1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdlib> 54 #include <iterator> 55 #include <memory> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "memoryssa" 61 62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 63 true) 64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 67 true) 68 69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 70 "Memory SSA Printer", false, false) 71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 73 "Memory SSA Printer", false, false) 74 75 static cl::opt<unsigned> MaxCheckLimit( 76 "memssa-check-limit", cl::Hidden, cl::init(100), 77 cl::desc("The maximum number of stores/phis MemorySSA" 78 "will consider trying to walk past (default = 100)")); 79 80 // Always verify MemorySSA if expensive checking is enabled. 81 #ifdef EXPENSIVE_CHECKS 82 bool llvm::VerifyMemorySSA = true; 83 #else 84 bool llvm::VerifyMemorySSA = false; 85 #endif 86 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 87 cl::opt<bool> llvm::EnableMSSALoopDependency( 88 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 89 cl::desc("Enable MemorySSA dependency for loop pass manager")); 90 91 static cl::opt<bool, true> 92 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 93 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 94 95 namespace llvm { 96 97 /// An assembly annotator class to print Memory SSA information in 98 /// comments. 99 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 100 friend class MemorySSA; 101 102 const MemorySSA *MSSA; 103 104 public: 105 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 106 107 void emitBasicBlockStartAnnot(const BasicBlock *BB, 108 formatted_raw_ostream &OS) override { 109 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 110 OS << "; " << *MA << "\n"; 111 } 112 113 void emitInstructionAnnot(const Instruction *I, 114 formatted_raw_ostream &OS) override { 115 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 116 OS << "; " << *MA << "\n"; 117 } 118 }; 119 120 } // end namespace llvm 121 122 namespace { 123 124 /// Our current alias analysis API differentiates heavily between calls and 125 /// non-calls, and functions called on one usually assert on the other. 126 /// This class encapsulates the distinction to simplify other code that wants 127 /// "Memory affecting instructions and related data" to use as a key. 128 /// For example, this class is used as a densemap key in the use optimizer. 129 class MemoryLocOrCall { 130 public: 131 bool IsCall = false; 132 133 MemoryLocOrCall(MemoryUseOrDef *MUD) 134 : MemoryLocOrCall(MUD->getMemoryInst()) {} 135 MemoryLocOrCall(const MemoryUseOrDef *MUD) 136 : MemoryLocOrCall(MUD->getMemoryInst()) {} 137 138 MemoryLocOrCall(Instruction *Inst) { 139 if (auto *C = dyn_cast<CallBase>(Inst)) { 140 IsCall = true; 141 Call = C; 142 } else { 143 IsCall = false; 144 // There is no such thing as a memorylocation for a fence inst, and it is 145 // unique in that regard. 146 if (!isa<FenceInst>(Inst)) 147 Loc = MemoryLocation::get(Inst); 148 } 149 } 150 151 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 152 153 const CallBase *getCall() const { 154 assert(IsCall); 155 return Call; 156 } 157 158 MemoryLocation getLoc() const { 159 assert(!IsCall); 160 return Loc; 161 } 162 163 bool operator==(const MemoryLocOrCall &Other) const { 164 if (IsCall != Other.IsCall) 165 return false; 166 167 if (!IsCall) 168 return Loc == Other.Loc; 169 170 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 171 return false; 172 173 return Call->arg_size() == Other.Call->arg_size() && 174 std::equal(Call->arg_begin(), Call->arg_end(), 175 Other.Call->arg_begin()); 176 } 177 178 private: 179 union { 180 const CallBase *Call; 181 MemoryLocation Loc; 182 }; 183 }; 184 185 } // end anonymous namespace 186 187 namespace llvm { 188 189 template <> struct DenseMapInfo<MemoryLocOrCall> { 190 static inline MemoryLocOrCall getEmptyKey() { 191 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 192 } 193 194 static inline MemoryLocOrCall getTombstoneKey() { 195 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 196 } 197 198 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 199 if (!MLOC.IsCall) 200 return hash_combine( 201 MLOC.IsCall, 202 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 203 204 hash_code hash = 205 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 206 MLOC.getCall()->getCalledOperand())); 207 208 for (const Value *Arg : MLOC.getCall()->args()) 209 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 210 return hash; 211 } 212 213 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 214 return LHS == RHS; 215 } 216 }; 217 218 } // end namespace llvm 219 220 /// This does one-way checks to see if Use could theoretically be hoisted above 221 /// MayClobber. This will not check the other way around. 222 /// 223 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 224 /// MayClobber, with no potentially clobbering operations in between them. 225 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 226 static bool areLoadsReorderable(const LoadInst *Use, 227 const LoadInst *MayClobber) { 228 bool VolatileUse = Use->isVolatile(); 229 bool VolatileClobber = MayClobber->isVolatile(); 230 // Volatile operations may never be reordered with other volatile operations. 231 if (VolatileUse && VolatileClobber) 232 return false; 233 // Otherwise, volatile doesn't matter here. From the language reference: 234 // 'optimizers may change the order of volatile operations relative to 235 // non-volatile operations.'" 236 237 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 238 // is weaker, it can be moved above other loads. We just need to be sure that 239 // MayClobber isn't an acquire load, because loads can't be moved above 240 // acquire loads. 241 // 242 // Note that this explicitly *does* allow the free reordering of monotonic (or 243 // weaker) loads of the same address. 244 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 245 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 246 AtomicOrdering::Acquire); 247 return !(SeqCstUse || MayClobberIsAcquire); 248 } 249 250 namespace { 251 252 struct ClobberAlias { 253 bool IsClobber; 254 Optional<AliasResult> AR; 255 }; 256 257 } // end anonymous namespace 258 259 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 260 // ignored if IsClobber = false. 261 template <typename AliasAnalysisType> 262 static ClobberAlias 263 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 264 const Instruction *UseInst, AliasAnalysisType &AA) { 265 Instruction *DefInst = MD->getMemoryInst(); 266 assert(DefInst && "Defining instruction not actually an instruction"); 267 Optional<AliasResult> AR; 268 269 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 270 // These intrinsics will show up as affecting memory, but they are just 271 // markers, mostly. 272 // 273 // FIXME: We probably don't actually want MemorySSA to model these at all 274 // (including creating MemoryAccesses for them): we just end up inventing 275 // clobbers where they don't really exist at all. Please see D43269 for 276 // context. 277 switch (II->getIntrinsicID()) { 278 case Intrinsic::lifetime_end: 279 case Intrinsic::invariant_start: 280 case Intrinsic::invariant_end: 281 case Intrinsic::assume: 282 return {false, NoAlias}; 283 case Intrinsic::dbg_addr: 284 case Intrinsic::dbg_declare: 285 case Intrinsic::dbg_label: 286 case Intrinsic::dbg_value: 287 llvm_unreachable("debuginfo shouldn't have associated defs!"); 288 default: 289 break; 290 } 291 } 292 293 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 294 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 295 AR = isMustSet(I) ? MustAlias : MayAlias; 296 return {isModOrRefSet(I), AR}; 297 } 298 299 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 300 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 301 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 302 303 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 304 AR = isMustSet(I) ? MustAlias : MayAlias; 305 return {isModSet(I), AR}; 306 } 307 308 template <typename AliasAnalysisType> 309 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 310 const MemoryUseOrDef *MU, 311 const MemoryLocOrCall &UseMLOC, 312 AliasAnalysisType &AA) { 313 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 314 // to exist while MemoryLocOrCall is pushed through places. 315 if (UseMLOC.IsCall) 316 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 317 AA); 318 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 319 AA); 320 } 321 322 // Return true when MD may alias MU, return false otherwise. 323 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 324 AliasAnalysis &AA) { 325 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 326 } 327 328 namespace { 329 330 struct UpwardsMemoryQuery { 331 // True if our original query started off as a call 332 bool IsCall = false; 333 // The pointer location we started the query with. This will be empty if 334 // IsCall is true. 335 MemoryLocation StartingLoc; 336 // This is the instruction we were querying about. 337 const Instruction *Inst = nullptr; 338 // The MemoryAccess we actually got called with, used to test local domination 339 const MemoryAccess *OriginalAccess = nullptr; 340 Optional<AliasResult> AR = MayAlias; 341 bool SkipSelfAccess = false; 342 343 UpwardsMemoryQuery() = default; 344 345 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 346 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 347 if (!IsCall) 348 StartingLoc = MemoryLocation::get(Inst); 349 } 350 }; 351 352 } // end anonymous namespace 353 354 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 355 BatchAAResults &AA) { 356 Instruction *Inst = MD->getMemoryInst(); 357 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 358 switch (II->getIntrinsicID()) { 359 case Intrinsic::lifetime_end: 360 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 361 default: 362 return false; 363 } 364 } 365 return false; 366 } 367 368 template <typename AliasAnalysisType> 369 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 370 const Instruction *I) { 371 // If the memory can't be changed, then loads of the memory can't be 372 // clobbered. 373 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) || 374 AA.pointsToConstantMemory(MemoryLocation( 375 cast<LoadInst>(I)->getPointerOperand()))); 376 } 377 378 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 379 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 380 /// 381 /// This is meant to be as simple and self-contained as possible. Because it 382 /// uses no cache, etc., it can be relatively expensive. 383 /// 384 /// \param Start The MemoryAccess that we want to walk from. 385 /// \param ClobberAt A clobber for Start. 386 /// \param StartLoc The MemoryLocation for Start. 387 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 388 /// \param Query The UpwardsMemoryQuery we used for our search. 389 /// \param AA The AliasAnalysis we used for our search. 390 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 391 392 template <typename AliasAnalysisType> 393 LLVM_ATTRIBUTE_UNUSED static void 394 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 395 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 396 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 397 bool AllowImpreciseClobber = false) { 398 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 399 400 if (MSSA.isLiveOnEntryDef(Start)) { 401 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 402 "liveOnEntry must clobber itself"); 403 return; 404 } 405 406 bool FoundClobber = false; 407 DenseSet<ConstMemoryAccessPair> VisitedPhis; 408 SmallVector<ConstMemoryAccessPair, 8> Worklist; 409 Worklist.emplace_back(Start, StartLoc); 410 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 411 // is found, complain. 412 while (!Worklist.empty()) { 413 auto MAP = Worklist.pop_back_val(); 414 // All we care about is that nothing from Start to ClobberAt clobbers Start. 415 // We learn nothing from revisiting nodes. 416 if (!VisitedPhis.insert(MAP).second) 417 continue; 418 419 for (const auto *MA : def_chain(MAP.first)) { 420 if (MA == ClobberAt) { 421 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 422 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 423 // since it won't let us short-circuit. 424 // 425 // Also, note that this can't be hoisted out of the `Worklist` loop, 426 // since MD may only act as a clobber for 1 of N MemoryLocations. 427 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 428 if (!FoundClobber) { 429 ClobberAlias CA = 430 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 431 if (CA.IsClobber) { 432 FoundClobber = true; 433 // Not used: CA.AR; 434 } 435 } 436 } 437 break; 438 } 439 440 // We should never hit liveOnEntry, unless it's the clobber. 441 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 442 443 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 444 // If Start is a Def, skip self. 445 if (MD == Start) 446 continue; 447 448 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 449 .IsClobber && 450 "Found clobber before reaching ClobberAt!"); 451 continue; 452 } 453 454 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 455 (void)MU; 456 assert (MU == Start && 457 "Can only find use in def chain if Start is a use"); 458 continue; 459 } 460 461 assert(isa<MemoryPhi>(MA)); 462 463 // Add reachable phi predecessors 464 for (auto ItB = upward_defs_begin( 465 {const_cast<MemoryAccess *>(MA), MAP.second}, 466 MSSA.getDomTree()), 467 ItE = upward_defs_end(); 468 ItB != ItE; ++ItB) 469 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 470 Worklist.emplace_back(*ItB); 471 } 472 } 473 474 // If the verify is done following an optimization, it's possible that 475 // ClobberAt was a conservative clobbering, that we can now infer is not a 476 // true clobbering access. Don't fail the verify if that's the case. 477 // We do have accesses that claim they're optimized, but could be optimized 478 // further. Updating all these can be expensive, so allow it for now (FIXME). 479 if (AllowImpreciseClobber) 480 return; 481 482 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 483 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 484 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 485 "ClobberAt never acted as a clobber"); 486 } 487 488 namespace { 489 490 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 491 /// in one class. 492 template <class AliasAnalysisType> class ClobberWalker { 493 /// Save a few bytes by using unsigned instead of size_t. 494 using ListIndex = unsigned; 495 496 /// Represents a span of contiguous MemoryDefs, potentially ending in a 497 /// MemoryPhi. 498 struct DefPath { 499 MemoryLocation Loc; 500 // Note that, because we always walk in reverse, Last will always dominate 501 // First. Also note that First and Last are inclusive. 502 MemoryAccess *First; 503 MemoryAccess *Last; 504 Optional<ListIndex> Previous; 505 506 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 507 Optional<ListIndex> Previous) 508 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 509 510 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 511 Optional<ListIndex> Previous) 512 : DefPath(Loc, Init, Init, Previous) {} 513 }; 514 515 const MemorySSA &MSSA; 516 AliasAnalysisType &AA; 517 DominatorTree &DT; 518 UpwardsMemoryQuery *Query; 519 unsigned *UpwardWalkLimit; 520 521 // Phi optimization bookkeeping: 522 // List of DefPath to process during the current phi optimization walk. 523 SmallVector<DefPath, 32> Paths; 524 // List of visited <Access, Location> pairs; we can skip paths already 525 // visited with the same memory location. 526 DenseSet<ConstMemoryAccessPair> VisitedPhis; 527 // Record if phi translation has been performed during the current phi 528 // optimization walk, as merging alias results after phi translation can 529 // yield incorrect results. Context in PR46156. 530 bool PerformedPhiTranslation = false; 531 532 /// Find the nearest def or phi that `From` can legally be optimized to. 533 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 534 assert(From->getNumOperands() && "Phi with no operands?"); 535 536 BasicBlock *BB = From->getBlock(); 537 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 538 DomTreeNode *Node = DT.getNode(BB); 539 while ((Node = Node->getIDom())) { 540 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 541 if (Defs) 542 return &*Defs->rbegin(); 543 } 544 return Result; 545 } 546 547 /// Result of calling walkToPhiOrClobber. 548 struct UpwardsWalkResult { 549 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 550 /// both. Include alias info when clobber found. 551 MemoryAccess *Result; 552 bool IsKnownClobber; 553 Optional<AliasResult> AR; 554 }; 555 556 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 557 /// This will update Desc.Last as it walks. It will (optionally) also stop at 558 /// StopAt. 559 /// 560 /// This does not test for whether StopAt is a clobber 561 UpwardsWalkResult 562 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 563 const MemoryAccess *SkipStopAt = nullptr) const { 564 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 565 assert(UpwardWalkLimit && "Need a valid walk limit"); 566 bool LimitAlreadyReached = false; 567 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 568 // it to 1. This will not do any alias() calls. It either returns in the 569 // first iteration in the loop below, or is set back to 0 if all def chains 570 // are free of MemoryDefs. 571 if (!*UpwardWalkLimit) { 572 *UpwardWalkLimit = 1; 573 LimitAlreadyReached = true; 574 } 575 576 for (MemoryAccess *Current : def_chain(Desc.Last)) { 577 Desc.Last = Current; 578 if (Current == StopAt || Current == SkipStopAt) 579 return {Current, false, MayAlias}; 580 581 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 582 if (MSSA.isLiveOnEntryDef(MD)) 583 return {MD, true, MustAlias}; 584 585 if (!--*UpwardWalkLimit) 586 return {Current, true, MayAlias}; 587 588 ClobberAlias CA = 589 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 590 if (CA.IsClobber) 591 return {MD, true, CA.AR}; 592 } 593 } 594 595 if (LimitAlreadyReached) 596 *UpwardWalkLimit = 0; 597 598 assert(isa<MemoryPhi>(Desc.Last) && 599 "Ended at a non-clobber that's not a phi?"); 600 return {Desc.Last, false, MayAlias}; 601 } 602 603 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 604 ListIndex PriorNode) { 605 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 606 &PerformedPhiTranslation); 607 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 608 for (const MemoryAccessPair &P : UpwardDefs) { 609 PausedSearches.push_back(Paths.size()); 610 Paths.emplace_back(P.second, P.first, PriorNode); 611 } 612 } 613 614 /// Represents a search that terminated after finding a clobber. This clobber 615 /// may or may not be present in the path of defs from LastNode..SearchStart, 616 /// since it may have been retrieved from cache. 617 struct TerminatedPath { 618 MemoryAccess *Clobber; 619 ListIndex LastNode; 620 }; 621 622 /// Get an access that keeps us from optimizing to the given phi. 623 /// 624 /// PausedSearches is an array of indices into the Paths array. Its incoming 625 /// value is the indices of searches that stopped at the last phi optimization 626 /// target. It's left in an unspecified state. 627 /// 628 /// If this returns None, NewPaused is a vector of searches that terminated 629 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 630 Optional<TerminatedPath> 631 getBlockingAccess(const MemoryAccess *StopWhere, 632 SmallVectorImpl<ListIndex> &PausedSearches, 633 SmallVectorImpl<ListIndex> &NewPaused, 634 SmallVectorImpl<TerminatedPath> &Terminated) { 635 assert(!PausedSearches.empty() && "No searches to continue?"); 636 637 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 638 // PausedSearches as our stack. 639 while (!PausedSearches.empty()) { 640 ListIndex PathIndex = PausedSearches.pop_back_val(); 641 DefPath &Node = Paths[PathIndex]; 642 643 // If we've already visited this path with this MemoryLocation, we don't 644 // need to do so again. 645 // 646 // NOTE: That we just drop these paths on the ground makes caching 647 // behavior sporadic. e.g. given a diamond: 648 // A 649 // B C 650 // D 651 // 652 // ...If we walk D, B, A, C, we'll only cache the result of phi 653 // optimization for A, B, and D; C will be skipped because it dies here. 654 // This arguably isn't the worst thing ever, since: 655 // - We generally query things in a top-down order, so if we got below D 656 // without needing cache entries for {C, MemLoc}, then chances are 657 // that those cache entries would end up ultimately unused. 658 // - We still cache things for A, so C only needs to walk up a bit. 659 // If this behavior becomes problematic, we can fix without a ton of extra 660 // work. 661 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 662 if (PerformedPhiTranslation) { 663 // If visiting this path performed Phi translation, don't continue, 664 // since it may not be correct to merge results from two paths if one 665 // relies on the phi translation. 666 TerminatedPath Term{Node.Last, PathIndex}; 667 return Term; 668 } 669 continue; 670 } 671 672 const MemoryAccess *SkipStopWhere = nullptr; 673 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 674 assert(isa<MemoryDef>(Query->OriginalAccess)); 675 SkipStopWhere = Query->OriginalAccess; 676 } 677 678 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 679 /*StopAt=*/StopWhere, 680 /*SkipStopAt=*/SkipStopWhere); 681 if (Res.IsKnownClobber) { 682 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 683 684 // If this wasn't a cache hit, we hit a clobber when walking. That's a 685 // failure. 686 TerminatedPath Term{Res.Result, PathIndex}; 687 if (!MSSA.dominates(Res.Result, StopWhere)) 688 return Term; 689 690 // Otherwise, it's a valid thing to potentially optimize to. 691 Terminated.push_back(Term); 692 continue; 693 } 694 695 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 696 // We've hit our target. Save this path off for if we want to continue 697 // walking. If we are in the mode of skipping the OriginalAccess, and 698 // we've reached back to the OriginalAccess, do not save path, we've 699 // just looped back to self. 700 if (Res.Result != SkipStopWhere) 701 NewPaused.push_back(PathIndex); 702 continue; 703 } 704 705 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 706 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 707 } 708 709 return None; 710 } 711 712 template <typename T, typename Walker> 713 struct generic_def_path_iterator 714 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 715 std::forward_iterator_tag, T *> { 716 generic_def_path_iterator() {} 717 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 718 719 T &operator*() const { return curNode(); } 720 721 generic_def_path_iterator &operator++() { 722 N = curNode().Previous; 723 return *this; 724 } 725 726 bool operator==(const generic_def_path_iterator &O) const { 727 if (N.hasValue() != O.N.hasValue()) 728 return false; 729 return !N.hasValue() || *N == *O.N; 730 } 731 732 private: 733 T &curNode() const { return W->Paths[*N]; } 734 735 Walker *W = nullptr; 736 Optional<ListIndex> N = None; 737 }; 738 739 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 740 using const_def_path_iterator = 741 generic_def_path_iterator<const DefPath, const ClobberWalker>; 742 743 iterator_range<def_path_iterator> def_path(ListIndex From) { 744 return make_range(def_path_iterator(this, From), def_path_iterator()); 745 } 746 747 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 748 return make_range(const_def_path_iterator(this, From), 749 const_def_path_iterator()); 750 } 751 752 struct OptznResult { 753 /// The path that contains our result. 754 TerminatedPath PrimaryClobber; 755 /// The paths that we can legally cache back from, but that aren't 756 /// necessarily the result of the Phi optimization. 757 SmallVector<TerminatedPath, 4> OtherClobbers; 758 }; 759 760 ListIndex defPathIndex(const DefPath &N) const { 761 // The assert looks nicer if we don't need to do &N 762 const DefPath *NP = &N; 763 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 764 "Out of bounds DefPath!"); 765 return NP - &Paths.front(); 766 } 767 768 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 769 /// that act as legal clobbers. Note that this won't return *all* clobbers. 770 /// 771 /// Phi optimization algorithm tl;dr: 772 /// - Find the earliest def/phi, A, we can optimize to 773 /// - Find if all paths from the starting memory access ultimately reach A 774 /// - If not, optimization isn't possible. 775 /// - Otherwise, walk from A to another clobber or phi, A'. 776 /// - If A' is a def, we're done. 777 /// - If A' is a phi, try to optimize it. 778 /// 779 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 780 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 781 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 782 const MemoryLocation &Loc) { 783 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 784 "Reset the optimization state."); 785 786 Paths.emplace_back(Loc, Start, Phi, None); 787 // Stores how many "valid" optimization nodes we had prior to calling 788 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 789 auto PriorPathsSize = Paths.size(); 790 791 SmallVector<ListIndex, 16> PausedSearches; 792 SmallVector<ListIndex, 8> NewPaused; 793 SmallVector<TerminatedPath, 4> TerminatedPaths; 794 795 addSearches(Phi, PausedSearches, 0); 796 797 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 798 // Paths. 799 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 800 assert(!Paths.empty() && "Need a path to move"); 801 auto Dom = Paths.begin(); 802 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 803 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 804 Dom = I; 805 auto Last = Paths.end() - 1; 806 if (Last != Dom) 807 std::iter_swap(Last, Dom); 808 }; 809 810 MemoryPhi *Current = Phi; 811 while (true) { 812 assert(!MSSA.isLiveOnEntryDef(Current) && 813 "liveOnEntry wasn't treated as a clobber?"); 814 815 const auto *Target = getWalkTarget(Current); 816 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 817 // optimization for the prior phi. 818 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 819 return MSSA.dominates(P.Clobber, Target); 820 })); 821 822 // FIXME: This is broken, because the Blocker may be reported to be 823 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 824 // For the moment, this is fine, since we do nothing with blocker info. 825 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 826 Target, PausedSearches, NewPaused, TerminatedPaths)) { 827 828 // Find the node we started at. We can't search based on N->Last, since 829 // we may have gone around a loop with a different MemoryLocation. 830 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 831 return defPathIndex(N) < PriorPathsSize; 832 }); 833 assert(Iter != def_path_iterator()); 834 835 DefPath &CurNode = *Iter; 836 assert(CurNode.Last == Current); 837 838 // Two things: 839 // A. We can't reliably cache all of NewPaused back. Consider a case 840 // where we have two paths in NewPaused; one of which can't optimize 841 // above this phi, whereas the other can. If we cache the second path 842 // back, we'll end up with suboptimal cache entries. We can handle 843 // cases like this a bit better when we either try to find all 844 // clobbers that block phi optimization, or when our cache starts 845 // supporting unfinished searches. 846 // B. We can't reliably cache TerminatedPaths back here without doing 847 // extra checks; consider a case like: 848 // T 849 // / \ 850 // D C 851 // \ / 852 // S 853 // Where T is our target, C is a node with a clobber on it, D is a 854 // diamond (with a clobber *only* on the left or right node, N), and 855 // S is our start. Say we walk to D, through the node opposite N 856 // (read: ignoring the clobber), and see a cache entry in the top 857 // node of D. That cache entry gets put into TerminatedPaths. We then 858 // walk up to C (N is later in our worklist), find the clobber, and 859 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 860 // the bottom part of D to the cached clobber, ignoring the clobber 861 // in N. Again, this problem goes away if we start tracking all 862 // blockers for a given phi optimization. 863 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 864 return {Result, {}}; 865 } 866 867 // If there's nothing left to search, then all paths led to valid clobbers 868 // that we got from our cache; pick the nearest to the start, and allow 869 // the rest to be cached back. 870 if (NewPaused.empty()) { 871 MoveDominatedPathToEnd(TerminatedPaths); 872 TerminatedPath Result = TerminatedPaths.pop_back_val(); 873 return {Result, std::move(TerminatedPaths)}; 874 } 875 876 MemoryAccess *DefChainEnd = nullptr; 877 SmallVector<TerminatedPath, 4> Clobbers; 878 for (ListIndex Paused : NewPaused) { 879 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 880 if (WR.IsKnownClobber) 881 Clobbers.push_back({WR.Result, Paused}); 882 else 883 // Micro-opt: If we hit the end of the chain, save it. 884 DefChainEnd = WR.Result; 885 } 886 887 if (!TerminatedPaths.empty()) { 888 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 889 // do it now. 890 if (!DefChainEnd) 891 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 892 DefChainEnd = MA; 893 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 894 895 // If any of the terminated paths don't dominate the phi we'll try to 896 // optimize, we need to figure out what they are and quit. 897 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 898 for (const TerminatedPath &TP : TerminatedPaths) { 899 // Because we know that DefChainEnd is as "high" as we can go, we 900 // don't need local dominance checks; BB dominance is sufficient. 901 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 902 Clobbers.push_back(TP); 903 } 904 } 905 906 // If we have clobbers in the def chain, find the one closest to Current 907 // and quit. 908 if (!Clobbers.empty()) { 909 MoveDominatedPathToEnd(Clobbers); 910 TerminatedPath Result = Clobbers.pop_back_val(); 911 return {Result, std::move(Clobbers)}; 912 } 913 914 assert(all_of(NewPaused, 915 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 916 917 // Because liveOnEntry is a clobber, this must be a phi. 918 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 919 920 PriorPathsSize = Paths.size(); 921 PausedSearches.clear(); 922 for (ListIndex I : NewPaused) 923 addSearches(DefChainPhi, PausedSearches, I); 924 NewPaused.clear(); 925 926 Current = DefChainPhi; 927 } 928 } 929 930 void verifyOptResult(const OptznResult &R) const { 931 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 932 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 933 })); 934 } 935 936 void resetPhiOptznState() { 937 Paths.clear(); 938 VisitedPhis.clear(); 939 PerformedPhiTranslation = false; 940 } 941 942 public: 943 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 944 : MSSA(MSSA), AA(AA), DT(DT) {} 945 946 AliasAnalysisType *getAA() { return &AA; } 947 /// Finds the nearest clobber for the given query, optimizing phis if 948 /// possible. 949 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 950 unsigned &UpWalkLimit) { 951 Query = &Q; 952 UpwardWalkLimit = &UpWalkLimit; 953 // Starting limit must be > 0. 954 if (!UpWalkLimit) 955 UpWalkLimit++; 956 957 MemoryAccess *Current = Start; 958 // This walker pretends uses don't exist. If we're handed one, silently grab 959 // its def. (This has the nice side-effect of ensuring we never cache uses) 960 if (auto *MU = dyn_cast<MemoryUse>(Start)) 961 Current = MU->getDefiningAccess(); 962 963 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 964 // Fast path for the overly-common case (no crazy phi optimization 965 // necessary) 966 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 967 MemoryAccess *Result; 968 if (WalkResult.IsKnownClobber) { 969 Result = WalkResult.Result; 970 Q.AR = WalkResult.AR; 971 } else { 972 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 973 Current, Q.StartingLoc); 974 verifyOptResult(OptRes); 975 resetPhiOptznState(); 976 Result = OptRes.PrimaryClobber.Clobber; 977 } 978 979 #ifdef EXPENSIVE_CHECKS 980 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 981 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 982 #endif 983 return Result; 984 } 985 }; 986 987 struct RenamePassData { 988 DomTreeNode *DTN; 989 DomTreeNode::const_iterator ChildIt; 990 MemoryAccess *IncomingVal; 991 992 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 993 MemoryAccess *M) 994 : DTN(D), ChildIt(It), IncomingVal(M) {} 995 996 void swap(RenamePassData &RHS) { 997 std::swap(DTN, RHS.DTN); 998 std::swap(ChildIt, RHS.ChildIt); 999 std::swap(IncomingVal, RHS.IncomingVal); 1000 } 1001 }; 1002 1003 } // end anonymous namespace 1004 1005 namespace llvm { 1006 1007 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1008 ClobberWalker<AliasAnalysisType> Walker; 1009 MemorySSA *MSSA; 1010 1011 public: 1012 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1013 : Walker(*M, *A, *D), MSSA(M) {} 1014 1015 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1016 const MemoryLocation &, 1017 unsigned &); 1018 // Third argument (bool), defines whether the clobber search should skip the 1019 // original queried access. If true, there will be a follow-up query searching 1020 // for a clobber access past "self". Note that the Optimized access is not 1021 // updated if a new clobber is found by this SkipSelf search. If this 1022 // additional query becomes heavily used we may decide to cache the result. 1023 // Walker instantiations will decide how to set the SkipSelf bool. 1024 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1025 }; 1026 1027 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1028 /// longer does caching on its own, but the name has been retained for the 1029 /// moment. 1030 template <class AliasAnalysisType> 1031 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1032 ClobberWalkerBase<AliasAnalysisType> *Walker; 1033 1034 public: 1035 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1036 : MemorySSAWalker(M), Walker(W) {} 1037 ~CachingWalker() override = default; 1038 1039 using MemorySSAWalker::getClobberingMemoryAccess; 1040 1041 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1042 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1043 } 1044 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1045 const MemoryLocation &Loc, 1046 unsigned &UWL) { 1047 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1048 } 1049 1050 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1051 unsigned UpwardWalkLimit = MaxCheckLimit; 1052 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1053 } 1054 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1055 const MemoryLocation &Loc) override { 1056 unsigned UpwardWalkLimit = MaxCheckLimit; 1057 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1058 } 1059 1060 void invalidateInfo(MemoryAccess *MA) override { 1061 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1062 MUD->resetOptimized(); 1063 } 1064 }; 1065 1066 template <class AliasAnalysisType> 1067 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1068 ClobberWalkerBase<AliasAnalysisType> *Walker; 1069 1070 public: 1071 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1072 : MemorySSAWalker(M), Walker(W) {} 1073 ~SkipSelfWalker() override = default; 1074 1075 using MemorySSAWalker::getClobberingMemoryAccess; 1076 1077 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1078 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1079 } 1080 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1081 const MemoryLocation &Loc, 1082 unsigned &UWL) { 1083 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1084 } 1085 1086 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1087 unsigned UpwardWalkLimit = MaxCheckLimit; 1088 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1089 } 1090 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1091 const MemoryLocation &Loc) override { 1092 unsigned UpwardWalkLimit = MaxCheckLimit; 1093 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1094 } 1095 1096 void invalidateInfo(MemoryAccess *MA) override { 1097 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1098 MUD->resetOptimized(); 1099 } 1100 }; 1101 1102 } // end namespace llvm 1103 1104 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1105 bool RenameAllUses) { 1106 // Pass through values to our successors 1107 for (const BasicBlock *S : successors(BB)) { 1108 auto It = PerBlockAccesses.find(S); 1109 // Rename the phi nodes in our successor block 1110 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1111 continue; 1112 AccessList *Accesses = It->second.get(); 1113 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1114 if (RenameAllUses) { 1115 bool ReplacementDone = false; 1116 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1117 if (Phi->getIncomingBlock(I) == BB) { 1118 Phi->setIncomingValue(I, IncomingVal); 1119 ReplacementDone = true; 1120 } 1121 (void) ReplacementDone; 1122 assert(ReplacementDone && "Incomplete phi during partial rename"); 1123 } else 1124 Phi->addIncoming(IncomingVal, BB); 1125 } 1126 } 1127 1128 /// Rename a single basic block into MemorySSA form. 1129 /// Uses the standard SSA renaming algorithm. 1130 /// \returns The new incoming value. 1131 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1132 bool RenameAllUses) { 1133 auto It = PerBlockAccesses.find(BB); 1134 // Skip most processing if the list is empty. 1135 if (It != PerBlockAccesses.end()) { 1136 AccessList *Accesses = It->second.get(); 1137 for (MemoryAccess &L : *Accesses) { 1138 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1139 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1140 MUD->setDefiningAccess(IncomingVal); 1141 if (isa<MemoryDef>(&L)) 1142 IncomingVal = &L; 1143 } else { 1144 IncomingVal = &L; 1145 } 1146 } 1147 } 1148 return IncomingVal; 1149 } 1150 1151 /// This is the standard SSA renaming algorithm. 1152 /// 1153 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1154 /// in phi nodes in our successors. 1155 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1156 SmallPtrSetImpl<BasicBlock *> &Visited, 1157 bool SkipVisited, bool RenameAllUses) { 1158 assert(Root && "Trying to rename accesses in an unreachable block"); 1159 1160 SmallVector<RenamePassData, 32> WorkStack; 1161 // Skip everything if we already renamed this block and we are skipping. 1162 // Note: You can't sink this into the if, because we need it to occur 1163 // regardless of whether we skip blocks or not. 1164 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1165 if (SkipVisited && AlreadyVisited) 1166 return; 1167 1168 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1169 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1170 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1171 1172 while (!WorkStack.empty()) { 1173 DomTreeNode *Node = WorkStack.back().DTN; 1174 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1175 IncomingVal = WorkStack.back().IncomingVal; 1176 1177 if (ChildIt == Node->end()) { 1178 WorkStack.pop_back(); 1179 } else { 1180 DomTreeNode *Child = *ChildIt; 1181 ++WorkStack.back().ChildIt; 1182 BasicBlock *BB = Child->getBlock(); 1183 // Note: You can't sink this into the if, because we need it to occur 1184 // regardless of whether we skip blocks or not. 1185 AlreadyVisited = !Visited.insert(BB).second; 1186 if (SkipVisited && AlreadyVisited) { 1187 // We already visited this during our renaming, which can happen when 1188 // being asked to rename multiple blocks. Figure out the incoming val, 1189 // which is the last def. 1190 // Incoming value can only change if there is a block def, and in that 1191 // case, it's the last block def in the list. 1192 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1193 IncomingVal = &*BlockDefs->rbegin(); 1194 } else 1195 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1196 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1197 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1198 } 1199 } 1200 } 1201 1202 /// This handles unreachable block accesses by deleting phi nodes in 1203 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1204 /// being uses of the live on entry definition. 1205 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1206 assert(!DT->isReachableFromEntry(BB) && 1207 "Reachable block found while handling unreachable blocks"); 1208 1209 // Make sure phi nodes in our reachable successors end up with a 1210 // LiveOnEntryDef for our incoming edge, even though our block is forward 1211 // unreachable. We could just disconnect these blocks from the CFG fully, 1212 // but we do not right now. 1213 for (const BasicBlock *S : successors(BB)) { 1214 if (!DT->isReachableFromEntry(S)) 1215 continue; 1216 auto It = PerBlockAccesses.find(S); 1217 // Rename the phi nodes in our successor block 1218 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1219 continue; 1220 AccessList *Accesses = It->second.get(); 1221 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1222 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1223 } 1224 1225 auto It = PerBlockAccesses.find(BB); 1226 if (It == PerBlockAccesses.end()) 1227 return; 1228 1229 auto &Accesses = It->second; 1230 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1231 auto Next = std::next(AI); 1232 // If we have a phi, just remove it. We are going to replace all 1233 // users with live on entry. 1234 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1235 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1236 else 1237 Accesses->erase(AI); 1238 AI = Next; 1239 } 1240 } 1241 1242 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1243 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1244 SkipWalker(nullptr), NextID(0) { 1245 // Build MemorySSA using a batch alias analysis. This reuses the internal 1246 // state that AA collects during an alias()/getModRefInfo() call. This is 1247 // safe because there are no CFG changes while building MemorySSA and can 1248 // significantly reduce the time spent by the compiler in AA, because we will 1249 // make queries about all the instructions in the Function. 1250 assert(AA && "No alias analysis?"); 1251 BatchAAResults BatchAA(*AA); 1252 buildMemorySSA(BatchAA); 1253 // Intentionally leave AA to nullptr while building so we don't accidently 1254 // use non-batch AliasAnalysis. 1255 this->AA = AA; 1256 // Also create the walker here. 1257 getWalker(); 1258 } 1259 1260 MemorySSA::~MemorySSA() { 1261 // Drop all our references 1262 for (const auto &Pair : PerBlockAccesses) 1263 for (MemoryAccess &MA : *Pair.second) 1264 MA.dropAllReferences(); 1265 } 1266 1267 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1268 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1269 1270 if (Res.second) 1271 Res.first->second = std::make_unique<AccessList>(); 1272 return Res.first->second.get(); 1273 } 1274 1275 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1276 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1277 1278 if (Res.second) 1279 Res.first->second = std::make_unique<DefsList>(); 1280 return Res.first->second.get(); 1281 } 1282 1283 namespace llvm { 1284 1285 /// This class is a batch walker of all MemoryUse's in the program, and points 1286 /// their defining access at the thing that actually clobbers them. Because it 1287 /// is a batch walker that touches everything, it does not operate like the 1288 /// other walkers. This walker is basically performing a top-down SSA renaming 1289 /// pass, where the version stack is used as the cache. This enables it to be 1290 /// significantly more time and memory efficient than using the regular walker, 1291 /// which is walking bottom-up. 1292 class MemorySSA::OptimizeUses { 1293 public: 1294 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1295 BatchAAResults *BAA, DominatorTree *DT) 1296 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1297 1298 void optimizeUses(); 1299 1300 private: 1301 /// This represents where a given memorylocation is in the stack. 1302 struct MemlocStackInfo { 1303 // This essentially is keeping track of versions of the stack. Whenever 1304 // the stack changes due to pushes or pops, these versions increase. 1305 unsigned long StackEpoch; 1306 unsigned long PopEpoch; 1307 // This is the lower bound of places on the stack to check. It is equal to 1308 // the place the last stack walk ended. 1309 // Note: Correctness depends on this being initialized to 0, which densemap 1310 // does 1311 unsigned long LowerBound; 1312 const BasicBlock *LowerBoundBlock; 1313 // This is where the last walk for this memory location ended. 1314 unsigned long LastKill; 1315 bool LastKillValid; 1316 Optional<AliasResult> AR; 1317 }; 1318 1319 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1320 SmallVectorImpl<MemoryAccess *> &, 1321 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1322 1323 MemorySSA *MSSA; 1324 CachingWalker<BatchAAResults> *Walker; 1325 BatchAAResults *AA; 1326 DominatorTree *DT; 1327 }; 1328 1329 } // end namespace llvm 1330 1331 /// Optimize the uses in a given block This is basically the SSA renaming 1332 /// algorithm, with one caveat: We are able to use a single stack for all 1333 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1334 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1335 /// going to be some position in that stack of possible ones. 1336 /// 1337 /// We track the stack positions that each MemoryLocation needs 1338 /// to check, and last ended at. This is because we only want to check the 1339 /// things that changed since last time. The same MemoryLocation should 1340 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1341 /// things like this, and if they start, we can modify MemoryLocOrCall to 1342 /// include relevant data) 1343 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1344 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1345 SmallVectorImpl<MemoryAccess *> &VersionStack, 1346 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1347 1348 /// If no accesses, nothing to do. 1349 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1350 if (Accesses == nullptr) 1351 return; 1352 1353 // Pop everything that doesn't dominate the current block off the stack, 1354 // increment the PopEpoch to account for this. 1355 while (true) { 1356 assert( 1357 !VersionStack.empty() && 1358 "Version stack should have liveOnEntry sentinel dominating everything"); 1359 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1360 if (DT->dominates(BackBlock, BB)) 1361 break; 1362 while (VersionStack.back()->getBlock() == BackBlock) 1363 VersionStack.pop_back(); 1364 ++PopEpoch; 1365 } 1366 1367 for (MemoryAccess &MA : *Accesses) { 1368 auto *MU = dyn_cast<MemoryUse>(&MA); 1369 if (!MU) { 1370 VersionStack.push_back(&MA); 1371 ++StackEpoch; 1372 continue; 1373 } 1374 1375 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1376 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1377 continue; 1378 } 1379 1380 MemoryLocOrCall UseMLOC(MU); 1381 auto &LocInfo = LocStackInfo[UseMLOC]; 1382 // If the pop epoch changed, it means we've removed stuff from top of 1383 // stack due to changing blocks. We may have to reset the lower bound or 1384 // last kill info. 1385 if (LocInfo.PopEpoch != PopEpoch) { 1386 LocInfo.PopEpoch = PopEpoch; 1387 LocInfo.StackEpoch = StackEpoch; 1388 // If the lower bound was in something that no longer dominates us, we 1389 // have to reset it. 1390 // We can't simply track stack size, because the stack may have had 1391 // pushes/pops in the meantime. 1392 // XXX: This is non-optimal, but only is slower cases with heavily 1393 // branching dominator trees. To get the optimal number of queries would 1394 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1395 // the top of that stack dominates us. This does not seem worth it ATM. 1396 // A much cheaper optimization would be to always explore the deepest 1397 // branch of the dominator tree first. This will guarantee this resets on 1398 // the smallest set of blocks. 1399 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1400 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1401 // Reset the lower bound of things to check. 1402 // TODO: Some day we should be able to reset to last kill, rather than 1403 // 0. 1404 LocInfo.LowerBound = 0; 1405 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1406 LocInfo.LastKillValid = false; 1407 } 1408 } else if (LocInfo.StackEpoch != StackEpoch) { 1409 // If all that has changed is the StackEpoch, we only have to check the 1410 // new things on the stack, because we've checked everything before. In 1411 // this case, the lower bound of things to check remains the same. 1412 LocInfo.PopEpoch = PopEpoch; 1413 LocInfo.StackEpoch = StackEpoch; 1414 } 1415 if (!LocInfo.LastKillValid) { 1416 LocInfo.LastKill = VersionStack.size() - 1; 1417 LocInfo.LastKillValid = true; 1418 LocInfo.AR = MayAlias; 1419 } 1420 1421 // At this point, we should have corrected last kill and LowerBound to be 1422 // in bounds. 1423 assert(LocInfo.LowerBound < VersionStack.size() && 1424 "Lower bound out of range"); 1425 assert(LocInfo.LastKill < VersionStack.size() && 1426 "Last kill info out of range"); 1427 // In any case, the new upper bound is the top of the stack. 1428 unsigned long UpperBound = VersionStack.size() - 1; 1429 1430 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1431 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1432 << *(MU->getMemoryInst()) << ")" 1433 << " because there are " 1434 << UpperBound - LocInfo.LowerBound 1435 << " stores to disambiguate\n"); 1436 // Because we did not walk, LastKill is no longer valid, as this may 1437 // have been a kill. 1438 LocInfo.LastKillValid = false; 1439 continue; 1440 } 1441 bool FoundClobberResult = false; 1442 unsigned UpwardWalkLimit = MaxCheckLimit; 1443 while (UpperBound > LocInfo.LowerBound) { 1444 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1445 // For phis, use the walker, see where we ended up, go there 1446 MemoryAccess *Result = 1447 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1448 // We are guaranteed to find it or something is wrong 1449 while (VersionStack[UpperBound] != Result) { 1450 assert(UpperBound != 0); 1451 --UpperBound; 1452 } 1453 FoundClobberResult = true; 1454 break; 1455 } 1456 1457 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1458 // If the lifetime of the pointer ends at this instruction, it's live on 1459 // entry. 1460 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1461 // Reset UpperBound to liveOnEntryDef's place in the stack 1462 UpperBound = 0; 1463 FoundClobberResult = true; 1464 LocInfo.AR = MustAlias; 1465 break; 1466 } 1467 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1468 if (CA.IsClobber) { 1469 FoundClobberResult = true; 1470 LocInfo.AR = CA.AR; 1471 break; 1472 } 1473 --UpperBound; 1474 } 1475 1476 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1477 1478 // At the end of this loop, UpperBound is either a clobber, or lower bound 1479 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1480 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1481 // We were last killed now by where we got to 1482 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1483 LocInfo.AR = None; 1484 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1485 LocInfo.LastKill = UpperBound; 1486 } else { 1487 // Otherwise, we checked all the new ones, and now we know we can get to 1488 // LastKill. 1489 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1490 } 1491 LocInfo.LowerBound = VersionStack.size() - 1; 1492 LocInfo.LowerBoundBlock = BB; 1493 } 1494 } 1495 1496 /// Optimize uses to point to their actual clobbering definitions. 1497 void MemorySSA::OptimizeUses::optimizeUses() { 1498 SmallVector<MemoryAccess *, 16> VersionStack; 1499 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1500 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1501 1502 unsigned long StackEpoch = 1; 1503 unsigned long PopEpoch = 1; 1504 // We perform a non-recursive top-down dominator tree walk. 1505 for (const auto *DomNode : depth_first(DT->getRootNode())) 1506 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1507 LocStackInfo); 1508 } 1509 1510 void MemorySSA::placePHINodes( 1511 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1512 // Determine where our MemoryPhi's should go 1513 ForwardIDFCalculator IDFs(*DT); 1514 IDFs.setDefiningBlocks(DefiningBlocks); 1515 SmallVector<BasicBlock *, 32> IDFBlocks; 1516 IDFs.calculate(IDFBlocks); 1517 1518 // Now place MemoryPhi nodes. 1519 for (auto &BB : IDFBlocks) 1520 createMemoryPhi(BB); 1521 } 1522 1523 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1524 // We create an access to represent "live on entry", for things like 1525 // arguments or users of globals, where the memory they use is defined before 1526 // the beginning of the function. We do not actually insert it into the IR. 1527 // We do not define a live on exit for the immediate uses, and thus our 1528 // semantics do *not* imply that something with no immediate uses can simply 1529 // be removed. 1530 BasicBlock &StartingPoint = F.getEntryBlock(); 1531 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1532 &StartingPoint, NextID++)); 1533 1534 // We maintain lists of memory accesses per-block, trading memory for time. We 1535 // could just look up the memory access for every possible instruction in the 1536 // stream. 1537 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1538 // Go through each block, figure out where defs occur, and chain together all 1539 // the accesses. 1540 for (BasicBlock &B : F) { 1541 bool InsertIntoDef = false; 1542 AccessList *Accesses = nullptr; 1543 DefsList *Defs = nullptr; 1544 for (Instruction &I : B) { 1545 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1546 if (!MUD) 1547 continue; 1548 1549 if (!Accesses) 1550 Accesses = getOrCreateAccessList(&B); 1551 Accesses->push_back(MUD); 1552 if (isa<MemoryDef>(MUD)) { 1553 InsertIntoDef = true; 1554 if (!Defs) 1555 Defs = getOrCreateDefsList(&B); 1556 Defs->push_back(*MUD); 1557 } 1558 } 1559 if (InsertIntoDef) 1560 DefiningBlocks.insert(&B); 1561 } 1562 placePHINodes(DefiningBlocks); 1563 1564 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1565 // filled in with all blocks. 1566 SmallPtrSet<BasicBlock *, 16> Visited; 1567 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1568 1569 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1570 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1571 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1572 1573 // Mark the uses in unreachable blocks as live on entry, so that they go 1574 // somewhere. 1575 for (auto &BB : F) 1576 if (!Visited.count(&BB)) 1577 markUnreachableAsLiveOnEntry(&BB); 1578 } 1579 1580 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1581 1582 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1583 if (Walker) 1584 return Walker.get(); 1585 1586 if (!WalkerBase) 1587 WalkerBase = 1588 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1589 1590 Walker = 1591 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1592 return Walker.get(); 1593 } 1594 1595 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1596 if (SkipWalker) 1597 return SkipWalker.get(); 1598 1599 if (!WalkerBase) 1600 WalkerBase = 1601 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1602 1603 SkipWalker = 1604 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1605 return SkipWalker.get(); 1606 } 1607 1608 1609 // This is a helper function used by the creation routines. It places NewAccess 1610 // into the access and defs lists for a given basic block, at the given 1611 // insertion point. 1612 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1613 const BasicBlock *BB, 1614 InsertionPlace Point) { 1615 auto *Accesses = getOrCreateAccessList(BB); 1616 if (Point == Beginning) { 1617 // If it's a phi node, it goes first, otherwise, it goes after any phi 1618 // nodes. 1619 if (isa<MemoryPhi>(NewAccess)) { 1620 Accesses->push_front(NewAccess); 1621 auto *Defs = getOrCreateDefsList(BB); 1622 Defs->push_front(*NewAccess); 1623 } else { 1624 auto AI = find_if_not( 1625 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1626 Accesses->insert(AI, NewAccess); 1627 if (!isa<MemoryUse>(NewAccess)) { 1628 auto *Defs = getOrCreateDefsList(BB); 1629 auto DI = find_if_not( 1630 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1631 Defs->insert(DI, *NewAccess); 1632 } 1633 } 1634 } else { 1635 Accesses->push_back(NewAccess); 1636 if (!isa<MemoryUse>(NewAccess)) { 1637 auto *Defs = getOrCreateDefsList(BB); 1638 Defs->push_back(*NewAccess); 1639 } 1640 } 1641 BlockNumberingValid.erase(BB); 1642 } 1643 1644 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1645 AccessList::iterator InsertPt) { 1646 auto *Accesses = getWritableBlockAccesses(BB); 1647 bool WasEnd = InsertPt == Accesses->end(); 1648 Accesses->insert(AccessList::iterator(InsertPt), What); 1649 if (!isa<MemoryUse>(What)) { 1650 auto *Defs = getOrCreateDefsList(BB); 1651 // If we got asked to insert at the end, we have an easy job, just shove it 1652 // at the end. If we got asked to insert before an existing def, we also get 1653 // an iterator. If we got asked to insert before a use, we have to hunt for 1654 // the next def. 1655 if (WasEnd) { 1656 Defs->push_back(*What); 1657 } else if (isa<MemoryDef>(InsertPt)) { 1658 Defs->insert(InsertPt->getDefsIterator(), *What); 1659 } else { 1660 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1661 ++InsertPt; 1662 // Either we found a def, or we are inserting at the end 1663 if (InsertPt == Accesses->end()) 1664 Defs->push_back(*What); 1665 else 1666 Defs->insert(InsertPt->getDefsIterator(), *What); 1667 } 1668 } 1669 BlockNumberingValid.erase(BB); 1670 } 1671 1672 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1673 // Keep it in the lookup tables, remove from the lists 1674 removeFromLists(What, false); 1675 1676 // Note that moving should implicitly invalidate the optimized state of a 1677 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1678 // MemoryDef. 1679 if (auto *MD = dyn_cast<MemoryDef>(What)) 1680 MD->resetOptimized(); 1681 What->setBlock(BB); 1682 } 1683 1684 // Move What before Where in the IR. The end result is that What will belong to 1685 // the right lists and have the right Block set, but will not otherwise be 1686 // correct. It will not have the right defining access, and if it is a def, 1687 // things below it will not properly be updated. 1688 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1689 AccessList::iterator Where) { 1690 prepareForMoveTo(What, BB); 1691 insertIntoListsBefore(What, BB, Where); 1692 } 1693 1694 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1695 InsertionPlace Point) { 1696 if (isa<MemoryPhi>(What)) { 1697 assert(Point == Beginning && 1698 "Can only move a Phi at the beginning of the block"); 1699 // Update lookup table entry 1700 ValueToMemoryAccess.erase(What->getBlock()); 1701 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1702 (void)Inserted; 1703 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1704 } 1705 1706 prepareForMoveTo(What, BB); 1707 insertIntoListsForBlock(What, BB, Point); 1708 } 1709 1710 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1711 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1712 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1713 // Phi's always are placed at the front of the block. 1714 insertIntoListsForBlock(Phi, BB, Beginning); 1715 ValueToMemoryAccess[BB] = Phi; 1716 return Phi; 1717 } 1718 1719 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1720 MemoryAccess *Definition, 1721 const MemoryUseOrDef *Template, 1722 bool CreationMustSucceed) { 1723 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1724 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1725 if (CreationMustSucceed) 1726 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1727 "non-memory touching instruction"); 1728 if (NewAccess) { 1729 assert((!Definition || !isa<MemoryUse>(Definition)) && 1730 "A use cannot be a defining access"); 1731 NewAccess->setDefiningAccess(Definition); 1732 } 1733 return NewAccess; 1734 } 1735 1736 // Return true if the instruction has ordering constraints. 1737 // Note specifically that this only considers stores and loads 1738 // because others are still considered ModRef by getModRefInfo. 1739 static inline bool isOrdered(const Instruction *I) { 1740 if (auto *SI = dyn_cast<StoreInst>(I)) { 1741 if (!SI->isUnordered()) 1742 return true; 1743 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1744 if (!LI->isUnordered()) 1745 return true; 1746 } 1747 return false; 1748 } 1749 1750 /// Helper function to create new memory accesses 1751 template <typename AliasAnalysisType> 1752 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1753 AliasAnalysisType *AAP, 1754 const MemoryUseOrDef *Template) { 1755 // The assume intrinsic has a control dependency which we model by claiming 1756 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1757 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1758 // dependencies here. 1759 // FIXME: Replace this special casing with a more accurate modelling of 1760 // assume's control dependency. 1761 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1762 if (II->getIntrinsicID() == Intrinsic::assume) 1763 return nullptr; 1764 1765 // Using a nonstandard AA pipelines might leave us with unexpected modref 1766 // results for I, so add a check to not model instructions that may not read 1767 // from or write to memory. This is necessary for correctness. 1768 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1769 return nullptr; 1770 1771 bool Def, Use; 1772 if (Template) { 1773 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1774 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1775 #if !defined(NDEBUG) 1776 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1777 bool DefCheck, UseCheck; 1778 DefCheck = isModSet(ModRef) || isOrdered(I); 1779 UseCheck = isRefSet(ModRef); 1780 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1781 #endif 1782 } else { 1783 // Find out what affect this instruction has on memory. 1784 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1785 // The isOrdered check is used to ensure that volatiles end up as defs 1786 // (atomics end up as ModRef right now anyway). Until we separate the 1787 // ordering chain from the memory chain, this enables people to see at least 1788 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1789 // will still give an answer that bypasses other volatile loads. TODO: 1790 // Separate memory aliasing and ordering into two different chains so that 1791 // we can precisely represent both "what memory will this read/write/is 1792 // clobbered by" and "what instructions can I move this past". 1793 Def = isModSet(ModRef) || isOrdered(I); 1794 Use = isRefSet(ModRef); 1795 } 1796 1797 // It's possible for an instruction to not modify memory at all. During 1798 // construction, we ignore them. 1799 if (!Def && !Use) 1800 return nullptr; 1801 1802 MemoryUseOrDef *MUD; 1803 if (Def) 1804 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1805 else 1806 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1807 ValueToMemoryAccess[I] = MUD; 1808 return MUD; 1809 } 1810 1811 /// Returns true if \p Replacer dominates \p Replacee . 1812 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1813 const MemoryAccess *Replacee) const { 1814 if (isa<MemoryUseOrDef>(Replacee)) 1815 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1816 const auto *MP = cast<MemoryPhi>(Replacee); 1817 // For a phi node, the use occurs in the predecessor block of the phi node. 1818 // Since we may occur multiple times in the phi node, we have to check each 1819 // operand to ensure Replacer dominates each operand where Replacee occurs. 1820 for (const Use &Arg : MP->operands()) { 1821 if (Arg.get() != Replacee && 1822 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1823 return false; 1824 } 1825 return true; 1826 } 1827 1828 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1829 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1830 assert(MA->use_empty() && 1831 "Trying to remove memory access that still has uses"); 1832 BlockNumbering.erase(MA); 1833 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1834 MUD->setDefiningAccess(nullptr); 1835 // Invalidate our walker's cache if necessary 1836 if (!isa<MemoryUse>(MA)) 1837 getWalker()->invalidateInfo(MA); 1838 1839 Value *MemoryInst; 1840 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1841 MemoryInst = MUD->getMemoryInst(); 1842 else 1843 MemoryInst = MA->getBlock(); 1844 1845 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1846 if (VMA->second == MA) 1847 ValueToMemoryAccess.erase(VMA); 1848 } 1849 1850 /// Properly remove \p MA from all of MemorySSA's lists. 1851 /// 1852 /// Because of the way the intrusive list and use lists work, it is important to 1853 /// do removal in the right order. 1854 /// ShouldDelete defaults to true, and will cause the memory access to also be 1855 /// deleted, not just removed. 1856 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1857 BasicBlock *BB = MA->getBlock(); 1858 // The access list owns the reference, so we erase it from the non-owning list 1859 // first. 1860 if (!isa<MemoryUse>(MA)) { 1861 auto DefsIt = PerBlockDefs.find(BB); 1862 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1863 Defs->remove(*MA); 1864 if (Defs->empty()) 1865 PerBlockDefs.erase(DefsIt); 1866 } 1867 1868 // The erase call here will delete it. If we don't want it deleted, we call 1869 // remove instead. 1870 auto AccessIt = PerBlockAccesses.find(BB); 1871 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1872 if (ShouldDelete) 1873 Accesses->erase(MA); 1874 else 1875 Accesses->remove(MA); 1876 1877 if (Accesses->empty()) { 1878 PerBlockAccesses.erase(AccessIt); 1879 BlockNumberingValid.erase(BB); 1880 } 1881 } 1882 1883 void MemorySSA::print(raw_ostream &OS) const { 1884 MemorySSAAnnotatedWriter Writer(this); 1885 F.print(OS, &Writer); 1886 } 1887 1888 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1889 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1890 #endif 1891 1892 void MemorySSA::verifyMemorySSA() const { 1893 verifyOrderingDominationAndDefUses(F); 1894 verifyDominationNumbers(F); 1895 verifyPrevDefInPhis(F); 1896 // Previously, the verification used to also verify that the clobberingAccess 1897 // cached by MemorySSA is the same as the clobberingAccess found at a later 1898 // query to AA. This does not hold true in general due to the current fragility 1899 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1900 // up. As a result, transformations that are correct, will lead to BasicAA 1901 // returning different Alias answers before and after that transformation. 1902 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1903 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1904 // every transformation, which defeats the purpose of using it. For such an 1905 // example, see test4 added in D51960. 1906 } 1907 1908 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1909 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1910 for (const BasicBlock &BB : F) { 1911 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1912 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1913 auto *Pred = Phi->getIncomingBlock(I); 1914 auto *IncAcc = Phi->getIncomingValue(I); 1915 // If Pred has no unreachable predecessors, get last def looking at 1916 // IDoms. If, while walkings IDoms, any of these has an unreachable 1917 // predecessor, then the incoming def can be any access. 1918 if (auto *DTNode = DT->getNode(Pred)) { 1919 while (DTNode) { 1920 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1921 auto *LastAcc = &*(--DefList->end()); 1922 assert(LastAcc == IncAcc && 1923 "Incorrect incoming access into phi."); 1924 break; 1925 } 1926 DTNode = DTNode->getIDom(); 1927 } 1928 } else { 1929 // If Pred has unreachable predecessors, but has at least a Def, the 1930 // incoming access can be the last Def in Pred, or it could have been 1931 // optimized to LoE. After an update, though, the LoE may have been 1932 // replaced by another access, so IncAcc may be any access. 1933 // If Pred has unreachable predecessors and no Defs, incoming access 1934 // should be LoE; However, after an update, it may be any access. 1935 } 1936 } 1937 } 1938 } 1939 #endif 1940 } 1941 1942 /// Verify that all of the blocks we believe to have valid domination numbers 1943 /// actually have valid domination numbers. 1944 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1945 #ifndef NDEBUG 1946 if (BlockNumberingValid.empty()) 1947 return; 1948 1949 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1950 for (const BasicBlock &BB : F) { 1951 if (!ValidBlocks.count(&BB)) 1952 continue; 1953 1954 ValidBlocks.erase(&BB); 1955 1956 const AccessList *Accesses = getBlockAccesses(&BB); 1957 // It's correct to say an empty block has valid numbering. 1958 if (!Accesses) 1959 continue; 1960 1961 // Block numbering starts at 1. 1962 unsigned long LastNumber = 0; 1963 for (const MemoryAccess &MA : *Accesses) { 1964 auto ThisNumberIter = BlockNumbering.find(&MA); 1965 assert(ThisNumberIter != BlockNumbering.end() && 1966 "MemoryAccess has no domination number in a valid block!"); 1967 1968 unsigned long ThisNumber = ThisNumberIter->second; 1969 assert(ThisNumber > LastNumber && 1970 "Domination numbers should be strictly increasing!"); 1971 LastNumber = ThisNumber; 1972 } 1973 } 1974 1975 assert(ValidBlocks.empty() && 1976 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1977 #endif 1978 } 1979 1980 /// Verify ordering: the order and existence of MemoryAccesses matches the 1981 /// order and existence of memory affecting instructions. 1982 /// Verify domination: each definition dominates all of its uses. 1983 /// Verify def-uses: the immediate use information - walk all the memory 1984 /// accesses and verifying that, for each use, it appears in the appropriate 1985 /// def's use list 1986 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1987 #if !defined(NDEBUG) 1988 // Walk all the blocks, comparing what the lookups think and what the access 1989 // lists think, as well as the order in the blocks vs the order in the access 1990 // lists. 1991 SmallVector<MemoryAccess *, 32> ActualAccesses; 1992 SmallVector<MemoryAccess *, 32> ActualDefs; 1993 for (BasicBlock &B : F) { 1994 const AccessList *AL = getBlockAccesses(&B); 1995 const auto *DL = getBlockDefs(&B); 1996 MemoryPhi *Phi = getMemoryAccess(&B); 1997 if (Phi) { 1998 // Verify ordering. 1999 ActualAccesses.push_back(Phi); 2000 ActualDefs.push_back(Phi); 2001 // Verify domination 2002 for (const Use &U : Phi->uses()) 2003 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2004 #if defined(EXPENSIVE_CHECKS) 2005 // Verify def-uses. 2006 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2007 pred_begin(&B), pred_end(&B))) && 2008 "Incomplete MemoryPhi Node"); 2009 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2010 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2011 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2012 pred_end(&B) && 2013 "Incoming phi block not a block predecessor"); 2014 } 2015 #endif 2016 } 2017 2018 for (Instruction &I : B) { 2019 MemoryUseOrDef *MA = getMemoryAccess(&I); 2020 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2021 "We have memory affecting instructions " 2022 "in this block but they are not in the " 2023 "access list or defs list"); 2024 if (MA) { 2025 // Verify ordering. 2026 ActualAccesses.push_back(MA); 2027 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2028 // Verify ordering. 2029 ActualDefs.push_back(MA); 2030 // Verify domination. 2031 for (const Use &U : MD->uses()) 2032 assert(dominates(MD, U) && 2033 "Memory Def does not dominate it's uses"); 2034 } 2035 #if defined(EXPENSIVE_CHECKS) 2036 // Verify def-uses. 2037 verifyUseInDefs(MA->getDefiningAccess(), MA); 2038 #endif 2039 } 2040 } 2041 // Either we hit the assert, really have no accesses, or we have both 2042 // accesses and an access list. Same with defs. 2043 if (!AL && !DL) 2044 continue; 2045 // Verify ordering. 2046 assert(AL->size() == ActualAccesses.size() && 2047 "We don't have the same number of accesses in the block as on the " 2048 "access list"); 2049 assert((DL || ActualDefs.size() == 0) && 2050 "Either we should have a defs list, or we should have no defs"); 2051 assert((!DL || DL->size() == ActualDefs.size()) && 2052 "We don't have the same number of defs in the block as on the " 2053 "def list"); 2054 auto ALI = AL->begin(); 2055 auto AAI = ActualAccesses.begin(); 2056 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2057 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2058 ++ALI; 2059 ++AAI; 2060 } 2061 ActualAccesses.clear(); 2062 if (DL) { 2063 auto DLI = DL->begin(); 2064 auto ADI = ActualDefs.begin(); 2065 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2066 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2067 ++DLI; 2068 ++ADI; 2069 } 2070 } 2071 ActualDefs.clear(); 2072 } 2073 #endif 2074 } 2075 2076 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2077 /// appears in the use list of \p Def. 2078 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2079 #ifndef NDEBUG 2080 // The live on entry use may cause us to get a NULL def here 2081 if (!Def) 2082 assert(isLiveOnEntryDef(Use) && 2083 "Null def but use not point to live on entry def"); 2084 else 2085 assert(is_contained(Def->users(), Use) && 2086 "Did not find use in def's use list"); 2087 #endif 2088 } 2089 2090 /// Perform a local numbering on blocks so that instruction ordering can be 2091 /// determined in constant time. 2092 /// TODO: We currently just number in order. If we numbered by N, we could 2093 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2094 /// log2(N) sequences of mixed before and after) without needing to invalidate 2095 /// the numbering. 2096 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2097 // The pre-increment ensures the numbers really start at 1. 2098 unsigned long CurrentNumber = 0; 2099 const AccessList *AL = getBlockAccesses(B); 2100 assert(AL != nullptr && "Asking to renumber an empty block"); 2101 for (const auto &I : *AL) 2102 BlockNumbering[&I] = ++CurrentNumber; 2103 BlockNumberingValid.insert(B); 2104 } 2105 2106 /// Determine, for two memory accesses in the same block, 2107 /// whether \p Dominator dominates \p Dominatee. 2108 /// \returns True if \p Dominator dominates \p Dominatee. 2109 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2110 const MemoryAccess *Dominatee) const { 2111 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2112 2113 assert((DominatorBlock == Dominatee->getBlock()) && 2114 "Asking for local domination when accesses are in different blocks!"); 2115 // A node dominates itself. 2116 if (Dominatee == Dominator) 2117 return true; 2118 2119 // When Dominatee is defined on function entry, it is not dominated by another 2120 // memory access. 2121 if (isLiveOnEntryDef(Dominatee)) 2122 return false; 2123 2124 // When Dominator is defined on function entry, it dominates the other memory 2125 // access. 2126 if (isLiveOnEntryDef(Dominator)) 2127 return true; 2128 2129 if (!BlockNumberingValid.count(DominatorBlock)) 2130 renumberBlock(DominatorBlock); 2131 2132 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2133 // All numbers start with 1 2134 assert(DominatorNum != 0 && "Block was not numbered properly"); 2135 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2136 assert(DominateeNum != 0 && "Block was not numbered properly"); 2137 return DominatorNum < DominateeNum; 2138 } 2139 2140 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2141 const MemoryAccess *Dominatee) const { 2142 if (Dominator == Dominatee) 2143 return true; 2144 2145 if (isLiveOnEntryDef(Dominatee)) 2146 return false; 2147 2148 if (Dominator->getBlock() != Dominatee->getBlock()) 2149 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2150 return locallyDominates(Dominator, Dominatee); 2151 } 2152 2153 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2154 const Use &Dominatee) const { 2155 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2156 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2157 // The def must dominate the incoming block of the phi. 2158 if (UseBB != Dominator->getBlock()) 2159 return DT->dominates(Dominator->getBlock(), UseBB); 2160 // If the UseBB and the DefBB are the same, compare locally. 2161 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2162 } 2163 // If it's not a PHI node use, the normal dominates can already handle it. 2164 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2165 } 2166 2167 const static char LiveOnEntryStr[] = "liveOnEntry"; 2168 2169 void MemoryAccess::print(raw_ostream &OS) const { 2170 switch (getValueID()) { 2171 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2172 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2173 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2174 } 2175 llvm_unreachable("invalid value id"); 2176 } 2177 2178 void MemoryDef::print(raw_ostream &OS) const { 2179 MemoryAccess *UO = getDefiningAccess(); 2180 2181 auto printID = [&OS](MemoryAccess *A) { 2182 if (A && A->getID()) 2183 OS << A->getID(); 2184 else 2185 OS << LiveOnEntryStr; 2186 }; 2187 2188 OS << getID() << " = MemoryDef("; 2189 printID(UO); 2190 OS << ")"; 2191 2192 if (isOptimized()) { 2193 OS << "->"; 2194 printID(getOptimized()); 2195 2196 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2197 OS << " " << *AR; 2198 } 2199 } 2200 2201 void MemoryPhi::print(raw_ostream &OS) const { 2202 bool First = true; 2203 OS << getID() << " = MemoryPhi("; 2204 for (const auto &Op : operands()) { 2205 BasicBlock *BB = getIncomingBlock(Op); 2206 MemoryAccess *MA = cast<MemoryAccess>(Op); 2207 if (!First) 2208 OS << ','; 2209 else 2210 First = false; 2211 2212 OS << '{'; 2213 if (BB->hasName()) 2214 OS << BB->getName(); 2215 else 2216 BB->printAsOperand(OS, false); 2217 OS << ','; 2218 if (unsigned ID = MA->getID()) 2219 OS << ID; 2220 else 2221 OS << LiveOnEntryStr; 2222 OS << '}'; 2223 } 2224 OS << ')'; 2225 } 2226 2227 void MemoryUse::print(raw_ostream &OS) const { 2228 MemoryAccess *UO = getDefiningAccess(); 2229 OS << "MemoryUse("; 2230 if (UO && UO->getID()) 2231 OS << UO->getID(); 2232 else 2233 OS << LiveOnEntryStr; 2234 OS << ')'; 2235 2236 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2237 OS << " " << *AR; 2238 } 2239 2240 void MemoryAccess::dump() const { 2241 // Cannot completely remove virtual function even in release mode. 2242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2243 print(dbgs()); 2244 dbgs() << "\n"; 2245 #endif 2246 } 2247 2248 char MemorySSAPrinterLegacyPass::ID = 0; 2249 2250 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2251 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2252 } 2253 2254 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2255 AU.setPreservesAll(); 2256 AU.addRequired<MemorySSAWrapperPass>(); 2257 } 2258 2259 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2260 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2261 MSSA.print(dbgs()); 2262 if (VerifyMemorySSA) 2263 MSSA.verifyMemorySSA(); 2264 return false; 2265 } 2266 2267 AnalysisKey MemorySSAAnalysis::Key; 2268 2269 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2270 FunctionAnalysisManager &AM) { 2271 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2272 auto &AA = AM.getResult<AAManager>(F); 2273 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2274 } 2275 2276 bool MemorySSAAnalysis::Result::invalidate( 2277 Function &F, const PreservedAnalyses &PA, 2278 FunctionAnalysisManager::Invalidator &Inv) { 2279 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2280 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2281 Inv.invalidate<AAManager>(F, PA) || 2282 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2283 } 2284 2285 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2286 FunctionAnalysisManager &AM) { 2287 OS << "MemorySSA for function: " << F.getName() << "\n"; 2288 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2289 2290 return PreservedAnalyses::all(); 2291 } 2292 2293 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2294 FunctionAnalysisManager &AM) { 2295 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2296 2297 return PreservedAnalyses::all(); 2298 } 2299 2300 char MemorySSAWrapperPass::ID = 0; 2301 2302 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2303 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2304 } 2305 2306 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2307 2308 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2309 AU.setPreservesAll(); 2310 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2311 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2312 } 2313 2314 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2315 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2316 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2317 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2318 return false; 2319 } 2320 2321 void MemorySSAWrapperPass::verifyAnalysis() const { 2322 if (VerifyMemorySSA) 2323 MSSA->verifyMemorySSA(); 2324 } 2325 2326 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2327 MSSA->print(OS); 2328 } 2329 2330 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2331 2332 /// Walk the use-def chains starting at \p StartingAccess and find 2333 /// the MemoryAccess that actually clobbers Loc. 2334 /// 2335 /// \returns our clobbering memory access 2336 template <typename AliasAnalysisType> 2337 MemoryAccess * 2338 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2339 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2340 unsigned &UpwardWalkLimit) { 2341 if (isa<MemoryPhi>(StartingAccess)) 2342 return StartingAccess; 2343 2344 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2345 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2346 return StartingUseOrDef; 2347 2348 Instruction *I = StartingUseOrDef->getMemoryInst(); 2349 2350 // Conservatively, fences are always clobbers, so don't perform the walk if we 2351 // hit a fence. 2352 if (!isa<CallBase>(I) && I->isFenceLike()) 2353 return StartingUseOrDef; 2354 2355 UpwardsMemoryQuery Q; 2356 Q.OriginalAccess = StartingUseOrDef; 2357 Q.StartingLoc = Loc; 2358 Q.Inst = nullptr; 2359 Q.IsCall = false; 2360 2361 // Unlike the other function, do not walk to the def of a def, because we are 2362 // handed something we already believe is the clobbering access. 2363 // We never set SkipSelf to true in Q in this method. 2364 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2365 ? StartingUseOrDef->getDefiningAccess() 2366 : StartingUseOrDef; 2367 2368 MemoryAccess *Clobber = 2369 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2370 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2371 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2372 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2373 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2374 return Clobber; 2375 } 2376 2377 template <typename AliasAnalysisType> 2378 MemoryAccess * 2379 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2380 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2381 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2382 // If this is a MemoryPhi, we can't do anything. 2383 if (!StartingAccess) 2384 return MA; 2385 2386 bool IsOptimized = false; 2387 2388 // If this is an already optimized use or def, return the optimized result. 2389 // Note: Currently, we store the optimized def result in a separate field, 2390 // since we can't use the defining access. 2391 if (StartingAccess->isOptimized()) { 2392 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2393 return StartingAccess->getOptimized(); 2394 IsOptimized = true; 2395 } 2396 2397 const Instruction *I = StartingAccess->getMemoryInst(); 2398 // We can't sanely do anything with a fence, since they conservatively clobber 2399 // all memory, and have no locations to get pointers from to try to 2400 // disambiguate. 2401 if (!isa<CallBase>(I) && I->isFenceLike()) 2402 return StartingAccess; 2403 2404 UpwardsMemoryQuery Q(I, StartingAccess); 2405 2406 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2407 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2408 StartingAccess->setOptimized(LiveOnEntry); 2409 StartingAccess->setOptimizedAccessType(None); 2410 return LiveOnEntry; 2411 } 2412 2413 MemoryAccess *OptimizedAccess; 2414 if (!IsOptimized) { 2415 // Start with the thing we already think clobbers this location 2416 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2417 2418 // At this point, DefiningAccess may be the live on entry def. 2419 // If it is, we will not get a better result. 2420 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2421 StartingAccess->setOptimized(DefiningAccess); 2422 StartingAccess->setOptimizedAccessType(None); 2423 return DefiningAccess; 2424 } 2425 2426 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2427 StartingAccess->setOptimized(OptimizedAccess); 2428 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2429 StartingAccess->setOptimizedAccessType(None); 2430 else if (Q.AR == MustAlias) 2431 StartingAccess->setOptimizedAccessType(MustAlias); 2432 } else 2433 OptimizedAccess = StartingAccess->getOptimized(); 2434 2435 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2436 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2437 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2438 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2439 2440 MemoryAccess *Result; 2441 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2442 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2443 assert(isa<MemoryDef>(Q.OriginalAccess)); 2444 Q.SkipSelfAccess = true; 2445 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2446 } else 2447 Result = OptimizedAccess; 2448 2449 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2450 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2451 2452 return Result; 2453 } 2454 2455 MemoryAccess * 2456 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2457 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2458 return Use->getDefiningAccess(); 2459 return MA; 2460 } 2461 2462 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2463 MemoryAccess *StartingAccess, const MemoryLocation &) { 2464 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2465 return Use->getDefiningAccess(); 2466 return StartingAccess; 2467 } 2468 2469 void MemoryPhi::deleteMe(DerivedUser *Self) { 2470 delete static_cast<MemoryPhi *>(Self); 2471 } 2472 2473 void MemoryDef::deleteMe(DerivedUser *Self) { 2474 delete static_cast<MemoryDef *>(Self); 2475 } 2476 2477 void MemoryUse::deleteMe(DerivedUser *Self) { 2478 delete static_cast<MemoryUse *>(Self); 2479 } 2480