1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/CFGPrinter.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/PassManager.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/FormattedStream.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdlib> 55 #include <iterator> 56 #include <memory> 57 #include <utility> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "memoryssa" 62 63 static cl::opt<std::string> 64 DotCFGMSSA("dot-cfg-mssa", 65 cl::value_desc("file name for generated dot file"), 66 cl::desc("file name for generated dot file"), cl::init("")); 67 68 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 69 true) 70 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 71 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 72 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 73 true) 74 75 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 76 "Memory SSA Printer", false, false) 77 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 78 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 79 "Memory SSA Printer", false, false) 80 81 static cl::opt<unsigned> MaxCheckLimit( 82 "memssa-check-limit", cl::Hidden, cl::init(100), 83 cl::desc("The maximum number of stores/phis MemorySSA" 84 "will consider trying to walk past (default = 100)")); 85 86 // Always verify MemorySSA if expensive checking is enabled. 87 #ifdef EXPENSIVE_CHECKS 88 bool llvm::VerifyMemorySSA = true; 89 #else 90 bool llvm::VerifyMemorySSA = false; 91 #endif 92 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 93 cl::opt<bool> llvm::EnableMSSALoopDependency( 94 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 95 cl::desc("Enable MemorySSA dependency for loop pass manager")); 96 97 static cl::opt<bool, true> 98 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 99 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 100 101 namespace llvm { 102 103 /// An assembly annotator class to print Memory SSA information in 104 /// comments. 105 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 106 friend class MemorySSA; 107 108 const MemorySSA *MSSA; 109 110 public: 111 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 112 113 void emitBasicBlockStartAnnot(const BasicBlock *BB, 114 formatted_raw_ostream &OS) override { 115 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 116 OS << "; " << *MA << "\n"; 117 } 118 119 void emitInstructionAnnot(const Instruction *I, 120 formatted_raw_ostream &OS) override { 121 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 122 OS << "; " << *MA << "\n"; 123 } 124 }; 125 126 } // end namespace llvm 127 128 namespace { 129 130 /// Our current alias analysis API differentiates heavily between calls and 131 /// non-calls, and functions called on one usually assert on the other. 132 /// This class encapsulates the distinction to simplify other code that wants 133 /// "Memory affecting instructions and related data" to use as a key. 134 /// For example, this class is used as a densemap key in the use optimizer. 135 class MemoryLocOrCall { 136 public: 137 bool IsCall = false; 138 139 MemoryLocOrCall(MemoryUseOrDef *MUD) 140 : MemoryLocOrCall(MUD->getMemoryInst()) {} 141 MemoryLocOrCall(const MemoryUseOrDef *MUD) 142 : MemoryLocOrCall(MUD->getMemoryInst()) {} 143 144 MemoryLocOrCall(Instruction *Inst) { 145 if (auto *C = dyn_cast<CallBase>(Inst)) { 146 IsCall = true; 147 Call = C; 148 } else { 149 IsCall = false; 150 // There is no such thing as a memorylocation for a fence inst, and it is 151 // unique in that regard. 152 if (!isa<FenceInst>(Inst)) 153 Loc = MemoryLocation::get(Inst); 154 } 155 } 156 157 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 158 159 const CallBase *getCall() const { 160 assert(IsCall); 161 return Call; 162 } 163 164 MemoryLocation getLoc() const { 165 assert(!IsCall); 166 return Loc; 167 } 168 169 bool operator==(const MemoryLocOrCall &Other) const { 170 if (IsCall != Other.IsCall) 171 return false; 172 173 if (!IsCall) 174 return Loc == Other.Loc; 175 176 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 177 return false; 178 179 return Call->arg_size() == Other.Call->arg_size() && 180 std::equal(Call->arg_begin(), Call->arg_end(), 181 Other.Call->arg_begin()); 182 } 183 184 private: 185 union { 186 const CallBase *Call; 187 MemoryLocation Loc; 188 }; 189 }; 190 191 } // end anonymous namespace 192 193 namespace llvm { 194 195 template <> struct DenseMapInfo<MemoryLocOrCall> { 196 static inline MemoryLocOrCall getEmptyKey() { 197 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 198 } 199 200 static inline MemoryLocOrCall getTombstoneKey() { 201 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 202 } 203 204 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 205 if (!MLOC.IsCall) 206 return hash_combine( 207 MLOC.IsCall, 208 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 209 210 hash_code hash = 211 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 212 MLOC.getCall()->getCalledOperand())); 213 214 for (const Value *Arg : MLOC.getCall()->args()) 215 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 216 return hash; 217 } 218 219 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 220 return LHS == RHS; 221 } 222 }; 223 224 } // end namespace llvm 225 226 /// This does one-way checks to see if Use could theoretically be hoisted above 227 /// MayClobber. This will not check the other way around. 228 /// 229 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 230 /// MayClobber, with no potentially clobbering operations in between them. 231 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 232 static bool areLoadsReorderable(const LoadInst *Use, 233 const LoadInst *MayClobber) { 234 bool VolatileUse = Use->isVolatile(); 235 bool VolatileClobber = MayClobber->isVolatile(); 236 // Volatile operations may never be reordered with other volatile operations. 237 if (VolatileUse && VolatileClobber) 238 return false; 239 // Otherwise, volatile doesn't matter here. From the language reference: 240 // 'optimizers may change the order of volatile operations relative to 241 // non-volatile operations.'" 242 243 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 244 // is weaker, it can be moved above other loads. We just need to be sure that 245 // MayClobber isn't an acquire load, because loads can't be moved above 246 // acquire loads. 247 // 248 // Note that this explicitly *does* allow the free reordering of monotonic (or 249 // weaker) loads of the same address. 250 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 251 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 252 AtomicOrdering::Acquire); 253 return !(SeqCstUse || MayClobberIsAcquire); 254 } 255 256 namespace { 257 258 struct ClobberAlias { 259 bool IsClobber; 260 Optional<AliasResult> AR; 261 }; 262 263 } // end anonymous namespace 264 265 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 266 // ignored if IsClobber = false. 267 template <typename AliasAnalysisType> 268 static ClobberAlias 269 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 270 const Instruction *UseInst, AliasAnalysisType &AA) { 271 Instruction *DefInst = MD->getMemoryInst(); 272 assert(DefInst && "Defining instruction not actually an instruction"); 273 Optional<AliasResult> AR; 274 275 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 276 // These intrinsics will show up as affecting memory, but they are just 277 // markers, mostly. 278 // 279 // FIXME: We probably don't actually want MemorySSA to model these at all 280 // (including creating MemoryAccesses for them): we just end up inventing 281 // clobbers where they don't really exist at all. Please see D43269 for 282 // context. 283 switch (II->getIntrinsicID()) { 284 case Intrinsic::lifetime_end: 285 case Intrinsic::invariant_start: 286 case Intrinsic::invariant_end: 287 case Intrinsic::assume: 288 return {false, NoAlias}; 289 case Intrinsic::dbg_addr: 290 case Intrinsic::dbg_declare: 291 case Intrinsic::dbg_label: 292 case Intrinsic::dbg_value: 293 llvm_unreachable("debuginfo shouldn't have associated defs!"); 294 default: 295 break; 296 } 297 } 298 299 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 300 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 301 AR = isMustSet(I) ? MustAlias : MayAlias; 302 return {isModOrRefSet(I), AR}; 303 } 304 305 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 306 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 307 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 308 309 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 310 AR = isMustSet(I) ? MustAlias : MayAlias; 311 return {isModSet(I), AR}; 312 } 313 314 template <typename AliasAnalysisType> 315 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 316 const MemoryUseOrDef *MU, 317 const MemoryLocOrCall &UseMLOC, 318 AliasAnalysisType &AA) { 319 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 320 // to exist while MemoryLocOrCall is pushed through places. 321 if (UseMLOC.IsCall) 322 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 323 AA); 324 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 325 AA); 326 } 327 328 // Return true when MD may alias MU, return false otherwise. 329 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 330 AliasAnalysis &AA) { 331 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 332 } 333 334 namespace { 335 336 struct UpwardsMemoryQuery { 337 // True if our original query started off as a call 338 bool IsCall = false; 339 // The pointer location we started the query with. This will be empty if 340 // IsCall is true. 341 MemoryLocation StartingLoc; 342 // This is the instruction we were querying about. 343 const Instruction *Inst = nullptr; 344 // The MemoryAccess we actually got called with, used to test local domination 345 const MemoryAccess *OriginalAccess = nullptr; 346 Optional<AliasResult> AR = MayAlias; 347 bool SkipSelfAccess = false; 348 349 UpwardsMemoryQuery() = default; 350 351 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 352 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 353 if (!IsCall) 354 StartingLoc = MemoryLocation::get(Inst); 355 } 356 }; 357 358 } // end anonymous namespace 359 360 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 361 BatchAAResults &AA) { 362 Instruction *Inst = MD->getMemoryInst(); 363 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 364 switch (II->getIntrinsicID()) { 365 case Intrinsic::lifetime_end: { 366 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1)); 367 return AA.alias(ArgLoc, Loc) == MustAlias; 368 } 369 default: 370 return false; 371 } 372 } 373 return false; 374 } 375 376 template <typename AliasAnalysisType> 377 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 378 const Instruction *I) { 379 // If the memory can't be changed, then loads of the memory can't be 380 // clobbered. 381 if (auto *LI = dyn_cast<LoadInst>(I)) 382 return I->hasMetadata(LLVMContext::MD_invariant_load) || 383 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 384 return false; 385 } 386 387 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 388 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 389 /// 390 /// This is meant to be as simple and self-contained as possible. Because it 391 /// uses no cache, etc., it can be relatively expensive. 392 /// 393 /// \param Start The MemoryAccess that we want to walk from. 394 /// \param ClobberAt A clobber for Start. 395 /// \param StartLoc The MemoryLocation for Start. 396 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 397 /// \param Query The UpwardsMemoryQuery we used for our search. 398 /// \param AA The AliasAnalysis we used for our search. 399 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 400 401 template <typename AliasAnalysisType> 402 LLVM_ATTRIBUTE_UNUSED static void 403 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 404 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 405 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 406 bool AllowImpreciseClobber = false) { 407 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 408 409 if (MSSA.isLiveOnEntryDef(Start)) { 410 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 411 "liveOnEntry must clobber itself"); 412 return; 413 } 414 415 bool FoundClobber = false; 416 DenseSet<ConstMemoryAccessPair> VisitedPhis; 417 SmallVector<ConstMemoryAccessPair, 8> Worklist; 418 Worklist.emplace_back(Start, StartLoc); 419 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 420 // is found, complain. 421 while (!Worklist.empty()) { 422 auto MAP = Worklist.pop_back_val(); 423 // All we care about is that nothing from Start to ClobberAt clobbers Start. 424 // We learn nothing from revisiting nodes. 425 if (!VisitedPhis.insert(MAP).second) 426 continue; 427 428 for (const auto *MA : def_chain(MAP.first)) { 429 if (MA == ClobberAt) { 430 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 431 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 432 // since it won't let us short-circuit. 433 // 434 // Also, note that this can't be hoisted out of the `Worklist` loop, 435 // since MD may only act as a clobber for 1 of N MemoryLocations. 436 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 437 if (!FoundClobber) { 438 ClobberAlias CA = 439 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 440 if (CA.IsClobber) { 441 FoundClobber = true; 442 // Not used: CA.AR; 443 } 444 } 445 } 446 break; 447 } 448 449 // We should never hit liveOnEntry, unless it's the clobber. 450 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 451 452 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 453 // If Start is a Def, skip self. 454 if (MD == Start) 455 continue; 456 457 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 458 .IsClobber && 459 "Found clobber before reaching ClobberAt!"); 460 continue; 461 } 462 463 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 464 (void)MU; 465 assert (MU == Start && 466 "Can only find use in def chain if Start is a use"); 467 continue; 468 } 469 470 assert(isa<MemoryPhi>(MA)); 471 472 // Add reachable phi predecessors 473 for (auto ItB = upward_defs_begin( 474 {const_cast<MemoryAccess *>(MA), MAP.second}, 475 MSSA.getDomTree()), 476 ItE = upward_defs_end(); 477 ItB != ItE; ++ItB) 478 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 479 Worklist.emplace_back(*ItB); 480 } 481 } 482 483 // If the verify is done following an optimization, it's possible that 484 // ClobberAt was a conservative clobbering, that we can now infer is not a 485 // true clobbering access. Don't fail the verify if that's the case. 486 // We do have accesses that claim they're optimized, but could be optimized 487 // further. Updating all these can be expensive, so allow it for now (FIXME). 488 if (AllowImpreciseClobber) 489 return; 490 491 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 492 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 493 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 494 "ClobberAt never acted as a clobber"); 495 } 496 497 namespace { 498 499 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 500 /// in one class. 501 template <class AliasAnalysisType> class ClobberWalker { 502 /// Save a few bytes by using unsigned instead of size_t. 503 using ListIndex = unsigned; 504 505 /// Represents a span of contiguous MemoryDefs, potentially ending in a 506 /// MemoryPhi. 507 struct DefPath { 508 MemoryLocation Loc; 509 // Note that, because we always walk in reverse, Last will always dominate 510 // First. Also note that First and Last are inclusive. 511 MemoryAccess *First; 512 MemoryAccess *Last; 513 Optional<ListIndex> Previous; 514 515 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 516 Optional<ListIndex> Previous) 517 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 518 519 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 520 Optional<ListIndex> Previous) 521 : DefPath(Loc, Init, Init, Previous) {} 522 }; 523 524 const MemorySSA &MSSA; 525 AliasAnalysisType &AA; 526 DominatorTree &DT; 527 UpwardsMemoryQuery *Query; 528 unsigned *UpwardWalkLimit; 529 530 // Phi optimization bookkeeping: 531 // List of DefPath to process during the current phi optimization walk. 532 SmallVector<DefPath, 32> Paths; 533 // List of visited <Access, Location> pairs; we can skip paths already 534 // visited with the same memory location. 535 DenseSet<ConstMemoryAccessPair> VisitedPhis; 536 // Record if phi translation has been performed during the current phi 537 // optimization walk, as merging alias results after phi translation can 538 // yield incorrect results. Context in PR46156. 539 bool PerformedPhiTranslation = false; 540 541 /// Find the nearest def or phi that `From` can legally be optimized to. 542 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 543 assert(From->getNumOperands() && "Phi with no operands?"); 544 545 BasicBlock *BB = From->getBlock(); 546 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 547 DomTreeNode *Node = DT.getNode(BB); 548 while ((Node = Node->getIDom())) { 549 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 550 if (Defs) 551 return &*Defs->rbegin(); 552 } 553 return Result; 554 } 555 556 /// Result of calling walkToPhiOrClobber. 557 struct UpwardsWalkResult { 558 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 559 /// both. Include alias info when clobber found. 560 MemoryAccess *Result; 561 bool IsKnownClobber; 562 Optional<AliasResult> AR; 563 }; 564 565 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 566 /// This will update Desc.Last as it walks. It will (optionally) also stop at 567 /// StopAt. 568 /// 569 /// This does not test for whether StopAt is a clobber 570 UpwardsWalkResult 571 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 572 const MemoryAccess *SkipStopAt = nullptr) const { 573 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 574 assert(UpwardWalkLimit && "Need a valid walk limit"); 575 bool LimitAlreadyReached = false; 576 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 577 // it to 1. This will not do any alias() calls. It either returns in the 578 // first iteration in the loop below, or is set back to 0 if all def chains 579 // are free of MemoryDefs. 580 if (!*UpwardWalkLimit) { 581 *UpwardWalkLimit = 1; 582 LimitAlreadyReached = true; 583 } 584 585 for (MemoryAccess *Current : def_chain(Desc.Last)) { 586 Desc.Last = Current; 587 if (Current == StopAt || Current == SkipStopAt) 588 return {Current, false, MayAlias}; 589 590 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 591 if (MSSA.isLiveOnEntryDef(MD)) 592 return {MD, true, MustAlias}; 593 594 if (!--*UpwardWalkLimit) 595 return {Current, true, MayAlias}; 596 597 ClobberAlias CA = 598 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 599 if (CA.IsClobber) 600 return {MD, true, CA.AR}; 601 } 602 } 603 604 if (LimitAlreadyReached) 605 *UpwardWalkLimit = 0; 606 607 assert(isa<MemoryPhi>(Desc.Last) && 608 "Ended at a non-clobber that's not a phi?"); 609 return {Desc.Last, false, MayAlias}; 610 } 611 612 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 613 ListIndex PriorNode) { 614 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 615 &PerformedPhiTranslation); 616 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 617 for (const MemoryAccessPair &P : UpwardDefs) { 618 PausedSearches.push_back(Paths.size()); 619 Paths.emplace_back(P.second, P.first, PriorNode); 620 } 621 } 622 623 /// Represents a search that terminated after finding a clobber. This clobber 624 /// may or may not be present in the path of defs from LastNode..SearchStart, 625 /// since it may have been retrieved from cache. 626 struct TerminatedPath { 627 MemoryAccess *Clobber; 628 ListIndex LastNode; 629 }; 630 631 /// Get an access that keeps us from optimizing to the given phi. 632 /// 633 /// PausedSearches is an array of indices into the Paths array. Its incoming 634 /// value is the indices of searches that stopped at the last phi optimization 635 /// target. It's left in an unspecified state. 636 /// 637 /// If this returns None, NewPaused is a vector of searches that terminated 638 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 639 Optional<TerminatedPath> 640 getBlockingAccess(const MemoryAccess *StopWhere, 641 SmallVectorImpl<ListIndex> &PausedSearches, 642 SmallVectorImpl<ListIndex> &NewPaused, 643 SmallVectorImpl<TerminatedPath> &Terminated) { 644 assert(!PausedSearches.empty() && "No searches to continue?"); 645 646 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 647 // PausedSearches as our stack. 648 while (!PausedSearches.empty()) { 649 ListIndex PathIndex = PausedSearches.pop_back_val(); 650 DefPath &Node = Paths[PathIndex]; 651 652 // If we've already visited this path with this MemoryLocation, we don't 653 // need to do so again. 654 // 655 // NOTE: That we just drop these paths on the ground makes caching 656 // behavior sporadic. e.g. given a diamond: 657 // A 658 // B C 659 // D 660 // 661 // ...If we walk D, B, A, C, we'll only cache the result of phi 662 // optimization for A, B, and D; C will be skipped because it dies here. 663 // This arguably isn't the worst thing ever, since: 664 // - We generally query things in a top-down order, so if we got below D 665 // without needing cache entries for {C, MemLoc}, then chances are 666 // that those cache entries would end up ultimately unused. 667 // - We still cache things for A, so C only needs to walk up a bit. 668 // If this behavior becomes problematic, we can fix without a ton of extra 669 // work. 670 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 671 if (PerformedPhiTranslation) { 672 // If visiting this path performed Phi translation, don't continue, 673 // since it may not be correct to merge results from two paths if one 674 // relies on the phi translation. 675 TerminatedPath Term{Node.Last, PathIndex}; 676 return Term; 677 } 678 continue; 679 } 680 681 const MemoryAccess *SkipStopWhere = nullptr; 682 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 683 assert(isa<MemoryDef>(Query->OriginalAccess)); 684 SkipStopWhere = Query->OriginalAccess; 685 } 686 687 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 688 /*StopAt=*/StopWhere, 689 /*SkipStopAt=*/SkipStopWhere); 690 if (Res.IsKnownClobber) { 691 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 692 693 // If this wasn't a cache hit, we hit a clobber when walking. That's a 694 // failure. 695 TerminatedPath Term{Res.Result, PathIndex}; 696 if (!MSSA.dominates(Res.Result, StopWhere)) 697 return Term; 698 699 // Otherwise, it's a valid thing to potentially optimize to. 700 Terminated.push_back(Term); 701 continue; 702 } 703 704 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 705 // We've hit our target. Save this path off for if we want to continue 706 // walking. If we are in the mode of skipping the OriginalAccess, and 707 // we've reached back to the OriginalAccess, do not save path, we've 708 // just looped back to self. 709 if (Res.Result != SkipStopWhere) 710 NewPaused.push_back(PathIndex); 711 continue; 712 } 713 714 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 715 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 716 } 717 718 return None; 719 } 720 721 template <typename T, typename Walker> 722 struct generic_def_path_iterator 723 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 724 std::forward_iterator_tag, T *> { 725 generic_def_path_iterator() {} 726 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 727 728 T &operator*() const { return curNode(); } 729 730 generic_def_path_iterator &operator++() { 731 N = curNode().Previous; 732 return *this; 733 } 734 735 bool operator==(const generic_def_path_iterator &O) const { 736 if (N.hasValue() != O.N.hasValue()) 737 return false; 738 return !N.hasValue() || *N == *O.N; 739 } 740 741 private: 742 T &curNode() const { return W->Paths[*N]; } 743 744 Walker *W = nullptr; 745 Optional<ListIndex> N = None; 746 }; 747 748 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 749 using const_def_path_iterator = 750 generic_def_path_iterator<const DefPath, const ClobberWalker>; 751 752 iterator_range<def_path_iterator> def_path(ListIndex From) { 753 return make_range(def_path_iterator(this, From), def_path_iterator()); 754 } 755 756 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 757 return make_range(const_def_path_iterator(this, From), 758 const_def_path_iterator()); 759 } 760 761 struct OptznResult { 762 /// The path that contains our result. 763 TerminatedPath PrimaryClobber; 764 /// The paths that we can legally cache back from, but that aren't 765 /// necessarily the result of the Phi optimization. 766 SmallVector<TerminatedPath, 4> OtherClobbers; 767 }; 768 769 ListIndex defPathIndex(const DefPath &N) const { 770 // The assert looks nicer if we don't need to do &N 771 const DefPath *NP = &N; 772 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 773 "Out of bounds DefPath!"); 774 return NP - &Paths.front(); 775 } 776 777 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 778 /// that act as legal clobbers. Note that this won't return *all* clobbers. 779 /// 780 /// Phi optimization algorithm tl;dr: 781 /// - Find the earliest def/phi, A, we can optimize to 782 /// - Find if all paths from the starting memory access ultimately reach A 783 /// - If not, optimization isn't possible. 784 /// - Otherwise, walk from A to another clobber or phi, A'. 785 /// - If A' is a def, we're done. 786 /// - If A' is a phi, try to optimize it. 787 /// 788 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 789 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 790 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 791 const MemoryLocation &Loc) { 792 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 793 "Reset the optimization state."); 794 795 Paths.emplace_back(Loc, Start, Phi, None); 796 // Stores how many "valid" optimization nodes we had prior to calling 797 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 798 auto PriorPathsSize = Paths.size(); 799 800 SmallVector<ListIndex, 16> PausedSearches; 801 SmallVector<ListIndex, 8> NewPaused; 802 SmallVector<TerminatedPath, 4> TerminatedPaths; 803 804 addSearches(Phi, PausedSearches, 0); 805 806 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 807 // Paths. 808 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 809 assert(!Paths.empty() && "Need a path to move"); 810 auto Dom = Paths.begin(); 811 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 812 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 813 Dom = I; 814 auto Last = Paths.end() - 1; 815 if (Last != Dom) 816 std::iter_swap(Last, Dom); 817 }; 818 819 MemoryPhi *Current = Phi; 820 while (true) { 821 assert(!MSSA.isLiveOnEntryDef(Current) && 822 "liveOnEntry wasn't treated as a clobber?"); 823 824 const auto *Target = getWalkTarget(Current); 825 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 826 // optimization for the prior phi. 827 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 828 return MSSA.dominates(P.Clobber, Target); 829 })); 830 831 // FIXME: This is broken, because the Blocker may be reported to be 832 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 833 // For the moment, this is fine, since we do nothing with blocker info. 834 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 835 Target, PausedSearches, NewPaused, TerminatedPaths)) { 836 837 // Find the node we started at. We can't search based on N->Last, since 838 // we may have gone around a loop with a different MemoryLocation. 839 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 840 return defPathIndex(N) < PriorPathsSize; 841 }); 842 assert(Iter != def_path_iterator()); 843 844 DefPath &CurNode = *Iter; 845 assert(CurNode.Last == Current); 846 847 // Two things: 848 // A. We can't reliably cache all of NewPaused back. Consider a case 849 // where we have two paths in NewPaused; one of which can't optimize 850 // above this phi, whereas the other can. If we cache the second path 851 // back, we'll end up with suboptimal cache entries. We can handle 852 // cases like this a bit better when we either try to find all 853 // clobbers that block phi optimization, or when our cache starts 854 // supporting unfinished searches. 855 // B. We can't reliably cache TerminatedPaths back here without doing 856 // extra checks; consider a case like: 857 // T 858 // / \ 859 // D C 860 // \ / 861 // S 862 // Where T is our target, C is a node with a clobber on it, D is a 863 // diamond (with a clobber *only* on the left or right node, N), and 864 // S is our start. Say we walk to D, through the node opposite N 865 // (read: ignoring the clobber), and see a cache entry in the top 866 // node of D. That cache entry gets put into TerminatedPaths. We then 867 // walk up to C (N is later in our worklist), find the clobber, and 868 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 869 // the bottom part of D to the cached clobber, ignoring the clobber 870 // in N. Again, this problem goes away if we start tracking all 871 // blockers for a given phi optimization. 872 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 873 return {Result, {}}; 874 } 875 876 // If there's nothing left to search, then all paths led to valid clobbers 877 // that we got from our cache; pick the nearest to the start, and allow 878 // the rest to be cached back. 879 if (NewPaused.empty()) { 880 MoveDominatedPathToEnd(TerminatedPaths); 881 TerminatedPath Result = TerminatedPaths.pop_back_val(); 882 return {Result, std::move(TerminatedPaths)}; 883 } 884 885 MemoryAccess *DefChainEnd = nullptr; 886 SmallVector<TerminatedPath, 4> Clobbers; 887 for (ListIndex Paused : NewPaused) { 888 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 889 if (WR.IsKnownClobber) 890 Clobbers.push_back({WR.Result, Paused}); 891 else 892 // Micro-opt: If we hit the end of the chain, save it. 893 DefChainEnd = WR.Result; 894 } 895 896 if (!TerminatedPaths.empty()) { 897 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 898 // do it now. 899 if (!DefChainEnd) 900 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 901 DefChainEnd = MA; 902 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 903 904 // If any of the terminated paths don't dominate the phi we'll try to 905 // optimize, we need to figure out what they are and quit. 906 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 907 for (const TerminatedPath &TP : TerminatedPaths) { 908 // Because we know that DefChainEnd is as "high" as we can go, we 909 // don't need local dominance checks; BB dominance is sufficient. 910 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 911 Clobbers.push_back(TP); 912 } 913 } 914 915 // If we have clobbers in the def chain, find the one closest to Current 916 // and quit. 917 if (!Clobbers.empty()) { 918 MoveDominatedPathToEnd(Clobbers); 919 TerminatedPath Result = Clobbers.pop_back_val(); 920 return {Result, std::move(Clobbers)}; 921 } 922 923 assert(all_of(NewPaused, 924 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 925 926 // Because liveOnEntry is a clobber, this must be a phi. 927 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 928 929 PriorPathsSize = Paths.size(); 930 PausedSearches.clear(); 931 for (ListIndex I : NewPaused) 932 addSearches(DefChainPhi, PausedSearches, I); 933 NewPaused.clear(); 934 935 Current = DefChainPhi; 936 } 937 } 938 939 void verifyOptResult(const OptznResult &R) const { 940 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 941 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 942 })); 943 } 944 945 void resetPhiOptznState() { 946 Paths.clear(); 947 VisitedPhis.clear(); 948 PerformedPhiTranslation = false; 949 } 950 951 public: 952 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 953 : MSSA(MSSA), AA(AA), DT(DT) {} 954 955 AliasAnalysisType *getAA() { return &AA; } 956 /// Finds the nearest clobber for the given query, optimizing phis if 957 /// possible. 958 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 959 unsigned &UpWalkLimit) { 960 Query = &Q; 961 UpwardWalkLimit = &UpWalkLimit; 962 // Starting limit must be > 0. 963 if (!UpWalkLimit) 964 UpWalkLimit++; 965 966 MemoryAccess *Current = Start; 967 // This walker pretends uses don't exist. If we're handed one, silently grab 968 // its def. (This has the nice side-effect of ensuring we never cache uses) 969 if (auto *MU = dyn_cast<MemoryUse>(Start)) 970 Current = MU->getDefiningAccess(); 971 972 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 973 // Fast path for the overly-common case (no crazy phi optimization 974 // necessary) 975 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 976 MemoryAccess *Result; 977 if (WalkResult.IsKnownClobber) { 978 Result = WalkResult.Result; 979 Q.AR = WalkResult.AR; 980 } else { 981 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 982 Current, Q.StartingLoc); 983 verifyOptResult(OptRes); 984 resetPhiOptznState(); 985 Result = OptRes.PrimaryClobber.Clobber; 986 } 987 988 #ifdef EXPENSIVE_CHECKS 989 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 990 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 991 #endif 992 return Result; 993 } 994 }; 995 996 struct RenamePassData { 997 DomTreeNode *DTN; 998 DomTreeNode::const_iterator ChildIt; 999 MemoryAccess *IncomingVal; 1000 1001 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 1002 MemoryAccess *M) 1003 : DTN(D), ChildIt(It), IncomingVal(M) {} 1004 1005 void swap(RenamePassData &RHS) { 1006 std::swap(DTN, RHS.DTN); 1007 std::swap(ChildIt, RHS.ChildIt); 1008 std::swap(IncomingVal, RHS.IncomingVal); 1009 } 1010 }; 1011 1012 } // end anonymous namespace 1013 1014 namespace llvm { 1015 1016 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1017 ClobberWalker<AliasAnalysisType> Walker; 1018 MemorySSA *MSSA; 1019 1020 public: 1021 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1022 : Walker(*M, *A, *D), MSSA(M) {} 1023 1024 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1025 const MemoryLocation &, 1026 unsigned &); 1027 // Third argument (bool), defines whether the clobber search should skip the 1028 // original queried access. If true, there will be a follow-up query searching 1029 // for a clobber access past "self". Note that the Optimized access is not 1030 // updated if a new clobber is found by this SkipSelf search. If this 1031 // additional query becomes heavily used we may decide to cache the result. 1032 // Walker instantiations will decide how to set the SkipSelf bool. 1033 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1034 }; 1035 1036 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1037 /// longer does caching on its own, but the name has been retained for the 1038 /// moment. 1039 template <class AliasAnalysisType> 1040 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1041 ClobberWalkerBase<AliasAnalysisType> *Walker; 1042 1043 public: 1044 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1045 : MemorySSAWalker(M), Walker(W) {} 1046 ~CachingWalker() override = default; 1047 1048 using MemorySSAWalker::getClobberingMemoryAccess; 1049 1050 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1051 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1052 } 1053 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1054 const MemoryLocation &Loc, 1055 unsigned &UWL) { 1056 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1057 } 1058 1059 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1060 unsigned UpwardWalkLimit = MaxCheckLimit; 1061 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1062 } 1063 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1064 const MemoryLocation &Loc) override { 1065 unsigned UpwardWalkLimit = MaxCheckLimit; 1066 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1067 } 1068 1069 void invalidateInfo(MemoryAccess *MA) override { 1070 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1071 MUD->resetOptimized(); 1072 } 1073 }; 1074 1075 template <class AliasAnalysisType> 1076 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1077 ClobberWalkerBase<AliasAnalysisType> *Walker; 1078 1079 public: 1080 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1081 : MemorySSAWalker(M), Walker(W) {} 1082 ~SkipSelfWalker() override = default; 1083 1084 using MemorySSAWalker::getClobberingMemoryAccess; 1085 1086 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1087 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1088 } 1089 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1090 const MemoryLocation &Loc, 1091 unsigned &UWL) { 1092 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1093 } 1094 1095 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1096 unsigned UpwardWalkLimit = MaxCheckLimit; 1097 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1098 } 1099 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1100 const MemoryLocation &Loc) override { 1101 unsigned UpwardWalkLimit = MaxCheckLimit; 1102 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1103 } 1104 1105 void invalidateInfo(MemoryAccess *MA) override { 1106 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1107 MUD->resetOptimized(); 1108 } 1109 }; 1110 1111 } // end namespace llvm 1112 1113 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1114 bool RenameAllUses) { 1115 // Pass through values to our successors 1116 for (const BasicBlock *S : successors(BB)) { 1117 auto It = PerBlockAccesses.find(S); 1118 // Rename the phi nodes in our successor block 1119 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1120 continue; 1121 AccessList *Accesses = It->second.get(); 1122 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1123 if (RenameAllUses) { 1124 bool ReplacementDone = false; 1125 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1126 if (Phi->getIncomingBlock(I) == BB) { 1127 Phi->setIncomingValue(I, IncomingVal); 1128 ReplacementDone = true; 1129 } 1130 (void) ReplacementDone; 1131 assert(ReplacementDone && "Incomplete phi during partial rename"); 1132 } else 1133 Phi->addIncoming(IncomingVal, BB); 1134 } 1135 } 1136 1137 /// Rename a single basic block into MemorySSA form. 1138 /// Uses the standard SSA renaming algorithm. 1139 /// \returns The new incoming value. 1140 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1141 bool RenameAllUses) { 1142 auto It = PerBlockAccesses.find(BB); 1143 // Skip most processing if the list is empty. 1144 if (It != PerBlockAccesses.end()) { 1145 AccessList *Accesses = It->second.get(); 1146 for (MemoryAccess &L : *Accesses) { 1147 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1148 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1149 MUD->setDefiningAccess(IncomingVal); 1150 if (isa<MemoryDef>(&L)) 1151 IncomingVal = &L; 1152 } else { 1153 IncomingVal = &L; 1154 } 1155 } 1156 } 1157 return IncomingVal; 1158 } 1159 1160 /// This is the standard SSA renaming algorithm. 1161 /// 1162 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1163 /// in phi nodes in our successors. 1164 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1165 SmallPtrSetImpl<BasicBlock *> &Visited, 1166 bool SkipVisited, bool RenameAllUses) { 1167 assert(Root && "Trying to rename accesses in an unreachable block"); 1168 1169 SmallVector<RenamePassData, 32> WorkStack; 1170 // Skip everything if we already renamed this block and we are skipping. 1171 // Note: You can't sink this into the if, because we need it to occur 1172 // regardless of whether we skip blocks or not. 1173 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1174 if (SkipVisited && AlreadyVisited) 1175 return; 1176 1177 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1178 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1179 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1180 1181 while (!WorkStack.empty()) { 1182 DomTreeNode *Node = WorkStack.back().DTN; 1183 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1184 IncomingVal = WorkStack.back().IncomingVal; 1185 1186 if (ChildIt == Node->end()) { 1187 WorkStack.pop_back(); 1188 } else { 1189 DomTreeNode *Child = *ChildIt; 1190 ++WorkStack.back().ChildIt; 1191 BasicBlock *BB = Child->getBlock(); 1192 // Note: You can't sink this into the if, because we need it to occur 1193 // regardless of whether we skip blocks or not. 1194 AlreadyVisited = !Visited.insert(BB).second; 1195 if (SkipVisited && AlreadyVisited) { 1196 // We already visited this during our renaming, which can happen when 1197 // being asked to rename multiple blocks. Figure out the incoming val, 1198 // which is the last def. 1199 // Incoming value can only change if there is a block def, and in that 1200 // case, it's the last block def in the list. 1201 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1202 IncomingVal = &*BlockDefs->rbegin(); 1203 } else 1204 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1205 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1206 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1207 } 1208 } 1209 } 1210 1211 /// This handles unreachable block accesses by deleting phi nodes in 1212 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1213 /// being uses of the live on entry definition. 1214 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1215 assert(!DT->isReachableFromEntry(BB) && 1216 "Reachable block found while handling unreachable blocks"); 1217 1218 // Make sure phi nodes in our reachable successors end up with a 1219 // LiveOnEntryDef for our incoming edge, even though our block is forward 1220 // unreachable. We could just disconnect these blocks from the CFG fully, 1221 // but we do not right now. 1222 for (const BasicBlock *S : successors(BB)) { 1223 if (!DT->isReachableFromEntry(S)) 1224 continue; 1225 auto It = PerBlockAccesses.find(S); 1226 // Rename the phi nodes in our successor block 1227 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1228 continue; 1229 AccessList *Accesses = It->second.get(); 1230 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1231 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1232 } 1233 1234 auto It = PerBlockAccesses.find(BB); 1235 if (It == PerBlockAccesses.end()) 1236 return; 1237 1238 auto &Accesses = It->second; 1239 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1240 auto Next = std::next(AI); 1241 // If we have a phi, just remove it. We are going to replace all 1242 // users with live on entry. 1243 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1244 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1245 else 1246 Accesses->erase(AI); 1247 AI = Next; 1248 } 1249 } 1250 1251 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1252 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1253 SkipWalker(nullptr), NextID(0) { 1254 // Build MemorySSA using a batch alias analysis. This reuses the internal 1255 // state that AA collects during an alias()/getModRefInfo() call. This is 1256 // safe because there are no CFG changes while building MemorySSA and can 1257 // significantly reduce the time spent by the compiler in AA, because we will 1258 // make queries about all the instructions in the Function. 1259 assert(AA && "No alias analysis?"); 1260 BatchAAResults BatchAA(*AA); 1261 buildMemorySSA(BatchAA); 1262 // Intentionally leave AA to nullptr while building so we don't accidently 1263 // use non-batch AliasAnalysis. 1264 this->AA = AA; 1265 // Also create the walker here. 1266 getWalker(); 1267 } 1268 1269 MemorySSA::~MemorySSA() { 1270 // Drop all our references 1271 for (const auto &Pair : PerBlockAccesses) 1272 for (MemoryAccess &MA : *Pair.second) 1273 MA.dropAllReferences(); 1274 } 1275 1276 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1277 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1278 1279 if (Res.second) 1280 Res.first->second = std::make_unique<AccessList>(); 1281 return Res.first->second.get(); 1282 } 1283 1284 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1285 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1286 1287 if (Res.second) 1288 Res.first->second = std::make_unique<DefsList>(); 1289 return Res.first->second.get(); 1290 } 1291 1292 namespace llvm { 1293 1294 /// This class is a batch walker of all MemoryUse's in the program, and points 1295 /// their defining access at the thing that actually clobbers them. Because it 1296 /// is a batch walker that touches everything, it does not operate like the 1297 /// other walkers. This walker is basically performing a top-down SSA renaming 1298 /// pass, where the version stack is used as the cache. This enables it to be 1299 /// significantly more time and memory efficient than using the regular walker, 1300 /// which is walking bottom-up. 1301 class MemorySSA::OptimizeUses { 1302 public: 1303 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1304 BatchAAResults *BAA, DominatorTree *DT) 1305 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1306 1307 void optimizeUses(); 1308 1309 private: 1310 /// This represents where a given memorylocation is in the stack. 1311 struct MemlocStackInfo { 1312 // This essentially is keeping track of versions of the stack. Whenever 1313 // the stack changes due to pushes or pops, these versions increase. 1314 unsigned long StackEpoch; 1315 unsigned long PopEpoch; 1316 // This is the lower bound of places on the stack to check. It is equal to 1317 // the place the last stack walk ended. 1318 // Note: Correctness depends on this being initialized to 0, which densemap 1319 // does 1320 unsigned long LowerBound; 1321 const BasicBlock *LowerBoundBlock; 1322 // This is where the last walk for this memory location ended. 1323 unsigned long LastKill; 1324 bool LastKillValid; 1325 Optional<AliasResult> AR; 1326 }; 1327 1328 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1329 SmallVectorImpl<MemoryAccess *> &, 1330 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1331 1332 MemorySSA *MSSA; 1333 CachingWalker<BatchAAResults> *Walker; 1334 BatchAAResults *AA; 1335 DominatorTree *DT; 1336 }; 1337 1338 } // end namespace llvm 1339 1340 /// Optimize the uses in a given block This is basically the SSA renaming 1341 /// algorithm, with one caveat: We are able to use a single stack for all 1342 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1343 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1344 /// going to be some position in that stack of possible ones. 1345 /// 1346 /// We track the stack positions that each MemoryLocation needs 1347 /// to check, and last ended at. This is because we only want to check the 1348 /// things that changed since last time. The same MemoryLocation should 1349 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1350 /// things like this, and if they start, we can modify MemoryLocOrCall to 1351 /// include relevant data) 1352 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1353 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1354 SmallVectorImpl<MemoryAccess *> &VersionStack, 1355 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1356 1357 /// If no accesses, nothing to do. 1358 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1359 if (Accesses == nullptr) 1360 return; 1361 1362 // Pop everything that doesn't dominate the current block off the stack, 1363 // increment the PopEpoch to account for this. 1364 while (true) { 1365 assert( 1366 !VersionStack.empty() && 1367 "Version stack should have liveOnEntry sentinel dominating everything"); 1368 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1369 if (DT->dominates(BackBlock, BB)) 1370 break; 1371 while (VersionStack.back()->getBlock() == BackBlock) 1372 VersionStack.pop_back(); 1373 ++PopEpoch; 1374 } 1375 1376 for (MemoryAccess &MA : *Accesses) { 1377 auto *MU = dyn_cast<MemoryUse>(&MA); 1378 if (!MU) { 1379 VersionStack.push_back(&MA); 1380 ++StackEpoch; 1381 continue; 1382 } 1383 1384 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1385 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1386 continue; 1387 } 1388 1389 MemoryLocOrCall UseMLOC(MU); 1390 auto &LocInfo = LocStackInfo[UseMLOC]; 1391 // If the pop epoch changed, it means we've removed stuff from top of 1392 // stack due to changing blocks. We may have to reset the lower bound or 1393 // last kill info. 1394 if (LocInfo.PopEpoch != PopEpoch) { 1395 LocInfo.PopEpoch = PopEpoch; 1396 LocInfo.StackEpoch = StackEpoch; 1397 // If the lower bound was in something that no longer dominates us, we 1398 // have to reset it. 1399 // We can't simply track stack size, because the stack may have had 1400 // pushes/pops in the meantime. 1401 // XXX: This is non-optimal, but only is slower cases with heavily 1402 // branching dominator trees. To get the optimal number of queries would 1403 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1404 // the top of that stack dominates us. This does not seem worth it ATM. 1405 // A much cheaper optimization would be to always explore the deepest 1406 // branch of the dominator tree first. This will guarantee this resets on 1407 // the smallest set of blocks. 1408 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1409 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1410 // Reset the lower bound of things to check. 1411 // TODO: Some day we should be able to reset to last kill, rather than 1412 // 0. 1413 LocInfo.LowerBound = 0; 1414 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1415 LocInfo.LastKillValid = false; 1416 } 1417 } else if (LocInfo.StackEpoch != StackEpoch) { 1418 // If all that has changed is the StackEpoch, we only have to check the 1419 // new things on the stack, because we've checked everything before. In 1420 // this case, the lower bound of things to check remains the same. 1421 LocInfo.PopEpoch = PopEpoch; 1422 LocInfo.StackEpoch = StackEpoch; 1423 } 1424 if (!LocInfo.LastKillValid) { 1425 LocInfo.LastKill = VersionStack.size() - 1; 1426 LocInfo.LastKillValid = true; 1427 LocInfo.AR = MayAlias; 1428 } 1429 1430 // At this point, we should have corrected last kill and LowerBound to be 1431 // in bounds. 1432 assert(LocInfo.LowerBound < VersionStack.size() && 1433 "Lower bound out of range"); 1434 assert(LocInfo.LastKill < VersionStack.size() && 1435 "Last kill info out of range"); 1436 // In any case, the new upper bound is the top of the stack. 1437 unsigned long UpperBound = VersionStack.size() - 1; 1438 1439 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1440 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1441 << *(MU->getMemoryInst()) << ")" 1442 << " because there are " 1443 << UpperBound - LocInfo.LowerBound 1444 << " stores to disambiguate\n"); 1445 // Because we did not walk, LastKill is no longer valid, as this may 1446 // have been a kill. 1447 LocInfo.LastKillValid = false; 1448 continue; 1449 } 1450 bool FoundClobberResult = false; 1451 unsigned UpwardWalkLimit = MaxCheckLimit; 1452 while (UpperBound > LocInfo.LowerBound) { 1453 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1454 // For phis, use the walker, see where we ended up, go there 1455 MemoryAccess *Result = 1456 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1457 // We are guaranteed to find it or something is wrong 1458 while (VersionStack[UpperBound] != Result) { 1459 assert(UpperBound != 0); 1460 --UpperBound; 1461 } 1462 FoundClobberResult = true; 1463 break; 1464 } 1465 1466 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1467 // If the lifetime of the pointer ends at this instruction, it's live on 1468 // entry. 1469 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1470 // Reset UpperBound to liveOnEntryDef's place in the stack 1471 UpperBound = 0; 1472 FoundClobberResult = true; 1473 LocInfo.AR = MustAlias; 1474 break; 1475 } 1476 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1477 if (CA.IsClobber) { 1478 FoundClobberResult = true; 1479 LocInfo.AR = CA.AR; 1480 break; 1481 } 1482 --UpperBound; 1483 } 1484 1485 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1486 1487 // At the end of this loop, UpperBound is either a clobber, or lower bound 1488 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1489 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1490 // We were last killed now by where we got to 1491 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1492 LocInfo.AR = None; 1493 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1494 LocInfo.LastKill = UpperBound; 1495 } else { 1496 // Otherwise, we checked all the new ones, and now we know we can get to 1497 // LastKill. 1498 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1499 } 1500 LocInfo.LowerBound = VersionStack.size() - 1; 1501 LocInfo.LowerBoundBlock = BB; 1502 } 1503 } 1504 1505 /// Optimize uses to point to their actual clobbering definitions. 1506 void MemorySSA::OptimizeUses::optimizeUses() { 1507 SmallVector<MemoryAccess *, 16> VersionStack; 1508 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1509 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1510 1511 unsigned long StackEpoch = 1; 1512 unsigned long PopEpoch = 1; 1513 // We perform a non-recursive top-down dominator tree walk. 1514 for (const auto *DomNode : depth_first(DT->getRootNode())) 1515 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1516 LocStackInfo); 1517 } 1518 1519 void MemorySSA::placePHINodes( 1520 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1521 // Determine where our MemoryPhi's should go 1522 ForwardIDFCalculator IDFs(*DT); 1523 IDFs.setDefiningBlocks(DefiningBlocks); 1524 SmallVector<BasicBlock *, 32> IDFBlocks; 1525 IDFs.calculate(IDFBlocks); 1526 1527 // Now place MemoryPhi nodes. 1528 for (auto &BB : IDFBlocks) 1529 createMemoryPhi(BB); 1530 } 1531 1532 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1533 // We create an access to represent "live on entry", for things like 1534 // arguments or users of globals, where the memory they use is defined before 1535 // the beginning of the function. We do not actually insert it into the IR. 1536 // We do not define a live on exit for the immediate uses, and thus our 1537 // semantics do *not* imply that something with no immediate uses can simply 1538 // be removed. 1539 BasicBlock &StartingPoint = F.getEntryBlock(); 1540 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1541 &StartingPoint, NextID++)); 1542 1543 // We maintain lists of memory accesses per-block, trading memory for time. We 1544 // could just look up the memory access for every possible instruction in the 1545 // stream. 1546 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1547 // Go through each block, figure out where defs occur, and chain together all 1548 // the accesses. 1549 for (BasicBlock &B : F) { 1550 bool InsertIntoDef = false; 1551 AccessList *Accesses = nullptr; 1552 DefsList *Defs = nullptr; 1553 for (Instruction &I : B) { 1554 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1555 if (!MUD) 1556 continue; 1557 1558 if (!Accesses) 1559 Accesses = getOrCreateAccessList(&B); 1560 Accesses->push_back(MUD); 1561 if (isa<MemoryDef>(MUD)) { 1562 InsertIntoDef = true; 1563 if (!Defs) 1564 Defs = getOrCreateDefsList(&B); 1565 Defs->push_back(*MUD); 1566 } 1567 } 1568 if (InsertIntoDef) 1569 DefiningBlocks.insert(&B); 1570 } 1571 placePHINodes(DefiningBlocks); 1572 1573 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1574 // filled in with all blocks. 1575 SmallPtrSet<BasicBlock *, 16> Visited; 1576 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1577 1578 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1579 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1580 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1581 1582 // Mark the uses in unreachable blocks as live on entry, so that they go 1583 // somewhere. 1584 for (auto &BB : F) 1585 if (!Visited.count(&BB)) 1586 markUnreachableAsLiveOnEntry(&BB); 1587 } 1588 1589 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1590 1591 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1592 if (Walker) 1593 return Walker.get(); 1594 1595 if (!WalkerBase) 1596 WalkerBase = 1597 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1598 1599 Walker = 1600 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1601 return Walker.get(); 1602 } 1603 1604 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1605 if (SkipWalker) 1606 return SkipWalker.get(); 1607 1608 if (!WalkerBase) 1609 WalkerBase = 1610 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1611 1612 SkipWalker = 1613 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1614 return SkipWalker.get(); 1615 } 1616 1617 1618 // This is a helper function used by the creation routines. It places NewAccess 1619 // into the access and defs lists for a given basic block, at the given 1620 // insertion point. 1621 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1622 const BasicBlock *BB, 1623 InsertionPlace Point) { 1624 auto *Accesses = getOrCreateAccessList(BB); 1625 if (Point == Beginning) { 1626 // If it's a phi node, it goes first, otherwise, it goes after any phi 1627 // nodes. 1628 if (isa<MemoryPhi>(NewAccess)) { 1629 Accesses->push_front(NewAccess); 1630 auto *Defs = getOrCreateDefsList(BB); 1631 Defs->push_front(*NewAccess); 1632 } else { 1633 auto AI = find_if_not( 1634 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1635 Accesses->insert(AI, NewAccess); 1636 if (!isa<MemoryUse>(NewAccess)) { 1637 auto *Defs = getOrCreateDefsList(BB); 1638 auto DI = find_if_not( 1639 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1640 Defs->insert(DI, *NewAccess); 1641 } 1642 } 1643 } else { 1644 Accesses->push_back(NewAccess); 1645 if (!isa<MemoryUse>(NewAccess)) { 1646 auto *Defs = getOrCreateDefsList(BB); 1647 Defs->push_back(*NewAccess); 1648 } 1649 } 1650 BlockNumberingValid.erase(BB); 1651 } 1652 1653 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1654 AccessList::iterator InsertPt) { 1655 auto *Accesses = getWritableBlockAccesses(BB); 1656 bool WasEnd = InsertPt == Accesses->end(); 1657 Accesses->insert(AccessList::iterator(InsertPt), What); 1658 if (!isa<MemoryUse>(What)) { 1659 auto *Defs = getOrCreateDefsList(BB); 1660 // If we got asked to insert at the end, we have an easy job, just shove it 1661 // at the end. If we got asked to insert before an existing def, we also get 1662 // an iterator. If we got asked to insert before a use, we have to hunt for 1663 // the next def. 1664 if (WasEnd) { 1665 Defs->push_back(*What); 1666 } else if (isa<MemoryDef>(InsertPt)) { 1667 Defs->insert(InsertPt->getDefsIterator(), *What); 1668 } else { 1669 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1670 ++InsertPt; 1671 // Either we found a def, or we are inserting at the end 1672 if (InsertPt == Accesses->end()) 1673 Defs->push_back(*What); 1674 else 1675 Defs->insert(InsertPt->getDefsIterator(), *What); 1676 } 1677 } 1678 BlockNumberingValid.erase(BB); 1679 } 1680 1681 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1682 // Keep it in the lookup tables, remove from the lists 1683 removeFromLists(What, false); 1684 1685 // Note that moving should implicitly invalidate the optimized state of a 1686 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1687 // MemoryDef. 1688 if (auto *MD = dyn_cast<MemoryDef>(What)) 1689 MD->resetOptimized(); 1690 What->setBlock(BB); 1691 } 1692 1693 // Move What before Where in the IR. The end result is that What will belong to 1694 // the right lists and have the right Block set, but will not otherwise be 1695 // correct. It will not have the right defining access, and if it is a def, 1696 // things below it will not properly be updated. 1697 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1698 AccessList::iterator Where) { 1699 prepareForMoveTo(What, BB); 1700 insertIntoListsBefore(What, BB, Where); 1701 } 1702 1703 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1704 InsertionPlace Point) { 1705 if (isa<MemoryPhi>(What)) { 1706 assert(Point == Beginning && 1707 "Can only move a Phi at the beginning of the block"); 1708 // Update lookup table entry 1709 ValueToMemoryAccess.erase(What->getBlock()); 1710 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1711 (void)Inserted; 1712 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1713 } 1714 1715 prepareForMoveTo(What, BB); 1716 insertIntoListsForBlock(What, BB, Point); 1717 } 1718 1719 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1720 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1721 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1722 // Phi's always are placed at the front of the block. 1723 insertIntoListsForBlock(Phi, BB, Beginning); 1724 ValueToMemoryAccess[BB] = Phi; 1725 return Phi; 1726 } 1727 1728 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1729 MemoryAccess *Definition, 1730 const MemoryUseOrDef *Template, 1731 bool CreationMustSucceed) { 1732 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1733 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1734 if (CreationMustSucceed) 1735 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1736 "non-memory touching instruction"); 1737 if (NewAccess) { 1738 assert((!Definition || !isa<MemoryUse>(Definition)) && 1739 "A use cannot be a defining access"); 1740 NewAccess->setDefiningAccess(Definition); 1741 } 1742 return NewAccess; 1743 } 1744 1745 // Return true if the instruction has ordering constraints. 1746 // Note specifically that this only considers stores and loads 1747 // because others are still considered ModRef by getModRefInfo. 1748 static inline bool isOrdered(const Instruction *I) { 1749 if (auto *SI = dyn_cast<StoreInst>(I)) { 1750 if (!SI->isUnordered()) 1751 return true; 1752 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1753 if (!LI->isUnordered()) 1754 return true; 1755 } 1756 return false; 1757 } 1758 1759 /// Helper function to create new memory accesses 1760 template <typename AliasAnalysisType> 1761 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1762 AliasAnalysisType *AAP, 1763 const MemoryUseOrDef *Template) { 1764 // The assume intrinsic has a control dependency which we model by claiming 1765 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1766 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1767 // dependencies here. 1768 // FIXME: Replace this special casing with a more accurate modelling of 1769 // assume's control dependency. 1770 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1771 if (II->getIntrinsicID() == Intrinsic::assume) 1772 return nullptr; 1773 1774 // Using a nonstandard AA pipelines might leave us with unexpected modref 1775 // results for I, so add a check to not model instructions that may not read 1776 // from or write to memory. This is necessary for correctness. 1777 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1778 return nullptr; 1779 1780 bool Def, Use; 1781 if (Template) { 1782 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1783 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1784 #if !defined(NDEBUG) 1785 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1786 bool DefCheck, UseCheck; 1787 DefCheck = isModSet(ModRef) || isOrdered(I); 1788 UseCheck = isRefSet(ModRef); 1789 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1790 #endif 1791 } else { 1792 // Find out what affect this instruction has on memory. 1793 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1794 // The isOrdered check is used to ensure that volatiles end up as defs 1795 // (atomics end up as ModRef right now anyway). Until we separate the 1796 // ordering chain from the memory chain, this enables people to see at least 1797 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1798 // will still give an answer that bypasses other volatile loads. TODO: 1799 // Separate memory aliasing and ordering into two different chains so that 1800 // we can precisely represent both "what memory will this read/write/is 1801 // clobbered by" and "what instructions can I move this past". 1802 Def = isModSet(ModRef) || isOrdered(I); 1803 Use = isRefSet(ModRef); 1804 } 1805 1806 // It's possible for an instruction to not modify memory at all. During 1807 // construction, we ignore them. 1808 if (!Def && !Use) 1809 return nullptr; 1810 1811 MemoryUseOrDef *MUD; 1812 if (Def) 1813 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1814 else 1815 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1816 ValueToMemoryAccess[I] = MUD; 1817 return MUD; 1818 } 1819 1820 /// Returns true if \p Replacer dominates \p Replacee . 1821 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1822 const MemoryAccess *Replacee) const { 1823 if (isa<MemoryUseOrDef>(Replacee)) 1824 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1825 const auto *MP = cast<MemoryPhi>(Replacee); 1826 // For a phi node, the use occurs in the predecessor block of the phi node. 1827 // Since we may occur multiple times in the phi node, we have to check each 1828 // operand to ensure Replacer dominates each operand where Replacee occurs. 1829 for (const Use &Arg : MP->operands()) { 1830 if (Arg.get() != Replacee && 1831 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1832 return false; 1833 } 1834 return true; 1835 } 1836 1837 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1838 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1839 assert(MA->use_empty() && 1840 "Trying to remove memory access that still has uses"); 1841 BlockNumbering.erase(MA); 1842 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1843 MUD->setDefiningAccess(nullptr); 1844 // Invalidate our walker's cache if necessary 1845 if (!isa<MemoryUse>(MA)) 1846 getWalker()->invalidateInfo(MA); 1847 1848 Value *MemoryInst; 1849 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1850 MemoryInst = MUD->getMemoryInst(); 1851 else 1852 MemoryInst = MA->getBlock(); 1853 1854 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1855 if (VMA->second == MA) 1856 ValueToMemoryAccess.erase(VMA); 1857 } 1858 1859 /// Properly remove \p MA from all of MemorySSA's lists. 1860 /// 1861 /// Because of the way the intrusive list and use lists work, it is important to 1862 /// do removal in the right order. 1863 /// ShouldDelete defaults to true, and will cause the memory access to also be 1864 /// deleted, not just removed. 1865 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1866 BasicBlock *BB = MA->getBlock(); 1867 // The access list owns the reference, so we erase it from the non-owning list 1868 // first. 1869 if (!isa<MemoryUse>(MA)) { 1870 auto DefsIt = PerBlockDefs.find(BB); 1871 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1872 Defs->remove(*MA); 1873 if (Defs->empty()) 1874 PerBlockDefs.erase(DefsIt); 1875 } 1876 1877 // The erase call here will delete it. If we don't want it deleted, we call 1878 // remove instead. 1879 auto AccessIt = PerBlockAccesses.find(BB); 1880 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1881 if (ShouldDelete) 1882 Accesses->erase(MA); 1883 else 1884 Accesses->remove(MA); 1885 1886 if (Accesses->empty()) { 1887 PerBlockAccesses.erase(AccessIt); 1888 BlockNumberingValid.erase(BB); 1889 } 1890 } 1891 1892 void MemorySSA::print(raw_ostream &OS) const { 1893 MemorySSAAnnotatedWriter Writer(this); 1894 F.print(OS, &Writer); 1895 } 1896 1897 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1898 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1899 #endif 1900 1901 void MemorySSA::verifyMemorySSA() const { 1902 verifyOrderingDominationAndDefUses(F); 1903 verifyDominationNumbers(F); 1904 verifyPrevDefInPhis(F); 1905 // Previously, the verification used to also verify that the clobberingAccess 1906 // cached by MemorySSA is the same as the clobberingAccess found at a later 1907 // query to AA. This does not hold true in general due to the current fragility 1908 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1909 // up. As a result, transformations that are correct, will lead to BasicAA 1910 // returning different Alias answers before and after that transformation. 1911 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1912 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1913 // every transformation, which defeats the purpose of using it. For such an 1914 // example, see test4 added in D51960. 1915 } 1916 1917 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1918 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1919 for (const BasicBlock &BB : F) { 1920 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1921 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1922 auto *Pred = Phi->getIncomingBlock(I); 1923 auto *IncAcc = Phi->getIncomingValue(I); 1924 // If Pred has no unreachable predecessors, get last def looking at 1925 // IDoms. If, while walkings IDoms, any of these has an unreachable 1926 // predecessor, then the incoming def can be any access. 1927 if (auto *DTNode = DT->getNode(Pred)) { 1928 while (DTNode) { 1929 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1930 auto *LastAcc = &*(--DefList->end()); 1931 assert(LastAcc == IncAcc && 1932 "Incorrect incoming access into phi."); 1933 break; 1934 } 1935 DTNode = DTNode->getIDom(); 1936 } 1937 } else { 1938 // If Pred has unreachable predecessors, but has at least a Def, the 1939 // incoming access can be the last Def in Pred, or it could have been 1940 // optimized to LoE. After an update, though, the LoE may have been 1941 // replaced by another access, so IncAcc may be any access. 1942 // If Pred has unreachable predecessors and no Defs, incoming access 1943 // should be LoE; However, after an update, it may be any access. 1944 } 1945 } 1946 } 1947 } 1948 #endif 1949 } 1950 1951 /// Verify that all of the blocks we believe to have valid domination numbers 1952 /// actually have valid domination numbers. 1953 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1954 #ifndef NDEBUG 1955 if (BlockNumberingValid.empty()) 1956 return; 1957 1958 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1959 for (const BasicBlock &BB : F) { 1960 if (!ValidBlocks.count(&BB)) 1961 continue; 1962 1963 ValidBlocks.erase(&BB); 1964 1965 const AccessList *Accesses = getBlockAccesses(&BB); 1966 // It's correct to say an empty block has valid numbering. 1967 if (!Accesses) 1968 continue; 1969 1970 // Block numbering starts at 1. 1971 unsigned long LastNumber = 0; 1972 for (const MemoryAccess &MA : *Accesses) { 1973 auto ThisNumberIter = BlockNumbering.find(&MA); 1974 assert(ThisNumberIter != BlockNumbering.end() && 1975 "MemoryAccess has no domination number in a valid block!"); 1976 1977 unsigned long ThisNumber = ThisNumberIter->second; 1978 assert(ThisNumber > LastNumber && 1979 "Domination numbers should be strictly increasing!"); 1980 LastNumber = ThisNumber; 1981 } 1982 } 1983 1984 assert(ValidBlocks.empty() && 1985 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1986 #endif 1987 } 1988 1989 /// Verify ordering: the order and existence of MemoryAccesses matches the 1990 /// order and existence of memory affecting instructions. 1991 /// Verify domination: each definition dominates all of its uses. 1992 /// Verify def-uses: the immediate use information - walk all the memory 1993 /// accesses and verifying that, for each use, it appears in the appropriate 1994 /// def's use list 1995 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1996 #if !defined(NDEBUG) 1997 // Walk all the blocks, comparing what the lookups think and what the access 1998 // lists think, as well as the order in the blocks vs the order in the access 1999 // lists. 2000 SmallVector<MemoryAccess *, 32> ActualAccesses; 2001 SmallVector<MemoryAccess *, 32> ActualDefs; 2002 for (BasicBlock &B : F) { 2003 const AccessList *AL = getBlockAccesses(&B); 2004 const auto *DL = getBlockDefs(&B); 2005 MemoryPhi *Phi = getMemoryAccess(&B); 2006 if (Phi) { 2007 // Verify ordering. 2008 ActualAccesses.push_back(Phi); 2009 ActualDefs.push_back(Phi); 2010 // Verify domination 2011 for (const Use &U : Phi->uses()) 2012 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2013 #if defined(EXPENSIVE_CHECKS) 2014 // Verify def-uses. 2015 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2016 pred_begin(&B), pred_end(&B))) && 2017 "Incomplete MemoryPhi Node"); 2018 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2019 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2020 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2021 pred_end(&B) && 2022 "Incoming phi block not a block predecessor"); 2023 } 2024 #endif 2025 } 2026 2027 for (Instruction &I : B) { 2028 MemoryUseOrDef *MA = getMemoryAccess(&I); 2029 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2030 "We have memory affecting instructions " 2031 "in this block but they are not in the " 2032 "access list or defs list"); 2033 if (MA) { 2034 // Verify ordering. 2035 ActualAccesses.push_back(MA); 2036 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2037 // Verify ordering. 2038 ActualDefs.push_back(MA); 2039 // Verify domination. 2040 for (const Use &U : MD->uses()) 2041 assert(dominates(MD, U) && 2042 "Memory Def does not dominate it's uses"); 2043 } 2044 #if defined(EXPENSIVE_CHECKS) 2045 // Verify def-uses. 2046 verifyUseInDefs(MA->getDefiningAccess(), MA); 2047 #endif 2048 } 2049 } 2050 // Either we hit the assert, really have no accesses, or we have both 2051 // accesses and an access list. Same with defs. 2052 if (!AL && !DL) 2053 continue; 2054 // Verify ordering. 2055 assert(AL->size() == ActualAccesses.size() && 2056 "We don't have the same number of accesses in the block as on the " 2057 "access list"); 2058 assert((DL || ActualDefs.size() == 0) && 2059 "Either we should have a defs list, or we should have no defs"); 2060 assert((!DL || DL->size() == ActualDefs.size()) && 2061 "We don't have the same number of defs in the block as on the " 2062 "def list"); 2063 auto ALI = AL->begin(); 2064 auto AAI = ActualAccesses.begin(); 2065 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2066 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2067 ++ALI; 2068 ++AAI; 2069 } 2070 ActualAccesses.clear(); 2071 if (DL) { 2072 auto DLI = DL->begin(); 2073 auto ADI = ActualDefs.begin(); 2074 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2075 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2076 ++DLI; 2077 ++ADI; 2078 } 2079 } 2080 ActualDefs.clear(); 2081 } 2082 #endif 2083 } 2084 2085 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2086 /// appears in the use list of \p Def. 2087 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2088 #ifndef NDEBUG 2089 // The live on entry use may cause us to get a NULL def here 2090 if (!Def) 2091 assert(isLiveOnEntryDef(Use) && 2092 "Null def but use not point to live on entry def"); 2093 else 2094 assert(is_contained(Def->users(), Use) && 2095 "Did not find use in def's use list"); 2096 #endif 2097 } 2098 2099 /// Perform a local numbering on blocks so that instruction ordering can be 2100 /// determined in constant time. 2101 /// TODO: We currently just number in order. If we numbered by N, we could 2102 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2103 /// log2(N) sequences of mixed before and after) without needing to invalidate 2104 /// the numbering. 2105 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2106 // The pre-increment ensures the numbers really start at 1. 2107 unsigned long CurrentNumber = 0; 2108 const AccessList *AL = getBlockAccesses(B); 2109 assert(AL != nullptr && "Asking to renumber an empty block"); 2110 for (const auto &I : *AL) 2111 BlockNumbering[&I] = ++CurrentNumber; 2112 BlockNumberingValid.insert(B); 2113 } 2114 2115 /// Determine, for two memory accesses in the same block, 2116 /// whether \p Dominator dominates \p Dominatee. 2117 /// \returns True if \p Dominator dominates \p Dominatee. 2118 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2119 const MemoryAccess *Dominatee) const { 2120 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2121 2122 assert((DominatorBlock == Dominatee->getBlock()) && 2123 "Asking for local domination when accesses are in different blocks!"); 2124 // A node dominates itself. 2125 if (Dominatee == Dominator) 2126 return true; 2127 2128 // When Dominatee is defined on function entry, it is not dominated by another 2129 // memory access. 2130 if (isLiveOnEntryDef(Dominatee)) 2131 return false; 2132 2133 // When Dominator is defined on function entry, it dominates the other memory 2134 // access. 2135 if (isLiveOnEntryDef(Dominator)) 2136 return true; 2137 2138 if (!BlockNumberingValid.count(DominatorBlock)) 2139 renumberBlock(DominatorBlock); 2140 2141 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2142 // All numbers start with 1 2143 assert(DominatorNum != 0 && "Block was not numbered properly"); 2144 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2145 assert(DominateeNum != 0 && "Block was not numbered properly"); 2146 return DominatorNum < DominateeNum; 2147 } 2148 2149 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2150 const MemoryAccess *Dominatee) const { 2151 if (Dominator == Dominatee) 2152 return true; 2153 2154 if (isLiveOnEntryDef(Dominatee)) 2155 return false; 2156 2157 if (Dominator->getBlock() != Dominatee->getBlock()) 2158 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2159 return locallyDominates(Dominator, Dominatee); 2160 } 2161 2162 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2163 const Use &Dominatee) const { 2164 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2165 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2166 // The def must dominate the incoming block of the phi. 2167 if (UseBB != Dominator->getBlock()) 2168 return DT->dominates(Dominator->getBlock(), UseBB); 2169 // If the UseBB and the DefBB are the same, compare locally. 2170 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2171 } 2172 // If it's not a PHI node use, the normal dominates can already handle it. 2173 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2174 } 2175 2176 const static char LiveOnEntryStr[] = "liveOnEntry"; 2177 2178 void MemoryAccess::print(raw_ostream &OS) const { 2179 switch (getValueID()) { 2180 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2181 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2182 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2183 } 2184 llvm_unreachable("invalid value id"); 2185 } 2186 2187 void MemoryDef::print(raw_ostream &OS) const { 2188 MemoryAccess *UO = getDefiningAccess(); 2189 2190 auto printID = [&OS](MemoryAccess *A) { 2191 if (A && A->getID()) 2192 OS << A->getID(); 2193 else 2194 OS << LiveOnEntryStr; 2195 }; 2196 2197 OS << getID() << " = MemoryDef("; 2198 printID(UO); 2199 OS << ")"; 2200 2201 if (isOptimized()) { 2202 OS << "->"; 2203 printID(getOptimized()); 2204 2205 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2206 OS << " " << *AR; 2207 } 2208 } 2209 2210 void MemoryPhi::print(raw_ostream &OS) const { 2211 bool First = true; 2212 OS << getID() << " = MemoryPhi("; 2213 for (const auto &Op : operands()) { 2214 BasicBlock *BB = getIncomingBlock(Op); 2215 MemoryAccess *MA = cast<MemoryAccess>(Op); 2216 if (!First) 2217 OS << ','; 2218 else 2219 First = false; 2220 2221 OS << '{'; 2222 if (BB->hasName()) 2223 OS << BB->getName(); 2224 else 2225 BB->printAsOperand(OS, false); 2226 OS << ','; 2227 if (unsigned ID = MA->getID()) 2228 OS << ID; 2229 else 2230 OS << LiveOnEntryStr; 2231 OS << '}'; 2232 } 2233 OS << ')'; 2234 } 2235 2236 void MemoryUse::print(raw_ostream &OS) const { 2237 MemoryAccess *UO = getDefiningAccess(); 2238 OS << "MemoryUse("; 2239 if (UO && UO->getID()) 2240 OS << UO->getID(); 2241 else 2242 OS << LiveOnEntryStr; 2243 OS << ')'; 2244 2245 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2246 OS << " " << *AR; 2247 } 2248 2249 void MemoryAccess::dump() const { 2250 // Cannot completely remove virtual function even in release mode. 2251 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2252 print(dbgs()); 2253 dbgs() << "\n"; 2254 #endif 2255 } 2256 2257 char MemorySSAPrinterLegacyPass::ID = 0; 2258 2259 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2260 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2261 } 2262 2263 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2264 AU.setPreservesAll(); 2265 AU.addRequired<MemorySSAWrapperPass>(); 2266 } 2267 2268 class DOTFuncMSSAInfo { 2269 private: 2270 const Function &F; 2271 MemorySSAAnnotatedWriter MSSAWriter; 2272 2273 public: 2274 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2275 : F(F), MSSAWriter(&MSSA) {} 2276 2277 const Function *getFunction() { return &F; } 2278 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2279 }; 2280 2281 namespace llvm { 2282 2283 template <> 2284 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2285 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2286 return &(CFGInfo->getFunction()->getEntryBlock()); 2287 } 2288 2289 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2290 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2291 2292 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2293 return nodes_iterator(CFGInfo->getFunction()->begin()); 2294 } 2295 2296 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2297 return nodes_iterator(CFGInfo->getFunction()->end()); 2298 } 2299 2300 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2301 return CFGInfo->getFunction()->size(); 2302 } 2303 }; 2304 2305 template <> 2306 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2307 2308 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2309 2310 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2311 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2312 "' function"; 2313 } 2314 2315 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2316 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2317 Node, nullptr, 2318 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2319 BB.print(OS, &CFGInfo->getWriter(), true, true); 2320 }, 2321 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2322 std::string Str = S.substr(I, Idx - I); 2323 StringRef SR = Str; 2324 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2325 SR.count("MemoryUse(")) 2326 return; 2327 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2328 }); 2329 } 2330 2331 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2332 const_succ_iterator I) { 2333 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2334 } 2335 2336 /// Display the raw branch weights from PGO. 2337 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2338 DOTFuncMSSAInfo *CFGInfo) { 2339 return ""; 2340 } 2341 2342 std::string getNodeAttributes(const BasicBlock *Node, 2343 DOTFuncMSSAInfo *CFGInfo) { 2344 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2345 ? "style=filled, fillcolor=lightpink" 2346 : ""; 2347 } 2348 }; 2349 2350 } // namespace llvm 2351 2352 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2353 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2354 if (DotCFGMSSA != "") { 2355 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2356 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2357 } else 2358 MSSA.print(dbgs()); 2359 2360 if (VerifyMemorySSA) 2361 MSSA.verifyMemorySSA(); 2362 return false; 2363 } 2364 2365 AnalysisKey MemorySSAAnalysis::Key; 2366 2367 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2368 FunctionAnalysisManager &AM) { 2369 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2370 auto &AA = AM.getResult<AAManager>(F); 2371 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2372 } 2373 2374 bool MemorySSAAnalysis::Result::invalidate( 2375 Function &F, const PreservedAnalyses &PA, 2376 FunctionAnalysisManager::Invalidator &Inv) { 2377 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2378 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2379 Inv.invalidate<AAManager>(F, PA) || 2380 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2381 } 2382 2383 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2384 FunctionAnalysisManager &AM) { 2385 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2386 if (DotCFGMSSA != "") { 2387 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2388 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2389 } else { 2390 OS << "MemorySSA for function: " << F.getName() << "\n"; 2391 MSSA.print(OS); 2392 } 2393 2394 return PreservedAnalyses::all(); 2395 } 2396 2397 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2398 FunctionAnalysisManager &AM) { 2399 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2400 2401 return PreservedAnalyses::all(); 2402 } 2403 2404 char MemorySSAWrapperPass::ID = 0; 2405 2406 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2407 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2408 } 2409 2410 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2411 2412 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2413 AU.setPreservesAll(); 2414 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2415 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2416 } 2417 2418 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2419 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2420 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2421 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2422 return false; 2423 } 2424 2425 void MemorySSAWrapperPass::verifyAnalysis() const { 2426 if (VerifyMemorySSA) 2427 MSSA->verifyMemorySSA(); 2428 } 2429 2430 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2431 MSSA->print(OS); 2432 } 2433 2434 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2435 2436 /// Walk the use-def chains starting at \p StartingAccess and find 2437 /// the MemoryAccess that actually clobbers Loc. 2438 /// 2439 /// \returns our clobbering memory access 2440 template <typename AliasAnalysisType> 2441 MemoryAccess * 2442 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2443 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2444 unsigned &UpwardWalkLimit) { 2445 if (isa<MemoryPhi>(StartingAccess)) 2446 return StartingAccess; 2447 2448 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2449 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2450 return StartingUseOrDef; 2451 2452 Instruction *I = StartingUseOrDef->getMemoryInst(); 2453 2454 // Conservatively, fences are always clobbers, so don't perform the walk if we 2455 // hit a fence. 2456 if (!isa<CallBase>(I) && I->isFenceLike()) 2457 return StartingUseOrDef; 2458 2459 UpwardsMemoryQuery Q; 2460 Q.OriginalAccess = StartingUseOrDef; 2461 Q.StartingLoc = Loc; 2462 Q.Inst = nullptr; 2463 Q.IsCall = false; 2464 2465 // Unlike the other function, do not walk to the def of a def, because we are 2466 // handed something we already believe is the clobbering access. 2467 // We never set SkipSelf to true in Q in this method. 2468 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2469 ? StartingUseOrDef->getDefiningAccess() 2470 : StartingUseOrDef; 2471 2472 MemoryAccess *Clobber = 2473 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2474 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2475 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2476 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2477 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2478 return Clobber; 2479 } 2480 2481 template <typename AliasAnalysisType> 2482 MemoryAccess * 2483 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2484 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2485 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2486 // If this is a MemoryPhi, we can't do anything. 2487 if (!StartingAccess) 2488 return MA; 2489 2490 bool IsOptimized = false; 2491 2492 // If this is an already optimized use or def, return the optimized result. 2493 // Note: Currently, we store the optimized def result in a separate field, 2494 // since we can't use the defining access. 2495 if (StartingAccess->isOptimized()) { 2496 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2497 return StartingAccess->getOptimized(); 2498 IsOptimized = true; 2499 } 2500 2501 const Instruction *I = StartingAccess->getMemoryInst(); 2502 // We can't sanely do anything with a fence, since they conservatively clobber 2503 // all memory, and have no locations to get pointers from to try to 2504 // disambiguate. 2505 if (!isa<CallBase>(I) && I->isFenceLike()) 2506 return StartingAccess; 2507 2508 UpwardsMemoryQuery Q(I, StartingAccess); 2509 2510 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2511 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2512 StartingAccess->setOptimized(LiveOnEntry); 2513 StartingAccess->setOptimizedAccessType(None); 2514 return LiveOnEntry; 2515 } 2516 2517 MemoryAccess *OptimizedAccess; 2518 if (!IsOptimized) { 2519 // Start with the thing we already think clobbers this location 2520 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2521 2522 // At this point, DefiningAccess may be the live on entry def. 2523 // If it is, we will not get a better result. 2524 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2525 StartingAccess->setOptimized(DefiningAccess); 2526 StartingAccess->setOptimizedAccessType(None); 2527 return DefiningAccess; 2528 } 2529 2530 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2531 StartingAccess->setOptimized(OptimizedAccess); 2532 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2533 StartingAccess->setOptimizedAccessType(None); 2534 else if (Q.AR == MustAlias) 2535 StartingAccess->setOptimizedAccessType(MustAlias); 2536 } else 2537 OptimizedAccess = StartingAccess->getOptimized(); 2538 2539 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2540 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2541 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2542 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2543 2544 MemoryAccess *Result; 2545 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2546 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2547 assert(isa<MemoryDef>(Q.OriginalAccess)); 2548 Q.SkipSelfAccess = true; 2549 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2550 } else 2551 Result = OptimizedAccess; 2552 2553 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2554 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2555 2556 return Result; 2557 } 2558 2559 MemoryAccess * 2560 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2561 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2562 return Use->getDefiningAccess(); 2563 return MA; 2564 } 2565 2566 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2567 MemoryAccess *StartingAccess, const MemoryLocation &) { 2568 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2569 return Use->getDefiningAccess(); 2570 return StartingAccess; 2571 } 2572 2573 void MemoryPhi::deleteMe(DerivedUser *Self) { 2574 delete static_cast<MemoryPhi *>(Self); 2575 } 2576 2577 void MemoryDef::deleteMe(DerivedUser *Self) { 2578 delete static_cast<MemoryDef *>(Self); 2579 } 2580 2581 void MemoryUse::deleteMe(DerivedUser *Self) { 2582 delete static_cast<MemoryUse *>(Self); 2583 } 2584