1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdlib> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "memoryssa" 60 61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 62 true) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 66 true) 67 68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 69 "Memory SSA Printer", false, false) 70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 72 "Memory SSA Printer", false, false) 73 74 static cl::opt<unsigned> MaxCheckLimit( 75 "memssa-check-limit", cl::Hidden, cl::init(100), 76 cl::desc("The maximum number of stores/phis MemorySSA" 77 "will consider trying to walk past (default = 100)")); 78 79 // Always verify MemorySSA if expensive checking is enabled. 80 #ifdef EXPENSIVE_CHECKS 81 bool llvm::VerifyMemorySSA = true; 82 #else 83 bool llvm::VerifyMemorySSA = false; 84 #endif 85 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 86 cl::opt<bool> llvm::EnableMSSALoopDependency( 87 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 88 cl::desc("Enable MemorySSA dependency for loop pass manager")); 89 90 static cl::opt<bool, true> 91 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 92 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 93 94 namespace llvm { 95 96 /// An assembly annotator class to print Memory SSA information in 97 /// comments. 98 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 99 friend class MemorySSA; 100 101 const MemorySSA *MSSA; 102 103 public: 104 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 105 106 void emitBasicBlockStartAnnot(const BasicBlock *BB, 107 formatted_raw_ostream &OS) override { 108 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 109 OS << "; " << *MA << "\n"; 110 } 111 112 void emitInstructionAnnot(const Instruction *I, 113 formatted_raw_ostream &OS) override { 114 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 115 OS << "; " << *MA << "\n"; 116 } 117 }; 118 119 } // end namespace llvm 120 121 namespace { 122 123 /// Our current alias analysis API differentiates heavily between calls and 124 /// non-calls, and functions called on one usually assert on the other. 125 /// This class encapsulates the distinction to simplify other code that wants 126 /// "Memory affecting instructions and related data" to use as a key. 127 /// For example, this class is used as a densemap key in the use optimizer. 128 class MemoryLocOrCall { 129 public: 130 bool IsCall = false; 131 132 MemoryLocOrCall(MemoryUseOrDef *MUD) 133 : MemoryLocOrCall(MUD->getMemoryInst()) {} 134 MemoryLocOrCall(const MemoryUseOrDef *MUD) 135 : MemoryLocOrCall(MUD->getMemoryInst()) {} 136 137 MemoryLocOrCall(Instruction *Inst) { 138 if (auto *C = dyn_cast<CallBase>(Inst)) { 139 IsCall = true; 140 Call = C; 141 } else { 142 IsCall = false; 143 // There is no such thing as a memorylocation for a fence inst, and it is 144 // unique in that regard. 145 if (!isa<FenceInst>(Inst)) 146 Loc = MemoryLocation::get(Inst); 147 } 148 } 149 150 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 151 152 const CallBase *getCall() const { 153 assert(IsCall); 154 return Call; 155 } 156 157 MemoryLocation getLoc() const { 158 assert(!IsCall); 159 return Loc; 160 } 161 162 bool operator==(const MemoryLocOrCall &Other) const { 163 if (IsCall != Other.IsCall) 164 return false; 165 166 if (!IsCall) 167 return Loc == Other.Loc; 168 169 if (Call->getCalledValue() != Other.Call->getCalledValue()) 170 return false; 171 172 return Call->arg_size() == Other.Call->arg_size() && 173 std::equal(Call->arg_begin(), Call->arg_end(), 174 Other.Call->arg_begin()); 175 } 176 177 private: 178 union { 179 const CallBase *Call; 180 MemoryLocation Loc; 181 }; 182 }; 183 184 } // end anonymous namespace 185 186 namespace llvm { 187 188 template <> struct DenseMapInfo<MemoryLocOrCall> { 189 static inline MemoryLocOrCall getEmptyKey() { 190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 191 } 192 193 static inline MemoryLocOrCall getTombstoneKey() { 194 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 195 } 196 197 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 198 if (!MLOC.IsCall) 199 return hash_combine( 200 MLOC.IsCall, 201 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 202 203 hash_code hash = 204 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 205 MLOC.getCall()->getCalledValue())); 206 207 for (const Value *Arg : MLOC.getCall()->args()) 208 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 209 return hash; 210 } 211 212 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 213 return LHS == RHS; 214 } 215 }; 216 217 } // end namespace llvm 218 219 /// This does one-way checks to see if Use could theoretically be hoisted above 220 /// MayClobber. This will not check the other way around. 221 /// 222 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 223 /// MayClobber, with no potentially clobbering operations in between them. 224 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 225 static bool areLoadsReorderable(const LoadInst *Use, 226 const LoadInst *MayClobber) { 227 bool VolatileUse = Use->isVolatile(); 228 bool VolatileClobber = MayClobber->isVolatile(); 229 // Volatile operations may never be reordered with other volatile operations. 230 if (VolatileUse && VolatileClobber) 231 return false; 232 // Otherwise, volatile doesn't matter here. From the language reference: 233 // 'optimizers may change the order of volatile operations relative to 234 // non-volatile operations.'" 235 236 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 237 // is weaker, it can be moved above other loads. We just need to be sure that 238 // MayClobber isn't an acquire load, because loads can't be moved above 239 // acquire loads. 240 // 241 // Note that this explicitly *does* allow the free reordering of monotonic (or 242 // weaker) loads of the same address. 243 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 244 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 245 AtomicOrdering::Acquire); 246 return !(SeqCstUse || MayClobberIsAcquire); 247 } 248 249 namespace { 250 251 struct ClobberAlias { 252 bool IsClobber; 253 Optional<AliasResult> AR; 254 }; 255 256 } // end anonymous namespace 257 258 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 259 // ignored if IsClobber = false. 260 template <typename AliasAnalysisType> 261 static ClobberAlias 262 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 263 const Instruction *UseInst, AliasAnalysisType &AA) { 264 Instruction *DefInst = MD->getMemoryInst(); 265 assert(DefInst && "Defining instruction not actually an instruction"); 266 const auto *UseCall = dyn_cast<CallBase>(UseInst); 267 Optional<AliasResult> AR; 268 269 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 270 // These intrinsics will show up as affecting memory, but they are just 271 // markers, mostly. 272 // 273 // FIXME: We probably don't actually want MemorySSA to model these at all 274 // (including creating MemoryAccesses for them): we just end up inventing 275 // clobbers where they don't really exist at all. Please see D43269 for 276 // context. 277 switch (II->getIntrinsicID()) { 278 case Intrinsic::lifetime_start: 279 if (UseCall) 280 return {false, NoAlias}; 281 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 282 return {AR != NoAlias, AR}; 283 case Intrinsic::lifetime_end: 284 case Intrinsic::invariant_start: 285 case Intrinsic::invariant_end: 286 case Intrinsic::assume: 287 return {false, NoAlias}; 288 case Intrinsic::dbg_addr: 289 case Intrinsic::dbg_declare: 290 case Intrinsic::dbg_label: 291 case Intrinsic::dbg_value: 292 llvm_unreachable("debuginfo shouldn't have associated defs!"); 293 default: 294 break; 295 } 296 } 297 298 if (UseCall) { 299 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 300 AR = isMustSet(I) ? MustAlias : MayAlias; 301 return {isModOrRefSet(I), AR}; 302 } 303 304 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 305 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 306 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 307 308 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 309 AR = isMustSet(I) ? MustAlias : MayAlias; 310 return {isModSet(I), AR}; 311 } 312 313 template <typename AliasAnalysisType> 314 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 315 const MemoryUseOrDef *MU, 316 const MemoryLocOrCall &UseMLOC, 317 AliasAnalysisType &AA) { 318 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 319 // to exist while MemoryLocOrCall is pushed through places. 320 if (UseMLOC.IsCall) 321 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 322 AA); 323 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 324 AA); 325 } 326 327 // Return true when MD may alias MU, return false otherwise. 328 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 329 AliasAnalysis &AA) { 330 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 331 } 332 333 namespace { 334 335 struct UpwardsMemoryQuery { 336 // True if our original query started off as a call 337 bool IsCall = false; 338 // The pointer location we started the query with. This will be empty if 339 // IsCall is true. 340 MemoryLocation StartingLoc; 341 // This is the instruction we were querying about. 342 const Instruction *Inst = nullptr; 343 // The MemoryAccess we actually got called with, used to test local domination 344 const MemoryAccess *OriginalAccess = nullptr; 345 Optional<AliasResult> AR = MayAlias; 346 bool SkipSelfAccess = false; 347 348 UpwardsMemoryQuery() = default; 349 350 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 351 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 352 if (!IsCall) 353 StartingLoc = MemoryLocation::get(Inst); 354 } 355 }; 356 357 } // end anonymous namespace 358 359 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 360 BatchAAResults &AA) { 361 Instruction *Inst = MD->getMemoryInst(); 362 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 363 switch (II->getIntrinsicID()) { 364 case Intrinsic::lifetime_end: 365 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 366 default: 367 return false; 368 } 369 } 370 return false; 371 } 372 373 template <typename AliasAnalysisType> 374 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 375 const Instruction *I) { 376 // If the memory can't be changed, then loads of the memory can't be 377 // clobbered. 378 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) || 379 AA.pointsToConstantMemory(MemoryLocation( 380 cast<LoadInst>(I)->getPointerOperand()))); 381 } 382 383 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 384 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 385 /// 386 /// This is meant to be as simple and self-contained as possible. Because it 387 /// uses no cache, etc., it can be relatively expensive. 388 /// 389 /// \param Start The MemoryAccess that we want to walk from. 390 /// \param ClobberAt A clobber for Start. 391 /// \param StartLoc The MemoryLocation for Start. 392 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 393 /// \param Query The UpwardsMemoryQuery we used for our search. 394 /// \param AA The AliasAnalysis we used for our search. 395 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 396 397 template <typename AliasAnalysisType> 398 LLVM_ATTRIBUTE_UNUSED static void 399 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 400 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 401 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 402 bool AllowImpreciseClobber = false) { 403 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 404 405 if (MSSA.isLiveOnEntryDef(Start)) { 406 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 407 "liveOnEntry must clobber itself"); 408 return; 409 } 410 411 bool FoundClobber = false; 412 DenseSet<ConstMemoryAccessPair> VisitedPhis; 413 SmallVector<ConstMemoryAccessPair, 8> Worklist; 414 Worklist.emplace_back(Start, StartLoc); 415 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 416 // is found, complain. 417 while (!Worklist.empty()) { 418 auto MAP = Worklist.pop_back_val(); 419 // All we care about is that nothing from Start to ClobberAt clobbers Start. 420 // We learn nothing from revisiting nodes. 421 if (!VisitedPhis.insert(MAP).second) 422 continue; 423 424 for (const auto *MA : def_chain(MAP.first)) { 425 if (MA == ClobberAt) { 426 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 427 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 428 // since it won't let us short-circuit. 429 // 430 // Also, note that this can't be hoisted out of the `Worklist` loop, 431 // since MD may only act as a clobber for 1 of N MemoryLocations. 432 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 433 if (!FoundClobber) { 434 ClobberAlias CA = 435 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 436 if (CA.IsClobber) { 437 FoundClobber = true; 438 // Not used: CA.AR; 439 } 440 } 441 } 442 break; 443 } 444 445 // We should never hit liveOnEntry, unless it's the clobber. 446 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 447 448 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 449 // If Start is a Def, skip self. 450 if (MD == Start) 451 continue; 452 453 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 454 .IsClobber && 455 "Found clobber before reaching ClobberAt!"); 456 continue; 457 } 458 459 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 460 (void)MU; 461 assert (MU == Start && 462 "Can only find use in def chain if Start is a use"); 463 continue; 464 } 465 466 assert(isa<MemoryPhi>(MA)); 467 Worklist.append( 468 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 469 upward_defs_end()); 470 } 471 } 472 473 // If the verify is done following an optimization, it's possible that 474 // ClobberAt was a conservative clobbering, that we can now infer is not a 475 // true clobbering access. Don't fail the verify if that's the case. 476 // We do have accesses that claim they're optimized, but could be optimized 477 // further. Updating all these can be expensive, so allow it for now (FIXME). 478 if (AllowImpreciseClobber) 479 return; 480 481 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 482 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 483 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 484 "ClobberAt never acted as a clobber"); 485 } 486 487 namespace { 488 489 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 490 /// in one class. 491 template <class AliasAnalysisType> class ClobberWalker { 492 /// Save a few bytes by using unsigned instead of size_t. 493 using ListIndex = unsigned; 494 495 /// Represents a span of contiguous MemoryDefs, potentially ending in a 496 /// MemoryPhi. 497 struct DefPath { 498 MemoryLocation Loc; 499 // Note that, because we always walk in reverse, Last will always dominate 500 // First. Also note that First and Last are inclusive. 501 MemoryAccess *First; 502 MemoryAccess *Last; 503 Optional<ListIndex> Previous; 504 505 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 506 Optional<ListIndex> Previous) 507 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 508 509 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 510 Optional<ListIndex> Previous) 511 : DefPath(Loc, Init, Init, Previous) {} 512 }; 513 514 const MemorySSA &MSSA; 515 AliasAnalysisType &AA; 516 DominatorTree &DT; 517 UpwardsMemoryQuery *Query; 518 unsigned *UpwardWalkLimit; 519 520 // Phi optimization bookkeeping 521 SmallVector<DefPath, 32> Paths; 522 DenseSet<ConstMemoryAccessPair> VisitedPhis; 523 524 /// Find the nearest def or phi that `From` can legally be optimized to. 525 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 526 assert(From->getNumOperands() && "Phi with no operands?"); 527 528 BasicBlock *BB = From->getBlock(); 529 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 530 DomTreeNode *Node = DT.getNode(BB); 531 while ((Node = Node->getIDom())) { 532 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 533 if (Defs) 534 return &*Defs->rbegin(); 535 } 536 return Result; 537 } 538 539 /// Result of calling walkToPhiOrClobber. 540 struct UpwardsWalkResult { 541 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 542 /// both. Include alias info when clobber found. 543 MemoryAccess *Result; 544 bool IsKnownClobber; 545 Optional<AliasResult> AR; 546 }; 547 548 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 549 /// This will update Desc.Last as it walks. It will (optionally) also stop at 550 /// StopAt. 551 /// 552 /// This does not test for whether StopAt is a clobber 553 UpwardsWalkResult 554 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 555 const MemoryAccess *SkipStopAt = nullptr) const { 556 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 557 assert(UpwardWalkLimit && "Need a valid walk limit"); 558 bool LimitAlreadyReached = false; 559 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 560 // it to 1. This will not do any alias() calls. It either returns in the 561 // first iteration in the loop below, or is set back to 0 if all def chains 562 // are free of MemoryDefs. 563 if (!*UpwardWalkLimit) { 564 *UpwardWalkLimit = 1; 565 LimitAlreadyReached = true; 566 } 567 568 for (MemoryAccess *Current : def_chain(Desc.Last)) { 569 Desc.Last = Current; 570 if (Current == StopAt || Current == SkipStopAt) 571 return {Current, false, MayAlias}; 572 573 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 574 if (MSSA.isLiveOnEntryDef(MD)) 575 return {MD, true, MustAlias}; 576 577 if (!--*UpwardWalkLimit) 578 return {Current, true, MayAlias}; 579 580 ClobberAlias CA = 581 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 582 if (CA.IsClobber) 583 return {MD, true, CA.AR}; 584 } 585 } 586 587 if (LimitAlreadyReached) 588 *UpwardWalkLimit = 0; 589 590 assert(isa<MemoryPhi>(Desc.Last) && 591 "Ended at a non-clobber that's not a phi?"); 592 return {Desc.Last, false, MayAlias}; 593 } 594 595 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 596 ListIndex PriorNode) { 597 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 598 upward_defs_end()); 599 for (const MemoryAccessPair &P : UpwardDefs) { 600 PausedSearches.push_back(Paths.size()); 601 Paths.emplace_back(P.second, P.first, PriorNode); 602 } 603 } 604 605 /// Represents a search that terminated after finding a clobber. This clobber 606 /// may or may not be present in the path of defs from LastNode..SearchStart, 607 /// since it may have been retrieved from cache. 608 struct TerminatedPath { 609 MemoryAccess *Clobber; 610 ListIndex LastNode; 611 }; 612 613 /// Get an access that keeps us from optimizing to the given phi. 614 /// 615 /// PausedSearches is an array of indices into the Paths array. Its incoming 616 /// value is the indices of searches that stopped at the last phi optimization 617 /// target. It's left in an unspecified state. 618 /// 619 /// If this returns None, NewPaused is a vector of searches that terminated 620 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 621 Optional<TerminatedPath> 622 getBlockingAccess(const MemoryAccess *StopWhere, 623 SmallVectorImpl<ListIndex> &PausedSearches, 624 SmallVectorImpl<ListIndex> &NewPaused, 625 SmallVectorImpl<TerminatedPath> &Terminated) { 626 assert(!PausedSearches.empty() && "No searches to continue?"); 627 628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 629 // PausedSearches as our stack. 630 while (!PausedSearches.empty()) { 631 ListIndex PathIndex = PausedSearches.pop_back_val(); 632 DefPath &Node = Paths[PathIndex]; 633 634 // If we've already visited this path with this MemoryLocation, we don't 635 // need to do so again. 636 // 637 // NOTE: That we just drop these paths on the ground makes caching 638 // behavior sporadic. e.g. given a diamond: 639 // A 640 // B C 641 // D 642 // 643 // ...If we walk D, B, A, C, we'll only cache the result of phi 644 // optimization for A, B, and D; C will be skipped because it dies here. 645 // This arguably isn't the worst thing ever, since: 646 // - We generally query things in a top-down order, so if we got below D 647 // without needing cache entries for {C, MemLoc}, then chances are 648 // that those cache entries would end up ultimately unused. 649 // - We still cache things for A, so C only needs to walk up a bit. 650 // If this behavior becomes problematic, we can fix without a ton of extra 651 // work. 652 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 653 continue; 654 655 const MemoryAccess *SkipStopWhere = nullptr; 656 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 657 assert(isa<MemoryDef>(Query->OriginalAccess)); 658 SkipStopWhere = Query->OriginalAccess; 659 } 660 661 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 662 /*StopAt=*/StopWhere, 663 /*SkipStopAt=*/SkipStopWhere); 664 if (Res.IsKnownClobber) { 665 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 666 667 // If this wasn't a cache hit, we hit a clobber when walking. That's a 668 // failure. 669 TerminatedPath Term{Res.Result, PathIndex}; 670 if (!MSSA.dominates(Res.Result, StopWhere)) 671 return Term; 672 673 // Otherwise, it's a valid thing to potentially optimize to. 674 Terminated.push_back(Term); 675 continue; 676 } 677 678 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 679 // We've hit our target. Save this path off for if we want to continue 680 // walking. If we are in the mode of skipping the OriginalAccess, and 681 // we've reached back to the OriginalAccess, do not save path, we've 682 // just looped back to self. 683 if (Res.Result != SkipStopWhere) 684 NewPaused.push_back(PathIndex); 685 continue; 686 } 687 688 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 689 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 690 } 691 692 return None; 693 } 694 695 template <typename T, typename Walker> 696 struct generic_def_path_iterator 697 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 698 std::forward_iterator_tag, T *> { 699 generic_def_path_iterator() {} 700 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 701 702 T &operator*() const { return curNode(); } 703 704 generic_def_path_iterator &operator++() { 705 N = curNode().Previous; 706 return *this; 707 } 708 709 bool operator==(const generic_def_path_iterator &O) const { 710 if (N.hasValue() != O.N.hasValue()) 711 return false; 712 return !N.hasValue() || *N == *O.N; 713 } 714 715 private: 716 T &curNode() const { return W->Paths[*N]; } 717 718 Walker *W = nullptr; 719 Optional<ListIndex> N = None; 720 }; 721 722 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 723 using const_def_path_iterator = 724 generic_def_path_iterator<const DefPath, const ClobberWalker>; 725 726 iterator_range<def_path_iterator> def_path(ListIndex From) { 727 return make_range(def_path_iterator(this, From), def_path_iterator()); 728 } 729 730 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 731 return make_range(const_def_path_iterator(this, From), 732 const_def_path_iterator()); 733 } 734 735 struct OptznResult { 736 /// The path that contains our result. 737 TerminatedPath PrimaryClobber; 738 /// The paths that we can legally cache back from, but that aren't 739 /// necessarily the result of the Phi optimization. 740 SmallVector<TerminatedPath, 4> OtherClobbers; 741 }; 742 743 ListIndex defPathIndex(const DefPath &N) const { 744 // The assert looks nicer if we don't need to do &N 745 const DefPath *NP = &N; 746 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 747 "Out of bounds DefPath!"); 748 return NP - &Paths.front(); 749 } 750 751 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 752 /// that act as legal clobbers. Note that this won't return *all* clobbers. 753 /// 754 /// Phi optimization algorithm tl;dr: 755 /// - Find the earliest def/phi, A, we can optimize to 756 /// - Find if all paths from the starting memory access ultimately reach A 757 /// - If not, optimization isn't possible. 758 /// - Otherwise, walk from A to another clobber or phi, A'. 759 /// - If A' is a def, we're done. 760 /// - If A' is a phi, try to optimize it. 761 /// 762 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 763 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 764 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 765 const MemoryLocation &Loc) { 766 assert(Paths.empty() && VisitedPhis.empty() && 767 "Reset the optimization state."); 768 769 Paths.emplace_back(Loc, Start, Phi, None); 770 // Stores how many "valid" optimization nodes we had prior to calling 771 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 772 auto PriorPathsSize = Paths.size(); 773 774 SmallVector<ListIndex, 16> PausedSearches; 775 SmallVector<ListIndex, 8> NewPaused; 776 SmallVector<TerminatedPath, 4> TerminatedPaths; 777 778 addSearches(Phi, PausedSearches, 0); 779 780 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 781 // Paths. 782 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 783 assert(!Paths.empty() && "Need a path to move"); 784 auto Dom = Paths.begin(); 785 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 786 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 787 Dom = I; 788 auto Last = Paths.end() - 1; 789 if (Last != Dom) 790 std::iter_swap(Last, Dom); 791 }; 792 793 MemoryPhi *Current = Phi; 794 while (true) { 795 assert(!MSSA.isLiveOnEntryDef(Current) && 796 "liveOnEntry wasn't treated as a clobber?"); 797 798 const auto *Target = getWalkTarget(Current); 799 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 800 // optimization for the prior phi. 801 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 802 return MSSA.dominates(P.Clobber, Target); 803 })); 804 805 // FIXME: This is broken, because the Blocker may be reported to be 806 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 807 // For the moment, this is fine, since we do nothing with blocker info. 808 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 809 Target, PausedSearches, NewPaused, TerminatedPaths)) { 810 811 // Find the node we started at. We can't search based on N->Last, since 812 // we may have gone around a loop with a different MemoryLocation. 813 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 814 return defPathIndex(N) < PriorPathsSize; 815 }); 816 assert(Iter != def_path_iterator()); 817 818 DefPath &CurNode = *Iter; 819 assert(CurNode.Last == Current); 820 821 // Two things: 822 // A. We can't reliably cache all of NewPaused back. Consider a case 823 // where we have two paths in NewPaused; one of which can't optimize 824 // above this phi, whereas the other can. If we cache the second path 825 // back, we'll end up with suboptimal cache entries. We can handle 826 // cases like this a bit better when we either try to find all 827 // clobbers that block phi optimization, or when our cache starts 828 // supporting unfinished searches. 829 // B. We can't reliably cache TerminatedPaths back here without doing 830 // extra checks; consider a case like: 831 // T 832 // / \ 833 // D C 834 // \ / 835 // S 836 // Where T is our target, C is a node with a clobber on it, D is a 837 // diamond (with a clobber *only* on the left or right node, N), and 838 // S is our start. Say we walk to D, through the node opposite N 839 // (read: ignoring the clobber), and see a cache entry in the top 840 // node of D. That cache entry gets put into TerminatedPaths. We then 841 // walk up to C (N is later in our worklist), find the clobber, and 842 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 843 // the bottom part of D to the cached clobber, ignoring the clobber 844 // in N. Again, this problem goes away if we start tracking all 845 // blockers for a given phi optimization. 846 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 847 return {Result, {}}; 848 } 849 850 // If there's nothing left to search, then all paths led to valid clobbers 851 // that we got from our cache; pick the nearest to the start, and allow 852 // the rest to be cached back. 853 if (NewPaused.empty()) { 854 MoveDominatedPathToEnd(TerminatedPaths); 855 TerminatedPath Result = TerminatedPaths.pop_back_val(); 856 return {Result, std::move(TerminatedPaths)}; 857 } 858 859 MemoryAccess *DefChainEnd = nullptr; 860 SmallVector<TerminatedPath, 4> Clobbers; 861 for (ListIndex Paused : NewPaused) { 862 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 863 if (WR.IsKnownClobber) 864 Clobbers.push_back({WR.Result, Paused}); 865 else 866 // Micro-opt: If we hit the end of the chain, save it. 867 DefChainEnd = WR.Result; 868 } 869 870 if (!TerminatedPaths.empty()) { 871 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 872 // do it now. 873 if (!DefChainEnd) 874 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 875 DefChainEnd = MA; 876 877 // If any of the terminated paths don't dominate the phi we'll try to 878 // optimize, we need to figure out what they are and quit. 879 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 880 for (const TerminatedPath &TP : TerminatedPaths) { 881 // Because we know that DefChainEnd is as "high" as we can go, we 882 // don't need local dominance checks; BB dominance is sufficient. 883 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 884 Clobbers.push_back(TP); 885 } 886 } 887 888 // If we have clobbers in the def chain, find the one closest to Current 889 // and quit. 890 if (!Clobbers.empty()) { 891 MoveDominatedPathToEnd(Clobbers); 892 TerminatedPath Result = Clobbers.pop_back_val(); 893 return {Result, std::move(Clobbers)}; 894 } 895 896 assert(all_of(NewPaused, 897 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 898 899 // Because liveOnEntry is a clobber, this must be a phi. 900 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 901 902 PriorPathsSize = Paths.size(); 903 PausedSearches.clear(); 904 for (ListIndex I : NewPaused) 905 addSearches(DefChainPhi, PausedSearches, I); 906 NewPaused.clear(); 907 908 Current = DefChainPhi; 909 } 910 } 911 912 void verifyOptResult(const OptznResult &R) const { 913 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 914 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 915 })); 916 } 917 918 void resetPhiOptznState() { 919 Paths.clear(); 920 VisitedPhis.clear(); 921 } 922 923 public: 924 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 925 : MSSA(MSSA), AA(AA), DT(DT) {} 926 927 AliasAnalysisType *getAA() { return &AA; } 928 /// Finds the nearest clobber for the given query, optimizing phis if 929 /// possible. 930 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 931 unsigned &UpWalkLimit) { 932 Query = &Q; 933 UpwardWalkLimit = &UpWalkLimit; 934 // Starting limit must be > 0. 935 if (!UpWalkLimit) 936 UpWalkLimit++; 937 938 MemoryAccess *Current = Start; 939 // This walker pretends uses don't exist. If we're handed one, silently grab 940 // its def. (This has the nice side-effect of ensuring we never cache uses) 941 if (auto *MU = dyn_cast<MemoryUse>(Start)) 942 Current = MU->getDefiningAccess(); 943 944 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 945 // Fast path for the overly-common case (no crazy phi optimization 946 // necessary) 947 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 948 MemoryAccess *Result; 949 if (WalkResult.IsKnownClobber) { 950 Result = WalkResult.Result; 951 Q.AR = WalkResult.AR; 952 } else { 953 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 954 Current, Q.StartingLoc); 955 verifyOptResult(OptRes); 956 resetPhiOptznState(); 957 Result = OptRes.PrimaryClobber.Clobber; 958 } 959 960 #ifdef EXPENSIVE_CHECKS 961 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 962 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 963 #endif 964 return Result; 965 } 966 }; 967 968 struct RenamePassData { 969 DomTreeNode *DTN; 970 DomTreeNode::const_iterator ChildIt; 971 MemoryAccess *IncomingVal; 972 973 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 974 MemoryAccess *M) 975 : DTN(D), ChildIt(It), IncomingVal(M) {} 976 977 void swap(RenamePassData &RHS) { 978 std::swap(DTN, RHS.DTN); 979 std::swap(ChildIt, RHS.ChildIt); 980 std::swap(IncomingVal, RHS.IncomingVal); 981 } 982 }; 983 984 } // end anonymous namespace 985 986 namespace llvm { 987 988 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 989 ClobberWalker<AliasAnalysisType> Walker; 990 MemorySSA *MSSA; 991 992 public: 993 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 994 : Walker(*M, *A, *D), MSSA(M) {} 995 996 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 997 const MemoryLocation &, 998 unsigned &); 999 // Third argument (bool), defines whether the clobber search should skip the 1000 // original queried access. If true, there will be a follow-up query searching 1001 // for a clobber access past "self". Note that the Optimized access is not 1002 // updated if a new clobber is found by this SkipSelf search. If this 1003 // additional query becomes heavily used we may decide to cache the result. 1004 // Walker instantiations will decide how to set the SkipSelf bool. 1005 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1006 }; 1007 1008 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1009 /// longer does caching on its own, but the name has been retained for the 1010 /// moment. 1011 template <class AliasAnalysisType> 1012 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1013 ClobberWalkerBase<AliasAnalysisType> *Walker; 1014 1015 public: 1016 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1017 : MemorySSAWalker(M), Walker(W) {} 1018 ~CachingWalker() override = default; 1019 1020 using MemorySSAWalker::getClobberingMemoryAccess; 1021 1022 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1023 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1024 } 1025 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1026 const MemoryLocation &Loc, 1027 unsigned &UWL) { 1028 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1029 } 1030 1031 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1032 unsigned UpwardWalkLimit = MaxCheckLimit; 1033 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1034 } 1035 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1036 const MemoryLocation &Loc) override { 1037 unsigned UpwardWalkLimit = MaxCheckLimit; 1038 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1039 } 1040 1041 void invalidateInfo(MemoryAccess *MA) override { 1042 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1043 MUD->resetOptimized(); 1044 } 1045 }; 1046 1047 template <class AliasAnalysisType> 1048 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1049 ClobberWalkerBase<AliasAnalysisType> *Walker; 1050 1051 public: 1052 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1053 : MemorySSAWalker(M), Walker(W) {} 1054 ~SkipSelfWalker() override = default; 1055 1056 using MemorySSAWalker::getClobberingMemoryAccess; 1057 1058 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1059 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1060 } 1061 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1062 const MemoryLocation &Loc, 1063 unsigned &UWL) { 1064 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1065 } 1066 1067 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1068 unsigned UpwardWalkLimit = MaxCheckLimit; 1069 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1070 } 1071 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1072 const MemoryLocation &Loc) override { 1073 unsigned UpwardWalkLimit = MaxCheckLimit; 1074 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1075 } 1076 1077 void invalidateInfo(MemoryAccess *MA) override { 1078 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1079 MUD->resetOptimized(); 1080 } 1081 }; 1082 1083 } // end namespace llvm 1084 1085 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1086 bool RenameAllUses) { 1087 // Pass through values to our successors 1088 for (const BasicBlock *S : successors(BB)) { 1089 auto It = PerBlockAccesses.find(S); 1090 // Rename the phi nodes in our successor block 1091 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1092 continue; 1093 AccessList *Accesses = It->second.get(); 1094 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1095 if (RenameAllUses) { 1096 bool ReplacementDone = false; 1097 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1098 if (Phi->getIncomingBlock(I) == BB) { 1099 Phi->setIncomingValue(I, IncomingVal); 1100 ReplacementDone = true; 1101 } 1102 (void) ReplacementDone; 1103 assert(ReplacementDone && "Incomplete phi during partial rename"); 1104 } else 1105 Phi->addIncoming(IncomingVal, BB); 1106 } 1107 } 1108 1109 /// Rename a single basic block into MemorySSA form. 1110 /// Uses the standard SSA renaming algorithm. 1111 /// \returns The new incoming value. 1112 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1113 bool RenameAllUses) { 1114 auto It = PerBlockAccesses.find(BB); 1115 // Skip most processing if the list is empty. 1116 if (It != PerBlockAccesses.end()) { 1117 AccessList *Accesses = It->second.get(); 1118 for (MemoryAccess &L : *Accesses) { 1119 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1120 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1121 MUD->setDefiningAccess(IncomingVal); 1122 if (isa<MemoryDef>(&L)) 1123 IncomingVal = &L; 1124 } else { 1125 IncomingVal = &L; 1126 } 1127 } 1128 } 1129 return IncomingVal; 1130 } 1131 1132 /// This is the standard SSA renaming algorithm. 1133 /// 1134 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1135 /// in phi nodes in our successors. 1136 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1137 SmallPtrSetImpl<BasicBlock *> &Visited, 1138 bool SkipVisited, bool RenameAllUses) { 1139 assert(Root && "Trying to rename accesses in an unreachable block"); 1140 1141 SmallVector<RenamePassData, 32> WorkStack; 1142 // Skip everything if we already renamed this block and we are skipping. 1143 // Note: You can't sink this into the if, because we need it to occur 1144 // regardless of whether we skip blocks or not. 1145 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1146 if (SkipVisited && AlreadyVisited) 1147 return; 1148 1149 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1150 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1151 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1152 1153 while (!WorkStack.empty()) { 1154 DomTreeNode *Node = WorkStack.back().DTN; 1155 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1156 IncomingVal = WorkStack.back().IncomingVal; 1157 1158 if (ChildIt == Node->end()) { 1159 WorkStack.pop_back(); 1160 } else { 1161 DomTreeNode *Child = *ChildIt; 1162 ++WorkStack.back().ChildIt; 1163 BasicBlock *BB = Child->getBlock(); 1164 // Note: You can't sink this into the if, because we need it to occur 1165 // regardless of whether we skip blocks or not. 1166 AlreadyVisited = !Visited.insert(BB).second; 1167 if (SkipVisited && AlreadyVisited) { 1168 // We already visited this during our renaming, which can happen when 1169 // being asked to rename multiple blocks. Figure out the incoming val, 1170 // which is the last def. 1171 // Incoming value can only change if there is a block def, and in that 1172 // case, it's the last block def in the list. 1173 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1174 IncomingVal = &*BlockDefs->rbegin(); 1175 } else 1176 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1177 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1178 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1179 } 1180 } 1181 } 1182 1183 /// This handles unreachable block accesses by deleting phi nodes in 1184 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1185 /// being uses of the live on entry definition. 1186 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1187 assert(!DT->isReachableFromEntry(BB) && 1188 "Reachable block found while handling unreachable blocks"); 1189 1190 // Make sure phi nodes in our reachable successors end up with a 1191 // LiveOnEntryDef for our incoming edge, even though our block is forward 1192 // unreachable. We could just disconnect these blocks from the CFG fully, 1193 // but we do not right now. 1194 for (const BasicBlock *S : successors(BB)) { 1195 if (!DT->isReachableFromEntry(S)) 1196 continue; 1197 auto It = PerBlockAccesses.find(S); 1198 // Rename the phi nodes in our successor block 1199 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1200 continue; 1201 AccessList *Accesses = It->second.get(); 1202 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1203 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1204 } 1205 1206 auto It = PerBlockAccesses.find(BB); 1207 if (It == PerBlockAccesses.end()) 1208 return; 1209 1210 auto &Accesses = It->second; 1211 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1212 auto Next = std::next(AI); 1213 // If we have a phi, just remove it. We are going to replace all 1214 // users with live on entry. 1215 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1216 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1217 else 1218 Accesses->erase(AI); 1219 AI = Next; 1220 } 1221 } 1222 1223 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1224 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1225 SkipWalker(nullptr), NextID(0) { 1226 // Build MemorySSA using a batch alias analysis. This reuses the internal 1227 // state that AA collects during an alias()/getModRefInfo() call. This is 1228 // safe because there are no CFG changes while building MemorySSA and can 1229 // significantly reduce the time spent by the compiler in AA, because we will 1230 // make queries about all the instructions in the Function. 1231 BatchAAResults BatchAA(*AA); 1232 buildMemorySSA(BatchAA); 1233 // Intentionally leave AA to nullptr while building so we don't accidently 1234 // use non-batch AliasAnalysis. 1235 this->AA = AA; 1236 // Also create the walker here. 1237 getWalker(); 1238 } 1239 1240 MemorySSA::~MemorySSA() { 1241 // Drop all our references 1242 for (const auto &Pair : PerBlockAccesses) 1243 for (MemoryAccess &MA : *Pair.second) 1244 MA.dropAllReferences(); 1245 } 1246 1247 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1248 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1249 1250 if (Res.second) 1251 Res.first->second = std::make_unique<AccessList>(); 1252 return Res.first->second.get(); 1253 } 1254 1255 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1256 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1257 1258 if (Res.second) 1259 Res.first->second = std::make_unique<DefsList>(); 1260 return Res.first->second.get(); 1261 } 1262 1263 namespace llvm { 1264 1265 /// This class is a batch walker of all MemoryUse's in the program, and points 1266 /// their defining access at the thing that actually clobbers them. Because it 1267 /// is a batch walker that touches everything, it does not operate like the 1268 /// other walkers. This walker is basically performing a top-down SSA renaming 1269 /// pass, where the version stack is used as the cache. This enables it to be 1270 /// significantly more time and memory efficient than using the regular walker, 1271 /// which is walking bottom-up. 1272 class MemorySSA::OptimizeUses { 1273 public: 1274 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1275 BatchAAResults *BAA, DominatorTree *DT) 1276 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1277 1278 void optimizeUses(); 1279 1280 private: 1281 /// This represents where a given memorylocation is in the stack. 1282 struct MemlocStackInfo { 1283 // This essentially is keeping track of versions of the stack. Whenever 1284 // the stack changes due to pushes or pops, these versions increase. 1285 unsigned long StackEpoch; 1286 unsigned long PopEpoch; 1287 // This is the lower bound of places on the stack to check. It is equal to 1288 // the place the last stack walk ended. 1289 // Note: Correctness depends on this being initialized to 0, which densemap 1290 // does 1291 unsigned long LowerBound; 1292 const BasicBlock *LowerBoundBlock; 1293 // This is where the last walk for this memory location ended. 1294 unsigned long LastKill; 1295 bool LastKillValid; 1296 Optional<AliasResult> AR; 1297 }; 1298 1299 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1300 SmallVectorImpl<MemoryAccess *> &, 1301 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1302 1303 MemorySSA *MSSA; 1304 CachingWalker<BatchAAResults> *Walker; 1305 BatchAAResults *AA; 1306 DominatorTree *DT; 1307 }; 1308 1309 } // end namespace llvm 1310 1311 /// Optimize the uses in a given block This is basically the SSA renaming 1312 /// algorithm, with one caveat: We are able to use a single stack for all 1313 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1314 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1315 /// going to be some position in that stack of possible ones. 1316 /// 1317 /// We track the stack positions that each MemoryLocation needs 1318 /// to check, and last ended at. This is because we only want to check the 1319 /// things that changed since last time. The same MemoryLocation should 1320 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1321 /// things like this, and if they start, we can modify MemoryLocOrCall to 1322 /// include relevant data) 1323 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1324 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1325 SmallVectorImpl<MemoryAccess *> &VersionStack, 1326 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1327 1328 /// If no accesses, nothing to do. 1329 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1330 if (Accesses == nullptr) 1331 return; 1332 1333 // Pop everything that doesn't dominate the current block off the stack, 1334 // increment the PopEpoch to account for this. 1335 while (true) { 1336 assert( 1337 !VersionStack.empty() && 1338 "Version stack should have liveOnEntry sentinel dominating everything"); 1339 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1340 if (DT->dominates(BackBlock, BB)) 1341 break; 1342 while (VersionStack.back()->getBlock() == BackBlock) 1343 VersionStack.pop_back(); 1344 ++PopEpoch; 1345 } 1346 1347 for (MemoryAccess &MA : *Accesses) { 1348 auto *MU = dyn_cast<MemoryUse>(&MA); 1349 if (!MU) { 1350 VersionStack.push_back(&MA); 1351 ++StackEpoch; 1352 continue; 1353 } 1354 1355 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1356 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1357 continue; 1358 } 1359 1360 MemoryLocOrCall UseMLOC(MU); 1361 auto &LocInfo = LocStackInfo[UseMLOC]; 1362 // If the pop epoch changed, it means we've removed stuff from top of 1363 // stack due to changing blocks. We may have to reset the lower bound or 1364 // last kill info. 1365 if (LocInfo.PopEpoch != PopEpoch) { 1366 LocInfo.PopEpoch = PopEpoch; 1367 LocInfo.StackEpoch = StackEpoch; 1368 // If the lower bound was in something that no longer dominates us, we 1369 // have to reset it. 1370 // We can't simply track stack size, because the stack may have had 1371 // pushes/pops in the meantime. 1372 // XXX: This is non-optimal, but only is slower cases with heavily 1373 // branching dominator trees. To get the optimal number of queries would 1374 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1375 // the top of that stack dominates us. This does not seem worth it ATM. 1376 // A much cheaper optimization would be to always explore the deepest 1377 // branch of the dominator tree first. This will guarantee this resets on 1378 // the smallest set of blocks. 1379 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1380 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1381 // Reset the lower bound of things to check. 1382 // TODO: Some day we should be able to reset to last kill, rather than 1383 // 0. 1384 LocInfo.LowerBound = 0; 1385 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1386 LocInfo.LastKillValid = false; 1387 } 1388 } else if (LocInfo.StackEpoch != StackEpoch) { 1389 // If all that has changed is the StackEpoch, we only have to check the 1390 // new things on the stack, because we've checked everything before. In 1391 // this case, the lower bound of things to check remains the same. 1392 LocInfo.PopEpoch = PopEpoch; 1393 LocInfo.StackEpoch = StackEpoch; 1394 } 1395 if (!LocInfo.LastKillValid) { 1396 LocInfo.LastKill = VersionStack.size() - 1; 1397 LocInfo.LastKillValid = true; 1398 LocInfo.AR = MayAlias; 1399 } 1400 1401 // At this point, we should have corrected last kill and LowerBound to be 1402 // in bounds. 1403 assert(LocInfo.LowerBound < VersionStack.size() && 1404 "Lower bound out of range"); 1405 assert(LocInfo.LastKill < VersionStack.size() && 1406 "Last kill info out of range"); 1407 // In any case, the new upper bound is the top of the stack. 1408 unsigned long UpperBound = VersionStack.size() - 1; 1409 1410 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1411 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1412 << *(MU->getMemoryInst()) << ")" 1413 << " because there are " 1414 << UpperBound - LocInfo.LowerBound 1415 << " stores to disambiguate\n"); 1416 // Because we did not walk, LastKill is no longer valid, as this may 1417 // have been a kill. 1418 LocInfo.LastKillValid = false; 1419 continue; 1420 } 1421 bool FoundClobberResult = false; 1422 unsigned UpwardWalkLimit = MaxCheckLimit; 1423 while (UpperBound > LocInfo.LowerBound) { 1424 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1425 // For phis, use the walker, see where we ended up, go there 1426 MemoryAccess *Result = 1427 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1428 // We are guaranteed to find it or something is wrong 1429 while (VersionStack[UpperBound] != Result) { 1430 assert(UpperBound != 0); 1431 --UpperBound; 1432 } 1433 FoundClobberResult = true; 1434 break; 1435 } 1436 1437 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1438 // If the lifetime of the pointer ends at this instruction, it's live on 1439 // entry. 1440 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1441 // Reset UpperBound to liveOnEntryDef's place in the stack 1442 UpperBound = 0; 1443 FoundClobberResult = true; 1444 LocInfo.AR = MustAlias; 1445 break; 1446 } 1447 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1448 if (CA.IsClobber) { 1449 FoundClobberResult = true; 1450 LocInfo.AR = CA.AR; 1451 break; 1452 } 1453 --UpperBound; 1454 } 1455 1456 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1457 1458 // At the end of this loop, UpperBound is either a clobber, or lower bound 1459 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1460 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1461 // We were last killed now by where we got to 1462 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1463 LocInfo.AR = None; 1464 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1465 LocInfo.LastKill = UpperBound; 1466 } else { 1467 // Otherwise, we checked all the new ones, and now we know we can get to 1468 // LastKill. 1469 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1470 } 1471 LocInfo.LowerBound = VersionStack.size() - 1; 1472 LocInfo.LowerBoundBlock = BB; 1473 } 1474 } 1475 1476 /// Optimize uses to point to their actual clobbering definitions. 1477 void MemorySSA::OptimizeUses::optimizeUses() { 1478 SmallVector<MemoryAccess *, 16> VersionStack; 1479 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1480 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1481 1482 unsigned long StackEpoch = 1; 1483 unsigned long PopEpoch = 1; 1484 // We perform a non-recursive top-down dominator tree walk. 1485 for (const auto *DomNode : depth_first(DT->getRootNode())) 1486 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1487 LocStackInfo); 1488 } 1489 1490 void MemorySSA::placePHINodes( 1491 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1492 // Determine where our MemoryPhi's should go 1493 ForwardIDFCalculator IDFs(*DT); 1494 IDFs.setDefiningBlocks(DefiningBlocks); 1495 SmallVector<BasicBlock *, 32> IDFBlocks; 1496 IDFs.calculate(IDFBlocks); 1497 1498 // Now place MemoryPhi nodes. 1499 for (auto &BB : IDFBlocks) 1500 createMemoryPhi(BB); 1501 } 1502 1503 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1504 // We create an access to represent "live on entry", for things like 1505 // arguments or users of globals, where the memory they use is defined before 1506 // the beginning of the function. We do not actually insert it into the IR. 1507 // We do not define a live on exit for the immediate uses, and thus our 1508 // semantics do *not* imply that something with no immediate uses can simply 1509 // be removed. 1510 BasicBlock &StartingPoint = F.getEntryBlock(); 1511 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1512 &StartingPoint, NextID++)); 1513 1514 // We maintain lists of memory accesses per-block, trading memory for time. We 1515 // could just look up the memory access for every possible instruction in the 1516 // stream. 1517 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1518 // Go through each block, figure out where defs occur, and chain together all 1519 // the accesses. 1520 for (BasicBlock &B : F) { 1521 bool InsertIntoDef = false; 1522 AccessList *Accesses = nullptr; 1523 DefsList *Defs = nullptr; 1524 for (Instruction &I : B) { 1525 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1526 if (!MUD) 1527 continue; 1528 1529 if (!Accesses) 1530 Accesses = getOrCreateAccessList(&B); 1531 Accesses->push_back(MUD); 1532 if (isa<MemoryDef>(MUD)) { 1533 InsertIntoDef = true; 1534 if (!Defs) 1535 Defs = getOrCreateDefsList(&B); 1536 Defs->push_back(*MUD); 1537 } 1538 } 1539 if (InsertIntoDef) 1540 DefiningBlocks.insert(&B); 1541 } 1542 placePHINodes(DefiningBlocks); 1543 1544 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1545 // filled in with all blocks. 1546 SmallPtrSet<BasicBlock *, 16> Visited; 1547 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1548 1549 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1550 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1551 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1552 1553 // Mark the uses in unreachable blocks as live on entry, so that they go 1554 // somewhere. 1555 for (auto &BB : F) 1556 if (!Visited.count(&BB)) 1557 markUnreachableAsLiveOnEntry(&BB); 1558 } 1559 1560 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1561 1562 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1563 if (Walker) 1564 return Walker.get(); 1565 1566 if (!WalkerBase) 1567 WalkerBase = 1568 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1569 1570 Walker = 1571 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1572 return Walker.get(); 1573 } 1574 1575 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1576 if (SkipWalker) 1577 return SkipWalker.get(); 1578 1579 if (!WalkerBase) 1580 WalkerBase = 1581 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1582 1583 SkipWalker = 1584 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1585 return SkipWalker.get(); 1586 } 1587 1588 1589 // This is a helper function used by the creation routines. It places NewAccess 1590 // into the access and defs lists for a given basic block, at the given 1591 // insertion point. 1592 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1593 const BasicBlock *BB, 1594 InsertionPlace Point) { 1595 auto *Accesses = getOrCreateAccessList(BB); 1596 if (Point == Beginning) { 1597 // If it's a phi node, it goes first, otherwise, it goes after any phi 1598 // nodes. 1599 if (isa<MemoryPhi>(NewAccess)) { 1600 Accesses->push_front(NewAccess); 1601 auto *Defs = getOrCreateDefsList(BB); 1602 Defs->push_front(*NewAccess); 1603 } else { 1604 auto AI = find_if_not( 1605 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1606 Accesses->insert(AI, NewAccess); 1607 if (!isa<MemoryUse>(NewAccess)) { 1608 auto *Defs = getOrCreateDefsList(BB); 1609 auto DI = find_if_not( 1610 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1611 Defs->insert(DI, *NewAccess); 1612 } 1613 } 1614 } else { 1615 Accesses->push_back(NewAccess); 1616 if (!isa<MemoryUse>(NewAccess)) { 1617 auto *Defs = getOrCreateDefsList(BB); 1618 Defs->push_back(*NewAccess); 1619 } 1620 } 1621 BlockNumberingValid.erase(BB); 1622 } 1623 1624 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1625 AccessList::iterator InsertPt) { 1626 auto *Accesses = getWritableBlockAccesses(BB); 1627 bool WasEnd = InsertPt == Accesses->end(); 1628 Accesses->insert(AccessList::iterator(InsertPt), What); 1629 if (!isa<MemoryUse>(What)) { 1630 auto *Defs = getOrCreateDefsList(BB); 1631 // If we got asked to insert at the end, we have an easy job, just shove it 1632 // at the end. If we got asked to insert before an existing def, we also get 1633 // an iterator. If we got asked to insert before a use, we have to hunt for 1634 // the next def. 1635 if (WasEnd) { 1636 Defs->push_back(*What); 1637 } else if (isa<MemoryDef>(InsertPt)) { 1638 Defs->insert(InsertPt->getDefsIterator(), *What); 1639 } else { 1640 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1641 ++InsertPt; 1642 // Either we found a def, or we are inserting at the end 1643 if (InsertPt == Accesses->end()) 1644 Defs->push_back(*What); 1645 else 1646 Defs->insert(InsertPt->getDefsIterator(), *What); 1647 } 1648 } 1649 BlockNumberingValid.erase(BB); 1650 } 1651 1652 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1653 // Keep it in the lookup tables, remove from the lists 1654 removeFromLists(What, false); 1655 1656 // Note that moving should implicitly invalidate the optimized state of a 1657 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1658 // MemoryDef. 1659 if (auto *MD = dyn_cast<MemoryDef>(What)) 1660 MD->resetOptimized(); 1661 What->setBlock(BB); 1662 } 1663 1664 // Move What before Where in the IR. The end result is that What will belong to 1665 // the right lists and have the right Block set, but will not otherwise be 1666 // correct. It will not have the right defining access, and if it is a def, 1667 // things below it will not properly be updated. 1668 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1669 AccessList::iterator Where) { 1670 prepareForMoveTo(What, BB); 1671 insertIntoListsBefore(What, BB, Where); 1672 } 1673 1674 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1675 InsertionPlace Point) { 1676 if (isa<MemoryPhi>(What)) { 1677 assert(Point == Beginning && 1678 "Can only move a Phi at the beginning of the block"); 1679 // Update lookup table entry 1680 ValueToMemoryAccess.erase(What->getBlock()); 1681 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1682 (void)Inserted; 1683 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1684 } 1685 1686 prepareForMoveTo(What, BB); 1687 insertIntoListsForBlock(What, BB, Point); 1688 } 1689 1690 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1691 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1692 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1693 // Phi's always are placed at the front of the block. 1694 insertIntoListsForBlock(Phi, BB, Beginning); 1695 ValueToMemoryAccess[BB] = Phi; 1696 return Phi; 1697 } 1698 1699 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1700 MemoryAccess *Definition, 1701 const MemoryUseOrDef *Template, 1702 bool CreationMustSucceed) { 1703 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1704 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1705 if (CreationMustSucceed) 1706 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1707 "non-memory touching instruction"); 1708 if (NewAccess) 1709 NewAccess->setDefiningAccess(Definition); 1710 return NewAccess; 1711 } 1712 1713 // Return true if the instruction has ordering constraints. 1714 // Note specifically that this only considers stores and loads 1715 // because others are still considered ModRef by getModRefInfo. 1716 static inline bool isOrdered(const Instruction *I) { 1717 if (auto *SI = dyn_cast<StoreInst>(I)) { 1718 if (!SI->isUnordered()) 1719 return true; 1720 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1721 if (!LI->isUnordered()) 1722 return true; 1723 } 1724 return false; 1725 } 1726 1727 /// Helper function to create new memory accesses 1728 template <typename AliasAnalysisType> 1729 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1730 AliasAnalysisType *AAP, 1731 const MemoryUseOrDef *Template) { 1732 // The assume intrinsic has a control dependency which we model by claiming 1733 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1734 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1735 // dependencies here. 1736 // FIXME: Replace this special casing with a more accurate modelling of 1737 // assume's control dependency. 1738 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1739 if (II->getIntrinsicID() == Intrinsic::assume) 1740 return nullptr; 1741 1742 // Using a nonstandard AA pipelines might leave us with unexpected modref 1743 // results for I, so add a check to not model instructions that may not read 1744 // from or write to memory. This is necessary for correctness. 1745 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1746 return nullptr; 1747 1748 bool Def, Use; 1749 if (Template) { 1750 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1751 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1752 #if !defined(NDEBUG) 1753 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1754 bool DefCheck, UseCheck; 1755 DefCheck = isModSet(ModRef) || isOrdered(I); 1756 UseCheck = isRefSet(ModRef); 1757 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1758 #endif 1759 } else { 1760 // Find out what affect this instruction has on memory. 1761 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1762 // The isOrdered check is used to ensure that volatiles end up as defs 1763 // (atomics end up as ModRef right now anyway). Until we separate the 1764 // ordering chain from the memory chain, this enables people to see at least 1765 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1766 // will still give an answer that bypasses other volatile loads. TODO: 1767 // Separate memory aliasing and ordering into two different chains so that 1768 // we can precisely represent both "what memory will this read/write/is 1769 // clobbered by" and "what instructions can I move this past". 1770 Def = isModSet(ModRef) || isOrdered(I); 1771 Use = isRefSet(ModRef); 1772 } 1773 1774 // It's possible for an instruction to not modify memory at all. During 1775 // construction, we ignore them. 1776 if (!Def && !Use) 1777 return nullptr; 1778 1779 MemoryUseOrDef *MUD; 1780 if (Def) 1781 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1782 else 1783 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1784 ValueToMemoryAccess[I] = MUD; 1785 return MUD; 1786 } 1787 1788 /// Returns true if \p Replacer dominates \p Replacee . 1789 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1790 const MemoryAccess *Replacee) const { 1791 if (isa<MemoryUseOrDef>(Replacee)) 1792 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1793 const auto *MP = cast<MemoryPhi>(Replacee); 1794 // For a phi node, the use occurs in the predecessor block of the phi node. 1795 // Since we may occur multiple times in the phi node, we have to check each 1796 // operand to ensure Replacer dominates each operand where Replacee occurs. 1797 for (const Use &Arg : MP->operands()) { 1798 if (Arg.get() != Replacee && 1799 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1800 return false; 1801 } 1802 return true; 1803 } 1804 1805 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1806 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1807 assert(MA->use_empty() && 1808 "Trying to remove memory access that still has uses"); 1809 BlockNumbering.erase(MA); 1810 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1811 MUD->setDefiningAccess(nullptr); 1812 // Invalidate our walker's cache if necessary 1813 if (!isa<MemoryUse>(MA)) 1814 getWalker()->invalidateInfo(MA); 1815 1816 Value *MemoryInst; 1817 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1818 MemoryInst = MUD->getMemoryInst(); 1819 else 1820 MemoryInst = MA->getBlock(); 1821 1822 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1823 if (VMA->second == MA) 1824 ValueToMemoryAccess.erase(VMA); 1825 } 1826 1827 /// Properly remove \p MA from all of MemorySSA's lists. 1828 /// 1829 /// Because of the way the intrusive list and use lists work, it is important to 1830 /// do removal in the right order. 1831 /// ShouldDelete defaults to true, and will cause the memory access to also be 1832 /// deleted, not just removed. 1833 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1834 BasicBlock *BB = MA->getBlock(); 1835 // The access list owns the reference, so we erase it from the non-owning list 1836 // first. 1837 if (!isa<MemoryUse>(MA)) { 1838 auto DefsIt = PerBlockDefs.find(BB); 1839 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1840 Defs->remove(*MA); 1841 if (Defs->empty()) 1842 PerBlockDefs.erase(DefsIt); 1843 } 1844 1845 // The erase call here will delete it. If we don't want it deleted, we call 1846 // remove instead. 1847 auto AccessIt = PerBlockAccesses.find(BB); 1848 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1849 if (ShouldDelete) 1850 Accesses->erase(MA); 1851 else 1852 Accesses->remove(MA); 1853 1854 if (Accesses->empty()) { 1855 PerBlockAccesses.erase(AccessIt); 1856 BlockNumberingValid.erase(BB); 1857 } 1858 } 1859 1860 void MemorySSA::print(raw_ostream &OS) const { 1861 MemorySSAAnnotatedWriter Writer(this); 1862 F.print(OS, &Writer); 1863 } 1864 1865 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1866 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1867 #endif 1868 1869 void MemorySSA::verifyMemorySSA() const { 1870 verifyDefUses(F); 1871 verifyDomination(F); 1872 verifyOrdering(F); 1873 verifyDominationNumbers(F); 1874 verifyPrevDefInPhis(F); 1875 // Previously, the verification used to also verify that the clobberingAccess 1876 // cached by MemorySSA is the same as the clobberingAccess found at a later 1877 // query to AA. This does not hold true in general due to the current fragility 1878 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1879 // up. As a result, transformations that are correct, will lead to BasicAA 1880 // returning different Alias answers before and after that transformation. 1881 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1882 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1883 // every transformation, which defeats the purpose of using it. For such an 1884 // example, see test4 added in D51960. 1885 } 1886 1887 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1888 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1889 for (const BasicBlock &BB : F) { 1890 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1891 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1892 auto *Pred = Phi->getIncomingBlock(I); 1893 auto *IncAcc = Phi->getIncomingValue(I); 1894 // If Pred has no unreachable predecessors, get last def looking at 1895 // IDoms. If, while walkings IDoms, any of these has an unreachable 1896 // predecessor, then the incoming def can be any access. 1897 if (auto *DTNode = DT->getNode(Pred)) { 1898 while (DTNode) { 1899 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1900 auto *LastAcc = &*(--DefList->end()); 1901 assert(LastAcc == IncAcc && 1902 "Incorrect incoming access into phi."); 1903 break; 1904 } 1905 DTNode = DTNode->getIDom(); 1906 } 1907 } else { 1908 // If Pred has unreachable predecessors, but has at least a Def, the 1909 // incoming access can be the last Def in Pred, or it could have been 1910 // optimized to LoE. After an update, though, the LoE may have been 1911 // replaced by another access, so IncAcc may be any access. 1912 // If Pred has unreachable predecessors and no Defs, incoming access 1913 // should be LoE; However, after an update, it may be any access. 1914 } 1915 } 1916 } 1917 } 1918 #endif 1919 } 1920 1921 /// Verify that all of the blocks we believe to have valid domination numbers 1922 /// actually have valid domination numbers. 1923 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1924 #ifndef NDEBUG 1925 if (BlockNumberingValid.empty()) 1926 return; 1927 1928 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1929 for (const BasicBlock &BB : F) { 1930 if (!ValidBlocks.count(&BB)) 1931 continue; 1932 1933 ValidBlocks.erase(&BB); 1934 1935 const AccessList *Accesses = getBlockAccesses(&BB); 1936 // It's correct to say an empty block has valid numbering. 1937 if (!Accesses) 1938 continue; 1939 1940 // Block numbering starts at 1. 1941 unsigned long LastNumber = 0; 1942 for (const MemoryAccess &MA : *Accesses) { 1943 auto ThisNumberIter = BlockNumbering.find(&MA); 1944 assert(ThisNumberIter != BlockNumbering.end() && 1945 "MemoryAccess has no domination number in a valid block!"); 1946 1947 unsigned long ThisNumber = ThisNumberIter->second; 1948 assert(ThisNumber > LastNumber && 1949 "Domination numbers should be strictly increasing!"); 1950 LastNumber = ThisNumber; 1951 } 1952 } 1953 1954 assert(ValidBlocks.empty() && 1955 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1956 #endif 1957 } 1958 1959 /// Verify that the order and existence of MemoryAccesses matches the 1960 /// order and existence of memory affecting instructions. 1961 void MemorySSA::verifyOrdering(Function &F) const { 1962 #ifndef NDEBUG 1963 // Walk all the blocks, comparing what the lookups think and what the access 1964 // lists think, as well as the order in the blocks vs the order in the access 1965 // lists. 1966 SmallVector<MemoryAccess *, 32> ActualAccesses; 1967 SmallVector<MemoryAccess *, 32> ActualDefs; 1968 for (BasicBlock &B : F) { 1969 const AccessList *AL = getBlockAccesses(&B); 1970 const auto *DL = getBlockDefs(&B); 1971 MemoryAccess *Phi = getMemoryAccess(&B); 1972 if (Phi) { 1973 ActualAccesses.push_back(Phi); 1974 ActualDefs.push_back(Phi); 1975 } 1976 1977 for (Instruction &I : B) { 1978 MemoryAccess *MA = getMemoryAccess(&I); 1979 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1980 "We have memory affecting instructions " 1981 "in this block but they are not in the " 1982 "access list or defs list"); 1983 if (MA) { 1984 ActualAccesses.push_back(MA); 1985 if (isa<MemoryDef>(MA)) 1986 ActualDefs.push_back(MA); 1987 } 1988 } 1989 // Either we hit the assert, really have no accesses, or we have both 1990 // accesses and an access list. 1991 // Same with defs. 1992 if (!AL && !DL) 1993 continue; 1994 assert(AL->size() == ActualAccesses.size() && 1995 "We don't have the same number of accesses in the block as on the " 1996 "access list"); 1997 assert((DL || ActualDefs.size() == 0) && 1998 "Either we should have a defs list, or we should have no defs"); 1999 assert((!DL || DL->size() == ActualDefs.size()) && 2000 "We don't have the same number of defs in the block as on the " 2001 "def list"); 2002 auto ALI = AL->begin(); 2003 auto AAI = ActualAccesses.begin(); 2004 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2005 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2006 ++ALI; 2007 ++AAI; 2008 } 2009 ActualAccesses.clear(); 2010 if (DL) { 2011 auto DLI = DL->begin(); 2012 auto ADI = ActualDefs.begin(); 2013 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2014 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2015 ++DLI; 2016 ++ADI; 2017 } 2018 } 2019 ActualDefs.clear(); 2020 } 2021 #endif 2022 } 2023 2024 /// Verify the domination properties of MemorySSA by checking that each 2025 /// definition dominates all of its uses. 2026 void MemorySSA::verifyDomination(Function &F) const { 2027 #ifndef NDEBUG 2028 for (BasicBlock &B : F) { 2029 // Phi nodes are attached to basic blocks 2030 if (MemoryPhi *MP = getMemoryAccess(&B)) 2031 for (const Use &U : MP->uses()) 2032 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 2033 2034 for (Instruction &I : B) { 2035 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 2036 if (!MD) 2037 continue; 2038 2039 for (const Use &U : MD->uses()) 2040 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 2041 } 2042 } 2043 #endif 2044 } 2045 2046 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2047 /// appears in the use list of \p Def. 2048 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2049 #ifndef NDEBUG 2050 // The live on entry use may cause us to get a NULL def here 2051 if (!Def) 2052 assert(isLiveOnEntryDef(Use) && 2053 "Null def but use not point to live on entry def"); 2054 else 2055 assert(is_contained(Def->users(), Use) && 2056 "Did not find use in def's use list"); 2057 #endif 2058 } 2059 2060 /// Verify the immediate use information, by walking all the memory 2061 /// accesses and verifying that, for each use, it appears in the 2062 /// appropriate def's use list 2063 void MemorySSA::verifyDefUses(Function &F) const { 2064 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 2065 for (BasicBlock &B : F) { 2066 // Phi nodes are attached to basic blocks 2067 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 2068 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2069 pred_begin(&B), pred_end(&B))) && 2070 "Incomplete MemoryPhi Node"); 2071 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2072 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2073 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2074 pred_end(&B) && 2075 "Incoming phi block not a block predecessor"); 2076 } 2077 } 2078 2079 for (Instruction &I : B) { 2080 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 2081 verifyUseInDefs(MA->getDefiningAccess(), MA); 2082 } 2083 } 2084 } 2085 #endif 2086 } 2087 2088 /// Perform a local numbering on blocks so that instruction ordering can be 2089 /// determined in constant time. 2090 /// TODO: We currently just number in order. If we numbered by N, we could 2091 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2092 /// log2(N) sequences of mixed before and after) without needing to invalidate 2093 /// the numbering. 2094 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2095 // The pre-increment ensures the numbers really start at 1. 2096 unsigned long CurrentNumber = 0; 2097 const AccessList *AL = getBlockAccesses(B); 2098 assert(AL != nullptr && "Asking to renumber an empty block"); 2099 for (const auto &I : *AL) 2100 BlockNumbering[&I] = ++CurrentNumber; 2101 BlockNumberingValid.insert(B); 2102 } 2103 2104 /// Determine, for two memory accesses in the same block, 2105 /// whether \p Dominator dominates \p Dominatee. 2106 /// \returns True if \p Dominator dominates \p Dominatee. 2107 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2108 const MemoryAccess *Dominatee) const { 2109 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2110 2111 assert((DominatorBlock == Dominatee->getBlock()) && 2112 "Asking for local domination when accesses are in different blocks!"); 2113 // A node dominates itself. 2114 if (Dominatee == Dominator) 2115 return true; 2116 2117 // When Dominatee is defined on function entry, it is not dominated by another 2118 // memory access. 2119 if (isLiveOnEntryDef(Dominatee)) 2120 return false; 2121 2122 // When Dominator is defined on function entry, it dominates the other memory 2123 // access. 2124 if (isLiveOnEntryDef(Dominator)) 2125 return true; 2126 2127 if (!BlockNumberingValid.count(DominatorBlock)) 2128 renumberBlock(DominatorBlock); 2129 2130 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2131 // All numbers start with 1 2132 assert(DominatorNum != 0 && "Block was not numbered properly"); 2133 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2134 assert(DominateeNum != 0 && "Block was not numbered properly"); 2135 return DominatorNum < DominateeNum; 2136 } 2137 2138 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2139 const MemoryAccess *Dominatee) const { 2140 if (Dominator == Dominatee) 2141 return true; 2142 2143 if (isLiveOnEntryDef(Dominatee)) 2144 return false; 2145 2146 if (Dominator->getBlock() != Dominatee->getBlock()) 2147 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2148 return locallyDominates(Dominator, Dominatee); 2149 } 2150 2151 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2152 const Use &Dominatee) const { 2153 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2154 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2155 // The def must dominate the incoming block of the phi. 2156 if (UseBB != Dominator->getBlock()) 2157 return DT->dominates(Dominator->getBlock(), UseBB); 2158 // If the UseBB and the DefBB are the same, compare locally. 2159 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2160 } 2161 // If it's not a PHI node use, the normal dominates can already handle it. 2162 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2163 } 2164 2165 const static char LiveOnEntryStr[] = "liveOnEntry"; 2166 2167 void MemoryAccess::print(raw_ostream &OS) const { 2168 switch (getValueID()) { 2169 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2170 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2171 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2172 } 2173 llvm_unreachable("invalid value id"); 2174 } 2175 2176 void MemoryDef::print(raw_ostream &OS) const { 2177 MemoryAccess *UO = getDefiningAccess(); 2178 2179 auto printID = [&OS](MemoryAccess *A) { 2180 if (A && A->getID()) 2181 OS << A->getID(); 2182 else 2183 OS << LiveOnEntryStr; 2184 }; 2185 2186 OS << getID() << " = MemoryDef("; 2187 printID(UO); 2188 OS << ")"; 2189 2190 if (isOptimized()) { 2191 OS << "->"; 2192 printID(getOptimized()); 2193 2194 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2195 OS << " " << *AR; 2196 } 2197 } 2198 2199 void MemoryPhi::print(raw_ostream &OS) const { 2200 bool First = true; 2201 OS << getID() << " = MemoryPhi("; 2202 for (const auto &Op : operands()) { 2203 BasicBlock *BB = getIncomingBlock(Op); 2204 MemoryAccess *MA = cast<MemoryAccess>(Op); 2205 if (!First) 2206 OS << ','; 2207 else 2208 First = false; 2209 2210 OS << '{'; 2211 if (BB->hasName()) 2212 OS << BB->getName(); 2213 else 2214 BB->printAsOperand(OS, false); 2215 OS << ','; 2216 if (unsigned ID = MA->getID()) 2217 OS << ID; 2218 else 2219 OS << LiveOnEntryStr; 2220 OS << '}'; 2221 } 2222 OS << ')'; 2223 } 2224 2225 void MemoryUse::print(raw_ostream &OS) const { 2226 MemoryAccess *UO = getDefiningAccess(); 2227 OS << "MemoryUse("; 2228 if (UO && UO->getID()) 2229 OS << UO->getID(); 2230 else 2231 OS << LiveOnEntryStr; 2232 OS << ')'; 2233 2234 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2235 OS << " " << *AR; 2236 } 2237 2238 void MemoryAccess::dump() const { 2239 // Cannot completely remove virtual function even in release mode. 2240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2241 print(dbgs()); 2242 dbgs() << "\n"; 2243 #endif 2244 } 2245 2246 char MemorySSAPrinterLegacyPass::ID = 0; 2247 2248 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2249 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2250 } 2251 2252 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2253 AU.setPreservesAll(); 2254 AU.addRequired<MemorySSAWrapperPass>(); 2255 } 2256 2257 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2258 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2259 MSSA.print(dbgs()); 2260 if (VerifyMemorySSA) 2261 MSSA.verifyMemorySSA(); 2262 return false; 2263 } 2264 2265 AnalysisKey MemorySSAAnalysis::Key; 2266 2267 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2268 FunctionAnalysisManager &AM) { 2269 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2270 auto &AA = AM.getResult<AAManager>(F); 2271 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2272 } 2273 2274 bool MemorySSAAnalysis::Result::invalidate( 2275 Function &F, const PreservedAnalyses &PA, 2276 FunctionAnalysisManager::Invalidator &Inv) { 2277 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2278 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2279 Inv.invalidate<AAManager>(F, PA) || 2280 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2281 } 2282 2283 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2284 FunctionAnalysisManager &AM) { 2285 OS << "MemorySSA for function: " << F.getName() << "\n"; 2286 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2287 2288 return PreservedAnalyses::all(); 2289 } 2290 2291 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2292 FunctionAnalysisManager &AM) { 2293 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2294 2295 return PreservedAnalyses::all(); 2296 } 2297 2298 char MemorySSAWrapperPass::ID = 0; 2299 2300 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2301 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2302 } 2303 2304 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2305 2306 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2307 AU.setPreservesAll(); 2308 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2309 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2310 } 2311 2312 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2313 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2314 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2315 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2316 return false; 2317 } 2318 2319 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2320 2321 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2322 MSSA->print(OS); 2323 } 2324 2325 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2326 2327 /// Walk the use-def chains starting at \p StartingAccess and find 2328 /// the MemoryAccess that actually clobbers Loc. 2329 /// 2330 /// \returns our clobbering memory access 2331 template <typename AliasAnalysisType> 2332 MemoryAccess * 2333 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2334 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2335 unsigned &UpwardWalkLimit) { 2336 if (isa<MemoryPhi>(StartingAccess)) 2337 return StartingAccess; 2338 2339 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2340 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2341 return StartingUseOrDef; 2342 2343 Instruction *I = StartingUseOrDef->getMemoryInst(); 2344 2345 // Conservatively, fences are always clobbers, so don't perform the walk if we 2346 // hit a fence. 2347 if (!isa<CallBase>(I) && I->isFenceLike()) 2348 return StartingUseOrDef; 2349 2350 UpwardsMemoryQuery Q; 2351 Q.OriginalAccess = StartingUseOrDef; 2352 Q.StartingLoc = Loc; 2353 Q.Inst = I; 2354 Q.IsCall = false; 2355 2356 // Unlike the other function, do not walk to the def of a def, because we are 2357 // handed something we already believe is the clobbering access. 2358 // We never set SkipSelf to true in Q in this method. 2359 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2360 ? StartingUseOrDef->getDefiningAccess() 2361 : StartingUseOrDef; 2362 2363 MemoryAccess *Clobber = 2364 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2365 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2366 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2367 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2368 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2369 return Clobber; 2370 } 2371 2372 template <typename AliasAnalysisType> 2373 MemoryAccess * 2374 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2375 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2376 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2377 // If this is a MemoryPhi, we can't do anything. 2378 if (!StartingAccess) 2379 return MA; 2380 2381 bool IsOptimized = false; 2382 2383 // If this is an already optimized use or def, return the optimized result. 2384 // Note: Currently, we store the optimized def result in a separate field, 2385 // since we can't use the defining access. 2386 if (StartingAccess->isOptimized()) { 2387 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2388 return StartingAccess->getOptimized(); 2389 IsOptimized = true; 2390 } 2391 2392 const Instruction *I = StartingAccess->getMemoryInst(); 2393 // We can't sanely do anything with a fence, since they conservatively clobber 2394 // all memory, and have no locations to get pointers from to try to 2395 // disambiguate. 2396 if (!isa<CallBase>(I) && I->isFenceLike()) 2397 return StartingAccess; 2398 2399 UpwardsMemoryQuery Q(I, StartingAccess); 2400 2401 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2402 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2403 StartingAccess->setOptimized(LiveOnEntry); 2404 StartingAccess->setOptimizedAccessType(None); 2405 return LiveOnEntry; 2406 } 2407 2408 MemoryAccess *OptimizedAccess; 2409 if (!IsOptimized) { 2410 // Start with the thing we already think clobbers this location 2411 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2412 2413 // At this point, DefiningAccess may be the live on entry def. 2414 // If it is, we will not get a better result. 2415 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2416 StartingAccess->setOptimized(DefiningAccess); 2417 StartingAccess->setOptimizedAccessType(None); 2418 return DefiningAccess; 2419 } 2420 2421 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2422 StartingAccess->setOptimized(OptimizedAccess); 2423 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2424 StartingAccess->setOptimizedAccessType(None); 2425 else if (Q.AR == MustAlias) 2426 StartingAccess->setOptimizedAccessType(MustAlias); 2427 } else 2428 OptimizedAccess = StartingAccess->getOptimized(); 2429 2430 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2431 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2432 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2433 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2434 2435 MemoryAccess *Result; 2436 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2437 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2438 assert(isa<MemoryDef>(Q.OriginalAccess)); 2439 Q.SkipSelfAccess = true; 2440 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2441 } else 2442 Result = OptimizedAccess; 2443 2444 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2445 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2446 2447 return Result; 2448 } 2449 2450 MemoryAccess * 2451 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2452 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2453 return Use->getDefiningAccess(); 2454 return MA; 2455 } 2456 2457 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2458 MemoryAccess *StartingAccess, const MemoryLocation &) { 2459 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2460 return Use->getDefiningAccess(); 2461 return StartingAccess; 2462 } 2463 2464 void MemoryPhi::deleteMe(DerivedUser *Self) { 2465 delete static_cast<MemoryPhi *>(Self); 2466 } 2467 2468 void MemoryDef::deleteMe(DerivedUser *Self) { 2469 delete static_cast<MemoryDef *>(Self); 2470 } 2471 2472 void MemoryUse::deleteMe(DerivedUser *Self) { 2473 delete static_cast<MemoryUse *>(Self); 2474 } 2475