1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFGPrinter.h" 29 #include "llvm/Analysis/IteratedDominanceFrontier.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/AtomicOrdering.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdlib> 56 #include <iterator> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "memoryssa" 63 64 static cl::opt<std::string> 65 DotCFGMSSA("dot-cfg-mssa", 66 cl::value_desc("file name for generated dot file"), 67 cl::desc("file name for generated dot file"), cl::init("")); 68 69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 70 true) 71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 73 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 74 true) 75 76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 77 "Memory SSA Printer", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 80 "Memory SSA Printer", false, false) 81 82 static cl::opt<unsigned> MaxCheckLimit( 83 "memssa-check-limit", cl::Hidden, cl::init(100), 84 cl::desc("The maximum number of stores/phis MemorySSA" 85 "will consider trying to walk past (default = 100)")); 86 87 // Always verify MemorySSA if expensive checking is enabled. 88 #ifdef EXPENSIVE_CHECKS 89 bool llvm::VerifyMemorySSA = true; 90 #else 91 bool llvm::VerifyMemorySSA = false; 92 #endif 93 94 static cl::opt<bool, true> 95 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 96 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 97 98 namespace { 99 100 /// An assembly annotator class to print Memory SSA information in 101 /// comments. 102 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 103 const MemorySSA *MSSA; 104 105 public: 106 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 107 108 void emitBasicBlockStartAnnot(const BasicBlock *BB, 109 formatted_raw_ostream &OS) override { 110 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 111 OS << "; " << *MA << "\n"; 112 } 113 114 void emitInstructionAnnot(const Instruction *I, 115 formatted_raw_ostream &OS) override { 116 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 117 OS << "; " << *MA << "\n"; 118 } 119 }; 120 121 /// An assembly annotator class to print Memory SSA information in 122 /// comments. 123 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter { 124 MemorySSA *MSSA; 125 MemorySSAWalker *Walker; 126 127 public: 128 MemorySSAWalkerAnnotatedWriter(MemorySSA *M) 129 : MSSA(M), Walker(M->getWalker()) {} 130 131 void emitInstructionAnnot(const Instruction *I, 132 formatted_raw_ostream &OS) override { 133 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) { 134 MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA); 135 OS << "; " << *MA; 136 if (Clobber) 137 OS << " - clobbered by " << *Clobber; 138 OS << "\n"; 139 } 140 } 141 }; 142 143 } // namespace 144 145 namespace { 146 147 /// Our current alias analysis API differentiates heavily between calls and 148 /// non-calls, and functions called on one usually assert on the other. 149 /// This class encapsulates the distinction to simplify other code that wants 150 /// "Memory affecting instructions and related data" to use as a key. 151 /// For example, this class is used as a densemap key in the use optimizer. 152 class MemoryLocOrCall { 153 public: 154 bool IsCall = false; 155 156 MemoryLocOrCall(MemoryUseOrDef *MUD) 157 : MemoryLocOrCall(MUD->getMemoryInst()) {} 158 MemoryLocOrCall(const MemoryUseOrDef *MUD) 159 : MemoryLocOrCall(MUD->getMemoryInst()) {} 160 161 MemoryLocOrCall(Instruction *Inst) { 162 if (auto *C = dyn_cast<CallBase>(Inst)) { 163 IsCall = true; 164 Call = C; 165 } else { 166 IsCall = false; 167 // There is no such thing as a memorylocation for a fence inst, and it is 168 // unique in that regard. 169 if (!isa<FenceInst>(Inst)) 170 Loc = MemoryLocation::get(Inst); 171 } 172 } 173 174 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 175 176 const CallBase *getCall() const { 177 assert(IsCall); 178 return Call; 179 } 180 181 MemoryLocation getLoc() const { 182 assert(!IsCall); 183 return Loc; 184 } 185 186 bool operator==(const MemoryLocOrCall &Other) const { 187 if (IsCall != Other.IsCall) 188 return false; 189 190 if (!IsCall) 191 return Loc == Other.Loc; 192 193 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 194 return false; 195 196 return Call->arg_size() == Other.Call->arg_size() && 197 std::equal(Call->arg_begin(), Call->arg_end(), 198 Other.Call->arg_begin()); 199 } 200 201 private: 202 union { 203 const CallBase *Call; 204 MemoryLocation Loc; 205 }; 206 }; 207 208 } // end anonymous namespace 209 210 namespace llvm { 211 212 template <> struct DenseMapInfo<MemoryLocOrCall> { 213 static inline MemoryLocOrCall getEmptyKey() { 214 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 215 } 216 217 static inline MemoryLocOrCall getTombstoneKey() { 218 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 219 } 220 221 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 222 if (!MLOC.IsCall) 223 return hash_combine( 224 MLOC.IsCall, 225 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 226 227 hash_code hash = 228 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 229 MLOC.getCall()->getCalledOperand())); 230 231 for (const Value *Arg : MLOC.getCall()->args()) 232 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 233 return hash; 234 } 235 236 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 237 return LHS == RHS; 238 } 239 }; 240 241 } // end namespace llvm 242 243 /// This does one-way checks to see if Use could theoretically be hoisted above 244 /// MayClobber. This will not check the other way around. 245 /// 246 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 247 /// MayClobber, with no potentially clobbering operations in between them. 248 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 249 static bool areLoadsReorderable(const LoadInst *Use, 250 const LoadInst *MayClobber) { 251 bool VolatileUse = Use->isVolatile(); 252 bool VolatileClobber = MayClobber->isVolatile(); 253 // Volatile operations may never be reordered with other volatile operations. 254 if (VolatileUse && VolatileClobber) 255 return false; 256 // Otherwise, volatile doesn't matter here. From the language reference: 257 // 'optimizers may change the order of volatile operations relative to 258 // non-volatile operations.'" 259 260 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 261 // is weaker, it can be moved above other loads. We just need to be sure that 262 // MayClobber isn't an acquire load, because loads can't be moved above 263 // acquire loads. 264 // 265 // Note that this explicitly *does* allow the free reordering of monotonic (or 266 // weaker) loads of the same address. 267 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 268 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 269 AtomicOrdering::Acquire); 270 return !(SeqCstUse || MayClobberIsAcquire); 271 } 272 273 namespace { 274 275 struct ClobberAlias { 276 bool IsClobber; 277 Optional<AliasResult> AR; 278 }; 279 280 } // end anonymous namespace 281 282 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 283 // ignored if IsClobber = false. 284 template <typename AliasAnalysisType> 285 static ClobberAlias 286 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 287 const Instruction *UseInst, AliasAnalysisType &AA) { 288 Instruction *DefInst = MD->getMemoryInst(); 289 assert(DefInst && "Defining instruction not actually an instruction"); 290 Optional<AliasResult> AR; 291 292 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 293 // These intrinsics will show up as affecting memory, but they are just 294 // markers, mostly. 295 // 296 // FIXME: We probably don't actually want MemorySSA to model these at all 297 // (including creating MemoryAccesses for them): we just end up inventing 298 // clobbers where they don't really exist at all. Please see D43269 for 299 // context. 300 switch (II->getIntrinsicID()) { 301 case Intrinsic::invariant_start: 302 case Intrinsic::invariant_end: 303 case Intrinsic::assume: 304 case Intrinsic::experimental_noalias_scope_decl: 305 return {false, AliasResult(AliasResult::NoAlias)}; 306 case Intrinsic::dbg_addr: 307 case Intrinsic::dbg_declare: 308 case Intrinsic::dbg_label: 309 case Intrinsic::dbg_value: 310 llvm_unreachable("debuginfo shouldn't have associated defs!"); 311 default: 312 break; 313 } 314 } 315 316 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 317 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 318 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 319 return {isModOrRefSet(I), AR}; 320 } 321 322 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 323 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 324 return {!areLoadsReorderable(UseLoad, DefLoad), 325 AliasResult(AliasResult::MayAlias)}; 326 327 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 328 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 329 return {isModSet(I), AR}; 330 } 331 332 template <typename AliasAnalysisType> 333 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 334 const MemoryUseOrDef *MU, 335 const MemoryLocOrCall &UseMLOC, 336 AliasAnalysisType &AA) { 337 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 338 // to exist while MemoryLocOrCall is pushed through places. 339 if (UseMLOC.IsCall) 340 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 341 AA); 342 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 343 AA); 344 } 345 346 // Return true when MD may alias MU, return false otherwise. 347 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 348 AliasAnalysis &AA) { 349 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 350 } 351 352 namespace { 353 354 struct UpwardsMemoryQuery { 355 // True if our original query started off as a call 356 bool IsCall = false; 357 // The pointer location we started the query with. This will be empty if 358 // IsCall is true. 359 MemoryLocation StartingLoc; 360 // This is the instruction we were querying about. 361 const Instruction *Inst = nullptr; 362 // The MemoryAccess we actually got called with, used to test local domination 363 const MemoryAccess *OriginalAccess = nullptr; 364 Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias); 365 bool SkipSelfAccess = false; 366 367 UpwardsMemoryQuery() = default; 368 369 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 370 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 371 if (!IsCall) 372 StartingLoc = MemoryLocation::get(Inst); 373 } 374 }; 375 376 } // end anonymous namespace 377 378 template <typename AliasAnalysisType> 379 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 380 const Instruction *I) { 381 // If the memory can't be changed, then loads of the memory can't be 382 // clobbered. 383 if (auto *LI = dyn_cast<LoadInst>(I)) 384 return I->hasMetadata(LLVMContext::MD_invariant_load) || 385 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 386 return false; 387 } 388 389 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 390 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 391 /// 392 /// This is meant to be as simple and self-contained as possible. Because it 393 /// uses no cache, etc., it can be relatively expensive. 394 /// 395 /// \param Start The MemoryAccess that we want to walk from. 396 /// \param ClobberAt A clobber for Start. 397 /// \param StartLoc The MemoryLocation for Start. 398 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 399 /// \param Query The UpwardsMemoryQuery we used for our search. 400 /// \param AA The AliasAnalysis we used for our search. 401 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 402 403 template <typename AliasAnalysisType> 404 LLVM_ATTRIBUTE_UNUSED static void 405 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 406 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 407 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 408 bool AllowImpreciseClobber = false) { 409 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 410 411 if (MSSA.isLiveOnEntryDef(Start)) { 412 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 413 "liveOnEntry must clobber itself"); 414 return; 415 } 416 417 bool FoundClobber = false; 418 DenseSet<ConstMemoryAccessPair> VisitedPhis; 419 SmallVector<ConstMemoryAccessPair, 8> Worklist; 420 Worklist.emplace_back(Start, StartLoc); 421 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 422 // is found, complain. 423 while (!Worklist.empty()) { 424 auto MAP = Worklist.pop_back_val(); 425 // All we care about is that nothing from Start to ClobberAt clobbers Start. 426 // We learn nothing from revisiting nodes. 427 if (!VisitedPhis.insert(MAP).second) 428 continue; 429 430 for (const auto *MA : def_chain(MAP.first)) { 431 if (MA == ClobberAt) { 432 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 433 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 434 // since it won't let us short-circuit. 435 // 436 // Also, note that this can't be hoisted out of the `Worklist` loop, 437 // since MD may only act as a clobber for 1 of N MemoryLocations. 438 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 439 if (!FoundClobber) { 440 ClobberAlias CA = 441 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 442 if (CA.IsClobber) { 443 FoundClobber = true; 444 // Not used: CA.AR; 445 } 446 } 447 } 448 break; 449 } 450 451 // We should never hit liveOnEntry, unless it's the clobber. 452 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 453 454 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 455 // If Start is a Def, skip self. 456 if (MD == Start) 457 continue; 458 459 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 460 .IsClobber && 461 "Found clobber before reaching ClobberAt!"); 462 continue; 463 } 464 465 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 466 (void)MU; 467 assert (MU == Start && 468 "Can only find use in def chain if Start is a use"); 469 continue; 470 } 471 472 assert(isa<MemoryPhi>(MA)); 473 474 // Add reachable phi predecessors 475 for (auto ItB = upward_defs_begin( 476 {const_cast<MemoryAccess *>(MA), MAP.second}, 477 MSSA.getDomTree()), 478 ItE = upward_defs_end(); 479 ItB != ItE; ++ItB) 480 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 481 Worklist.emplace_back(*ItB); 482 } 483 } 484 485 // If the verify is done following an optimization, it's possible that 486 // ClobberAt was a conservative clobbering, that we can now infer is not a 487 // true clobbering access. Don't fail the verify if that's the case. 488 // We do have accesses that claim they're optimized, but could be optimized 489 // further. Updating all these can be expensive, so allow it for now (FIXME). 490 if (AllowImpreciseClobber) 491 return; 492 493 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 494 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 495 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 496 "ClobberAt never acted as a clobber"); 497 } 498 499 namespace { 500 501 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 502 /// in one class. 503 template <class AliasAnalysisType> class ClobberWalker { 504 /// Save a few bytes by using unsigned instead of size_t. 505 using ListIndex = unsigned; 506 507 /// Represents a span of contiguous MemoryDefs, potentially ending in a 508 /// MemoryPhi. 509 struct DefPath { 510 MemoryLocation Loc; 511 // Note that, because we always walk in reverse, Last will always dominate 512 // First. Also note that First and Last are inclusive. 513 MemoryAccess *First; 514 MemoryAccess *Last; 515 Optional<ListIndex> Previous; 516 517 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 518 Optional<ListIndex> Previous) 519 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 520 521 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 522 Optional<ListIndex> Previous) 523 : DefPath(Loc, Init, Init, Previous) {} 524 }; 525 526 const MemorySSA &MSSA; 527 AliasAnalysisType &AA; 528 DominatorTree &DT; 529 UpwardsMemoryQuery *Query; 530 unsigned *UpwardWalkLimit; 531 532 // Phi optimization bookkeeping: 533 // List of DefPath to process during the current phi optimization walk. 534 SmallVector<DefPath, 32> Paths; 535 // List of visited <Access, Location> pairs; we can skip paths already 536 // visited with the same memory location. 537 DenseSet<ConstMemoryAccessPair> VisitedPhis; 538 // Record if phi translation has been performed during the current phi 539 // optimization walk, as merging alias results after phi translation can 540 // yield incorrect results. Context in PR46156. 541 bool PerformedPhiTranslation = false; 542 543 /// Find the nearest def or phi that `From` can legally be optimized to. 544 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 545 assert(From->getNumOperands() && "Phi with no operands?"); 546 547 BasicBlock *BB = From->getBlock(); 548 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 549 DomTreeNode *Node = DT.getNode(BB); 550 while ((Node = Node->getIDom())) { 551 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 552 if (Defs) 553 return &*Defs->rbegin(); 554 } 555 return Result; 556 } 557 558 /// Result of calling walkToPhiOrClobber. 559 struct UpwardsWalkResult { 560 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 561 /// both. Include alias info when clobber found. 562 MemoryAccess *Result; 563 bool IsKnownClobber; 564 Optional<AliasResult> AR; 565 }; 566 567 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 568 /// This will update Desc.Last as it walks. It will (optionally) also stop at 569 /// StopAt. 570 /// 571 /// This does not test for whether StopAt is a clobber 572 UpwardsWalkResult 573 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 574 const MemoryAccess *SkipStopAt = nullptr) const { 575 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 576 assert(UpwardWalkLimit && "Need a valid walk limit"); 577 bool LimitAlreadyReached = false; 578 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 579 // it to 1. This will not do any alias() calls. It either returns in the 580 // first iteration in the loop below, or is set back to 0 if all def chains 581 // are free of MemoryDefs. 582 if (!*UpwardWalkLimit) { 583 *UpwardWalkLimit = 1; 584 LimitAlreadyReached = true; 585 } 586 587 for (MemoryAccess *Current : def_chain(Desc.Last)) { 588 Desc.Last = Current; 589 if (Current == StopAt || Current == SkipStopAt) 590 return {Current, false, AliasResult(AliasResult::MayAlias)}; 591 592 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 593 if (MSSA.isLiveOnEntryDef(MD)) 594 return {MD, true, AliasResult(AliasResult::MustAlias)}; 595 596 if (!--*UpwardWalkLimit) 597 return {Current, true, AliasResult(AliasResult::MayAlias)}; 598 599 ClobberAlias CA = 600 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 601 if (CA.IsClobber) 602 return {MD, true, CA.AR}; 603 } 604 } 605 606 if (LimitAlreadyReached) 607 *UpwardWalkLimit = 0; 608 609 assert(isa<MemoryPhi>(Desc.Last) && 610 "Ended at a non-clobber that's not a phi?"); 611 return {Desc.Last, false, AliasResult(AliasResult::MayAlias)}; 612 } 613 614 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 615 ListIndex PriorNode) { 616 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 617 &PerformedPhiTranslation); 618 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 619 for (const MemoryAccessPair &P : UpwardDefs) { 620 PausedSearches.push_back(Paths.size()); 621 Paths.emplace_back(P.second, P.first, PriorNode); 622 } 623 } 624 625 /// Represents a search that terminated after finding a clobber. This clobber 626 /// may or may not be present in the path of defs from LastNode..SearchStart, 627 /// since it may have been retrieved from cache. 628 struct TerminatedPath { 629 MemoryAccess *Clobber; 630 ListIndex LastNode; 631 }; 632 633 /// Get an access that keeps us from optimizing to the given phi. 634 /// 635 /// PausedSearches is an array of indices into the Paths array. Its incoming 636 /// value is the indices of searches that stopped at the last phi optimization 637 /// target. It's left in an unspecified state. 638 /// 639 /// If this returns None, NewPaused is a vector of searches that terminated 640 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 641 Optional<TerminatedPath> 642 getBlockingAccess(const MemoryAccess *StopWhere, 643 SmallVectorImpl<ListIndex> &PausedSearches, 644 SmallVectorImpl<ListIndex> &NewPaused, 645 SmallVectorImpl<TerminatedPath> &Terminated) { 646 assert(!PausedSearches.empty() && "No searches to continue?"); 647 648 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 649 // PausedSearches as our stack. 650 while (!PausedSearches.empty()) { 651 ListIndex PathIndex = PausedSearches.pop_back_val(); 652 DefPath &Node = Paths[PathIndex]; 653 654 // If we've already visited this path with this MemoryLocation, we don't 655 // need to do so again. 656 // 657 // NOTE: That we just drop these paths on the ground makes caching 658 // behavior sporadic. e.g. given a diamond: 659 // A 660 // B C 661 // D 662 // 663 // ...If we walk D, B, A, C, we'll only cache the result of phi 664 // optimization for A, B, and D; C will be skipped because it dies here. 665 // This arguably isn't the worst thing ever, since: 666 // - We generally query things in a top-down order, so if we got below D 667 // without needing cache entries for {C, MemLoc}, then chances are 668 // that those cache entries would end up ultimately unused. 669 // - We still cache things for A, so C only needs to walk up a bit. 670 // If this behavior becomes problematic, we can fix without a ton of extra 671 // work. 672 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 673 if (PerformedPhiTranslation) { 674 // If visiting this path performed Phi translation, don't continue, 675 // since it may not be correct to merge results from two paths if one 676 // relies on the phi translation. 677 TerminatedPath Term{Node.Last, PathIndex}; 678 return Term; 679 } 680 continue; 681 } 682 683 const MemoryAccess *SkipStopWhere = nullptr; 684 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 685 assert(isa<MemoryDef>(Query->OriginalAccess)); 686 SkipStopWhere = Query->OriginalAccess; 687 } 688 689 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 690 /*StopAt=*/StopWhere, 691 /*SkipStopAt=*/SkipStopWhere); 692 if (Res.IsKnownClobber) { 693 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 694 695 // If this wasn't a cache hit, we hit a clobber when walking. That's a 696 // failure. 697 TerminatedPath Term{Res.Result, PathIndex}; 698 if (!MSSA.dominates(Res.Result, StopWhere)) 699 return Term; 700 701 // Otherwise, it's a valid thing to potentially optimize to. 702 Terminated.push_back(Term); 703 continue; 704 } 705 706 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 707 // We've hit our target. Save this path off for if we want to continue 708 // walking. If we are in the mode of skipping the OriginalAccess, and 709 // we've reached back to the OriginalAccess, do not save path, we've 710 // just looped back to self. 711 if (Res.Result != SkipStopWhere) 712 NewPaused.push_back(PathIndex); 713 continue; 714 } 715 716 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 717 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 718 } 719 720 return None; 721 } 722 723 template <typename T, typename Walker> 724 struct generic_def_path_iterator 725 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 726 std::forward_iterator_tag, T *> { 727 generic_def_path_iterator() {} 728 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 729 730 T &operator*() const { return curNode(); } 731 732 generic_def_path_iterator &operator++() { 733 N = curNode().Previous; 734 return *this; 735 } 736 737 bool operator==(const generic_def_path_iterator &O) const { 738 if (N.hasValue() != O.N.hasValue()) 739 return false; 740 return !N.hasValue() || *N == *O.N; 741 } 742 743 private: 744 T &curNode() const { return W->Paths[*N]; } 745 746 Walker *W = nullptr; 747 Optional<ListIndex> N = None; 748 }; 749 750 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 751 using const_def_path_iterator = 752 generic_def_path_iterator<const DefPath, const ClobberWalker>; 753 754 iterator_range<def_path_iterator> def_path(ListIndex From) { 755 return make_range(def_path_iterator(this, From), def_path_iterator()); 756 } 757 758 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 759 return make_range(const_def_path_iterator(this, From), 760 const_def_path_iterator()); 761 } 762 763 struct OptznResult { 764 /// The path that contains our result. 765 TerminatedPath PrimaryClobber; 766 /// The paths that we can legally cache back from, but that aren't 767 /// necessarily the result of the Phi optimization. 768 SmallVector<TerminatedPath, 4> OtherClobbers; 769 }; 770 771 ListIndex defPathIndex(const DefPath &N) const { 772 // The assert looks nicer if we don't need to do &N 773 const DefPath *NP = &N; 774 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 775 "Out of bounds DefPath!"); 776 return NP - &Paths.front(); 777 } 778 779 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 780 /// that act as legal clobbers. Note that this won't return *all* clobbers. 781 /// 782 /// Phi optimization algorithm tl;dr: 783 /// - Find the earliest def/phi, A, we can optimize to 784 /// - Find if all paths from the starting memory access ultimately reach A 785 /// - If not, optimization isn't possible. 786 /// - Otherwise, walk from A to another clobber or phi, A'. 787 /// - If A' is a def, we're done. 788 /// - If A' is a phi, try to optimize it. 789 /// 790 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 791 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 792 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 793 const MemoryLocation &Loc) { 794 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 795 "Reset the optimization state."); 796 797 Paths.emplace_back(Loc, Start, Phi, None); 798 // Stores how many "valid" optimization nodes we had prior to calling 799 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 800 auto PriorPathsSize = Paths.size(); 801 802 SmallVector<ListIndex, 16> PausedSearches; 803 SmallVector<ListIndex, 8> NewPaused; 804 SmallVector<TerminatedPath, 4> TerminatedPaths; 805 806 addSearches(Phi, PausedSearches, 0); 807 808 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 809 // Paths. 810 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 811 assert(!Paths.empty() && "Need a path to move"); 812 auto Dom = Paths.begin(); 813 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 814 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 815 Dom = I; 816 auto Last = Paths.end() - 1; 817 if (Last != Dom) 818 std::iter_swap(Last, Dom); 819 }; 820 821 MemoryPhi *Current = Phi; 822 while (true) { 823 assert(!MSSA.isLiveOnEntryDef(Current) && 824 "liveOnEntry wasn't treated as a clobber?"); 825 826 const auto *Target = getWalkTarget(Current); 827 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 828 // optimization for the prior phi. 829 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 830 return MSSA.dominates(P.Clobber, Target); 831 })); 832 833 // FIXME: This is broken, because the Blocker may be reported to be 834 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 835 // For the moment, this is fine, since we do nothing with blocker info. 836 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 837 Target, PausedSearches, NewPaused, TerminatedPaths)) { 838 839 // Find the node we started at. We can't search based on N->Last, since 840 // we may have gone around a loop with a different MemoryLocation. 841 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 842 return defPathIndex(N) < PriorPathsSize; 843 }); 844 assert(Iter != def_path_iterator()); 845 846 DefPath &CurNode = *Iter; 847 assert(CurNode.Last == Current); 848 849 // Two things: 850 // A. We can't reliably cache all of NewPaused back. Consider a case 851 // where we have two paths in NewPaused; one of which can't optimize 852 // above this phi, whereas the other can. If we cache the second path 853 // back, we'll end up with suboptimal cache entries. We can handle 854 // cases like this a bit better when we either try to find all 855 // clobbers that block phi optimization, or when our cache starts 856 // supporting unfinished searches. 857 // B. We can't reliably cache TerminatedPaths back here without doing 858 // extra checks; consider a case like: 859 // T 860 // / \ 861 // D C 862 // \ / 863 // S 864 // Where T is our target, C is a node with a clobber on it, D is a 865 // diamond (with a clobber *only* on the left or right node, N), and 866 // S is our start. Say we walk to D, through the node opposite N 867 // (read: ignoring the clobber), and see a cache entry in the top 868 // node of D. That cache entry gets put into TerminatedPaths. We then 869 // walk up to C (N is later in our worklist), find the clobber, and 870 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 871 // the bottom part of D to the cached clobber, ignoring the clobber 872 // in N. Again, this problem goes away if we start tracking all 873 // blockers for a given phi optimization. 874 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 875 return {Result, {}}; 876 } 877 878 // If there's nothing left to search, then all paths led to valid clobbers 879 // that we got from our cache; pick the nearest to the start, and allow 880 // the rest to be cached back. 881 if (NewPaused.empty()) { 882 MoveDominatedPathToEnd(TerminatedPaths); 883 TerminatedPath Result = TerminatedPaths.pop_back_val(); 884 return {Result, std::move(TerminatedPaths)}; 885 } 886 887 MemoryAccess *DefChainEnd = nullptr; 888 SmallVector<TerminatedPath, 4> Clobbers; 889 for (ListIndex Paused : NewPaused) { 890 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 891 if (WR.IsKnownClobber) 892 Clobbers.push_back({WR.Result, Paused}); 893 else 894 // Micro-opt: If we hit the end of the chain, save it. 895 DefChainEnd = WR.Result; 896 } 897 898 if (!TerminatedPaths.empty()) { 899 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 900 // do it now. 901 if (!DefChainEnd) 902 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 903 DefChainEnd = MA; 904 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 905 906 // If any of the terminated paths don't dominate the phi we'll try to 907 // optimize, we need to figure out what they are and quit. 908 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 909 for (const TerminatedPath &TP : TerminatedPaths) { 910 // Because we know that DefChainEnd is as "high" as we can go, we 911 // don't need local dominance checks; BB dominance is sufficient. 912 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 913 Clobbers.push_back(TP); 914 } 915 } 916 917 // If we have clobbers in the def chain, find the one closest to Current 918 // and quit. 919 if (!Clobbers.empty()) { 920 MoveDominatedPathToEnd(Clobbers); 921 TerminatedPath Result = Clobbers.pop_back_val(); 922 return {Result, std::move(Clobbers)}; 923 } 924 925 assert(all_of(NewPaused, 926 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 927 928 // Because liveOnEntry is a clobber, this must be a phi. 929 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 930 931 PriorPathsSize = Paths.size(); 932 PausedSearches.clear(); 933 for (ListIndex I : NewPaused) 934 addSearches(DefChainPhi, PausedSearches, I); 935 NewPaused.clear(); 936 937 Current = DefChainPhi; 938 } 939 } 940 941 void verifyOptResult(const OptznResult &R) const { 942 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 943 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 944 })); 945 } 946 947 void resetPhiOptznState() { 948 Paths.clear(); 949 VisitedPhis.clear(); 950 PerformedPhiTranslation = false; 951 } 952 953 public: 954 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 955 : MSSA(MSSA), AA(AA), DT(DT) {} 956 957 AliasAnalysisType *getAA() { return &AA; } 958 /// Finds the nearest clobber for the given query, optimizing phis if 959 /// possible. 960 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 961 unsigned &UpWalkLimit) { 962 Query = &Q; 963 UpwardWalkLimit = &UpWalkLimit; 964 // Starting limit must be > 0. 965 if (!UpWalkLimit) 966 UpWalkLimit++; 967 968 MemoryAccess *Current = Start; 969 // This walker pretends uses don't exist. If we're handed one, silently grab 970 // its def. (This has the nice side-effect of ensuring we never cache uses) 971 if (auto *MU = dyn_cast<MemoryUse>(Start)) 972 Current = MU->getDefiningAccess(); 973 974 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 975 // Fast path for the overly-common case (no crazy phi optimization 976 // necessary) 977 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 978 MemoryAccess *Result; 979 if (WalkResult.IsKnownClobber) { 980 Result = WalkResult.Result; 981 Q.AR = WalkResult.AR; 982 } else { 983 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 984 Current, Q.StartingLoc); 985 verifyOptResult(OptRes); 986 resetPhiOptznState(); 987 Result = OptRes.PrimaryClobber.Clobber; 988 } 989 990 #ifdef EXPENSIVE_CHECKS 991 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 992 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 993 #endif 994 return Result; 995 } 996 }; 997 998 struct RenamePassData { 999 DomTreeNode *DTN; 1000 DomTreeNode::const_iterator ChildIt; 1001 MemoryAccess *IncomingVal; 1002 1003 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 1004 MemoryAccess *M) 1005 : DTN(D), ChildIt(It), IncomingVal(M) {} 1006 1007 void swap(RenamePassData &RHS) { 1008 std::swap(DTN, RHS.DTN); 1009 std::swap(ChildIt, RHS.ChildIt); 1010 std::swap(IncomingVal, RHS.IncomingVal); 1011 } 1012 }; 1013 1014 } // end anonymous namespace 1015 1016 namespace llvm { 1017 1018 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1019 ClobberWalker<AliasAnalysisType> Walker; 1020 MemorySSA *MSSA; 1021 1022 public: 1023 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1024 : Walker(*M, *A, *D), MSSA(M) {} 1025 1026 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1027 const MemoryLocation &, 1028 unsigned &); 1029 // Third argument (bool), defines whether the clobber search should skip the 1030 // original queried access. If true, there will be a follow-up query searching 1031 // for a clobber access past "self". Note that the Optimized access is not 1032 // updated if a new clobber is found by this SkipSelf search. If this 1033 // additional query becomes heavily used we may decide to cache the result. 1034 // Walker instantiations will decide how to set the SkipSelf bool. 1035 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1036 }; 1037 1038 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1039 /// longer does caching on its own, but the name has been retained for the 1040 /// moment. 1041 template <class AliasAnalysisType> 1042 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1043 ClobberWalkerBase<AliasAnalysisType> *Walker; 1044 1045 public: 1046 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1047 : MemorySSAWalker(M), Walker(W) {} 1048 ~CachingWalker() override = default; 1049 1050 using MemorySSAWalker::getClobberingMemoryAccess; 1051 1052 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1053 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1054 } 1055 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1056 const MemoryLocation &Loc, 1057 unsigned &UWL) { 1058 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1059 } 1060 1061 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1062 unsigned UpwardWalkLimit = MaxCheckLimit; 1063 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1064 } 1065 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1066 const MemoryLocation &Loc) override { 1067 unsigned UpwardWalkLimit = MaxCheckLimit; 1068 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1069 } 1070 1071 void invalidateInfo(MemoryAccess *MA) override { 1072 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1073 MUD->resetOptimized(); 1074 } 1075 }; 1076 1077 template <class AliasAnalysisType> 1078 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1079 ClobberWalkerBase<AliasAnalysisType> *Walker; 1080 1081 public: 1082 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1083 : MemorySSAWalker(M), Walker(W) {} 1084 ~SkipSelfWalker() override = default; 1085 1086 using MemorySSAWalker::getClobberingMemoryAccess; 1087 1088 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1089 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1090 } 1091 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1092 const MemoryLocation &Loc, 1093 unsigned &UWL) { 1094 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1095 } 1096 1097 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1098 unsigned UpwardWalkLimit = MaxCheckLimit; 1099 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1100 } 1101 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1102 const MemoryLocation &Loc) override { 1103 unsigned UpwardWalkLimit = MaxCheckLimit; 1104 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1105 } 1106 1107 void invalidateInfo(MemoryAccess *MA) override { 1108 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1109 MUD->resetOptimized(); 1110 } 1111 }; 1112 1113 } // end namespace llvm 1114 1115 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1116 bool RenameAllUses) { 1117 // Pass through values to our successors 1118 for (const BasicBlock *S : successors(BB)) { 1119 auto It = PerBlockAccesses.find(S); 1120 // Rename the phi nodes in our successor block 1121 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1122 continue; 1123 AccessList *Accesses = It->second.get(); 1124 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1125 if (RenameAllUses) { 1126 bool ReplacementDone = false; 1127 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1128 if (Phi->getIncomingBlock(I) == BB) { 1129 Phi->setIncomingValue(I, IncomingVal); 1130 ReplacementDone = true; 1131 } 1132 (void) ReplacementDone; 1133 assert(ReplacementDone && "Incomplete phi during partial rename"); 1134 } else 1135 Phi->addIncoming(IncomingVal, BB); 1136 } 1137 } 1138 1139 /// Rename a single basic block into MemorySSA form. 1140 /// Uses the standard SSA renaming algorithm. 1141 /// \returns The new incoming value. 1142 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1143 bool RenameAllUses) { 1144 auto It = PerBlockAccesses.find(BB); 1145 // Skip most processing if the list is empty. 1146 if (It != PerBlockAccesses.end()) { 1147 AccessList *Accesses = It->second.get(); 1148 for (MemoryAccess &L : *Accesses) { 1149 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1150 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1151 MUD->setDefiningAccess(IncomingVal); 1152 if (isa<MemoryDef>(&L)) 1153 IncomingVal = &L; 1154 } else { 1155 IncomingVal = &L; 1156 } 1157 } 1158 } 1159 return IncomingVal; 1160 } 1161 1162 /// This is the standard SSA renaming algorithm. 1163 /// 1164 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1165 /// in phi nodes in our successors. 1166 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1167 SmallPtrSetImpl<BasicBlock *> &Visited, 1168 bool SkipVisited, bool RenameAllUses) { 1169 assert(Root && "Trying to rename accesses in an unreachable block"); 1170 1171 SmallVector<RenamePassData, 32> WorkStack; 1172 // Skip everything if we already renamed this block and we are skipping. 1173 // Note: You can't sink this into the if, because we need it to occur 1174 // regardless of whether we skip blocks or not. 1175 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1176 if (SkipVisited && AlreadyVisited) 1177 return; 1178 1179 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1180 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1181 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1182 1183 while (!WorkStack.empty()) { 1184 DomTreeNode *Node = WorkStack.back().DTN; 1185 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1186 IncomingVal = WorkStack.back().IncomingVal; 1187 1188 if (ChildIt == Node->end()) { 1189 WorkStack.pop_back(); 1190 } else { 1191 DomTreeNode *Child = *ChildIt; 1192 ++WorkStack.back().ChildIt; 1193 BasicBlock *BB = Child->getBlock(); 1194 // Note: You can't sink this into the if, because we need it to occur 1195 // regardless of whether we skip blocks or not. 1196 AlreadyVisited = !Visited.insert(BB).second; 1197 if (SkipVisited && AlreadyVisited) { 1198 // We already visited this during our renaming, which can happen when 1199 // being asked to rename multiple blocks. Figure out the incoming val, 1200 // which is the last def. 1201 // Incoming value can only change if there is a block def, and in that 1202 // case, it's the last block def in the list. 1203 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1204 IncomingVal = &*BlockDefs->rbegin(); 1205 } else 1206 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1207 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1208 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1209 } 1210 } 1211 } 1212 1213 /// This handles unreachable block accesses by deleting phi nodes in 1214 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1215 /// being uses of the live on entry definition. 1216 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1217 assert(!DT->isReachableFromEntry(BB) && 1218 "Reachable block found while handling unreachable blocks"); 1219 1220 // Make sure phi nodes in our reachable successors end up with a 1221 // LiveOnEntryDef for our incoming edge, even though our block is forward 1222 // unreachable. We could just disconnect these blocks from the CFG fully, 1223 // but we do not right now. 1224 for (const BasicBlock *S : successors(BB)) { 1225 if (!DT->isReachableFromEntry(S)) 1226 continue; 1227 auto It = PerBlockAccesses.find(S); 1228 // Rename the phi nodes in our successor block 1229 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1230 continue; 1231 AccessList *Accesses = It->second.get(); 1232 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1233 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1234 } 1235 1236 auto It = PerBlockAccesses.find(BB); 1237 if (It == PerBlockAccesses.end()) 1238 return; 1239 1240 auto &Accesses = It->second; 1241 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1242 auto Next = std::next(AI); 1243 // If we have a phi, just remove it. We are going to replace all 1244 // users with live on entry. 1245 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1246 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1247 else 1248 Accesses->erase(AI); 1249 AI = Next; 1250 } 1251 } 1252 1253 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1254 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1255 SkipWalker(nullptr), NextID(0) { 1256 // Build MemorySSA using a batch alias analysis. This reuses the internal 1257 // state that AA collects during an alias()/getModRefInfo() call. This is 1258 // safe because there are no CFG changes while building MemorySSA and can 1259 // significantly reduce the time spent by the compiler in AA, because we will 1260 // make queries about all the instructions in the Function. 1261 assert(AA && "No alias analysis?"); 1262 BatchAAResults BatchAA(*AA); 1263 buildMemorySSA(BatchAA); 1264 // Intentionally leave AA to nullptr while building so we don't accidently 1265 // use non-batch AliasAnalysis. 1266 this->AA = AA; 1267 // Also create the walker here. 1268 getWalker(); 1269 } 1270 1271 MemorySSA::~MemorySSA() { 1272 // Drop all our references 1273 for (const auto &Pair : PerBlockAccesses) 1274 for (MemoryAccess &MA : *Pair.second) 1275 MA.dropAllReferences(); 1276 } 1277 1278 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1279 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1280 1281 if (Res.second) 1282 Res.first->second = std::make_unique<AccessList>(); 1283 return Res.first->second.get(); 1284 } 1285 1286 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1287 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1288 1289 if (Res.second) 1290 Res.first->second = std::make_unique<DefsList>(); 1291 return Res.first->second.get(); 1292 } 1293 1294 namespace llvm { 1295 1296 /// This class is a batch walker of all MemoryUse's in the program, and points 1297 /// their defining access at the thing that actually clobbers them. Because it 1298 /// is a batch walker that touches everything, it does not operate like the 1299 /// other walkers. This walker is basically performing a top-down SSA renaming 1300 /// pass, where the version stack is used as the cache. This enables it to be 1301 /// significantly more time and memory efficient than using the regular walker, 1302 /// which is walking bottom-up. 1303 class MemorySSA::OptimizeUses { 1304 public: 1305 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1306 BatchAAResults *BAA, DominatorTree *DT) 1307 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1308 1309 void optimizeUses(); 1310 1311 private: 1312 /// This represents where a given memorylocation is in the stack. 1313 struct MemlocStackInfo { 1314 // This essentially is keeping track of versions of the stack. Whenever 1315 // the stack changes due to pushes or pops, these versions increase. 1316 unsigned long StackEpoch; 1317 unsigned long PopEpoch; 1318 // This is the lower bound of places on the stack to check. It is equal to 1319 // the place the last stack walk ended. 1320 // Note: Correctness depends on this being initialized to 0, which densemap 1321 // does 1322 unsigned long LowerBound; 1323 const BasicBlock *LowerBoundBlock; 1324 // This is where the last walk for this memory location ended. 1325 unsigned long LastKill; 1326 bool LastKillValid; 1327 Optional<AliasResult> AR; 1328 }; 1329 1330 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1331 SmallVectorImpl<MemoryAccess *> &, 1332 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1333 1334 MemorySSA *MSSA; 1335 CachingWalker<BatchAAResults> *Walker; 1336 BatchAAResults *AA; 1337 DominatorTree *DT; 1338 }; 1339 1340 } // end namespace llvm 1341 1342 /// Optimize the uses in a given block This is basically the SSA renaming 1343 /// algorithm, with one caveat: We are able to use a single stack for all 1344 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1345 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1346 /// going to be some position in that stack of possible ones. 1347 /// 1348 /// We track the stack positions that each MemoryLocation needs 1349 /// to check, and last ended at. This is because we only want to check the 1350 /// things that changed since last time. The same MemoryLocation should 1351 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1352 /// things like this, and if they start, we can modify MemoryLocOrCall to 1353 /// include relevant data) 1354 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1355 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1356 SmallVectorImpl<MemoryAccess *> &VersionStack, 1357 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1358 1359 /// If no accesses, nothing to do. 1360 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1361 if (Accesses == nullptr) 1362 return; 1363 1364 // Pop everything that doesn't dominate the current block off the stack, 1365 // increment the PopEpoch to account for this. 1366 while (true) { 1367 assert( 1368 !VersionStack.empty() && 1369 "Version stack should have liveOnEntry sentinel dominating everything"); 1370 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1371 if (DT->dominates(BackBlock, BB)) 1372 break; 1373 while (VersionStack.back()->getBlock() == BackBlock) 1374 VersionStack.pop_back(); 1375 ++PopEpoch; 1376 } 1377 1378 for (MemoryAccess &MA : *Accesses) { 1379 auto *MU = dyn_cast<MemoryUse>(&MA); 1380 if (!MU) { 1381 VersionStack.push_back(&MA); 1382 ++StackEpoch; 1383 continue; 1384 } 1385 1386 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1387 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1388 continue; 1389 } 1390 1391 MemoryLocOrCall UseMLOC(MU); 1392 auto &LocInfo = LocStackInfo[UseMLOC]; 1393 // If the pop epoch changed, it means we've removed stuff from top of 1394 // stack due to changing blocks. We may have to reset the lower bound or 1395 // last kill info. 1396 if (LocInfo.PopEpoch != PopEpoch) { 1397 LocInfo.PopEpoch = PopEpoch; 1398 LocInfo.StackEpoch = StackEpoch; 1399 // If the lower bound was in something that no longer dominates us, we 1400 // have to reset it. 1401 // We can't simply track stack size, because the stack may have had 1402 // pushes/pops in the meantime. 1403 // XXX: This is non-optimal, but only is slower cases with heavily 1404 // branching dominator trees. To get the optimal number of queries would 1405 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1406 // the top of that stack dominates us. This does not seem worth it ATM. 1407 // A much cheaper optimization would be to always explore the deepest 1408 // branch of the dominator tree first. This will guarantee this resets on 1409 // the smallest set of blocks. 1410 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1411 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1412 // Reset the lower bound of things to check. 1413 // TODO: Some day we should be able to reset to last kill, rather than 1414 // 0. 1415 LocInfo.LowerBound = 0; 1416 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1417 LocInfo.LastKillValid = false; 1418 } 1419 } else if (LocInfo.StackEpoch != StackEpoch) { 1420 // If all that has changed is the StackEpoch, we only have to check the 1421 // new things on the stack, because we've checked everything before. In 1422 // this case, the lower bound of things to check remains the same. 1423 LocInfo.PopEpoch = PopEpoch; 1424 LocInfo.StackEpoch = StackEpoch; 1425 } 1426 if (!LocInfo.LastKillValid) { 1427 LocInfo.LastKill = VersionStack.size() - 1; 1428 LocInfo.LastKillValid = true; 1429 LocInfo.AR = AliasResult::MayAlias; 1430 } 1431 1432 // At this point, we should have corrected last kill and LowerBound to be 1433 // in bounds. 1434 assert(LocInfo.LowerBound < VersionStack.size() && 1435 "Lower bound out of range"); 1436 assert(LocInfo.LastKill < VersionStack.size() && 1437 "Last kill info out of range"); 1438 // In any case, the new upper bound is the top of the stack. 1439 unsigned long UpperBound = VersionStack.size() - 1; 1440 1441 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1442 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1443 << *(MU->getMemoryInst()) << ")" 1444 << " because there are " 1445 << UpperBound - LocInfo.LowerBound 1446 << " stores to disambiguate\n"); 1447 // Because we did not walk, LastKill is no longer valid, as this may 1448 // have been a kill. 1449 LocInfo.LastKillValid = false; 1450 continue; 1451 } 1452 bool FoundClobberResult = false; 1453 unsigned UpwardWalkLimit = MaxCheckLimit; 1454 while (UpperBound > LocInfo.LowerBound) { 1455 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1456 // For phis, use the walker, see where we ended up, go there 1457 MemoryAccess *Result = 1458 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1459 // We are guaranteed to find it or something is wrong 1460 while (VersionStack[UpperBound] != Result) { 1461 assert(UpperBound != 0); 1462 --UpperBound; 1463 } 1464 FoundClobberResult = true; 1465 break; 1466 } 1467 1468 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1469 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1470 if (CA.IsClobber) { 1471 FoundClobberResult = true; 1472 LocInfo.AR = CA.AR; 1473 break; 1474 } 1475 --UpperBound; 1476 } 1477 1478 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1479 1480 // At the end of this loop, UpperBound is either a clobber, or lower bound 1481 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1482 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1483 // We were last killed now by where we got to 1484 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1485 LocInfo.AR = None; 1486 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1487 LocInfo.LastKill = UpperBound; 1488 } else { 1489 // Otherwise, we checked all the new ones, and now we know we can get to 1490 // LastKill. 1491 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1492 } 1493 LocInfo.LowerBound = VersionStack.size() - 1; 1494 LocInfo.LowerBoundBlock = BB; 1495 } 1496 } 1497 1498 /// Optimize uses to point to their actual clobbering definitions. 1499 void MemorySSA::OptimizeUses::optimizeUses() { 1500 SmallVector<MemoryAccess *, 16> VersionStack; 1501 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1502 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1503 1504 unsigned long StackEpoch = 1; 1505 unsigned long PopEpoch = 1; 1506 // We perform a non-recursive top-down dominator tree walk. 1507 for (const auto *DomNode : depth_first(DT->getRootNode())) 1508 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1509 LocStackInfo); 1510 } 1511 1512 void MemorySSA::placePHINodes( 1513 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1514 // Determine where our MemoryPhi's should go 1515 ForwardIDFCalculator IDFs(*DT); 1516 IDFs.setDefiningBlocks(DefiningBlocks); 1517 SmallVector<BasicBlock *, 32> IDFBlocks; 1518 IDFs.calculate(IDFBlocks); 1519 1520 // Now place MemoryPhi nodes. 1521 for (auto &BB : IDFBlocks) 1522 createMemoryPhi(BB); 1523 } 1524 1525 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1526 // We create an access to represent "live on entry", for things like 1527 // arguments or users of globals, where the memory they use is defined before 1528 // the beginning of the function. We do not actually insert it into the IR. 1529 // We do not define a live on exit for the immediate uses, and thus our 1530 // semantics do *not* imply that something with no immediate uses can simply 1531 // be removed. 1532 BasicBlock &StartingPoint = F.getEntryBlock(); 1533 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1534 &StartingPoint, NextID++)); 1535 1536 // We maintain lists of memory accesses per-block, trading memory for time. We 1537 // could just look up the memory access for every possible instruction in the 1538 // stream. 1539 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1540 // Go through each block, figure out where defs occur, and chain together all 1541 // the accesses. 1542 for (BasicBlock &B : F) { 1543 bool InsertIntoDef = false; 1544 AccessList *Accesses = nullptr; 1545 DefsList *Defs = nullptr; 1546 for (Instruction &I : B) { 1547 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1548 if (!MUD) 1549 continue; 1550 1551 if (!Accesses) 1552 Accesses = getOrCreateAccessList(&B); 1553 Accesses->push_back(MUD); 1554 if (isa<MemoryDef>(MUD)) { 1555 InsertIntoDef = true; 1556 if (!Defs) 1557 Defs = getOrCreateDefsList(&B); 1558 Defs->push_back(*MUD); 1559 } 1560 } 1561 if (InsertIntoDef) 1562 DefiningBlocks.insert(&B); 1563 } 1564 placePHINodes(DefiningBlocks); 1565 1566 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1567 // filled in with all blocks. 1568 SmallPtrSet<BasicBlock *, 16> Visited; 1569 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1570 1571 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1572 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1573 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1574 1575 // Mark the uses in unreachable blocks as live on entry, so that they go 1576 // somewhere. 1577 for (auto &BB : F) 1578 if (!Visited.count(&BB)) 1579 markUnreachableAsLiveOnEntry(&BB); 1580 } 1581 1582 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1583 1584 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1585 if (Walker) 1586 return Walker.get(); 1587 1588 if (!WalkerBase) 1589 WalkerBase = 1590 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1591 1592 Walker = 1593 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1594 return Walker.get(); 1595 } 1596 1597 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1598 if (SkipWalker) 1599 return SkipWalker.get(); 1600 1601 if (!WalkerBase) 1602 WalkerBase = 1603 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1604 1605 SkipWalker = 1606 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1607 return SkipWalker.get(); 1608 } 1609 1610 1611 // This is a helper function used by the creation routines. It places NewAccess 1612 // into the access and defs lists for a given basic block, at the given 1613 // insertion point. 1614 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1615 const BasicBlock *BB, 1616 InsertionPlace Point) { 1617 auto *Accesses = getOrCreateAccessList(BB); 1618 if (Point == Beginning) { 1619 // If it's a phi node, it goes first, otherwise, it goes after any phi 1620 // nodes. 1621 if (isa<MemoryPhi>(NewAccess)) { 1622 Accesses->push_front(NewAccess); 1623 auto *Defs = getOrCreateDefsList(BB); 1624 Defs->push_front(*NewAccess); 1625 } else { 1626 auto AI = find_if_not( 1627 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1628 Accesses->insert(AI, NewAccess); 1629 if (!isa<MemoryUse>(NewAccess)) { 1630 auto *Defs = getOrCreateDefsList(BB); 1631 auto DI = find_if_not( 1632 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1633 Defs->insert(DI, *NewAccess); 1634 } 1635 } 1636 } else { 1637 Accesses->push_back(NewAccess); 1638 if (!isa<MemoryUse>(NewAccess)) { 1639 auto *Defs = getOrCreateDefsList(BB); 1640 Defs->push_back(*NewAccess); 1641 } 1642 } 1643 BlockNumberingValid.erase(BB); 1644 } 1645 1646 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1647 AccessList::iterator InsertPt) { 1648 auto *Accesses = getWritableBlockAccesses(BB); 1649 bool WasEnd = InsertPt == Accesses->end(); 1650 Accesses->insert(AccessList::iterator(InsertPt), What); 1651 if (!isa<MemoryUse>(What)) { 1652 auto *Defs = getOrCreateDefsList(BB); 1653 // If we got asked to insert at the end, we have an easy job, just shove it 1654 // at the end. If we got asked to insert before an existing def, we also get 1655 // an iterator. If we got asked to insert before a use, we have to hunt for 1656 // the next def. 1657 if (WasEnd) { 1658 Defs->push_back(*What); 1659 } else if (isa<MemoryDef>(InsertPt)) { 1660 Defs->insert(InsertPt->getDefsIterator(), *What); 1661 } else { 1662 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1663 ++InsertPt; 1664 // Either we found a def, or we are inserting at the end 1665 if (InsertPt == Accesses->end()) 1666 Defs->push_back(*What); 1667 else 1668 Defs->insert(InsertPt->getDefsIterator(), *What); 1669 } 1670 } 1671 BlockNumberingValid.erase(BB); 1672 } 1673 1674 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1675 // Keep it in the lookup tables, remove from the lists 1676 removeFromLists(What, false); 1677 1678 // Note that moving should implicitly invalidate the optimized state of a 1679 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1680 // MemoryDef. 1681 if (auto *MD = dyn_cast<MemoryDef>(What)) 1682 MD->resetOptimized(); 1683 What->setBlock(BB); 1684 } 1685 1686 // Move What before Where in the IR. The end result is that What will belong to 1687 // the right lists and have the right Block set, but will not otherwise be 1688 // correct. It will not have the right defining access, and if it is a def, 1689 // things below it will not properly be updated. 1690 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1691 AccessList::iterator Where) { 1692 prepareForMoveTo(What, BB); 1693 insertIntoListsBefore(What, BB, Where); 1694 } 1695 1696 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1697 InsertionPlace Point) { 1698 if (isa<MemoryPhi>(What)) { 1699 assert(Point == Beginning && 1700 "Can only move a Phi at the beginning of the block"); 1701 // Update lookup table entry 1702 ValueToMemoryAccess.erase(What->getBlock()); 1703 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1704 (void)Inserted; 1705 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1706 } 1707 1708 prepareForMoveTo(What, BB); 1709 insertIntoListsForBlock(What, BB, Point); 1710 } 1711 1712 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1713 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1714 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1715 // Phi's always are placed at the front of the block. 1716 insertIntoListsForBlock(Phi, BB, Beginning); 1717 ValueToMemoryAccess[BB] = Phi; 1718 return Phi; 1719 } 1720 1721 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1722 MemoryAccess *Definition, 1723 const MemoryUseOrDef *Template, 1724 bool CreationMustSucceed) { 1725 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1726 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1727 if (CreationMustSucceed) 1728 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1729 "non-memory touching instruction"); 1730 if (NewAccess) { 1731 assert((!Definition || !isa<MemoryUse>(Definition)) && 1732 "A use cannot be a defining access"); 1733 NewAccess->setDefiningAccess(Definition); 1734 } 1735 return NewAccess; 1736 } 1737 1738 // Return true if the instruction has ordering constraints. 1739 // Note specifically that this only considers stores and loads 1740 // because others are still considered ModRef by getModRefInfo. 1741 static inline bool isOrdered(const Instruction *I) { 1742 if (auto *SI = dyn_cast<StoreInst>(I)) { 1743 if (!SI->isUnordered()) 1744 return true; 1745 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1746 if (!LI->isUnordered()) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 /// Helper function to create new memory accesses 1753 template <typename AliasAnalysisType> 1754 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1755 AliasAnalysisType *AAP, 1756 const MemoryUseOrDef *Template) { 1757 // The assume intrinsic has a control dependency which we model by claiming 1758 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1759 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1760 // dependencies here. 1761 // FIXME: Replace this special casing with a more accurate modelling of 1762 // assume's control dependency. 1763 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1764 switch (II->getIntrinsicID()) { 1765 default: 1766 break; 1767 case Intrinsic::assume: 1768 case Intrinsic::experimental_noalias_scope_decl: 1769 return nullptr; 1770 } 1771 } 1772 1773 // Using a nonstandard AA pipelines might leave us with unexpected modref 1774 // results for I, so add a check to not model instructions that may not read 1775 // from or write to memory. This is necessary for correctness. 1776 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1777 return nullptr; 1778 1779 bool Def, Use; 1780 if (Template) { 1781 Def = isa<MemoryDef>(Template); 1782 Use = isa<MemoryUse>(Template); 1783 #if !defined(NDEBUG) 1784 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1785 bool DefCheck, UseCheck; 1786 DefCheck = isModSet(ModRef) || isOrdered(I); 1787 UseCheck = isRefSet(ModRef); 1788 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1789 #endif 1790 } else { 1791 // Find out what affect this instruction has on memory. 1792 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1793 // The isOrdered check is used to ensure that volatiles end up as defs 1794 // (atomics end up as ModRef right now anyway). Until we separate the 1795 // ordering chain from the memory chain, this enables people to see at least 1796 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1797 // will still give an answer that bypasses other volatile loads. TODO: 1798 // Separate memory aliasing and ordering into two different chains so that 1799 // we can precisely represent both "what memory will this read/write/is 1800 // clobbered by" and "what instructions can I move this past". 1801 Def = isModSet(ModRef) || isOrdered(I); 1802 Use = isRefSet(ModRef); 1803 } 1804 1805 // It's possible for an instruction to not modify memory at all. During 1806 // construction, we ignore them. 1807 if (!Def && !Use) 1808 return nullptr; 1809 1810 MemoryUseOrDef *MUD; 1811 if (Def) 1812 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1813 else 1814 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1815 ValueToMemoryAccess[I] = MUD; 1816 return MUD; 1817 } 1818 1819 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1820 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1821 assert(MA->use_empty() && 1822 "Trying to remove memory access that still has uses"); 1823 BlockNumbering.erase(MA); 1824 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1825 MUD->setDefiningAccess(nullptr); 1826 // Invalidate our walker's cache if necessary 1827 if (!isa<MemoryUse>(MA)) 1828 getWalker()->invalidateInfo(MA); 1829 1830 Value *MemoryInst; 1831 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1832 MemoryInst = MUD->getMemoryInst(); 1833 else 1834 MemoryInst = MA->getBlock(); 1835 1836 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1837 if (VMA->second == MA) 1838 ValueToMemoryAccess.erase(VMA); 1839 } 1840 1841 /// Properly remove \p MA from all of MemorySSA's lists. 1842 /// 1843 /// Because of the way the intrusive list and use lists work, it is important to 1844 /// do removal in the right order. 1845 /// ShouldDelete defaults to true, and will cause the memory access to also be 1846 /// deleted, not just removed. 1847 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1848 BasicBlock *BB = MA->getBlock(); 1849 // The access list owns the reference, so we erase it from the non-owning list 1850 // first. 1851 if (!isa<MemoryUse>(MA)) { 1852 auto DefsIt = PerBlockDefs.find(BB); 1853 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1854 Defs->remove(*MA); 1855 if (Defs->empty()) 1856 PerBlockDefs.erase(DefsIt); 1857 } 1858 1859 // The erase call here will delete it. If we don't want it deleted, we call 1860 // remove instead. 1861 auto AccessIt = PerBlockAccesses.find(BB); 1862 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1863 if (ShouldDelete) 1864 Accesses->erase(MA); 1865 else 1866 Accesses->remove(MA); 1867 1868 if (Accesses->empty()) { 1869 PerBlockAccesses.erase(AccessIt); 1870 BlockNumberingValid.erase(BB); 1871 } 1872 } 1873 1874 void MemorySSA::print(raw_ostream &OS) const { 1875 MemorySSAAnnotatedWriter Writer(this); 1876 F.print(OS, &Writer); 1877 } 1878 1879 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1880 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1881 #endif 1882 1883 void MemorySSA::verifyMemorySSA() const { 1884 verifyOrderingDominationAndDefUses(F); 1885 verifyDominationNumbers(F); 1886 verifyPrevDefInPhis(F); 1887 // Previously, the verification used to also verify that the clobberingAccess 1888 // cached by MemorySSA is the same as the clobberingAccess found at a later 1889 // query to AA. This does not hold true in general due to the current fragility 1890 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1891 // up. As a result, transformations that are correct, will lead to BasicAA 1892 // returning different Alias answers before and after that transformation. 1893 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1894 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1895 // every transformation, which defeats the purpose of using it. For such an 1896 // example, see test4 added in D51960. 1897 } 1898 1899 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1900 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1901 for (const BasicBlock &BB : F) { 1902 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1903 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1904 auto *Pred = Phi->getIncomingBlock(I); 1905 auto *IncAcc = Phi->getIncomingValue(I); 1906 // If Pred has no unreachable predecessors, get last def looking at 1907 // IDoms. If, while walkings IDoms, any of these has an unreachable 1908 // predecessor, then the incoming def can be any access. 1909 if (auto *DTNode = DT->getNode(Pred)) { 1910 while (DTNode) { 1911 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1912 auto *LastAcc = &*(--DefList->end()); 1913 assert(LastAcc == IncAcc && 1914 "Incorrect incoming access into phi."); 1915 break; 1916 } 1917 DTNode = DTNode->getIDom(); 1918 } 1919 } else { 1920 // If Pred has unreachable predecessors, but has at least a Def, the 1921 // incoming access can be the last Def in Pred, or it could have been 1922 // optimized to LoE. After an update, though, the LoE may have been 1923 // replaced by another access, so IncAcc may be any access. 1924 // If Pred has unreachable predecessors and no Defs, incoming access 1925 // should be LoE; However, after an update, it may be any access. 1926 } 1927 } 1928 } 1929 } 1930 #endif 1931 } 1932 1933 /// Verify that all of the blocks we believe to have valid domination numbers 1934 /// actually have valid domination numbers. 1935 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1936 #ifndef NDEBUG 1937 if (BlockNumberingValid.empty()) 1938 return; 1939 1940 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1941 for (const BasicBlock &BB : F) { 1942 if (!ValidBlocks.count(&BB)) 1943 continue; 1944 1945 ValidBlocks.erase(&BB); 1946 1947 const AccessList *Accesses = getBlockAccesses(&BB); 1948 // It's correct to say an empty block has valid numbering. 1949 if (!Accesses) 1950 continue; 1951 1952 // Block numbering starts at 1. 1953 unsigned long LastNumber = 0; 1954 for (const MemoryAccess &MA : *Accesses) { 1955 auto ThisNumberIter = BlockNumbering.find(&MA); 1956 assert(ThisNumberIter != BlockNumbering.end() && 1957 "MemoryAccess has no domination number in a valid block!"); 1958 1959 unsigned long ThisNumber = ThisNumberIter->second; 1960 assert(ThisNumber > LastNumber && 1961 "Domination numbers should be strictly increasing!"); 1962 LastNumber = ThisNumber; 1963 } 1964 } 1965 1966 assert(ValidBlocks.empty() && 1967 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1968 #endif 1969 } 1970 1971 /// Verify ordering: the order and existence of MemoryAccesses matches the 1972 /// order and existence of memory affecting instructions. 1973 /// Verify domination: each definition dominates all of its uses. 1974 /// Verify def-uses: the immediate use information - walk all the memory 1975 /// accesses and verifying that, for each use, it appears in the appropriate 1976 /// def's use list 1977 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1978 #if !defined(NDEBUG) 1979 // Walk all the blocks, comparing what the lookups think and what the access 1980 // lists think, as well as the order in the blocks vs the order in the access 1981 // lists. 1982 SmallVector<MemoryAccess *, 32> ActualAccesses; 1983 SmallVector<MemoryAccess *, 32> ActualDefs; 1984 for (BasicBlock &B : F) { 1985 const AccessList *AL = getBlockAccesses(&B); 1986 const auto *DL = getBlockDefs(&B); 1987 MemoryPhi *Phi = getMemoryAccess(&B); 1988 if (Phi) { 1989 // Verify ordering. 1990 ActualAccesses.push_back(Phi); 1991 ActualDefs.push_back(Phi); 1992 // Verify domination 1993 for (const Use &U : Phi->uses()) 1994 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 1995 #if defined(EXPENSIVE_CHECKS) 1996 // Verify def-uses. 1997 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1998 pred_begin(&B), pred_end(&B))) && 1999 "Incomplete MemoryPhi Node"); 2000 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2001 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2002 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 2003 "Incoming phi block not a block predecessor"); 2004 } 2005 #endif 2006 } 2007 2008 for (Instruction &I : B) { 2009 MemoryUseOrDef *MA = getMemoryAccess(&I); 2010 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2011 "We have memory affecting instructions " 2012 "in this block but they are not in the " 2013 "access list or defs list"); 2014 if (MA) { 2015 // Verify ordering. 2016 ActualAccesses.push_back(MA); 2017 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2018 // Verify ordering. 2019 ActualDefs.push_back(MA); 2020 // Verify domination. 2021 for (const Use &U : MD->uses()) 2022 assert(dominates(MD, U) && 2023 "Memory Def does not dominate it's uses"); 2024 } 2025 #if defined(EXPENSIVE_CHECKS) 2026 // Verify def-uses. 2027 verifyUseInDefs(MA->getDefiningAccess(), MA); 2028 #endif 2029 } 2030 } 2031 // Either we hit the assert, really have no accesses, or we have both 2032 // accesses and an access list. Same with defs. 2033 if (!AL && !DL) 2034 continue; 2035 // Verify ordering. 2036 assert(AL->size() == ActualAccesses.size() && 2037 "We don't have the same number of accesses in the block as on the " 2038 "access list"); 2039 assert((DL || ActualDefs.size() == 0) && 2040 "Either we should have a defs list, or we should have no defs"); 2041 assert((!DL || DL->size() == ActualDefs.size()) && 2042 "We don't have the same number of defs in the block as on the " 2043 "def list"); 2044 auto ALI = AL->begin(); 2045 auto AAI = ActualAccesses.begin(); 2046 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2047 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2048 ++ALI; 2049 ++AAI; 2050 } 2051 ActualAccesses.clear(); 2052 if (DL) { 2053 auto DLI = DL->begin(); 2054 auto ADI = ActualDefs.begin(); 2055 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2056 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2057 ++DLI; 2058 ++ADI; 2059 } 2060 } 2061 ActualDefs.clear(); 2062 } 2063 #endif 2064 } 2065 2066 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2067 /// appears in the use list of \p Def. 2068 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2069 #ifndef NDEBUG 2070 // The live on entry use may cause us to get a NULL def here 2071 if (!Def) 2072 assert(isLiveOnEntryDef(Use) && 2073 "Null def but use not point to live on entry def"); 2074 else 2075 assert(is_contained(Def->users(), Use) && 2076 "Did not find use in def's use list"); 2077 #endif 2078 } 2079 2080 /// Perform a local numbering on blocks so that instruction ordering can be 2081 /// determined in constant time. 2082 /// TODO: We currently just number in order. If we numbered by N, we could 2083 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2084 /// log2(N) sequences of mixed before and after) without needing to invalidate 2085 /// the numbering. 2086 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2087 // The pre-increment ensures the numbers really start at 1. 2088 unsigned long CurrentNumber = 0; 2089 const AccessList *AL = getBlockAccesses(B); 2090 assert(AL != nullptr && "Asking to renumber an empty block"); 2091 for (const auto &I : *AL) 2092 BlockNumbering[&I] = ++CurrentNumber; 2093 BlockNumberingValid.insert(B); 2094 } 2095 2096 /// Determine, for two memory accesses in the same block, 2097 /// whether \p Dominator dominates \p Dominatee. 2098 /// \returns True if \p Dominator dominates \p Dominatee. 2099 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2100 const MemoryAccess *Dominatee) const { 2101 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2102 2103 assert((DominatorBlock == Dominatee->getBlock()) && 2104 "Asking for local domination when accesses are in different blocks!"); 2105 // A node dominates itself. 2106 if (Dominatee == Dominator) 2107 return true; 2108 2109 // When Dominatee is defined on function entry, it is not dominated by another 2110 // memory access. 2111 if (isLiveOnEntryDef(Dominatee)) 2112 return false; 2113 2114 // When Dominator is defined on function entry, it dominates the other memory 2115 // access. 2116 if (isLiveOnEntryDef(Dominator)) 2117 return true; 2118 2119 if (!BlockNumberingValid.count(DominatorBlock)) 2120 renumberBlock(DominatorBlock); 2121 2122 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2123 // All numbers start with 1 2124 assert(DominatorNum != 0 && "Block was not numbered properly"); 2125 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2126 assert(DominateeNum != 0 && "Block was not numbered properly"); 2127 return DominatorNum < DominateeNum; 2128 } 2129 2130 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2131 const MemoryAccess *Dominatee) const { 2132 if (Dominator == Dominatee) 2133 return true; 2134 2135 if (isLiveOnEntryDef(Dominatee)) 2136 return false; 2137 2138 if (Dominator->getBlock() != Dominatee->getBlock()) 2139 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2140 return locallyDominates(Dominator, Dominatee); 2141 } 2142 2143 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2144 const Use &Dominatee) const { 2145 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2146 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2147 // The def must dominate the incoming block of the phi. 2148 if (UseBB != Dominator->getBlock()) 2149 return DT->dominates(Dominator->getBlock(), UseBB); 2150 // If the UseBB and the DefBB are the same, compare locally. 2151 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2152 } 2153 // If it's not a PHI node use, the normal dominates can already handle it. 2154 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2155 } 2156 2157 const static char LiveOnEntryStr[] = "liveOnEntry"; 2158 2159 void MemoryAccess::print(raw_ostream &OS) const { 2160 switch (getValueID()) { 2161 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2162 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2163 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2164 } 2165 llvm_unreachable("invalid value id"); 2166 } 2167 2168 void MemoryDef::print(raw_ostream &OS) const { 2169 MemoryAccess *UO = getDefiningAccess(); 2170 2171 auto printID = [&OS](MemoryAccess *A) { 2172 if (A && A->getID()) 2173 OS << A->getID(); 2174 else 2175 OS << LiveOnEntryStr; 2176 }; 2177 2178 OS << getID() << " = MemoryDef("; 2179 printID(UO); 2180 OS << ")"; 2181 2182 if (isOptimized()) { 2183 OS << "->"; 2184 printID(getOptimized()); 2185 2186 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2187 OS << " " << *AR; 2188 } 2189 } 2190 2191 void MemoryPhi::print(raw_ostream &OS) const { 2192 ListSeparator LS(","); 2193 OS << getID() << " = MemoryPhi("; 2194 for (const auto &Op : operands()) { 2195 BasicBlock *BB = getIncomingBlock(Op); 2196 MemoryAccess *MA = cast<MemoryAccess>(Op); 2197 2198 OS << LS << '{'; 2199 if (BB->hasName()) 2200 OS << BB->getName(); 2201 else 2202 BB->printAsOperand(OS, false); 2203 OS << ','; 2204 if (unsigned ID = MA->getID()) 2205 OS << ID; 2206 else 2207 OS << LiveOnEntryStr; 2208 OS << '}'; 2209 } 2210 OS << ')'; 2211 } 2212 2213 void MemoryUse::print(raw_ostream &OS) const { 2214 MemoryAccess *UO = getDefiningAccess(); 2215 OS << "MemoryUse("; 2216 if (UO && UO->getID()) 2217 OS << UO->getID(); 2218 else 2219 OS << LiveOnEntryStr; 2220 OS << ')'; 2221 2222 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2223 OS << " " << *AR; 2224 } 2225 2226 void MemoryAccess::dump() const { 2227 // Cannot completely remove virtual function even in release mode. 2228 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2229 print(dbgs()); 2230 dbgs() << "\n"; 2231 #endif 2232 } 2233 2234 char MemorySSAPrinterLegacyPass::ID = 0; 2235 2236 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2237 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2238 } 2239 2240 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2241 AU.setPreservesAll(); 2242 AU.addRequired<MemorySSAWrapperPass>(); 2243 } 2244 2245 class DOTFuncMSSAInfo { 2246 private: 2247 const Function &F; 2248 MemorySSAAnnotatedWriter MSSAWriter; 2249 2250 public: 2251 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2252 : F(F), MSSAWriter(&MSSA) {} 2253 2254 const Function *getFunction() { return &F; } 2255 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2256 }; 2257 2258 namespace llvm { 2259 2260 template <> 2261 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2262 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2263 return &(CFGInfo->getFunction()->getEntryBlock()); 2264 } 2265 2266 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2267 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2268 2269 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2270 return nodes_iterator(CFGInfo->getFunction()->begin()); 2271 } 2272 2273 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2274 return nodes_iterator(CFGInfo->getFunction()->end()); 2275 } 2276 2277 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2278 return CFGInfo->getFunction()->size(); 2279 } 2280 }; 2281 2282 template <> 2283 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2284 2285 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2286 2287 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2288 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2289 "' function"; 2290 } 2291 2292 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2293 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2294 Node, nullptr, 2295 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2296 BB.print(OS, &CFGInfo->getWriter(), true, true); 2297 }, 2298 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2299 std::string Str = S.substr(I, Idx - I); 2300 StringRef SR = Str; 2301 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2302 SR.count("MemoryUse(")) 2303 return; 2304 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2305 }); 2306 } 2307 2308 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2309 const_succ_iterator I) { 2310 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2311 } 2312 2313 /// Display the raw branch weights from PGO. 2314 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2315 DOTFuncMSSAInfo *CFGInfo) { 2316 return ""; 2317 } 2318 2319 std::string getNodeAttributes(const BasicBlock *Node, 2320 DOTFuncMSSAInfo *CFGInfo) { 2321 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2322 ? "style=filled, fillcolor=lightpink" 2323 : ""; 2324 } 2325 }; 2326 2327 } // namespace llvm 2328 2329 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2330 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2331 if (DotCFGMSSA != "") { 2332 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2333 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2334 } else 2335 MSSA.print(dbgs()); 2336 2337 if (VerifyMemorySSA) 2338 MSSA.verifyMemorySSA(); 2339 return false; 2340 } 2341 2342 AnalysisKey MemorySSAAnalysis::Key; 2343 2344 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2345 FunctionAnalysisManager &AM) { 2346 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2347 auto &AA = AM.getResult<AAManager>(F); 2348 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2349 } 2350 2351 bool MemorySSAAnalysis::Result::invalidate( 2352 Function &F, const PreservedAnalyses &PA, 2353 FunctionAnalysisManager::Invalidator &Inv) { 2354 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2355 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2356 Inv.invalidate<AAManager>(F, PA) || 2357 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2358 } 2359 2360 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2361 FunctionAnalysisManager &AM) { 2362 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2363 if (DotCFGMSSA != "") { 2364 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2365 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2366 } else { 2367 OS << "MemorySSA for function: " << F.getName() << "\n"; 2368 MSSA.print(OS); 2369 } 2370 2371 return PreservedAnalyses::all(); 2372 } 2373 2374 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F, 2375 FunctionAnalysisManager &AM) { 2376 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2377 OS << "MemorySSA (walker) for function: " << F.getName() << "\n"; 2378 MemorySSAWalkerAnnotatedWriter Writer(&MSSA); 2379 F.print(OS, &Writer); 2380 2381 return PreservedAnalyses::all(); 2382 } 2383 2384 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2385 FunctionAnalysisManager &AM) { 2386 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2387 2388 return PreservedAnalyses::all(); 2389 } 2390 2391 char MemorySSAWrapperPass::ID = 0; 2392 2393 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2394 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2395 } 2396 2397 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2398 2399 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2400 AU.setPreservesAll(); 2401 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2402 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2403 } 2404 2405 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2406 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2407 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2408 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2409 return false; 2410 } 2411 2412 void MemorySSAWrapperPass::verifyAnalysis() const { 2413 if (VerifyMemorySSA) 2414 MSSA->verifyMemorySSA(); 2415 } 2416 2417 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2418 MSSA->print(OS); 2419 } 2420 2421 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2422 2423 /// Walk the use-def chains starting at \p StartingAccess and find 2424 /// the MemoryAccess that actually clobbers Loc. 2425 /// 2426 /// \returns our clobbering memory access 2427 template <typename AliasAnalysisType> 2428 MemoryAccess * 2429 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2430 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2431 unsigned &UpwardWalkLimit) { 2432 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access"); 2433 2434 Instruction *I = nullptr; 2435 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) { 2436 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2437 return StartingUseOrDef; 2438 2439 I = StartingUseOrDef->getMemoryInst(); 2440 2441 // Conservatively, fences are always clobbers, so don't perform the walk if 2442 // we hit a fence. 2443 if (!isa<CallBase>(I) && I->isFenceLike()) 2444 return StartingUseOrDef; 2445 } 2446 2447 UpwardsMemoryQuery Q; 2448 Q.OriginalAccess = StartingAccess; 2449 Q.StartingLoc = Loc; 2450 Q.Inst = nullptr; 2451 Q.IsCall = false; 2452 2453 // Unlike the other function, do not walk to the def of a def, because we are 2454 // handed something we already believe is the clobbering access. 2455 // We never set SkipSelf to true in Q in this method. 2456 MemoryAccess *Clobber = 2457 Walker.findClobber(StartingAccess, Q, UpwardWalkLimit); 2458 LLVM_DEBUG({ 2459 dbgs() << "Clobber starting at access " << *StartingAccess << "\n"; 2460 if (I) 2461 dbgs() << " for instruction " << *I << "\n"; 2462 dbgs() << " is " << *Clobber << "\n"; 2463 }); 2464 return Clobber; 2465 } 2466 2467 template <typename AliasAnalysisType> 2468 MemoryAccess * 2469 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2470 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2471 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2472 // If this is a MemoryPhi, we can't do anything. 2473 if (!StartingAccess) 2474 return MA; 2475 2476 bool IsOptimized = false; 2477 2478 // If this is an already optimized use or def, return the optimized result. 2479 // Note: Currently, we store the optimized def result in a separate field, 2480 // since we can't use the defining access. 2481 if (StartingAccess->isOptimized()) { 2482 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2483 return StartingAccess->getOptimized(); 2484 IsOptimized = true; 2485 } 2486 2487 const Instruction *I = StartingAccess->getMemoryInst(); 2488 // We can't sanely do anything with a fence, since they conservatively clobber 2489 // all memory, and have no locations to get pointers from to try to 2490 // disambiguate. 2491 if (!isa<CallBase>(I) && I->isFenceLike()) 2492 return StartingAccess; 2493 2494 UpwardsMemoryQuery Q(I, StartingAccess); 2495 2496 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2497 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2498 StartingAccess->setOptimized(LiveOnEntry); 2499 StartingAccess->setOptimizedAccessType(None); 2500 return LiveOnEntry; 2501 } 2502 2503 MemoryAccess *OptimizedAccess; 2504 if (!IsOptimized) { 2505 // Start with the thing we already think clobbers this location 2506 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2507 2508 // At this point, DefiningAccess may be the live on entry def. 2509 // If it is, we will not get a better result. 2510 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2511 StartingAccess->setOptimized(DefiningAccess); 2512 StartingAccess->setOptimizedAccessType(None); 2513 return DefiningAccess; 2514 } 2515 2516 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2517 StartingAccess->setOptimized(OptimizedAccess); 2518 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2519 StartingAccess->setOptimizedAccessType(None); 2520 else if (Q.AR && *Q.AR == AliasResult::MustAlias) 2521 StartingAccess->setOptimizedAccessType( 2522 AliasResult(AliasResult::MustAlias)); 2523 } else 2524 OptimizedAccess = StartingAccess->getOptimized(); 2525 2526 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2527 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2528 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2529 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2530 2531 MemoryAccess *Result; 2532 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2533 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2534 assert(isa<MemoryDef>(Q.OriginalAccess)); 2535 Q.SkipSelfAccess = true; 2536 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2537 } else 2538 Result = OptimizedAccess; 2539 2540 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2541 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2542 2543 return Result; 2544 } 2545 2546 MemoryAccess * 2547 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2548 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2549 return Use->getDefiningAccess(); 2550 return MA; 2551 } 2552 2553 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2554 MemoryAccess *StartingAccess, const MemoryLocation &) { 2555 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2556 return Use->getDefiningAccess(); 2557 return StartingAccess; 2558 } 2559 2560 void MemoryPhi::deleteMe(DerivedUser *Self) { 2561 delete static_cast<MemoryPhi *>(Self); 2562 } 2563 2564 void MemoryDef::deleteMe(DerivedUser *Self) { 2565 delete static_cast<MemoryDef *>(Self); 2566 } 2567 2568 void MemoryUse::deleteMe(DerivedUser *Self) { 2569 delete static_cast<MemoryUse *>(Self); 2570 } 2571 2572 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { 2573 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { 2574 Ptr = Ptr->stripPointerCasts(); 2575 if (!isa<Instruction>(Ptr)) 2576 return true; 2577 return isa<AllocaInst>(Ptr); 2578 }; 2579 2580 Ptr = Ptr->stripPointerCasts(); 2581 if (auto *I = dyn_cast<Instruction>(Ptr)) { 2582 if (I->getParent()->isEntryBlock()) 2583 return true; 2584 } 2585 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2586 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2587 GEP->hasAllConstantIndices(); 2588 } 2589 return IsGuaranteedLoopInvariantBase(Ptr); 2590 } 2591