 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 387 388 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 389 (void)MD; 390 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && 391 "Found clobber before reaching ClobberAt!"); 392 continue; 393 } 394 395 assert(isa<MemoryPhi>(MA)); 396 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); 397 } 398 } 399 400 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 401 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 402 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 403 "ClobberAt never acted as a clobber"); 404 } 405 406 namespace { 407 408 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 409 /// in one class. 410 class ClobberWalker { 411 /// Save a few bytes by using unsigned instead of size_t. 412 using ListIndex = unsigned; 413 414 /// Represents a span of contiguous MemoryDefs, potentially ending in a 415 /// MemoryPhi. 416 struct DefPath { 417 MemoryLocation Loc; 418 // Note that, because we always walk in reverse, Last will always dominate 419 // First. Also note that First and Last are inclusive. 420 MemoryAccess *First; 421 MemoryAccess *Last; 422 Optional<ListIndex> Previous; 423 424 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 425 Optional<ListIndex> Previous) 426 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 427 428 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 429 Optional<ListIndex> Previous) 430 : DefPath(Loc, Init, Init, Previous) {} 431 }; 432 433 const MemorySSA &MSSA; 434 AliasAnalysis &AA; 435 DominatorTree &DT; 436 UpwardsMemoryQuery *Query; 437 438 // Phi optimization bookkeeping 439 SmallVector<DefPath, 32> Paths; 440 DenseSet<ConstMemoryAccessPair> VisitedPhis; 441 442 /// Find the nearest def or phi that `From` can legally be optimized to. 443 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 444 assert(From->getNumOperands() && "Phi with no operands?"); 445 446 BasicBlock *BB = From->getBlock(); 447 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 448 DomTreeNode *Node = DT.getNode(BB); 449 while ((Node = Node->getIDom())) { 450 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 451 if (Defs) 452 return &*Defs->rbegin(); 453 } 454 return Result; 455 } 456 457 /// Result of calling walkToPhiOrClobber. 458 struct UpwardsWalkResult { 459 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 460 /// both. 461 MemoryAccess *Result; 462 bool IsKnownClobber; 463 }; 464 465 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 466 /// This will update Desc.Last as it walks. It will (optionally) also stop at 467 /// StopAt. 468 /// 469 /// This does not test for whether StopAt is a clobber 470 UpwardsWalkResult 471 walkToPhiOrClobber(DefPath &Desc, 472 const MemoryAccess *StopAt = nullptr) const { 473 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 474 475 for (MemoryAccess *Current : def_chain(Desc.Last)) { 476 Desc.Last = Current; 477 if (Current == StopAt) 478 return {Current, false}; 479 480 if (auto *MD = dyn_cast<MemoryDef>(Current)) 481 if (MSSA.isLiveOnEntryDef(MD) || 482 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA)) 483 return {MD, true}; 484 } 485 486 assert(isa<MemoryPhi>(Desc.Last) && 487 "Ended at a non-clobber that's not a phi?"); 488 return {Desc.Last, false}; 489 } 490 491 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 492 ListIndex PriorNode) { 493 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 494 upward_defs_end()); 495 for (const MemoryAccessPair &P : UpwardDefs) { 496 PausedSearches.push_back(Paths.size()); 497 Paths.emplace_back(P.second, P.first, PriorNode); 498 } 499 } 500 501 /// Represents a search that terminated after finding a clobber. This clobber 502 /// may or may not be present in the path of defs from LastNode..SearchStart, 503 /// since it may have been retrieved from cache. 504 struct TerminatedPath { 505 MemoryAccess *Clobber; 506 ListIndex LastNode; 507 }; 508 509 /// Get an access that keeps us from optimizing to the given phi. 510 /// 511 /// PausedSearches is an array of indices into the Paths array. Its incoming 512 /// value is the indices of searches that stopped at the last phi optimization 513 /// target. It's left in an unspecified state. 514 /// 515 /// If this returns None, NewPaused is a vector of searches that terminated 516 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 517 Optional<TerminatedPath> 518 getBlockingAccess(const MemoryAccess *StopWhere, 519 SmallVectorImpl<ListIndex> &PausedSearches, 520 SmallVectorImpl<ListIndex> &NewPaused, 521 SmallVectorImpl<TerminatedPath> &Terminated) { 522 assert(!PausedSearches.empty() && "No searches to continue?"); 523 524 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 525 // PausedSearches as our stack. 526 while (!PausedSearches.empty()) { 527 ListIndex PathIndex = PausedSearches.pop_back_val(); 528 DefPath &Node = Paths[PathIndex]; 529 530 // If we've already visited this path with this MemoryLocation, we don't 531 // need to do so again. 532 // 533 // NOTE: That we just drop these paths on the ground makes caching 534 // behavior sporadic. e.g. given a diamond: 535 // A 536 // B C 537 // D 538 // 539 // ...If we walk D, B, A, C, we'll only cache the result of phi 540 // optimization for A, B, and D; C will be skipped because it dies here. 541 // This arguably isn't the worst thing ever, since: 542 // - We generally query things in a top-down order, so if we got below D 543 // without needing cache entries for {C, MemLoc}, then chances are 544 // that those cache entries would end up ultimately unused. 545 // - We still cache things for A, so C only needs to walk up a bit. 546 // If this behavior becomes problematic, we can fix without a ton of extra 547 // work. 548 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 549 continue; 550 551 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); 552 if (Res.IsKnownClobber) { 553 assert(Res.Result != StopWhere); 554 // If this wasn't a cache hit, we hit a clobber when walking. That's a 555 // failure. 556 TerminatedPath Term{Res.Result, PathIndex}; 557 if (!MSSA.dominates(Res.Result, StopWhere)) 558 return Term; 559 560 // Otherwise, it's a valid thing to potentially optimize to. 561 Terminated.push_back(Term); 562 continue; 563 } 564 565 if (Res.Result == StopWhere) { 566 // We've hit our target. Save this path off for if we want to continue 567 // walking. 568 NewPaused.push_back(PathIndex); 569 continue; 570 } 571 572 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 573 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 574 } 575 576 return None; 577 } 578 579 template <typename T, typename Walker> 580 struct generic_def_path_iterator 581 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 582 std::forward_iterator_tag, T *> { 583 generic_def_path_iterator() = default; 584 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 585 586 T &operator*() const { return curNode(); } 587 588 generic_def_path_iterator &operator++() { 589 N = curNode().Previous; 590 return *this; 591 } 592 593 bool operator==(const generic_def_path_iterator &O) const { 594 if (N.hasValue() != O.N.hasValue()) 595 return false; 596 return !N.hasValue() || *N == *O.N; 597 } 598 599 private: 600 T &curNode() const { return W->Paths[*N]; } 601 602 Walker *W = nullptr; 603 Optional<ListIndex> N = None; 604 }; 605 606 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 607 using const_def_path_iterator = 608 generic_def_path_iterator<const DefPath, const ClobberWalker>; 609 610 iterator_range<def_path_iterator> def_path(ListIndex From) { 611 return make_range(def_path_iterator(this, From), def_path_iterator()); 612 } 613 614 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 615 return make_range(const_def_path_iterator(this, From), 616 const_def_path_iterator()); 617 } 618 619 struct OptznResult { 620 /// The path that contains our result. 621 TerminatedPath PrimaryClobber; 622 /// The paths that we can legally cache back from, but that aren't 623 /// necessarily the result of the Phi optimization. 624 SmallVector<TerminatedPath, 4> OtherClobbers; 625 }; 626 627 ListIndex defPathIndex(const DefPath &N) const { 628 // The assert looks nicer if we don't need to do &N 629 const DefPath *NP = &N; 630 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 631 "Out of bounds DefPath!"); 632 return NP - &Paths.front(); 633 } 634 635 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 636 /// that act as legal clobbers. Note that this won't return *all* clobbers. 637 /// 638 /// Phi optimization algorithm tl;dr: 639 /// - Find the earliest def/phi, A, we can optimize to 640 /// - Find if all paths from the starting memory access ultimately reach A 641 /// - If not, optimization isn't possible. 642 /// - Otherwise, walk from A to another clobber or phi, A'. 643 /// - If A' is a def, we're done. 644 /// - If A' is a phi, try to optimize it. 645 /// 646 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 647 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 648 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 649 const MemoryLocation &Loc) { 650 assert(Paths.empty() && VisitedPhis.empty() && 651 "Reset the optimization state."); 652 653 Paths.emplace_back(Loc, Start, Phi, None); 654 // Stores how many "valid" optimization nodes we had prior to calling 655 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 656 auto PriorPathsSize = Paths.size(); 657 658 SmallVector<ListIndex, 16> PausedSearches; 659 SmallVector<ListIndex, 8> NewPaused; 660 SmallVector<TerminatedPath, 4> TerminatedPaths; 661 662 addSearches(Phi, PausedSearches, 0); 663 664 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 665 // Paths. 666 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 667 assert(!Paths.empty() && "Need a path to move"); 668 auto Dom = Paths.begin(); 669 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 670 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 671 Dom = I; 672 auto Last = Paths.end() - 1; 673 if (Last != Dom) 674 std::iter_swap(Last, Dom); 675 }; 676 677 MemoryPhi *Current = Phi; 678 while (true) { 679 assert(!MSSA.isLiveOnEntryDef(Current) && 680 "liveOnEntry wasn't treated as a clobber?"); 681 682 const auto *Target = getWalkTarget(Current); 683 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 684 // optimization for the prior phi. 685 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 686 return MSSA.dominates(P.Clobber, Target); 687 })); 688 689 // FIXME: This is broken, because the Blocker may be reported to be 690 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 691 // For the moment, this is fine, since we do nothing with blocker info. 692 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 693 Target, PausedSearches, NewPaused, TerminatedPaths)) { 694 695 // Find the node we started at. We can't search based on N->Last, since 696 // we may have gone around a loop with a different MemoryLocation. 697 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 698 return defPathIndex(N) < PriorPathsSize; 699 }); 700 assert(Iter != def_path_iterator()); 701 702 DefPath &CurNode = *Iter; 703 assert(CurNode.Last == Current); 704 705 // Two things: 706 // A. We can't reliably cache all of NewPaused back. Consider a case 707 // where we have two paths in NewPaused; one of which can't optimize 708 // above this phi, whereas the other can. If we cache the second path 709 // back, we'll end up with suboptimal cache entries. We can handle 710 // cases like this a bit better when we either try to find all 711 // clobbers that block phi optimization, or when our cache starts 712 // supporting unfinished searches. 713 // B. We can't reliably cache TerminatedPaths back here without doing 714 // extra checks; consider a case like: 715 // T 716 // / \ 717 // D C 718 // \ / 719 // S 720 // Where T is our target, C is a node with a clobber on it, D is a 721 // diamond (with a clobber *only* on the left or right node, N), and 722 // S is our start. Say we walk to D, through the node opposite N 723 // (read: ignoring the clobber), and see a cache entry in the top 724 // node of D. That cache entry gets put into TerminatedPaths. We then 725 // walk up to C (N is later in our worklist), find the clobber, and 726 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 727 // the bottom part of D to the cached clobber, ignoring the clobber 728 // in N. Again, this problem goes away if we start tracking all 729 // blockers for a given phi optimization. 730 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 731 return {Result, {}}; 732 } 733 734 // If there's nothing left to search, then all paths led to valid clobbers 735 // that we got from our cache; pick the nearest to the start, and allow 736 // the rest to be cached back. 737 if (NewPaused.empty()) { 738 MoveDominatedPathToEnd(TerminatedPaths); 739 TerminatedPath Result = TerminatedPaths.pop_back_val(); 740 return {Result, std::move(TerminatedPaths)}; 741 } 742 743 MemoryAccess *DefChainEnd = nullptr; 744 SmallVector<TerminatedPath, 4> Clobbers; 745 for (ListIndex Paused : NewPaused) { 746 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 747 if (WR.IsKnownClobber) 748 Clobbers.push_back({WR.Result, Paused}); 749 else 750 // Micro-opt: If we hit the end of the chain, save it. 751 DefChainEnd = WR.Result; 752 } 753 754 if (!TerminatedPaths.empty()) { 755 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 756 // do it now. 757 if (!DefChainEnd) 758 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 759 DefChainEnd = MA; 760 761 // If any of the terminated paths don't dominate the phi we'll try to 762 // optimize, we need to figure out what they are and quit. 763 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 764 for (const TerminatedPath &TP : TerminatedPaths) { 765 // Because we know that DefChainEnd is as "high" as we can go, we 766 // don't need local dominance checks; BB dominance is sufficient. 767 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 768 Clobbers.push_back(TP); 769 } 770 } 771 772 // If we have clobbers in the def chain, find the one closest to Current 773 // and quit. 774 if (!Clobbers.empty()) { 775 MoveDominatedPathToEnd(Clobbers); 776 TerminatedPath Result = Clobbers.pop_back_val(); 777 return {Result, std::move(Clobbers)}; 778 } 779 780 assert(all_of(NewPaused, 781 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 782 783 // Because liveOnEntry is a clobber, this must be a phi. 784 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 785 786 PriorPathsSize = Paths.size(); 787 PausedSearches.clear(); 788 for (ListIndex I : NewPaused) 789 addSearches(DefChainPhi, PausedSearches, I); 790 NewPaused.clear(); 791 792 Current = DefChainPhi; 793 } 794 } 795 796 void verifyOptResult(const OptznResult &R) const { 797 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 798 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 799 })); 800 } 801 802 void resetPhiOptznState() { 803 Paths.clear(); 804 VisitedPhis.clear(); 805 } 806 807 public: 808 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) 809 : MSSA(MSSA), AA(AA), DT(DT) {} 810 811 void reset() {} 812 813 /// Finds the nearest clobber for the given query, optimizing phis if 814 /// possible. 815 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { 816 Query = &Q; 817 818 MemoryAccess *Current = Start; 819 // This walker pretends uses don't exist. If we're handed one, silently grab 820 // its def. (This has the nice side-effect of ensuring we never cache uses) 821 if (auto *MU = dyn_cast<MemoryUse>(Start)) 822 Current = MU->getDefiningAccess(); 823 824 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 825 // Fast path for the overly-common case (no crazy phi optimization 826 // necessary) 827 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 828 MemoryAccess *Result; 829 if (WalkResult.IsKnownClobber) { 830 Result = WalkResult.Result; 831 } else { 832 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 833 Current, Q.StartingLoc); 834 verifyOptResult(OptRes); 835 resetPhiOptznState(); 836 Result = OptRes.PrimaryClobber.Clobber; 837 } 838 839 #ifdef EXPENSIVE_CHECKS 840 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 841 #endif 842 return Result; 843 } 844 845 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } 846 }; 847 848 struct RenamePassData { 849 DomTreeNode *DTN; 850 DomTreeNode::const_iterator ChildIt; 851 MemoryAccess *IncomingVal; 852 853 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 854 MemoryAccess *M) 855 : DTN(D), ChildIt(It), IncomingVal(M) {} 856 857 void swap(RenamePassData &RHS) { 858 std::swap(DTN, RHS.DTN); 859 std::swap(ChildIt, RHS.ChildIt); 860 std::swap(IncomingVal, RHS.IncomingVal); 861 } 862 }; 863 864 } // end anonymous namespace 865 866 namespace llvm { 867 868 /// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no 869 /// longer does caching on its own, 870 /// but the name has been retained for the moment. 871 class MemorySSA::CachingWalker final : public MemorySSAWalker { 872 ClobberWalker Walker; 873 bool AutoResetWalker = true; 874 875 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); 876 877 public: 878 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); 879 ~CachingWalker() override = default; 880 881 using MemorySSAWalker::getClobberingMemoryAccess; 882 883 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; 884 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 885 const MemoryLocation &) override; 886 void invalidateInfo(MemoryAccess *) override; 887 888 /// Whether we call resetClobberWalker() after each time we *actually* walk to 889 /// answer a clobber query. 890 void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } 891 892 /// Drop the walker's persistent data structures. 893 void resetClobberWalker() { Walker.reset(); } 894 895 void verify(const MemorySSA *MSSA) override { 896 MemorySSAWalker::verify(MSSA); 897 Walker.verify(MSSA); 898 } 899 }; 900 901 } // end namespace llvm 902 903 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 904 bool RenameAllUses) { 905 // Pass through values to our successors 906 for (const BasicBlock *S : successors(BB)) { 907 auto It = PerBlockAccesses.find(S); 908 // Rename the phi nodes in our successor block 909 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 910 continue; 911 AccessList *Accesses = It->second.get(); 912 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 913 if (RenameAllUses) { 914 int PhiIndex = Phi->getBasicBlockIndex(BB); 915 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 916 Phi->setIncomingValue(PhiIndex, IncomingVal); 917 } else 918 Phi->addIncoming(IncomingVal, BB); 919 } 920 } 921 922 /// \brief Rename a single basic block into MemorySSA form. 923 /// Uses the standard SSA renaming algorithm. 924 /// \returns The new incoming value. 925 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 926 bool RenameAllUses) { 927 auto It = PerBlockAccesses.find(BB); 928 // Skip most processing if the list is empty. 929 if (It != PerBlockAccesses.end()) { 930 AccessList *Accesses = It->second.get(); 931 for (MemoryAccess &L : *Accesses) { 932 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 933 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 934 MUD->setDefiningAccess(IncomingVal); 935 if (isa<MemoryDef>(&L)) 936 IncomingVal = &L; 937 } else { 938 IncomingVal = &L; 939 } 940 } 941 } 942 return IncomingVal; 943 } 944 945 /// \brief This is the standard SSA renaming algorithm. 946 /// 947 /// We walk the dominator tree in preorder, renaming accesses, and then filling 948 /// in phi nodes in our successors. 949 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 950 SmallPtrSetImpl<BasicBlock *> &Visited, 951 bool SkipVisited, bool RenameAllUses) { 952 SmallVector<RenamePassData, 32> WorkStack; 953 // Skip everything if we already renamed this block and we are skipping. 954 // Note: You can't sink this into the if, because we need it to occur 955 // regardless of whether we skip blocks or not. 956 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 957 if (SkipVisited && AlreadyVisited) 958 return; 959 960 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 961 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 962 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 963 964 while (!WorkStack.empty()) { 965 DomTreeNode *Node = WorkStack.back().DTN; 966 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 967 IncomingVal = WorkStack.back().IncomingVal; 968 969 if (ChildIt == Node->end()) { 970 WorkStack.pop_back(); 971 } else { 972 DomTreeNode *Child = *ChildIt; 973 ++WorkStack.back().ChildIt; 974 BasicBlock *BB = Child->getBlock(); 975 // Note: You can't sink this into the if, because we need it to occur 976 // regardless of whether we skip blocks or not. 977 AlreadyVisited = !Visited.insert(BB).second; 978 if (SkipVisited && AlreadyVisited) { 979 // We already visited this during our renaming, which can happen when 980 // being asked to rename multiple blocks. Figure out the incoming val, 981 // which is the last def. 982 // Incoming value can only change if there is a block def, and in that 983 // case, it's the last block def in the list. 984 if (auto *BlockDefs = getWritableBlockDefs(BB)) 985 IncomingVal = &*BlockDefs->rbegin(); 986 } else 987 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 988 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 989 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 990 } 991 } 992 } 993 994 /// \brief This handles unreachable block accesses by deleting phi nodes in 995 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 996 /// being uses of the live on entry definition. 997 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 998 assert(!DT->isReachableFromEntry(BB) && 999 "Reachable block found while handling unreachable blocks"); 1000 1001 // Make sure phi nodes in our reachable successors end up with a 1002 // LiveOnEntryDef for our incoming edge, even though our block is forward 1003 // unreachable. We could just disconnect these blocks from the CFG fully, 1004 // but we do not right now. 1005 for (const BasicBlock *S : successors(BB)) { 1006 if (!DT->isReachableFromEntry(S)) 1007 continue; 1008 auto It = PerBlockAccesses.find(S); 1009 // Rename the phi nodes in our successor block 1010 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1011 continue; 1012 AccessList *Accesses = It->second.get(); 1013 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1014 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1015 } 1016 1017 auto It = PerBlockAccesses.find(BB); 1018 if (It == PerBlockAccesses.end()) 1019 return; 1020 1021 auto &Accesses = It->second; 1022 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1023 auto Next = std::next(AI); 1024 // If we have a phi, just remove it. We are going to replace all 1025 // users with live on entry. 1026 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1027 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1028 else 1029 Accesses->erase(AI); 1030 AI = Next; 1031 } 1032 } 1033 1034 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1035 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1036 NextID(INVALID_MEMORYACCESS_ID) { 1037 buildMemorySSA(); 1038 } 1039 1040 MemorySSA::~MemorySSA() { 1041 // Drop all our references 1042 for (const auto &Pair : PerBlockAccesses) 1043 for (MemoryAccess &MA : *Pair.second) 1044 MA.dropAllReferences(); 1045 } 1046 1047 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1048 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1049 1050 if (Res.second) 1051 Res.first->second = llvm::make_unique<AccessList>(); 1052 return Res.first->second.get(); 1053 } 1054 1055 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1056 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1057 1058 if (Res.second) 1059 Res.first->second = llvm::make_unique<DefsList>(); 1060 return Res.first->second.get(); 1061 } 1062 1063 namespace llvm { 1064 1065 /// This class is a batch walker of all MemoryUse's in the program, and points 1066 /// their defining access at the thing that actually clobbers them. Because it 1067 /// is a batch walker that touches everything, it does not operate like the 1068 /// other walkers. This walker is basically performing a top-down SSA renaming 1069 /// pass, where the version stack is used as the cache. This enables it to be 1070 /// significantly more time and memory efficient than using the regular walker, 1071 /// which is walking bottom-up. 1072 class MemorySSA::OptimizeUses { 1073 public: 1074 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, 1075 DominatorTree *DT) 1076 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { 1077 Walker = MSSA->getWalker(); 1078 } 1079 1080 void optimizeUses(); 1081 1082 private: 1083 /// This represents where a given memorylocation is in the stack. 1084 struct MemlocStackInfo { 1085 // This essentially is keeping track of versions of the stack. Whenever 1086 // the stack changes due to pushes or pops, these versions increase. 1087 unsigned long StackEpoch; 1088 unsigned long PopEpoch; 1089 // This is the lower bound of places on the stack to check. It is equal to 1090 // the place the last stack walk ended. 1091 // Note: Correctness depends on this being initialized to 0, which densemap 1092 // does 1093 unsigned long LowerBound; 1094 const BasicBlock *LowerBoundBlock; 1095 // This is where the last walk for this memory location ended. 1096 unsigned long LastKill; 1097 bool LastKillValid; 1098 }; 1099 1100 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1101 SmallVectorImpl<MemoryAccess *> &, 1102 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1103 1104 MemorySSA *MSSA; 1105 MemorySSAWalker *Walker; 1106 AliasAnalysis *AA; 1107 DominatorTree *DT; 1108 }; 1109 1110 } // end namespace llvm 1111 1112 /// Optimize the uses in a given block This is basically the SSA renaming 1113 /// algorithm, with one caveat: We are able to use a single stack for all 1114 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1115 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1116 /// going to be some position in that stack of possible ones. 1117 /// 1118 /// We track the stack positions that each MemoryLocation needs 1119 /// to check, and last ended at. This is because we only want to check the 1120 /// things that changed since last time. The same MemoryLocation should 1121 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1122 /// things like this, and if they start, we can modify MemoryLocOrCall to 1123 /// include relevant data) 1124 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1125 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1126 SmallVectorImpl<MemoryAccess *> &VersionStack, 1127 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1128 1129 /// If no accesses, nothing to do. 1130 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1131 if (Accesses == nullptr) 1132 return; 1133 1134 // Pop everything that doesn't dominate the current block off the stack, 1135 // increment the PopEpoch to account for this. 1136 while (true) { 1137 assert( 1138 !VersionStack.empty() && 1139 "Version stack should have liveOnEntry sentinel dominating everything"); 1140 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1141 if (DT->dominates(BackBlock, BB)) 1142 break; 1143 while (VersionStack.back()->getBlock() == BackBlock) 1144 VersionStack.pop_back(); 1145 ++PopEpoch; 1146 } 1147 1148 for (MemoryAccess &MA : *Accesses) { 1149 auto *MU = dyn_cast<MemoryUse>(&MA); 1150 if (!MU) { 1151 VersionStack.push_back(&MA); 1152 ++StackEpoch; 1153 continue; 1154 } 1155 1156 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1157 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true); 1158 continue; 1159 } 1160 1161 MemoryLocOrCall UseMLOC(MU); 1162 auto &LocInfo = LocStackInfo[UseMLOC]; 1163 // If the pop epoch changed, it means we've removed stuff from top of 1164 // stack due to changing blocks. We may have to reset the lower bound or 1165 // last kill info. 1166 if (LocInfo.PopEpoch != PopEpoch) { 1167 LocInfo.PopEpoch = PopEpoch; 1168 LocInfo.StackEpoch = StackEpoch; 1169 // If the lower bound was in something that no longer dominates us, we 1170 // have to reset it. 1171 // We can't simply track stack size, because the stack may have had 1172 // pushes/pops in the meantime. 1173 // XXX: This is non-optimal, but only is slower cases with heavily 1174 // branching dominator trees. To get the optimal number of queries would 1175 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1176 // the top of that stack dominates us. This does not seem worth it ATM. 1177 // A much cheaper optimization would be to always explore the deepest 1178 // branch of the dominator tree first. This will guarantee this resets on 1179 // the smallest set of blocks. 1180 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1181 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1182 // Reset the lower bound of things to check. 1183 // TODO: Some day we should be able to reset to last kill, rather than 1184 // 0. 1185 LocInfo.LowerBound = 0; 1186 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1187 LocInfo.LastKillValid = false; 1188 } 1189 } else if (LocInfo.StackEpoch != StackEpoch) { 1190 // If all that has changed is the StackEpoch, we only have to check the 1191 // new things on the stack, because we've checked everything before. In 1192 // this case, the lower bound of things to check remains the same. 1193 LocInfo.PopEpoch = PopEpoch; 1194 LocInfo.StackEpoch = StackEpoch; 1195 } 1196 if (!LocInfo.LastKillValid) { 1197 LocInfo.LastKill = VersionStack.size() - 1; 1198 LocInfo.LastKillValid = true; 1199 } 1200 1201 // At this point, we should have corrected last kill and LowerBound to be 1202 // in bounds. 1203 assert(LocInfo.LowerBound < VersionStack.size() && 1204 "Lower bound out of range"); 1205 assert(LocInfo.LastKill < VersionStack.size() && 1206 "Last kill info out of range"); 1207 // In any case, the new upper bound is the top of the stack. 1208 unsigned long UpperBound = VersionStack.size() - 1; 1209 1210 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1211 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1212 << *(MU->getMemoryInst()) << ")" 1213 << " because there are " << UpperBound - LocInfo.LowerBound 1214 << " stores to disambiguate\n"); 1215 // Because we did not walk, LastKill is no longer valid, as this may 1216 // have been a kill. 1217 LocInfo.LastKillValid = false; 1218 continue; 1219 } 1220 bool FoundClobberResult = false; 1221 while (UpperBound > LocInfo.LowerBound) { 1222 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1223 // For phis, use the walker, see where we ended up, go there 1224 Instruction *UseInst = MU->getMemoryInst(); 1225 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); 1226 // We are guaranteed to find it or something is wrong 1227 while (VersionStack[UpperBound] != Result) { 1228 assert(UpperBound != 0); 1229 --UpperBound; 1230 } 1231 FoundClobberResult = true; 1232 break; 1233 } 1234 1235 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1236 // If the lifetime of the pointer ends at this instruction, it's live on 1237 // entry. 1238 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1239 // Reset UpperBound to liveOnEntryDef's place in the stack 1240 UpperBound = 0; 1241 FoundClobberResult = true; 1242 break; 1243 } 1244 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { 1245 FoundClobberResult = true; 1246 break; 1247 } 1248 --UpperBound; 1249 } 1250 // At the end of this loop, UpperBound is either a clobber, or lower bound 1251 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1252 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1253 MU->setDefiningAccess(VersionStack[UpperBound], true); 1254 // We were last killed now by where we got to 1255 LocInfo.LastKill = UpperBound; 1256 } else { 1257 // Otherwise, we checked all the new ones, and now we know we can get to 1258 // LastKill. 1259 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); 1260 } 1261 LocInfo.LowerBound = VersionStack.size() - 1; 1262 LocInfo.LowerBoundBlock = BB; 1263 } 1264 } 1265 1266 /// Optimize uses to point to their actual clobbering definitions. 1267 void MemorySSA::OptimizeUses::optimizeUses() { 1268 SmallVector<MemoryAccess *, 16> VersionStack; 1269 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1270 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1271 1272 unsigned long StackEpoch = 1; 1273 unsigned long PopEpoch = 1; 1274 // We perform a non-recursive top-down dominator tree walk. 1275 for (const auto *DomNode : depth_first(DT->getRootNode())) 1276 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1277 LocStackInfo); 1278 } 1279 1280 void MemorySSA::placePHINodes( 1281 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks, 1282 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) { 1283 // Determine where our MemoryPhi's should go 1284 ForwardIDFCalculator IDFs(*DT); 1285 IDFs.setDefiningBlocks(DefiningBlocks); 1286 SmallVector<BasicBlock *, 32> IDFBlocks; 1287 IDFs.calculate(IDFBlocks); 1288 1289 std::sort(IDFBlocks.begin(), IDFBlocks.end(), 1290 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) { 1291 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 1292 }); 1293 1294 // Now place MemoryPhi nodes. 1295 for (auto &BB : IDFBlocks) 1296 createMemoryPhi(BB); 1297 } 1298 1299 void MemorySSA::buildMemorySSA() { 1300 // We create an access to represent "live on entry", for things like 1301 // arguments or users of globals, where the memory they use is defined before 1302 // the beginning of the function. We do not actually insert it into the IR. 1303 // We do not define a live on exit for the immediate uses, and thus our 1304 // semantics do *not* imply that something with no immediate uses can simply 1305 // be removed. 1306 BasicBlock &StartingPoint = F.getEntryBlock(); 1307 LiveOnEntryDef = 1308 llvm::make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, 1309 &StartingPoint, NextID++); 1310 DenseMap<const BasicBlock *, unsigned int> BBNumbers; 1311 unsigned NextBBNum = 0; 1312 1313 // We maintain lists of memory accesses per-block, trading memory for time. We 1314 // could just look up the memory access for every possible instruction in the 1315 // stream. 1316 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1317 // Go through each block, figure out where defs occur, and chain together all 1318 // the accesses. 1319 for (BasicBlock &B : F) { 1320 BBNumbers[&B] = NextBBNum++; 1321 bool InsertIntoDef = false; 1322 AccessList *Accesses = nullptr; 1323 DefsList *Defs = nullptr; 1324 for (Instruction &I : B) { 1325 MemoryUseOrDef *MUD = createNewAccess(&I); 1326 if (!MUD) 1327 continue; 1328 1329 if (!Accesses) 1330 Accesses = getOrCreateAccessList(&B); 1331 Accesses->push_back(MUD); 1332 if (isa<MemoryDef>(MUD)) { 1333 InsertIntoDef = true; 1334 if (!Defs) 1335 Defs = getOrCreateDefsList(&B); 1336 Defs->push_back(*MUD); 1337 } 1338 } 1339 if (InsertIntoDef) 1340 DefiningBlocks.insert(&B); 1341 } 1342 placePHINodes(DefiningBlocks, BBNumbers); 1343 1344 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1345 // filled in with all blocks. 1346 SmallPtrSet<BasicBlock *, 16> Visited; 1347 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1348 1349 CachingWalker *Walker = getWalkerImpl(); 1350 1351 // We're doing a batch of updates; don't drop useful caches between them. 1352 Walker->setAutoResetWalker(false); 1353 OptimizeUses(this, Walker, AA, DT).optimizeUses(); 1354 Walker->setAutoResetWalker(true); 1355 Walker->resetClobberWalker(); 1356 1357 // Mark the uses in unreachable blocks as live on entry, so that they go 1358 // somewhere. 1359 for (auto &BB : F) 1360 if (!Visited.count(&BB)) 1361 markUnreachableAsLiveOnEntry(&BB); 1362 } 1363 1364 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1365 1366 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1367 if (Walker) 1368 return Walker.get(); 1369 1370 Walker = llvm::make_unique<CachingWalker>(this, AA, DT); 1371 return Walker.get(); 1372 } 1373 1374 // This is a helper function used by the creation routines. It places NewAccess 1375 // into the access and defs lists for a given basic block, at the given 1376 // insertion point. 1377 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1378 const BasicBlock *BB, 1379 InsertionPlace Point) { 1380 auto *Accesses = getOrCreateAccessList(BB); 1381 if (Point == Beginning) { 1382 // If it's a phi node, it goes first, otherwise, it goes after any phi 1383 // nodes. 1384 if (isa<MemoryPhi>(NewAccess)) { 1385 Accesses->push_front(NewAccess); 1386 auto *Defs = getOrCreateDefsList(BB); 1387 Defs->push_front(*NewAccess); 1388 } else { 1389 auto AI = find_if_not( 1390 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1391 Accesses->insert(AI, NewAccess); 1392 if (!isa<MemoryUse>(NewAccess)) { 1393 auto *Defs = getOrCreateDefsList(BB); 1394 auto DI = find_if_not( 1395 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1396 Defs->insert(DI, *NewAccess); 1397 } 1398 } 1399 } else { 1400 Accesses->push_back(NewAccess); 1401 if (!isa<MemoryUse>(NewAccess)) { 1402 auto *Defs = getOrCreateDefsList(BB); 1403 Defs->push_back(*NewAccess); 1404 } 1405 } 1406 BlockNumberingValid.erase(BB); 1407 } 1408 1409 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1410 AccessList::iterator InsertPt) { 1411 auto *Accesses = getWritableBlockAccesses(BB); 1412 bool WasEnd = InsertPt == Accesses->end(); 1413 Accesses->insert(AccessList::iterator(InsertPt), What); 1414 if (!isa<MemoryUse>(What)) { 1415 auto *Defs = getOrCreateDefsList(BB); 1416 // If we got asked to insert at the end, we have an easy job, just shove it 1417 // at the end. If we got asked to insert before an existing def, we also get 1418 // an terator. If we got asked to insert before a use, we have to hunt for 1419 // the next def. 1420 if (WasEnd) { 1421 Defs->push_back(*What); 1422 } else if (isa<MemoryDef>(InsertPt)) { 1423 Defs->insert(InsertPt->getDefsIterator(), *What); 1424 } else { 1425 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1426 ++InsertPt; 1427 // Either we found a def, or we are inserting at the end 1428 if (InsertPt == Accesses->end()) 1429 Defs->push_back(*What); 1430 else 1431 Defs->insert(InsertPt->getDefsIterator(), *What); 1432 } 1433 } 1434 BlockNumberingValid.erase(BB); 1435 } 1436 1437 // Move What before Where in the IR. The end result is taht What will belong to 1438 // the right lists and have the right Block set, but will not otherwise be 1439 // correct. It will not have the right defining access, and if it is a def, 1440 // things below it will not properly be updated. 1441 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1442 AccessList::iterator Where) { 1443 // Keep it in the lookup tables, remove from the lists 1444 removeFromLists(What, false); 1445 What->setBlock(BB); 1446 insertIntoListsBefore(What, BB, Where); 1447 } 1448 1449 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1450 InsertionPlace Point) { 1451 removeFromLists(What, false); 1452 What->setBlock(BB); 1453 insertIntoListsForBlock(What, BB, Point); 1454 } 1455 1456 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1457 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1458 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1459 // Phi's always are placed at the front of the block. 1460 insertIntoListsForBlock(Phi, BB, Beginning); 1461 ValueToMemoryAccess[BB] = Phi; 1462 return Phi; 1463 } 1464 1465 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1466 MemoryAccess *Definition) { 1467 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1468 MemoryUseOrDef *NewAccess = createNewAccess(I); 1469 assert( 1470 NewAccess != nullptr && 1471 "Tried to create a memory access for a non-memory touching instruction"); 1472 NewAccess->setDefiningAccess(Definition); 1473 return NewAccess; 1474 } 1475 1476 // Return true if the instruction has ordering constraints. 1477 // Note specifically that this only considers stores and loads 1478 // because others are still considered ModRef by getModRefInfo. 1479 static inline bool isOrdered(const Instruction *I) { 1480 if (auto *SI = dyn_cast<StoreInst>(I)) { 1481 if (!SI->isUnordered()) 1482 return true; 1483 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1484 if (!LI->isUnordered()) 1485 return true; 1486 } 1487 return false; 1488 } 1489 1490 /// \brief Helper function to create new memory accesses 1491 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { 1492 // The assume intrinsic has a control dependency which we model by claiming 1493 // that it writes arbitrarily. Ignore that fake memory dependency here. 1494 // FIXME: Replace this special casing with a more accurate modelling of 1495 // assume's control dependency. 1496 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1497 if (II->getIntrinsicID() == Intrinsic::assume) 1498 return nullptr; 1499 1500 // Find out what affect this instruction has on memory. 1501 ModRefInfo ModRef = AA->getModRefInfo(I, None); 1502 // The isOrdered check is used to ensure that volatiles end up as defs 1503 // (atomics end up as ModRef right now anyway). Until we separate the 1504 // ordering chain from the memory chain, this enables people to see at least 1505 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1506 // will still give an answer that bypasses other volatile loads. TODO: 1507 // Separate memory aliasing and ordering into two different chains so that we 1508 // can precisely represent both "what memory will this read/write/is clobbered 1509 // by" and "what instructions can I move this past". 1510 bool Def = isModSet(ModRef) || isOrdered(I); 1511 bool Use = isRefSet(ModRef); 1512 1513 // It's possible for an instruction to not modify memory at all. During 1514 // construction, we ignore them. 1515 if (!Def && !Use) 1516 return nullptr; 1517 1518 assert((Def || Use) && 1519 "Trying to create a memory access with a non-memory instruction"); 1520 1521 MemoryUseOrDef *MUD; 1522 if (Def) 1523 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1524 else 1525 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1526 ValueToMemoryAccess[I] = MUD; 1527 return MUD; 1528 } 1529 1530 /// \brief Returns true if \p Replacer dominates \p Replacee . 1531 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1532 const MemoryAccess *Replacee) const { 1533 if (isa<MemoryUseOrDef>(Replacee)) 1534 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1535 const auto *MP = cast<MemoryPhi>(Replacee); 1536 // For a phi node, the use occurs in the predecessor block of the phi node. 1537 // Since we may occur multiple times in the phi node, we have to check each 1538 // operand to ensure Replacer dominates each operand where Replacee occurs. 1539 for (const Use &Arg : MP->operands()) { 1540 if (Arg.get() != Replacee && 1541 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1542 return false; 1543 } 1544 return true; 1545 } 1546 1547 /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. 1548 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1549 assert(MA->use_empty() && 1550 "Trying to remove memory access that still has uses"); 1551 BlockNumbering.erase(MA); 1552 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1553 MUD->setDefiningAccess(nullptr); 1554 // Invalidate our walker's cache if necessary 1555 if (!isa<MemoryUse>(MA)) 1556 Walker->invalidateInfo(MA); 1557 // The call below to erase will destroy MA, so we can't change the order we 1558 // are doing things here 1559 Value *MemoryInst; 1560 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { 1561 MemoryInst = MUD->getMemoryInst(); 1562 } else { 1563 MemoryInst = MA->getBlock(); 1564 } 1565 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1566 if (VMA->second == MA) 1567 ValueToMemoryAccess.erase(VMA); 1568 } 1569 1570 /// \brief Properly remove \p MA from all of MemorySSA's lists. 1571 /// 1572 /// Because of the way the intrusive list and use lists work, it is important to 1573 /// do removal in the right order. 1574 /// ShouldDelete defaults to true, and will cause the memory access to also be 1575 /// deleted, not just removed. 1576 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1577 // The access list owns the reference, so we erase it from the non-owning list 1578 // first. 1579 if (!isa<MemoryUse>(MA)) { 1580 auto DefsIt = PerBlockDefs.find(MA->getBlock()); 1581 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1582 Defs->remove(*MA); 1583 if (Defs->empty()) 1584 PerBlockDefs.erase(DefsIt); 1585 } 1586 1587 // The erase call here will delete it. If we don't want it deleted, we call 1588 // remove instead. 1589 auto AccessIt = PerBlockAccesses.find(MA->getBlock()); 1590 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1591 if (ShouldDelete) 1592 Accesses->erase(MA); 1593 else 1594 Accesses->remove(MA); 1595 1596 if (Accesses->empty()) 1597 PerBlockAccesses.erase(AccessIt); 1598 } 1599 1600 void MemorySSA::print(raw_ostream &OS) const { 1601 MemorySSAAnnotatedWriter Writer(this); 1602 F.print(OS, &Writer); 1603 } 1604 1605 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1606 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1607 #endif 1608 1609 void MemorySSA::verifyMemorySSA() const { 1610 verifyDefUses(F); 1611 verifyDomination(F); 1612 verifyOrdering(F); 1613 Walker->verify(this); 1614 } 1615 1616 /// \brief Verify that the order and existence of MemoryAccesses matches the 1617 /// order and existence of memory affecting instructions. 1618 void MemorySSA::verifyOrdering(Function &F) const { 1619 // Walk all the blocks, comparing what the lookups think and what the access 1620 // lists think, as well as the order in the blocks vs the order in the access 1621 // lists. 1622 SmallVector<MemoryAccess *, 32> ActualAccesses; 1623 SmallVector<MemoryAccess *, 32> ActualDefs; 1624 for (BasicBlock &B : F) { 1625 const AccessList *AL = getBlockAccesses(&B); 1626 const auto *DL = getBlockDefs(&B); 1627 MemoryAccess *Phi = getMemoryAccess(&B); 1628 if (Phi) { 1629 ActualAccesses.push_back(Phi); 1630 ActualDefs.push_back(Phi); 1631 } 1632 1633 for (Instruction &I : B) { 1634 MemoryAccess *MA = getMemoryAccess(&I); 1635 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1636 "We have memory affecting instructions " 1637 "in this block but they are not in the " 1638 "access list or defs list"); 1639 if (MA) { 1640 ActualAccesses.push_back(MA); 1641 if (isa<MemoryDef>(MA)) 1642 ActualDefs.push_back(MA); 1643 } 1644 } 1645 // Either we hit the assert, really have no accesses, or we have both 1646 // accesses and an access list. 1647 // Same with defs. 1648 if (!AL && !DL) 1649 continue; 1650 assert(AL->size() == ActualAccesses.size() && 1651 "We don't have the same number of accesses in the block as on the " 1652 "access list"); 1653 assert((DL || ActualDefs.size() == 0) && 1654 "Either we should have a defs list, or we should have no defs"); 1655 assert((!DL || DL->size() == ActualDefs.size()) && 1656 "We don't have the same number of defs in the block as on the " 1657 "def list"); 1658 auto ALI = AL->begin(); 1659 auto AAI = ActualAccesses.begin(); 1660 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1661 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1662 ++ALI; 1663 ++AAI; 1664 } 1665 ActualAccesses.clear(); 1666 if (DL) { 1667 auto DLI = DL->begin(); 1668 auto ADI = ActualDefs.begin(); 1669 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1670 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1671 ++DLI; 1672 ++ADI; 1673 } 1674 } 1675 ActualDefs.clear(); 1676 } 1677 } 1678 1679 /// \brief Verify the domination properties of MemorySSA by checking that each 1680 /// definition dominates all of its uses. 1681 void MemorySSA::verifyDomination(Function &F) const { 1682 #ifndef NDEBUG 1683 for (BasicBlock &B : F) { 1684 // Phi nodes are attached to basic blocks 1685 if (MemoryPhi *MP = getMemoryAccess(&B)) 1686 for (const Use &U : MP->uses()) 1687 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1688 1689 for (Instruction &I : B) { 1690 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1691 if (!MD) 1692 continue; 1693 1694 for (const Use &U : MD->uses()) 1695 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1696 } 1697 } 1698 #endif 1699 } 1700 1701 /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use 1702 /// appears in the use list of \p Def. 1703 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1704 #ifndef NDEBUG 1705 // The live on entry use may cause us to get a NULL def here 1706 if (!Def) 1707 assert(isLiveOnEntryDef(Use) && 1708 "Null def but use not point to live on entry def"); 1709 else 1710 assert(is_contained(Def->users(), Use) && 1711 "Did not find use in def's use list"); 1712 #endif 1713 } 1714 1715 /// \brief Verify the immediate use information, by walking all the memory 1716 /// accesses and verifying that, for each use, it appears in the 1717 /// appropriate def's use list 1718 void MemorySSA::verifyDefUses(Function &F) const { 1719 for (BasicBlock &B : F) { 1720 // Phi nodes are attached to basic blocks 1721 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 1722 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1723 pred_begin(&B), pred_end(&B))) && 1724 "Incomplete MemoryPhi Node"); 1725 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1726 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1727 } 1728 1729 for (Instruction &I : B) { 1730 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 1731 verifyUseInDefs(MA->getDefiningAccess(), MA); 1732 } 1733 } 1734 } 1735 } 1736 1737 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { 1738 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); 1739 } 1740 1741 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { 1742 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); 1743 } 1744 1745 /// Perform a local numbering on blocks so that instruction ordering can be 1746 /// determined in constant time. 1747 /// TODO: We currently just number in order. If we numbered by N, we could 1748 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 1749 /// log2(N) sequences of mixed before and after) without needing to invalidate 1750 /// the numbering. 1751 void MemorySSA::renumberBlock(const BasicBlock *B) const { 1752 // The pre-increment ensures the numbers really start at 1. 1753 unsigned long CurrentNumber = 0; 1754 const AccessList *AL = getBlockAccesses(B); 1755 assert(AL != nullptr && "Asking to renumber an empty block"); 1756 for (const auto &I : *AL) 1757 BlockNumbering[&I] = ++CurrentNumber; 1758 BlockNumberingValid.insert(B); 1759 } 1760 1761 /// \brief Determine, for two memory accesses in the same block, 1762 /// whether \p Dominator dominates \p Dominatee. 1763 /// \returns True if \p Dominator dominates \p Dominatee. 1764 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 1765 const MemoryAccess *Dominatee) const { 1766 const BasicBlock *DominatorBlock = Dominator->getBlock(); 1767 1768 assert((DominatorBlock == Dominatee->getBlock()) && 1769 "Asking for local domination when accesses are in different blocks!"); 1770 // A node dominates itself. 1771 if (Dominatee == Dominator) 1772 return true; 1773 1774 // When Dominatee is defined on function entry, it is not dominated by another 1775 // memory access. 1776 if (isLiveOnEntryDef(Dominatee)) 1777 return false; 1778 1779 // When Dominator is defined on function entry, it dominates the other memory 1780 // access. 1781 if (isLiveOnEntryDef(Dominator)) 1782 return true; 1783 1784 if (!BlockNumberingValid.count(DominatorBlock)) 1785 renumberBlock(DominatorBlock); 1786 1787 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 1788 // All numbers start with 1 1789 assert(DominatorNum != 0 && "Block was not numbered properly"); 1790 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 1791 assert(DominateeNum != 0 && "Block was not numbered properly"); 1792 return DominatorNum < DominateeNum; 1793 } 1794 1795 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1796 const MemoryAccess *Dominatee) const { 1797 if (Dominator == Dominatee) 1798 return true; 1799 1800 if (isLiveOnEntryDef(Dominatee)) 1801 return false; 1802 1803 if (Dominator->getBlock() != Dominatee->getBlock()) 1804 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 1805 return locallyDominates(Dominator, Dominatee); 1806 } 1807 1808 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1809 const Use &Dominatee) const { 1810 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 1811 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 1812 // The def must dominate the incoming block of the phi. 1813 if (UseBB != Dominator->getBlock()) 1814 return DT->dominates(Dominator->getBlock(), UseBB); 1815 // If the UseBB and the DefBB are the same, compare locally. 1816 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 1817 } 1818 // If it's not a PHI node use, the normal dominates can already handle it. 1819 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 1820 } 1821 1822 const static char LiveOnEntryStr[] = "liveOnEntry"; 1823 1824 void MemoryAccess::print(raw_ostream &OS) const { 1825 switch (getValueID()) { 1826 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 1827 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 1828 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 1829 } 1830 llvm_unreachable("invalid value id"); 1831 } 1832 1833 void MemoryDef::print(raw_ostream &OS) const { 1834 MemoryAccess *UO = getDefiningAccess(); 1835 1836 OS << getID() << " = MemoryDef("; 1837 if (UO && UO->getID()) 1838 OS << UO->getID(); 1839 else 1840 OS << LiveOnEntryStr; 1841 OS << ')'; 1842 } 1843 1844 void MemoryPhi::print(raw_ostream &OS) const { 1845 bool First = true; 1846 OS << getID() << " = MemoryPhi("; 1847 for (const auto &Op : operands()) { 1848 BasicBlock *BB = getIncomingBlock(Op); 1849 MemoryAccess *MA = cast<MemoryAccess>(Op); 1850 if (!First) 1851 OS << ','; 1852 else 1853 First = false; 1854 1855 OS << '{'; 1856 if (BB->hasName()) 1857 OS << BB->getName(); 1858 else 1859 BB->printAsOperand(OS, false); 1860 OS << ','; 1861 if (unsigned ID = MA->getID()) 1862 OS << ID; 1863 else 1864 OS << LiveOnEntryStr; 1865 OS << '}'; 1866 } 1867 OS << ')'; 1868 } 1869 1870 void MemoryUse::print(raw_ostream &OS) const { 1871 MemoryAccess *UO = getDefiningAccess(); 1872 OS << "MemoryUse("; 1873 if (UO && UO->getID()) 1874 OS << UO->getID(); 1875 else 1876 OS << LiveOnEntryStr; 1877 OS << ')'; 1878 } 1879 1880 void MemoryAccess::dump() const { 1881 // Cannot completely remove virtual function even in release mode. 1882 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1883 print(dbgs()); 1884 dbgs() << "\n"; 1885 #endif 1886 } 1887 1888 char MemorySSAPrinterLegacyPass::ID = 0; 1889 1890 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 1891 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 1892 } 1893 1894 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 1895 AU.setPreservesAll(); 1896 AU.addRequired<MemorySSAWrapperPass>(); 1897 } 1898 1899 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 1900 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1901 MSSA.print(dbgs()); 1902 if (VerifyMemorySSA) 1903 MSSA.verifyMemorySSA(); 1904 return false; 1905 } 1906 1907 AnalysisKey MemorySSAAnalysis::Key; 1908 1909 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 1910 FunctionAnalysisManager &AM) { 1911 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1912 auto &AA = AM.getResult<AAManager>(F); 1913 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 1914 } 1915 1916 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 1917 FunctionAnalysisManager &AM) { 1918 OS << "MemorySSA for function: " << F.getName() << "\n"; 1919 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 1920 1921 return PreservedAnalyses::all(); 1922 } 1923 1924 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 1925 FunctionAnalysisManager &AM) { 1926 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 1927 1928 return PreservedAnalyses::all(); 1929 } 1930 1931 char MemorySSAWrapperPass::ID = 0; 1932 1933 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 1934 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 1935 } 1936 1937 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 1938 1939 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1940 AU.setPreservesAll(); 1941 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1942 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1943 } 1944 1945 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 1946 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1947 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1948 MSSA.reset(new MemorySSA(F, &AA, &DT)); 1949 return false; 1950 } 1951 1952 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 1953 1954 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 1955 MSSA->print(OS); 1956 } 1957 1958 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 1959 1960 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, 1961 DominatorTree *D) 1962 : MemorySSAWalker(M), Walker(*M, *A, *D) {} 1963 1964 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { 1965 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1966 MUD->resetOptimized(); 1967 } 1968 1969 /// \brief Walk the use-def chains starting at \p MA and find 1970 /// the MemoryAccess that actually clobbers Loc. 1971 /// 1972 /// \returns our clobbering memory access 1973 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 1974 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { 1975 MemoryAccess *New = Walker.findClobber(StartingAccess, Q); 1976 #ifdef EXPENSIVE_CHECKS 1977 MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q); 1978 assert(NewNoCache == New && "Cache made us hand back a different result?"); 1979 (void)NewNoCache; 1980 #endif 1981 if (AutoResetWalker) 1982 resetClobberWalker(); 1983 return New; 1984 } 1985 1986 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 1987 MemoryAccess *StartingAccess, const MemoryLocation &Loc) { 1988 if (isa<MemoryPhi>(StartingAccess)) 1989 return StartingAccess; 1990 1991 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 1992 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 1993 return StartingUseOrDef; 1994 1995 Instruction *I = StartingUseOrDef->getMemoryInst(); 1996 1997 // Conservatively, fences are always clobbers, so don't perform the walk if we 1998 // hit a fence. 1999 if (!ImmutableCallSite(I) && I->isFenceLike()) 2000 return StartingUseOrDef; 2001 2002 UpwardsMemoryQuery Q; 2003 Q.OriginalAccess = StartingUseOrDef; 2004 Q.StartingLoc = Loc; 2005 Q.Inst = I; 2006 Q.IsCall = false; 2007 2008 // Unlike the other function, do not walk to the def of a def, because we are 2009 // handed something we already believe is the clobbering access. 2010 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2011 ? StartingUseOrDef->getDefiningAccess() 2012 : StartingUseOrDef; 2013 2014 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); 2015 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2016 DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2017 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2018 DEBUG(dbgs() << *Clobber << "\n"); 2019 return Clobber; 2020 } 2021 2022 MemoryAccess * 2023 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2024 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2025 // If this is a MemoryPhi, we can't do anything. 2026 if (!StartingAccess) 2027 return MA; 2028 2029 // If this is an already optimized use or def, return the optimized result. 2030 // Note: Currently, we do not store the optimized def result because we'd need 2031 // a separate field, since we can't use it as the defining access. 2032 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2033 if (MUD->isOptimized()) 2034 return MUD->getOptimized(); 2035 2036 const Instruction *I = StartingAccess->getMemoryInst(); 2037 UpwardsMemoryQuery Q(I, StartingAccess); 2038 // We can't sanely do anything with a fences, they conservatively 2039 // clobber all memory, and have no locations to get pointers from to 2040 // try to disambiguate. 2041 if (!Q.IsCall && I->isFenceLike()) 2042 return StartingAccess; 2043 2044 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { 2045 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2046 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2047 MUD->setOptimized(LiveOnEntry); 2048 return LiveOnEntry; 2049 } 2050 2051 // Start with the thing we already think clobbers this location 2052 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2053 2054 // At this point, DefiningAccess may be the live on entry def. 2055 // If it is, we will not get a better result. 2056 if (MSSA->isLiveOnEntryDef(DefiningAccess)) 2057 return DefiningAccess; 2058 2059 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); 2060 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2061 DEBUG(dbgs() << *DefiningAccess << "\n"); 2062 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2063 DEBUG(dbgs() << *Result << "\n"); 2064 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2065 MUD->setOptimized(Result); 2066 2067 return Result; 2068 } 2069 2070 MemoryAccess * 2071 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2072 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2073 return Use->getDefiningAccess(); 2074 return MA; 2075 } 2076 2077 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2078 MemoryAccess *StartingAccess, const MemoryLocation &) { 2079 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2080 return Use->getDefiningAccess(); 2081 return StartingAccess; 2082 } 2083 2084 void MemoryPhi::deleteMe(DerivedUser *Self) { 2085 delete static_cast<MemoryPhi *>(Self); 2086 } 2087 2088 void MemoryDef::deleteMe(DerivedUser *Self) { 2089 delete static_cast<MemoryDef *>(Self); 2090 } 2091 2092 void MemoryUse::deleteMe(DerivedUser *Self) { 2093 delete static_cast<MemoryUse *>(Self); 2094 } 2095