1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <memory> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "memoryssa" 59 60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 61 true) 62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 64 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 65 true) 66 67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 68 "Memory SSA Printer", false, false) 69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 71 "Memory SSA Printer", false, false) 72 73 static cl::opt<unsigned> MaxCheckLimit( 74 "memssa-check-limit", cl::Hidden, cl::init(100), 75 cl::desc("The maximum number of stores/phis MemorySSA" 76 "will consider trying to walk past (default = 100)")); 77 78 // Always verify MemorySSA if expensive checking is enabled. 79 #ifdef EXPENSIVE_CHECKS 80 bool llvm::VerifyMemorySSA = true; 81 #else 82 bool llvm::VerifyMemorySSA = false; 83 #endif 84 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 85 cl::opt<bool> llvm::EnableMSSALoopDependency( 86 "enable-mssa-loop-dependency", cl::Hidden, cl::init(false), 87 cl::desc("Enable MemorySSA dependency for loop pass manager")); 88 89 static cl::opt<bool, true> 90 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 91 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 92 93 namespace llvm { 94 95 /// An assembly annotator class to print Memory SSA information in 96 /// comments. 97 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 98 friend class MemorySSA; 99 100 const MemorySSA *MSSA; 101 102 public: 103 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 104 105 void emitBasicBlockStartAnnot(const BasicBlock *BB, 106 formatted_raw_ostream &OS) override { 107 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 108 OS << "; " << *MA << "\n"; 109 } 110 111 void emitInstructionAnnot(const Instruction *I, 112 formatted_raw_ostream &OS) override { 113 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 114 OS << "; " << *MA << "\n"; 115 } 116 }; 117 118 } // end namespace llvm 119 120 namespace { 121 122 /// Our current alias analysis API differentiates heavily between calls and 123 /// non-calls, and functions called on one usually assert on the other. 124 /// This class encapsulates the distinction to simplify other code that wants 125 /// "Memory affecting instructions and related data" to use as a key. 126 /// For example, this class is used as a densemap key in the use optimizer. 127 class MemoryLocOrCall { 128 public: 129 bool IsCall = false; 130 131 MemoryLocOrCall(MemoryUseOrDef *MUD) 132 : MemoryLocOrCall(MUD->getMemoryInst()) {} 133 MemoryLocOrCall(const MemoryUseOrDef *MUD) 134 : MemoryLocOrCall(MUD->getMemoryInst()) {} 135 136 MemoryLocOrCall(Instruction *Inst) { 137 if (auto *C = dyn_cast<CallBase>(Inst)) { 138 IsCall = true; 139 Call = C; 140 } else { 141 IsCall = false; 142 // There is no such thing as a memorylocation for a fence inst, and it is 143 // unique in that regard. 144 if (!isa<FenceInst>(Inst)) 145 Loc = MemoryLocation::get(Inst); 146 } 147 } 148 149 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 150 151 const CallBase *getCall() const { 152 assert(IsCall); 153 return Call; 154 } 155 156 MemoryLocation getLoc() const { 157 assert(!IsCall); 158 return Loc; 159 } 160 161 bool operator==(const MemoryLocOrCall &Other) const { 162 if (IsCall != Other.IsCall) 163 return false; 164 165 if (!IsCall) 166 return Loc == Other.Loc; 167 168 if (Call->getCalledValue() != Other.Call->getCalledValue()) 169 return false; 170 171 return Call->arg_size() == Other.Call->arg_size() && 172 std::equal(Call->arg_begin(), Call->arg_end(), 173 Other.Call->arg_begin()); 174 } 175 176 private: 177 union { 178 const CallBase *Call; 179 MemoryLocation Loc; 180 }; 181 }; 182 183 } // end anonymous namespace 184 185 namespace llvm { 186 187 template <> struct DenseMapInfo<MemoryLocOrCall> { 188 static inline MemoryLocOrCall getEmptyKey() { 189 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 190 } 191 192 static inline MemoryLocOrCall getTombstoneKey() { 193 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 194 } 195 196 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 197 if (!MLOC.IsCall) 198 return hash_combine( 199 MLOC.IsCall, 200 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 201 202 hash_code hash = 203 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 204 MLOC.getCall()->getCalledValue())); 205 206 for (const Value *Arg : MLOC.getCall()->args()) 207 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 208 return hash; 209 } 210 211 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 212 return LHS == RHS; 213 } 214 }; 215 216 } // end namespace llvm 217 218 /// This does one-way checks to see if Use could theoretically be hoisted above 219 /// MayClobber. This will not check the other way around. 220 /// 221 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 222 /// MayClobber, with no potentially clobbering operations in between them. 223 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 224 static bool areLoadsReorderable(const LoadInst *Use, 225 const LoadInst *MayClobber) { 226 bool VolatileUse = Use->isVolatile(); 227 bool VolatileClobber = MayClobber->isVolatile(); 228 // Volatile operations may never be reordered with other volatile operations. 229 if (VolatileUse && VolatileClobber) 230 return false; 231 // Otherwise, volatile doesn't matter here. From the language reference: 232 // 'optimizers may change the order of volatile operations relative to 233 // non-volatile operations.'" 234 235 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 236 // is weaker, it can be moved above other loads. We just need to be sure that 237 // MayClobber isn't an acquire load, because loads can't be moved above 238 // acquire loads. 239 // 240 // Note that this explicitly *does* allow the free reordering of monotonic (or 241 // weaker) loads of the same address. 242 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 243 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 244 AtomicOrdering::Acquire); 245 return !(SeqCstUse || MayClobberIsAcquire); 246 } 247 248 namespace { 249 250 struct ClobberAlias { 251 bool IsClobber; 252 Optional<AliasResult> AR; 253 }; 254 255 } // end anonymous namespace 256 257 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 258 // ignored if IsClobber = false. 259 template <typename AliasAnalysisType> 260 static ClobberAlias 261 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 262 const Instruction *UseInst, AliasAnalysisType &AA) { 263 Instruction *DefInst = MD->getMemoryInst(); 264 assert(DefInst && "Defining instruction not actually an instruction"); 265 const auto *UseCall = dyn_cast<CallBase>(UseInst); 266 Optional<AliasResult> AR; 267 268 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 269 // These intrinsics will show up as affecting memory, but they are just 270 // markers, mostly. 271 // 272 // FIXME: We probably don't actually want MemorySSA to model these at all 273 // (including creating MemoryAccesses for them): we just end up inventing 274 // clobbers where they don't really exist at all. Please see D43269 for 275 // context. 276 switch (II->getIntrinsicID()) { 277 case Intrinsic::lifetime_start: 278 if (UseCall) 279 return {false, NoAlias}; 280 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 281 return {AR != NoAlias, AR}; 282 case Intrinsic::lifetime_end: 283 case Intrinsic::invariant_start: 284 case Intrinsic::invariant_end: 285 case Intrinsic::assume: 286 return {false, NoAlias}; 287 default: 288 break; 289 } 290 } 291 292 if (UseCall) { 293 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 294 AR = isMustSet(I) ? MustAlias : MayAlias; 295 return {isModOrRefSet(I), AR}; 296 } 297 298 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 299 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 300 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 301 302 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 303 AR = isMustSet(I) ? MustAlias : MayAlias; 304 return {isModSet(I), AR}; 305 } 306 307 template <typename AliasAnalysisType> 308 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 309 const MemoryUseOrDef *MU, 310 const MemoryLocOrCall &UseMLOC, 311 AliasAnalysisType &AA) { 312 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 313 // to exist while MemoryLocOrCall is pushed through places. 314 if (UseMLOC.IsCall) 315 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 316 AA); 317 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 318 AA); 319 } 320 321 // Return true when MD may alias MU, return false otherwise. 322 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 323 AliasAnalysis &AA) { 324 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 325 } 326 327 namespace { 328 329 struct UpwardsMemoryQuery { 330 // True if our original query started off as a call 331 bool IsCall = false; 332 // The pointer location we started the query with. This will be empty if 333 // IsCall is true. 334 MemoryLocation StartingLoc; 335 // This is the instruction we were querying about. 336 const Instruction *Inst = nullptr; 337 // The MemoryAccess we actually got called with, used to test local domination 338 const MemoryAccess *OriginalAccess = nullptr; 339 Optional<AliasResult> AR = MayAlias; 340 bool SkipSelfAccess = false; 341 342 UpwardsMemoryQuery() = default; 343 344 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 345 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 346 if (!IsCall) 347 StartingLoc = MemoryLocation::get(Inst); 348 } 349 }; 350 351 } // end anonymous namespace 352 353 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 354 BatchAAResults &AA) { 355 Instruction *Inst = MD->getMemoryInst(); 356 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 357 switch (II->getIntrinsicID()) { 358 case Intrinsic::lifetime_end: 359 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 360 default: 361 return false; 362 } 363 } 364 return false; 365 } 366 367 template <typename AliasAnalysisType> 368 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 369 const Instruction *I) { 370 // If the memory can't be changed, then loads of the memory can't be 371 // clobbered. 372 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 373 AA.pointsToConstantMemory(MemoryLocation( 374 cast<LoadInst>(I)->getPointerOperand()))); 375 } 376 377 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 378 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 379 /// 380 /// This is meant to be as simple and self-contained as possible. Because it 381 /// uses no cache, etc., it can be relatively expensive. 382 /// 383 /// \param Start The MemoryAccess that we want to walk from. 384 /// \param ClobberAt A clobber for Start. 385 /// \param StartLoc The MemoryLocation for Start. 386 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 387 /// \param Query The UpwardsMemoryQuery we used for our search. 388 /// \param AA The AliasAnalysis we used for our search. 389 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 390 391 template <typename AliasAnalysisType> 392 LLVM_ATTRIBUTE_UNUSED static void 393 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 394 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 395 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 396 bool AllowImpreciseClobber = false) { 397 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 398 399 if (MSSA.isLiveOnEntryDef(Start)) { 400 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 401 "liveOnEntry must clobber itself"); 402 return; 403 } 404 405 bool FoundClobber = false; 406 DenseSet<ConstMemoryAccessPair> VisitedPhis; 407 SmallVector<ConstMemoryAccessPair, 8> Worklist; 408 Worklist.emplace_back(Start, StartLoc); 409 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 410 // is found, complain. 411 while (!Worklist.empty()) { 412 auto MAP = Worklist.pop_back_val(); 413 // All we care about is that nothing from Start to ClobberAt clobbers Start. 414 // We learn nothing from revisiting nodes. 415 if (!VisitedPhis.insert(MAP).second) 416 continue; 417 418 for (const auto *MA : def_chain(MAP.first)) { 419 if (MA == ClobberAt) { 420 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 421 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 422 // since it won't let us short-circuit. 423 // 424 // Also, note that this can't be hoisted out of the `Worklist` loop, 425 // since MD may only act as a clobber for 1 of N MemoryLocations. 426 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 427 if (!FoundClobber) { 428 ClobberAlias CA = 429 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 430 if (CA.IsClobber) { 431 FoundClobber = true; 432 // Not used: CA.AR; 433 } 434 } 435 } 436 break; 437 } 438 439 // We should never hit liveOnEntry, unless it's the clobber. 440 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 441 442 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 443 // If Start is a Def, skip self. 444 if (MD == Start) 445 continue; 446 447 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 448 .IsClobber && 449 "Found clobber before reaching ClobberAt!"); 450 continue; 451 } 452 453 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 454 (void)MU; 455 assert (MU == Start && 456 "Can only find use in def chain if Start is a use"); 457 continue; 458 } 459 460 assert(isa<MemoryPhi>(MA)); 461 Worklist.append( 462 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 463 upward_defs_end()); 464 } 465 } 466 467 // If the verify is done following an optimization, it's possible that 468 // ClobberAt was a conservative clobbering, that we can now infer is not a 469 // true clobbering access. Don't fail the verify if that's the case. 470 // We do have accesses that claim they're optimized, but could be optimized 471 // further. Updating all these can be expensive, so allow it for now (FIXME). 472 if (AllowImpreciseClobber) 473 return; 474 475 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 476 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 477 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 478 "ClobberAt never acted as a clobber"); 479 } 480 481 namespace { 482 483 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 484 /// in one class. 485 template <class AliasAnalysisType> class ClobberWalker { 486 /// Save a few bytes by using unsigned instead of size_t. 487 using ListIndex = unsigned; 488 489 /// Represents a span of contiguous MemoryDefs, potentially ending in a 490 /// MemoryPhi. 491 struct DefPath { 492 MemoryLocation Loc; 493 // Note that, because we always walk in reverse, Last will always dominate 494 // First. Also note that First and Last are inclusive. 495 MemoryAccess *First; 496 MemoryAccess *Last; 497 Optional<ListIndex> Previous; 498 499 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 500 Optional<ListIndex> Previous) 501 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 502 503 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 504 Optional<ListIndex> Previous) 505 : DefPath(Loc, Init, Init, Previous) {} 506 }; 507 508 const MemorySSA &MSSA; 509 AliasAnalysisType &AA; 510 DominatorTree &DT; 511 UpwardsMemoryQuery *Query; 512 unsigned *UpwardWalkLimit; 513 514 // Phi optimization bookkeeping 515 SmallVector<DefPath, 32> Paths; 516 DenseSet<ConstMemoryAccessPair> VisitedPhis; 517 518 /// Find the nearest def or phi that `From` can legally be optimized to. 519 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 520 assert(From->getNumOperands() && "Phi with no operands?"); 521 522 BasicBlock *BB = From->getBlock(); 523 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 524 DomTreeNode *Node = DT.getNode(BB); 525 while ((Node = Node->getIDom())) { 526 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 527 if (Defs) 528 return &*Defs->rbegin(); 529 } 530 return Result; 531 } 532 533 /// Result of calling walkToPhiOrClobber. 534 struct UpwardsWalkResult { 535 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 536 /// both. Include alias info when clobber found. 537 MemoryAccess *Result; 538 bool IsKnownClobber; 539 Optional<AliasResult> AR; 540 }; 541 542 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 543 /// This will update Desc.Last as it walks. It will (optionally) also stop at 544 /// StopAt. 545 /// 546 /// This does not test for whether StopAt is a clobber 547 UpwardsWalkResult 548 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 549 const MemoryAccess *SkipStopAt = nullptr) const { 550 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 551 assert(UpwardWalkLimit && "Need a valid walk limit"); 552 bool LimitAlreadyReached = false; 553 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 554 // it to 1. This will not do any alias() calls. It either returns in the 555 // first iteration in the loop below, or is set back to 0 if all def chains 556 // are free of MemoryDefs. 557 if (!*UpwardWalkLimit) { 558 *UpwardWalkLimit = 1; 559 LimitAlreadyReached = true; 560 } 561 562 for (MemoryAccess *Current : def_chain(Desc.Last)) { 563 Desc.Last = Current; 564 if (Current == StopAt || Current == SkipStopAt) 565 return {Current, false, MayAlias}; 566 567 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 568 if (MSSA.isLiveOnEntryDef(MD)) 569 return {MD, true, MustAlias}; 570 571 if (!--*UpwardWalkLimit) 572 return {Current, true, MayAlias}; 573 574 ClobberAlias CA = 575 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 576 if (CA.IsClobber) 577 return {MD, true, CA.AR}; 578 } 579 } 580 581 if (LimitAlreadyReached) 582 *UpwardWalkLimit = 0; 583 584 assert(isa<MemoryPhi>(Desc.Last) && 585 "Ended at a non-clobber that's not a phi?"); 586 return {Desc.Last, false, MayAlias}; 587 } 588 589 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 590 ListIndex PriorNode) { 591 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 592 upward_defs_end()); 593 for (const MemoryAccessPair &P : UpwardDefs) { 594 PausedSearches.push_back(Paths.size()); 595 Paths.emplace_back(P.second, P.first, PriorNode); 596 } 597 } 598 599 /// Represents a search that terminated after finding a clobber. This clobber 600 /// may or may not be present in the path of defs from LastNode..SearchStart, 601 /// since it may have been retrieved from cache. 602 struct TerminatedPath { 603 MemoryAccess *Clobber; 604 ListIndex LastNode; 605 }; 606 607 /// Get an access that keeps us from optimizing to the given phi. 608 /// 609 /// PausedSearches is an array of indices into the Paths array. Its incoming 610 /// value is the indices of searches that stopped at the last phi optimization 611 /// target. It's left in an unspecified state. 612 /// 613 /// If this returns None, NewPaused is a vector of searches that terminated 614 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 615 Optional<TerminatedPath> 616 getBlockingAccess(const MemoryAccess *StopWhere, 617 SmallVectorImpl<ListIndex> &PausedSearches, 618 SmallVectorImpl<ListIndex> &NewPaused, 619 SmallVectorImpl<TerminatedPath> &Terminated) { 620 assert(!PausedSearches.empty() && "No searches to continue?"); 621 622 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 623 // PausedSearches as our stack. 624 while (!PausedSearches.empty()) { 625 ListIndex PathIndex = PausedSearches.pop_back_val(); 626 DefPath &Node = Paths[PathIndex]; 627 628 // If we've already visited this path with this MemoryLocation, we don't 629 // need to do so again. 630 // 631 // NOTE: That we just drop these paths on the ground makes caching 632 // behavior sporadic. e.g. given a diamond: 633 // A 634 // B C 635 // D 636 // 637 // ...If we walk D, B, A, C, we'll only cache the result of phi 638 // optimization for A, B, and D; C will be skipped because it dies here. 639 // This arguably isn't the worst thing ever, since: 640 // - We generally query things in a top-down order, so if we got below D 641 // without needing cache entries for {C, MemLoc}, then chances are 642 // that those cache entries would end up ultimately unused. 643 // - We still cache things for A, so C only needs to walk up a bit. 644 // If this behavior becomes problematic, we can fix without a ton of extra 645 // work. 646 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 647 continue; 648 649 const MemoryAccess *SkipStopWhere = nullptr; 650 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 651 assert(isa<MemoryDef>(Query->OriginalAccess)); 652 SkipStopWhere = Query->OriginalAccess; 653 } 654 655 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 656 /*StopAt=*/StopWhere, 657 /*SkipStopAt=*/SkipStopWhere); 658 if (Res.IsKnownClobber) { 659 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 660 661 // If this wasn't a cache hit, we hit a clobber when walking. That's a 662 // failure. 663 TerminatedPath Term{Res.Result, PathIndex}; 664 if (!MSSA.dominates(Res.Result, StopWhere)) 665 return Term; 666 667 // Otherwise, it's a valid thing to potentially optimize to. 668 Terminated.push_back(Term); 669 continue; 670 } 671 672 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 673 // We've hit our target. Save this path off for if we want to continue 674 // walking. If we are in the mode of skipping the OriginalAccess, and 675 // we've reached back to the OriginalAccess, do not save path, we've 676 // just looped back to self. 677 if (Res.Result != SkipStopWhere) 678 NewPaused.push_back(PathIndex); 679 continue; 680 } 681 682 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 683 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 684 } 685 686 return None; 687 } 688 689 template <typename T, typename Walker> 690 struct generic_def_path_iterator 691 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 692 std::forward_iterator_tag, T *> { 693 generic_def_path_iterator() {} 694 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 695 696 T &operator*() const { return curNode(); } 697 698 generic_def_path_iterator &operator++() { 699 N = curNode().Previous; 700 return *this; 701 } 702 703 bool operator==(const generic_def_path_iterator &O) const { 704 if (N.hasValue() != O.N.hasValue()) 705 return false; 706 return !N.hasValue() || *N == *O.N; 707 } 708 709 private: 710 T &curNode() const { return W->Paths[*N]; } 711 712 Walker *W = nullptr; 713 Optional<ListIndex> N = None; 714 }; 715 716 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 717 using const_def_path_iterator = 718 generic_def_path_iterator<const DefPath, const ClobberWalker>; 719 720 iterator_range<def_path_iterator> def_path(ListIndex From) { 721 return make_range(def_path_iterator(this, From), def_path_iterator()); 722 } 723 724 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 725 return make_range(const_def_path_iterator(this, From), 726 const_def_path_iterator()); 727 } 728 729 struct OptznResult { 730 /// The path that contains our result. 731 TerminatedPath PrimaryClobber; 732 /// The paths that we can legally cache back from, but that aren't 733 /// necessarily the result of the Phi optimization. 734 SmallVector<TerminatedPath, 4> OtherClobbers; 735 }; 736 737 ListIndex defPathIndex(const DefPath &N) const { 738 // The assert looks nicer if we don't need to do &N 739 const DefPath *NP = &N; 740 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 741 "Out of bounds DefPath!"); 742 return NP - &Paths.front(); 743 } 744 745 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 746 /// that act as legal clobbers. Note that this won't return *all* clobbers. 747 /// 748 /// Phi optimization algorithm tl;dr: 749 /// - Find the earliest def/phi, A, we can optimize to 750 /// - Find if all paths from the starting memory access ultimately reach A 751 /// - If not, optimization isn't possible. 752 /// - Otherwise, walk from A to another clobber or phi, A'. 753 /// - If A' is a def, we're done. 754 /// - If A' is a phi, try to optimize it. 755 /// 756 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 757 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 758 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 759 const MemoryLocation &Loc) { 760 assert(Paths.empty() && VisitedPhis.empty() && 761 "Reset the optimization state."); 762 763 Paths.emplace_back(Loc, Start, Phi, None); 764 // Stores how many "valid" optimization nodes we had prior to calling 765 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 766 auto PriorPathsSize = Paths.size(); 767 768 SmallVector<ListIndex, 16> PausedSearches; 769 SmallVector<ListIndex, 8> NewPaused; 770 SmallVector<TerminatedPath, 4> TerminatedPaths; 771 772 addSearches(Phi, PausedSearches, 0); 773 774 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 775 // Paths. 776 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 777 assert(!Paths.empty() && "Need a path to move"); 778 auto Dom = Paths.begin(); 779 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 780 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 781 Dom = I; 782 auto Last = Paths.end() - 1; 783 if (Last != Dom) 784 std::iter_swap(Last, Dom); 785 }; 786 787 MemoryPhi *Current = Phi; 788 while (true) { 789 assert(!MSSA.isLiveOnEntryDef(Current) && 790 "liveOnEntry wasn't treated as a clobber?"); 791 792 const auto *Target = getWalkTarget(Current); 793 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 794 // optimization for the prior phi. 795 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 796 return MSSA.dominates(P.Clobber, Target); 797 })); 798 799 // FIXME: This is broken, because the Blocker may be reported to be 800 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 801 // For the moment, this is fine, since we do nothing with blocker info. 802 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 803 Target, PausedSearches, NewPaused, TerminatedPaths)) { 804 805 // Find the node we started at. We can't search based on N->Last, since 806 // we may have gone around a loop with a different MemoryLocation. 807 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 808 return defPathIndex(N) < PriorPathsSize; 809 }); 810 assert(Iter != def_path_iterator()); 811 812 DefPath &CurNode = *Iter; 813 assert(CurNode.Last == Current); 814 815 // Two things: 816 // A. We can't reliably cache all of NewPaused back. Consider a case 817 // where we have two paths in NewPaused; one of which can't optimize 818 // above this phi, whereas the other can. If we cache the second path 819 // back, we'll end up with suboptimal cache entries. We can handle 820 // cases like this a bit better when we either try to find all 821 // clobbers that block phi optimization, or when our cache starts 822 // supporting unfinished searches. 823 // B. We can't reliably cache TerminatedPaths back here without doing 824 // extra checks; consider a case like: 825 // T 826 // / \ 827 // D C 828 // \ / 829 // S 830 // Where T is our target, C is a node with a clobber on it, D is a 831 // diamond (with a clobber *only* on the left or right node, N), and 832 // S is our start. Say we walk to D, through the node opposite N 833 // (read: ignoring the clobber), and see a cache entry in the top 834 // node of D. That cache entry gets put into TerminatedPaths. We then 835 // walk up to C (N is later in our worklist), find the clobber, and 836 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 837 // the bottom part of D to the cached clobber, ignoring the clobber 838 // in N. Again, this problem goes away if we start tracking all 839 // blockers for a given phi optimization. 840 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 841 return {Result, {}}; 842 } 843 844 // If there's nothing left to search, then all paths led to valid clobbers 845 // that we got from our cache; pick the nearest to the start, and allow 846 // the rest to be cached back. 847 if (NewPaused.empty()) { 848 MoveDominatedPathToEnd(TerminatedPaths); 849 TerminatedPath Result = TerminatedPaths.pop_back_val(); 850 return {Result, std::move(TerminatedPaths)}; 851 } 852 853 MemoryAccess *DefChainEnd = nullptr; 854 SmallVector<TerminatedPath, 4> Clobbers; 855 for (ListIndex Paused : NewPaused) { 856 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 857 if (WR.IsKnownClobber) 858 Clobbers.push_back({WR.Result, Paused}); 859 else 860 // Micro-opt: If we hit the end of the chain, save it. 861 DefChainEnd = WR.Result; 862 } 863 864 if (!TerminatedPaths.empty()) { 865 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 866 // do it now. 867 if (!DefChainEnd) 868 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 869 DefChainEnd = MA; 870 871 // If any of the terminated paths don't dominate the phi we'll try to 872 // optimize, we need to figure out what they are and quit. 873 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 874 for (const TerminatedPath &TP : TerminatedPaths) { 875 // Because we know that DefChainEnd is as "high" as we can go, we 876 // don't need local dominance checks; BB dominance is sufficient. 877 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 878 Clobbers.push_back(TP); 879 } 880 } 881 882 // If we have clobbers in the def chain, find the one closest to Current 883 // and quit. 884 if (!Clobbers.empty()) { 885 MoveDominatedPathToEnd(Clobbers); 886 TerminatedPath Result = Clobbers.pop_back_val(); 887 return {Result, std::move(Clobbers)}; 888 } 889 890 assert(all_of(NewPaused, 891 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 892 893 // Because liveOnEntry is a clobber, this must be a phi. 894 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 895 896 PriorPathsSize = Paths.size(); 897 PausedSearches.clear(); 898 for (ListIndex I : NewPaused) 899 addSearches(DefChainPhi, PausedSearches, I); 900 NewPaused.clear(); 901 902 Current = DefChainPhi; 903 } 904 } 905 906 void verifyOptResult(const OptznResult &R) const { 907 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 908 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 909 })); 910 } 911 912 void resetPhiOptznState() { 913 Paths.clear(); 914 VisitedPhis.clear(); 915 } 916 917 public: 918 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 919 : MSSA(MSSA), AA(AA), DT(DT) {} 920 921 AliasAnalysisType *getAA() { return &AA; } 922 /// Finds the nearest clobber for the given query, optimizing phis if 923 /// possible. 924 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 925 unsigned &UpWalkLimit) { 926 Query = &Q; 927 UpwardWalkLimit = &UpWalkLimit; 928 // Starting limit must be > 0. 929 if (!UpWalkLimit) 930 UpWalkLimit++; 931 932 MemoryAccess *Current = Start; 933 // This walker pretends uses don't exist. If we're handed one, silently grab 934 // its def. (This has the nice side-effect of ensuring we never cache uses) 935 if (auto *MU = dyn_cast<MemoryUse>(Start)) 936 Current = MU->getDefiningAccess(); 937 938 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 939 // Fast path for the overly-common case (no crazy phi optimization 940 // necessary) 941 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 942 MemoryAccess *Result; 943 if (WalkResult.IsKnownClobber) { 944 Result = WalkResult.Result; 945 Q.AR = WalkResult.AR; 946 } else { 947 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 948 Current, Q.StartingLoc); 949 verifyOptResult(OptRes); 950 resetPhiOptznState(); 951 Result = OptRes.PrimaryClobber.Clobber; 952 } 953 954 #ifdef EXPENSIVE_CHECKS 955 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 956 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 957 #endif 958 return Result; 959 } 960 }; 961 962 struct RenamePassData { 963 DomTreeNode *DTN; 964 DomTreeNode::const_iterator ChildIt; 965 MemoryAccess *IncomingVal; 966 967 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 968 MemoryAccess *M) 969 : DTN(D), ChildIt(It), IncomingVal(M) {} 970 971 void swap(RenamePassData &RHS) { 972 std::swap(DTN, RHS.DTN); 973 std::swap(ChildIt, RHS.ChildIt); 974 std::swap(IncomingVal, RHS.IncomingVal); 975 } 976 }; 977 978 } // end anonymous namespace 979 980 namespace llvm { 981 982 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 983 ClobberWalker<AliasAnalysisType> Walker; 984 MemorySSA *MSSA; 985 986 public: 987 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 988 : Walker(*M, *A, *D), MSSA(M) {} 989 990 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 991 const MemoryLocation &, 992 unsigned &); 993 // Third argument (bool), defines whether the clobber search should skip the 994 // original queried access. If true, there will be a follow-up query searching 995 // for a clobber access past "self". Note that the Optimized access is not 996 // updated if a new clobber is found by this SkipSelf search. If this 997 // additional query becomes heavily used we may decide to cache the result. 998 // Walker instantiations will decide how to set the SkipSelf bool. 999 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1000 }; 1001 1002 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1003 /// longer does caching on its own, but the name has been retained for the 1004 /// moment. 1005 template <class AliasAnalysisType> 1006 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1007 ClobberWalkerBase<AliasAnalysisType> *Walker; 1008 1009 public: 1010 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1011 : MemorySSAWalker(M), Walker(W) {} 1012 ~CachingWalker() override = default; 1013 1014 using MemorySSAWalker::getClobberingMemoryAccess; 1015 1016 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1017 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1018 } 1019 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1020 const MemoryLocation &Loc, 1021 unsigned &UWL) { 1022 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1023 } 1024 1025 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1026 unsigned UpwardWalkLimit = MaxCheckLimit; 1027 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1028 } 1029 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1030 const MemoryLocation &Loc) override { 1031 unsigned UpwardWalkLimit = MaxCheckLimit; 1032 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1033 } 1034 1035 void invalidateInfo(MemoryAccess *MA) override { 1036 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1037 MUD->resetOptimized(); 1038 } 1039 }; 1040 1041 template <class AliasAnalysisType> 1042 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1043 ClobberWalkerBase<AliasAnalysisType> *Walker; 1044 1045 public: 1046 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1047 : MemorySSAWalker(M), Walker(W) {} 1048 ~SkipSelfWalker() override = default; 1049 1050 using MemorySSAWalker::getClobberingMemoryAccess; 1051 1052 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1053 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1054 } 1055 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1056 const MemoryLocation &Loc, 1057 unsigned &UWL) { 1058 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1059 } 1060 1061 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1062 unsigned UpwardWalkLimit = MaxCheckLimit; 1063 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1064 } 1065 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1066 const MemoryLocation &Loc) override { 1067 unsigned UpwardWalkLimit = MaxCheckLimit; 1068 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1069 } 1070 1071 void invalidateInfo(MemoryAccess *MA) override { 1072 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1073 MUD->resetOptimized(); 1074 } 1075 }; 1076 1077 } // end namespace llvm 1078 1079 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1080 bool RenameAllUses) { 1081 // Pass through values to our successors 1082 for (const BasicBlock *S : successors(BB)) { 1083 auto It = PerBlockAccesses.find(S); 1084 // Rename the phi nodes in our successor block 1085 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1086 continue; 1087 AccessList *Accesses = It->second.get(); 1088 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1089 if (RenameAllUses) { 1090 int PhiIndex = Phi->getBasicBlockIndex(BB); 1091 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 1092 Phi->setIncomingValue(PhiIndex, IncomingVal); 1093 } else 1094 Phi->addIncoming(IncomingVal, BB); 1095 } 1096 } 1097 1098 /// Rename a single basic block into MemorySSA form. 1099 /// Uses the standard SSA renaming algorithm. 1100 /// \returns The new incoming value. 1101 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1102 bool RenameAllUses) { 1103 auto It = PerBlockAccesses.find(BB); 1104 // Skip most processing if the list is empty. 1105 if (It != PerBlockAccesses.end()) { 1106 AccessList *Accesses = It->second.get(); 1107 for (MemoryAccess &L : *Accesses) { 1108 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1109 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1110 MUD->setDefiningAccess(IncomingVal); 1111 if (isa<MemoryDef>(&L)) 1112 IncomingVal = &L; 1113 } else { 1114 IncomingVal = &L; 1115 } 1116 } 1117 } 1118 return IncomingVal; 1119 } 1120 1121 /// This is the standard SSA renaming algorithm. 1122 /// 1123 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1124 /// in phi nodes in our successors. 1125 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1126 SmallPtrSetImpl<BasicBlock *> &Visited, 1127 bool SkipVisited, bool RenameAllUses) { 1128 SmallVector<RenamePassData, 32> WorkStack; 1129 // Skip everything if we already renamed this block and we are skipping. 1130 // Note: You can't sink this into the if, because we need it to occur 1131 // regardless of whether we skip blocks or not. 1132 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1133 if (SkipVisited && AlreadyVisited) 1134 return; 1135 1136 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1137 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1138 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1139 1140 while (!WorkStack.empty()) { 1141 DomTreeNode *Node = WorkStack.back().DTN; 1142 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1143 IncomingVal = WorkStack.back().IncomingVal; 1144 1145 if (ChildIt == Node->end()) { 1146 WorkStack.pop_back(); 1147 } else { 1148 DomTreeNode *Child = *ChildIt; 1149 ++WorkStack.back().ChildIt; 1150 BasicBlock *BB = Child->getBlock(); 1151 // Note: You can't sink this into the if, because we need it to occur 1152 // regardless of whether we skip blocks or not. 1153 AlreadyVisited = !Visited.insert(BB).second; 1154 if (SkipVisited && AlreadyVisited) { 1155 // We already visited this during our renaming, which can happen when 1156 // being asked to rename multiple blocks. Figure out the incoming val, 1157 // which is the last def. 1158 // Incoming value can only change if there is a block def, and in that 1159 // case, it's the last block def in the list. 1160 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1161 IncomingVal = &*BlockDefs->rbegin(); 1162 } else 1163 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1164 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1165 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1166 } 1167 } 1168 } 1169 1170 /// This handles unreachable block accesses by deleting phi nodes in 1171 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1172 /// being uses of the live on entry definition. 1173 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1174 assert(!DT->isReachableFromEntry(BB) && 1175 "Reachable block found while handling unreachable blocks"); 1176 1177 // Make sure phi nodes in our reachable successors end up with a 1178 // LiveOnEntryDef for our incoming edge, even though our block is forward 1179 // unreachable. We could just disconnect these blocks from the CFG fully, 1180 // but we do not right now. 1181 for (const BasicBlock *S : successors(BB)) { 1182 if (!DT->isReachableFromEntry(S)) 1183 continue; 1184 auto It = PerBlockAccesses.find(S); 1185 // Rename the phi nodes in our successor block 1186 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1187 continue; 1188 AccessList *Accesses = It->second.get(); 1189 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1190 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1191 } 1192 1193 auto It = PerBlockAccesses.find(BB); 1194 if (It == PerBlockAccesses.end()) 1195 return; 1196 1197 auto &Accesses = It->second; 1198 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1199 auto Next = std::next(AI); 1200 // If we have a phi, just remove it. We are going to replace all 1201 // users with live on entry. 1202 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1203 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1204 else 1205 Accesses->erase(AI); 1206 AI = Next; 1207 } 1208 } 1209 1210 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1211 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1212 SkipWalker(nullptr), NextID(0) { 1213 // Build MemorySSA using a batch alias analysis. This reuses the internal 1214 // state that AA collects during an alias()/getModRefInfo() call. This is 1215 // safe because there are no CFG changes while building MemorySSA and can 1216 // significantly reduce the time spent by the compiler in AA, because we will 1217 // make queries about all the instructions in the Function. 1218 BatchAAResults BatchAA(*AA); 1219 buildMemorySSA(BatchAA); 1220 // Intentionally leave AA to nullptr while building so we don't accidently 1221 // use non-batch AliasAnalysis. 1222 this->AA = AA; 1223 // Also create the walker here. 1224 getWalker(); 1225 } 1226 1227 MemorySSA::~MemorySSA() { 1228 // Drop all our references 1229 for (const auto &Pair : PerBlockAccesses) 1230 for (MemoryAccess &MA : *Pair.second) 1231 MA.dropAllReferences(); 1232 } 1233 1234 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1235 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1236 1237 if (Res.second) 1238 Res.first->second = llvm::make_unique<AccessList>(); 1239 return Res.first->second.get(); 1240 } 1241 1242 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1243 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1244 1245 if (Res.second) 1246 Res.first->second = llvm::make_unique<DefsList>(); 1247 return Res.first->second.get(); 1248 } 1249 1250 namespace llvm { 1251 1252 /// This class is a batch walker of all MemoryUse's in the program, and points 1253 /// their defining access at the thing that actually clobbers them. Because it 1254 /// is a batch walker that touches everything, it does not operate like the 1255 /// other walkers. This walker is basically performing a top-down SSA renaming 1256 /// pass, where the version stack is used as the cache. This enables it to be 1257 /// significantly more time and memory efficient than using the regular walker, 1258 /// which is walking bottom-up. 1259 class MemorySSA::OptimizeUses { 1260 public: 1261 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1262 BatchAAResults *BAA, DominatorTree *DT) 1263 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1264 1265 void optimizeUses(); 1266 1267 private: 1268 /// This represents where a given memorylocation is in the stack. 1269 struct MemlocStackInfo { 1270 // This essentially is keeping track of versions of the stack. Whenever 1271 // the stack changes due to pushes or pops, these versions increase. 1272 unsigned long StackEpoch; 1273 unsigned long PopEpoch; 1274 // This is the lower bound of places on the stack to check. It is equal to 1275 // the place the last stack walk ended. 1276 // Note: Correctness depends on this being initialized to 0, which densemap 1277 // does 1278 unsigned long LowerBound; 1279 const BasicBlock *LowerBoundBlock; 1280 // This is where the last walk for this memory location ended. 1281 unsigned long LastKill; 1282 bool LastKillValid; 1283 Optional<AliasResult> AR; 1284 }; 1285 1286 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1287 SmallVectorImpl<MemoryAccess *> &, 1288 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1289 1290 MemorySSA *MSSA; 1291 CachingWalker<BatchAAResults> *Walker; 1292 BatchAAResults *AA; 1293 DominatorTree *DT; 1294 }; 1295 1296 } // end namespace llvm 1297 1298 /// Optimize the uses in a given block This is basically the SSA renaming 1299 /// algorithm, with one caveat: We are able to use a single stack for all 1300 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1301 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1302 /// going to be some position in that stack of possible ones. 1303 /// 1304 /// We track the stack positions that each MemoryLocation needs 1305 /// to check, and last ended at. This is because we only want to check the 1306 /// things that changed since last time. The same MemoryLocation should 1307 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1308 /// things like this, and if they start, we can modify MemoryLocOrCall to 1309 /// include relevant data) 1310 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1311 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1312 SmallVectorImpl<MemoryAccess *> &VersionStack, 1313 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1314 1315 /// If no accesses, nothing to do. 1316 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1317 if (Accesses == nullptr) 1318 return; 1319 1320 // Pop everything that doesn't dominate the current block off the stack, 1321 // increment the PopEpoch to account for this. 1322 while (true) { 1323 assert( 1324 !VersionStack.empty() && 1325 "Version stack should have liveOnEntry sentinel dominating everything"); 1326 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1327 if (DT->dominates(BackBlock, BB)) 1328 break; 1329 while (VersionStack.back()->getBlock() == BackBlock) 1330 VersionStack.pop_back(); 1331 ++PopEpoch; 1332 } 1333 1334 for (MemoryAccess &MA : *Accesses) { 1335 auto *MU = dyn_cast<MemoryUse>(&MA); 1336 if (!MU) { 1337 VersionStack.push_back(&MA); 1338 ++StackEpoch; 1339 continue; 1340 } 1341 1342 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1343 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1344 continue; 1345 } 1346 1347 MemoryLocOrCall UseMLOC(MU); 1348 auto &LocInfo = LocStackInfo[UseMLOC]; 1349 // If the pop epoch changed, it means we've removed stuff from top of 1350 // stack due to changing blocks. We may have to reset the lower bound or 1351 // last kill info. 1352 if (LocInfo.PopEpoch != PopEpoch) { 1353 LocInfo.PopEpoch = PopEpoch; 1354 LocInfo.StackEpoch = StackEpoch; 1355 // If the lower bound was in something that no longer dominates us, we 1356 // have to reset it. 1357 // We can't simply track stack size, because the stack may have had 1358 // pushes/pops in the meantime. 1359 // XXX: This is non-optimal, but only is slower cases with heavily 1360 // branching dominator trees. To get the optimal number of queries would 1361 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1362 // the top of that stack dominates us. This does not seem worth it ATM. 1363 // A much cheaper optimization would be to always explore the deepest 1364 // branch of the dominator tree first. This will guarantee this resets on 1365 // the smallest set of blocks. 1366 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1367 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1368 // Reset the lower bound of things to check. 1369 // TODO: Some day we should be able to reset to last kill, rather than 1370 // 0. 1371 LocInfo.LowerBound = 0; 1372 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1373 LocInfo.LastKillValid = false; 1374 } 1375 } else if (LocInfo.StackEpoch != StackEpoch) { 1376 // If all that has changed is the StackEpoch, we only have to check the 1377 // new things on the stack, because we've checked everything before. In 1378 // this case, the lower bound of things to check remains the same. 1379 LocInfo.PopEpoch = PopEpoch; 1380 LocInfo.StackEpoch = StackEpoch; 1381 } 1382 if (!LocInfo.LastKillValid) { 1383 LocInfo.LastKill = VersionStack.size() - 1; 1384 LocInfo.LastKillValid = true; 1385 LocInfo.AR = MayAlias; 1386 } 1387 1388 // At this point, we should have corrected last kill and LowerBound to be 1389 // in bounds. 1390 assert(LocInfo.LowerBound < VersionStack.size() && 1391 "Lower bound out of range"); 1392 assert(LocInfo.LastKill < VersionStack.size() && 1393 "Last kill info out of range"); 1394 // In any case, the new upper bound is the top of the stack. 1395 unsigned long UpperBound = VersionStack.size() - 1; 1396 1397 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1398 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1399 << *(MU->getMemoryInst()) << ")" 1400 << " because there are " 1401 << UpperBound - LocInfo.LowerBound 1402 << " stores to disambiguate\n"); 1403 // Because we did not walk, LastKill is no longer valid, as this may 1404 // have been a kill. 1405 LocInfo.LastKillValid = false; 1406 continue; 1407 } 1408 bool FoundClobberResult = false; 1409 unsigned UpwardWalkLimit = MaxCheckLimit; 1410 while (UpperBound > LocInfo.LowerBound) { 1411 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1412 // For phis, use the walker, see where we ended up, go there 1413 MemoryAccess *Result = 1414 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1415 // We are guaranteed to find it or something is wrong 1416 while (VersionStack[UpperBound] != Result) { 1417 assert(UpperBound != 0); 1418 --UpperBound; 1419 } 1420 FoundClobberResult = true; 1421 break; 1422 } 1423 1424 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1425 // If the lifetime of the pointer ends at this instruction, it's live on 1426 // entry. 1427 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1428 // Reset UpperBound to liveOnEntryDef's place in the stack 1429 UpperBound = 0; 1430 FoundClobberResult = true; 1431 LocInfo.AR = MustAlias; 1432 break; 1433 } 1434 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1435 if (CA.IsClobber) { 1436 FoundClobberResult = true; 1437 LocInfo.AR = CA.AR; 1438 break; 1439 } 1440 --UpperBound; 1441 } 1442 1443 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1444 1445 // At the end of this loop, UpperBound is either a clobber, or lower bound 1446 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1447 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1448 // We were last killed now by where we got to 1449 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1450 LocInfo.AR = None; 1451 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1452 LocInfo.LastKill = UpperBound; 1453 } else { 1454 // Otherwise, we checked all the new ones, and now we know we can get to 1455 // LastKill. 1456 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1457 } 1458 LocInfo.LowerBound = VersionStack.size() - 1; 1459 LocInfo.LowerBoundBlock = BB; 1460 } 1461 } 1462 1463 /// Optimize uses to point to their actual clobbering definitions. 1464 void MemorySSA::OptimizeUses::optimizeUses() { 1465 SmallVector<MemoryAccess *, 16> VersionStack; 1466 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1467 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1468 1469 unsigned long StackEpoch = 1; 1470 unsigned long PopEpoch = 1; 1471 // We perform a non-recursive top-down dominator tree walk. 1472 for (const auto *DomNode : depth_first(DT->getRootNode())) 1473 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1474 LocStackInfo); 1475 } 1476 1477 void MemorySSA::placePHINodes( 1478 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1479 // Determine where our MemoryPhi's should go 1480 ForwardIDFCalculator IDFs(*DT); 1481 IDFs.setDefiningBlocks(DefiningBlocks); 1482 SmallVector<BasicBlock *, 32> IDFBlocks; 1483 IDFs.calculate(IDFBlocks); 1484 1485 // Now place MemoryPhi nodes. 1486 for (auto &BB : IDFBlocks) 1487 createMemoryPhi(BB); 1488 } 1489 1490 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1491 // We create an access to represent "live on entry", for things like 1492 // arguments or users of globals, where the memory they use is defined before 1493 // the beginning of the function. We do not actually insert it into the IR. 1494 // We do not define a live on exit for the immediate uses, and thus our 1495 // semantics do *not* imply that something with no immediate uses can simply 1496 // be removed. 1497 BasicBlock &StartingPoint = F.getEntryBlock(); 1498 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1499 &StartingPoint, NextID++)); 1500 1501 // We maintain lists of memory accesses per-block, trading memory for time. We 1502 // could just look up the memory access for every possible instruction in the 1503 // stream. 1504 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1505 // Go through each block, figure out where defs occur, and chain together all 1506 // the accesses. 1507 for (BasicBlock &B : F) { 1508 bool InsertIntoDef = false; 1509 AccessList *Accesses = nullptr; 1510 DefsList *Defs = nullptr; 1511 for (Instruction &I : B) { 1512 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1513 if (!MUD) 1514 continue; 1515 1516 if (!Accesses) 1517 Accesses = getOrCreateAccessList(&B); 1518 Accesses->push_back(MUD); 1519 if (isa<MemoryDef>(MUD)) { 1520 InsertIntoDef = true; 1521 if (!Defs) 1522 Defs = getOrCreateDefsList(&B); 1523 Defs->push_back(*MUD); 1524 } 1525 } 1526 if (InsertIntoDef) 1527 DefiningBlocks.insert(&B); 1528 } 1529 placePHINodes(DefiningBlocks); 1530 1531 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1532 // filled in with all blocks. 1533 SmallPtrSet<BasicBlock *, 16> Visited; 1534 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1535 1536 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1537 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1538 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1539 1540 // Mark the uses in unreachable blocks as live on entry, so that they go 1541 // somewhere. 1542 for (auto &BB : F) 1543 if (!Visited.count(&BB)) 1544 markUnreachableAsLiveOnEntry(&BB); 1545 } 1546 1547 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1548 1549 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1550 if (Walker) 1551 return Walker.get(); 1552 1553 if (!WalkerBase) 1554 WalkerBase = 1555 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1556 1557 Walker = 1558 llvm::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1559 return Walker.get(); 1560 } 1561 1562 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1563 if (SkipWalker) 1564 return SkipWalker.get(); 1565 1566 if (!WalkerBase) 1567 WalkerBase = 1568 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1569 1570 SkipWalker = 1571 llvm::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1572 return SkipWalker.get(); 1573 } 1574 1575 1576 // This is a helper function used by the creation routines. It places NewAccess 1577 // into the access and defs lists for a given basic block, at the given 1578 // insertion point. 1579 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1580 const BasicBlock *BB, 1581 InsertionPlace Point) { 1582 auto *Accesses = getOrCreateAccessList(BB); 1583 if (Point == Beginning) { 1584 // If it's a phi node, it goes first, otherwise, it goes after any phi 1585 // nodes. 1586 if (isa<MemoryPhi>(NewAccess)) { 1587 Accesses->push_front(NewAccess); 1588 auto *Defs = getOrCreateDefsList(BB); 1589 Defs->push_front(*NewAccess); 1590 } else { 1591 auto AI = find_if_not( 1592 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1593 Accesses->insert(AI, NewAccess); 1594 if (!isa<MemoryUse>(NewAccess)) { 1595 auto *Defs = getOrCreateDefsList(BB); 1596 auto DI = find_if_not( 1597 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1598 Defs->insert(DI, *NewAccess); 1599 } 1600 } 1601 } else { 1602 Accesses->push_back(NewAccess); 1603 if (!isa<MemoryUse>(NewAccess)) { 1604 auto *Defs = getOrCreateDefsList(BB); 1605 Defs->push_back(*NewAccess); 1606 } 1607 } 1608 BlockNumberingValid.erase(BB); 1609 } 1610 1611 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1612 AccessList::iterator InsertPt) { 1613 auto *Accesses = getWritableBlockAccesses(BB); 1614 bool WasEnd = InsertPt == Accesses->end(); 1615 Accesses->insert(AccessList::iterator(InsertPt), What); 1616 if (!isa<MemoryUse>(What)) { 1617 auto *Defs = getOrCreateDefsList(BB); 1618 // If we got asked to insert at the end, we have an easy job, just shove it 1619 // at the end. If we got asked to insert before an existing def, we also get 1620 // an iterator. If we got asked to insert before a use, we have to hunt for 1621 // the next def. 1622 if (WasEnd) { 1623 Defs->push_back(*What); 1624 } else if (isa<MemoryDef>(InsertPt)) { 1625 Defs->insert(InsertPt->getDefsIterator(), *What); 1626 } else { 1627 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1628 ++InsertPt; 1629 // Either we found a def, or we are inserting at the end 1630 if (InsertPt == Accesses->end()) 1631 Defs->push_back(*What); 1632 else 1633 Defs->insert(InsertPt->getDefsIterator(), *What); 1634 } 1635 } 1636 BlockNumberingValid.erase(BB); 1637 } 1638 1639 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1640 // Keep it in the lookup tables, remove from the lists 1641 removeFromLists(What, false); 1642 1643 // Note that moving should implicitly invalidate the optimized state of a 1644 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1645 // MemoryDef. 1646 if (auto *MD = dyn_cast<MemoryDef>(What)) 1647 MD->resetOptimized(); 1648 What->setBlock(BB); 1649 } 1650 1651 // Move What before Where in the IR. The end result is that What will belong to 1652 // the right lists and have the right Block set, but will not otherwise be 1653 // correct. It will not have the right defining access, and if it is a def, 1654 // things below it will not properly be updated. 1655 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1656 AccessList::iterator Where) { 1657 prepareForMoveTo(What, BB); 1658 insertIntoListsBefore(What, BB, Where); 1659 } 1660 1661 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1662 InsertionPlace Point) { 1663 if (isa<MemoryPhi>(What)) { 1664 assert(Point == Beginning && 1665 "Can only move a Phi at the beginning of the block"); 1666 // Update lookup table entry 1667 ValueToMemoryAccess.erase(What->getBlock()); 1668 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1669 (void)Inserted; 1670 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1671 } 1672 1673 prepareForMoveTo(What, BB); 1674 insertIntoListsForBlock(What, BB, Point); 1675 } 1676 1677 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1678 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1679 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1680 // Phi's always are placed at the front of the block. 1681 insertIntoListsForBlock(Phi, BB, Beginning); 1682 ValueToMemoryAccess[BB] = Phi; 1683 return Phi; 1684 } 1685 1686 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1687 MemoryAccess *Definition, 1688 const MemoryUseOrDef *Template) { 1689 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1690 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1691 assert( 1692 NewAccess != nullptr && 1693 "Tried to create a memory access for a non-memory touching instruction"); 1694 NewAccess->setDefiningAccess(Definition); 1695 return NewAccess; 1696 } 1697 1698 // Return true if the instruction has ordering constraints. 1699 // Note specifically that this only considers stores and loads 1700 // because others are still considered ModRef by getModRefInfo. 1701 static inline bool isOrdered(const Instruction *I) { 1702 if (auto *SI = dyn_cast<StoreInst>(I)) { 1703 if (!SI->isUnordered()) 1704 return true; 1705 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1706 if (!LI->isUnordered()) 1707 return true; 1708 } 1709 return false; 1710 } 1711 1712 /// Helper function to create new memory accesses 1713 template <typename AliasAnalysisType> 1714 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1715 AliasAnalysisType *AAP, 1716 const MemoryUseOrDef *Template) { 1717 // The assume intrinsic has a control dependency which we model by claiming 1718 // that it writes arbitrarily. Ignore that fake memory dependency here. 1719 // FIXME: Replace this special casing with a more accurate modelling of 1720 // assume's control dependency. 1721 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1722 if (II->getIntrinsicID() == Intrinsic::assume) 1723 return nullptr; 1724 1725 bool Def, Use; 1726 if (Template) { 1727 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1728 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1729 #if !defined(NDEBUG) 1730 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1731 bool DefCheck, UseCheck; 1732 DefCheck = isModSet(ModRef) || isOrdered(I); 1733 UseCheck = isRefSet(ModRef); 1734 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1735 #endif 1736 } else { 1737 // Find out what affect this instruction has on memory. 1738 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1739 // The isOrdered check is used to ensure that volatiles end up as defs 1740 // (atomics end up as ModRef right now anyway). Until we separate the 1741 // ordering chain from the memory chain, this enables people to see at least 1742 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1743 // will still give an answer that bypasses other volatile loads. TODO: 1744 // Separate memory aliasing and ordering into two different chains so that 1745 // we can precisely represent both "what memory will this read/write/is 1746 // clobbered by" and "what instructions can I move this past". 1747 Def = isModSet(ModRef) || isOrdered(I); 1748 Use = isRefSet(ModRef); 1749 } 1750 1751 // It's possible for an instruction to not modify memory at all. During 1752 // construction, we ignore them. 1753 if (!Def && !Use) 1754 return nullptr; 1755 1756 MemoryUseOrDef *MUD; 1757 if (Def) 1758 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1759 else 1760 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1761 ValueToMemoryAccess[I] = MUD; 1762 return MUD; 1763 } 1764 1765 /// Returns true if \p Replacer dominates \p Replacee . 1766 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1767 const MemoryAccess *Replacee) const { 1768 if (isa<MemoryUseOrDef>(Replacee)) 1769 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1770 const auto *MP = cast<MemoryPhi>(Replacee); 1771 // For a phi node, the use occurs in the predecessor block of the phi node. 1772 // Since we may occur multiple times in the phi node, we have to check each 1773 // operand to ensure Replacer dominates each operand where Replacee occurs. 1774 for (const Use &Arg : MP->operands()) { 1775 if (Arg.get() != Replacee && 1776 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1777 return false; 1778 } 1779 return true; 1780 } 1781 1782 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1783 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1784 assert(MA->use_empty() && 1785 "Trying to remove memory access that still has uses"); 1786 BlockNumbering.erase(MA); 1787 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1788 MUD->setDefiningAccess(nullptr); 1789 // Invalidate our walker's cache if necessary 1790 if (!isa<MemoryUse>(MA)) 1791 getWalker()->invalidateInfo(MA); 1792 1793 Value *MemoryInst; 1794 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1795 MemoryInst = MUD->getMemoryInst(); 1796 else 1797 MemoryInst = MA->getBlock(); 1798 1799 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1800 if (VMA->second == MA) 1801 ValueToMemoryAccess.erase(VMA); 1802 } 1803 1804 /// Properly remove \p MA from all of MemorySSA's lists. 1805 /// 1806 /// Because of the way the intrusive list and use lists work, it is important to 1807 /// do removal in the right order. 1808 /// ShouldDelete defaults to true, and will cause the memory access to also be 1809 /// deleted, not just removed. 1810 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1811 BasicBlock *BB = MA->getBlock(); 1812 // The access list owns the reference, so we erase it from the non-owning list 1813 // first. 1814 if (!isa<MemoryUse>(MA)) { 1815 auto DefsIt = PerBlockDefs.find(BB); 1816 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1817 Defs->remove(*MA); 1818 if (Defs->empty()) 1819 PerBlockDefs.erase(DefsIt); 1820 } 1821 1822 // The erase call here will delete it. If we don't want it deleted, we call 1823 // remove instead. 1824 auto AccessIt = PerBlockAccesses.find(BB); 1825 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1826 if (ShouldDelete) 1827 Accesses->erase(MA); 1828 else 1829 Accesses->remove(MA); 1830 1831 if (Accesses->empty()) { 1832 PerBlockAccesses.erase(AccessIt); 1833 BlockNumberingValid.erase(BB); 1834 } 1835 } 1836 1837 void MemorySSA::print(raw_ostream &OS) const { 1838 MemorySSAAnnotatedWriter Writer(this); 1839 F.print(OS, &Writer); 1840 } 1841 1842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1843 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1844 #endif 1845 1846 void MemorySSA::verifyMemorySSA() const { 1847 verifyDefUses(F); 1848 verifyDomination(F); 1849 verifyOrdering(F); 1850 verifyDominationNumbers(F); 1851 // Previously, the verification used to also verify that the clobberingAccess 1852 // cached by MemorySSA is the same as the clobberingAccess found at a later 1853 // query to AA. This does not hold true in general due to the current fragility 1854 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1855 // up. As a result, transformations that are correct, will lead to BasicAA 1856 // returning different Alias answers before and after that transformation. 1857 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1858 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1859 // every transformation, which defeats the purpose of using it. For such an 1860 // example, see test4 added in D51960. 1861 } 1862 1863 /// Verify that all of the blocks we believe to have valid domination numbers 1864 /// actually have valid domination numbers. 1865 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1866 #ifndef NDEBUG 1867 if (BlockNumberingValid.empty()) 1868 return; 1869 1870 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1871 for (const BasicBlock &BB : F) { 1872 if (!ValidBlocks.count(&BB)) 1873 continue; 1874 1875 ValidBlocks.erase(&BB); 1876 1877 const AccessList *Accesses = getBlockAccesses(&BB); 1878 // It's correct to say an empty block has valid numbering. 1879 if (!Accesses) 1880 continue; 1881 1882 // Block numbering starts at 1. 1883 unsigned long LastNumber = 0; 1884 for (const MemoryAccess &MA : *Accesses) { 1885 auto ThisNumberIter = BlockNumbering.find(&MA); 1886 assert(ThisNumberIter != BlockNumbering.end() && 1887 "MemoryAccess has no domination number in a valid block!"); 1888 1889 unsigned long ThisNumber = ThisNumberIter->second; 1890 assert(ThisNumber > LastNumber && 1891 "Domination numbers should be strictly increasing!"); 1892 LastNumber = ThisNumber; 1893 } 1894 } 1895 1896 assert(ValidBlocks.empty() && 1897 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1898 #endif 1899 } 1900 1901 /// Verify that the order and existence of MemoryAccesses matches the 1902 /// order and existence of memory affecting instructions. 1903 void MemorySSA::verifyOrdering(Function &F) const { 1904 #ifndef NDEBUG 1905 // Walk all the blocks, comparing what the lookups think and what the access 1906 // lists think, as well as the order in the blocks vs the order in the access 1907 // lists. 1908 SmallVector<MemoryAccess *, 32> ActualAccesses; 1909 SmallVector<MemoryAccess *, 32> ActualDefs; 1910 for (BasicBlock &B : F) { 1911 const AccessList *AL = getBlockAccesses(&B); 1912 const auto *DL = getBlockDefs(&B); 1913 MemoryAccess *Phi = getMemoryAccess(&B); 1914 if (Phi) { 1915 ActualAccesses.push_back(Phi); 1916 ActualDefs.push_back(Phi); 1917 } 1918 1919 for (Instruction &I : B) { 1920 MemoryAccess *MA = getMemoryAccess(&I); 1921 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1922 "We have memory affecting instructions " 1923 "in this block but they are not in the " 1924 "access list or defs list"); 1925 if (MA) { 1926 ActualAccesses.push_back(MA); 1927 if (isa<MemoryDef>(MA)) 1928 ActualDefs.push_back(MA); 1929 } 1930 } 1931 // Either we hit the assert, really have no accesses, or we have both 1932 // accesses and an access list. 1933 // Same with defs. 1934 if (!AL && !DL) 1935 continue; 1936 assert(AL->size() == ActualAccesses.size() && 1937 "We don't have the same number of accesses in the block as on the " 1938 "access list"); 1939 assert((DL || ActualDefs.size() == 0) && 1940 "Either we should have a defs list, or we should have no defs"); 1941 assert((!DL || DL->size() == ActualDefs.size()) && 1942 "We don't have the same number of defs in the block as on the " 1943 "def list"); 1944 auto ALI = AL->begin(); 1945 auto AAI = ActualAccesses.begin(); 1946 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1947 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1948 ++ALI; 1949 ++AAI; 1950 } 1951 ActualAccesses.clear(); 1952 if (DL) { 1953 auto DLI = DL->begin(); 1954 auto ADI = ActualDefs.begin(); 1955 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1956 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1957 ++DLI; 1958 ++ADI; 1959 } 1960 } 1961 ActualDefs.clear(); 1962 } 1963 #endif 1964 } 1965 1966 /// Verify the domination properties of MemorySSA by checking that each 1967 /// definition dominates all of its uses. 1968 void MemorySSA::verifyDomination(Function &F) const { 1969 #ifndef NDEBUG 1970 for (BasicBlock &B : F) { 1971 // Phi nodes are attached to basic blocks 1972 if (MemoryPhi *MP = getMemoryAccess(&B)) 1973 for (const Use &U : MP->uses()) 1974 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1975 1976 for (Instruction &I : B) { 1977 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1978 if (!MD) 1979 continue; 1980 1981 for (const Use &U : MD->uses()) 1982 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1983 } 1984 } 1985 #endif 1986 } 1987 1988 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 1989 /// appears in the use list of \p Def. 1990 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1991 #ifndef NDEBUG 1992 // The live on entry use may cause us to get a NULL def here 1993 if (!Def) 1994 assert(isLiveOnEntryDef(Use) && 1995 "Null def but use not point to live on entry def"); 1996 else 1997 assert(is_contained(Def->users(), Use) && 1998 "Did not find use in def's use list"); 1999 #endif 2000 } 2001 2002 /// Verify the immediate use information, by walking all the memory 2003 /// accesses and verifying that, for each use, it appears in the 2004 /// appropriate def's use list 2005 void MemorySSA::verifyDefUses(Function &F) const { 2006 #ifndef NDEBUG 2007 for (BasicBlock &B : F) { 2008 // Phi nodes are attached to basic blocks 2009 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 2010 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2011 pred_begin(&B), pred_end(&B))) && 2012 "Incomplete MemoryPhi Node"); 2013 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2014 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2015 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2016 pred_end(&B) && 2017 "Incoming phi block not a block predecessor"); 2018 } 2019 } 2020 2021 for (Instruction &I : B) { 2022 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 2023 verifyUseInDefs(MA->getDefiningAccess(), MA); 2024 } 2025 } 2026 } 2027 #endif 2028 } 2029 2030 /// Perform a local numbering on blocks so that instruction ordering can be 2031 /// determined in constant time. 2032 /// TODO: We currently just number in order. If we numbered by N, we could 2033 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2034 /// log2(N) sequences of mixed before and after) without needing to invalidate 2035 /// the numbering. 2036 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2037 // The pre-increment ensures the numbers really start at 1. 2038 unsigned long CurrentNumber = 0; 2039 const AccessList *AL = getBlockAccesses(B); 2040 assert(AL != nullptr && "Asking to renumber an empty block"); 2041 for (const auto &I : *AL) 2042 BlockNumbering[&I] = ++CurrentNumber; 2043 BlockNumberingValid.insert(B); 2044 } 2045 2046 /// Determine, for two memory accesses in the same block, 2047 /// whether \p Dominator dominates \p Dominatee. 2048 /// \returns True if \p Dominator dominates \p Dominatee. 2049 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2050 const MemoryAccess *Dominatee) const { 2051 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2052 2053 assert((DominatorBlock == Dominatee->getBlock()) && 2054 "Asking for local domination when accesses are in different blocks!"); 2055 // A node dominates itself. 2056 if (Dominatee == Dominator) 2057 return true; 2058 2059 // When Dominatee is defined on function entry, it is not dominated by another 2060 // memory access. 2061 if (isLiveOnEntryDef(Dominatee)) 2062 return false; 2063 2064 // When Dominator is defined on function entry, it dominates the other memory 2065 // access. 2066 if (isLiveOnEntryDef(Dominator)) 2067 return true; 2068 2069 if (!BlockNumberingValid.count(DominatorBlock)) 2070 renumberBlock(DominatorBlock); 2071 2072 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2073 // All numbers start with 1 2074 assert(DominatorNum != 0 && "Block was not numbered properly"); 2075 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2076 assert(DominateeNum != 0 && "Block was not numbered properly"); 2077 return DominatorNum < DominateeNum; 2078 } 2079 2080 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2081 const MemoryAccess *Dominatee) const { 2082 if (Dominator == Dominatee) 2083 return true; 2084 2085 if (isLiveOnEntryDef(Dominatee)) 2086 return false; 2087 2088 if (Dominator->getBlock() != Dominatee->getBlock()) 2089 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2090 return locallyDominates(Dominator, Dominatee); 2091 } 2092 2093 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2094 const Use &Dominatee) const { 2095 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2096 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2097 // The def must dominate the incoming block of the phi. 2098 if (UseBB != Dominator->getBlock()) 2099 return DT->dominates(Dominator->getBlock(), UseBB); 2100 // If the UseBB and the DefBB are the same, compare locally. 2101 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2102 } 2103 // If it's not a PHI node use, the normal dominates can already handle it. 2104 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2105 } 2106 2107 const static char LiveOnEntryStr[] = "liveOnEntry"; 2108 2109 void MemoryAccess::print(raw_ostream &OS) const { 2110 switch (getValueID()) { 2111 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2112 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2113 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2114 } 2115 llvm_unreachable("invalid value id"); 2116 } 2117 2118 void MemoryDef::print(raw_ostream &OS) const { 2119 MemoryAccess *UO = getDefiningAccess(); 2120 2121 auto printID = [&OS](MemoryAccess *A) { 2122 if (A && A->getID()) 2123 OS << A->getID(); 2124 else 2125 OS << LiveOnEntryStr; 2126 }; 2127 2128 OS << getID() << " = MemoryDef("; 2129 printID(UO); 2130 OS << ")"; 2131 2132 if (isOptimized()) { 2133 OS << "->"; 2134 printID(getOptimized()); 2135 2136 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2137 OS << " " << *AR; 2138 } 2139 } 2140 2141 void MemoryPhi::print(raw_ostream &OS) const { 2142 bool First = true; 2143 OS << getID() << " = MemoryPhi("; 2144 for (const auto &Op : operands()) { 2145 BasicBlock *BB = getIncomingBlock(Op); 2146 MemoryAccess *MA = cast<MemoryAccess>(Op); 2147 if (!First) 2148 OS << ','; 2149 else 2150 First = false; 2151 2152 OS << '{'; 2153 if (BB->hasName()) 2154 OS << BB->getName(); 2155 else 2156 BB->printAsOperand(OS, false); 2157 OS << ','; 2158 if (unsigned ID = MA->getID()) 2159 OS << ID; 2160 else 2161 OS << LiveOnEntryStr; 2162 OS << '}'; 2163 } 2164 OS << ')'; 2165 } 2166 2167 void MemoryUse::print(raw_ostream &OS) const { 2168 MemoryAccess *UO = getDefiningAccess(); 2169 OS << "MemoryUse("; 2170 if (UO && UO->getID()) 2171 OS << UO->getID(); 2172 else 2173 OS << LiveOnEntryStr; 2174 OS << ')'; 2175 2176 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2177 OS << " " << *AR; 2178 } 2179 2180 void MemoryAccess::dump() const { 2181 // Cannot completely remove virtual function even in release mode. 2182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2183 print(dbgs()); 2184 dbgs() << "\n"; 2185 #endif 2186 } 2187 2188 char MemorySSAPrinterLegacyPass::ID = 0; 2189 2190 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2191 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2192 } 2193 2194 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2195 AU.setPreservesAll(); 2196 AU.addRequired<MemorySSAWrapperPass>(); 2197 } 2198 2199 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2200 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2201 MSSA.print(dbgs()); 2202 if (VerifyMemorySSA) 2203 MSSA.verifyMemorySSA(); 2204 return false; 2205 } 2206 2207 AnalysisKey MemorySSAAnalysis::Key; 2208 2209 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2210 FunctionAnalysisManager &AM) { 2211 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2212 auto &AA = AM.getResult<AAManager>(F); 2213 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 2214 } 2215 2216 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2217 FunctionAnalysisManager &AM) { 2218 OS << "MemorySSA for function: " << F.getName() << "\n"; 2219 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2220 2221 return PreservedAnalyses::all(); 2222 } 2223 2224 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2225 FunctionAnalysisManager &AM) { 2226 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2227 2228 return PreservedAnalyses::all(); 2229 } 2230 2231 char MemorySSAWrapperPass::ID = 0; 2232 2233 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2234 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2235 } 2236 2237 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2238 2239 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2240 AU.setPreservesAll(); 2241 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2242 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2243 } 2244 2245 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2246 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2247 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2248 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2249 return false; 2250 } 2251 2252 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2253 2254 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2255 MSSA->print(OS); 2256 } 2257 2258 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2259 2260 /// Walk the use-def chains starting at \p StartingAccess and find 2261 /// the MemoryAccess that actually clobbers Loc. 2262 /// 2263 /// \returns our clobbering memory access 2264 template <typename AliasAnalysisType> 2265 MemoryAccess * 2266 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2267 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2268 unsigned &UpwardWalkLimit) { 2269 if (isa<MemoryPhi>(StartingAccess)) 2270 return StartingAccess; 2271 2272 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2273 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2274 return StartingUseOrDef; 2275 2276 Instruction *I = StartingUseOrDef->getMemoryInst(); 2277 2278 // Conservatively, fences are always clobbers, so don't perform the walk if we 2279 // hit a fence. 2280 if (!isa<CallBase>(I) && I->isFenceLike()) 2281 return StartingUseOrDef; 2282 2283 UpwardsMemoryQuery Q; 2284 Q.OriginalAccess = StartingUseOrDef; 2285 Q.StartingLoc = Loc; 2286 Q.Inst = I; 2287 Q.IsCall = false; 2288 2289 // Unlike the other function, do not walk to the def of a def, because we are 2290 // handed something we already believe is the clobbering access. 2291 // We never set SkipSelf to true in Q in this method. 2292 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2293 ? StartingUseOrDef->getDefiningAccess() 2294 : StartingUseOrDef; 2295 2296 MemoryAccess *Clobber = 2297 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2298 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2299 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2300 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2301 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2302 return Clobber; 2303 } 2304 2305 template <typename AliasAnalysisType> 2306 MemoryAccess * 2307 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2308 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2309 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2310 // If this is a MemoryPhi, we can't do anything. 2311 if (!StartingAccess) 2312 return MA; 2313 2314 bool IsOptimized = false; 2315 2316 // If this is an already optimized use or def, return the optimized result. 2317 // Note: Currently, we store the optimized def result in a separate field, 2318 // since we can't use the defining access. 2319 if (StartingAccess->isOptimized()) { 2320 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2321 return StartingAccess->getOptimized(); 2322 IsOptimized = true; 2323 } 2324 2325 const Instruction *I = StartingAccess->getMemoryInst(); 2326 // We can't sanely do anything with a fence, since they conservatively clobber 2327 // all memory, and have no locations to get pointers from to try to 2328 // disambiguate. 2329 if (!isa<CallBase>(I) && I->isFenceLike()) 2330 return StartingAccess; 2331 2332 UpwardsMemoryQuery Q(I, StartingAccess); 2333 2334 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2335 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2336 StartingAccess->setOptimized(LiveOnEntry); 2337 StartingAccess->setOptimizedAccessType(None); 2338 return LiveOnEntry; 2339 } 2340 2341 MemoryAccess *OptimizedAccess; 2342 if (!IsOptimized) { 2343 // Start with the thing we already think clobbers this location 2344 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2345 2346 // At this point, DefiningAccess may be the live on entry def. 2347 // If it is, we will not get a better result. 2348 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2349 StartingAccess->setOptimized(DefiningAccess); 2350 StartingAccess->setOptimizedAccessType(None); 2351 return DefiningAccess; 2352 } 2353 2354 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2355 StartingAccess->setOptimized(OptimizedAccess); 2356 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2357 StartingAccess->setOptimizedAccessType(None); 2358 else if (Q.AR == MustAlias) 2359 StartingAccess->setOptimizedAccessType(MustAlias); 2360 } else 2361 OptimizedAccess = StartingAccess->getOptimized(); 2362 2363 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2364 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2365 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2366 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2367 2368 MemoryAccess *Result; 2369 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2370 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2371 assert(isa<MemoryDef>(Q.OriginalAccess)); 2372 Q.SkipSelfAccess = true; 2373 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2374 } else 2375 Result = OptimizedAccess; 2376 2377 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2378 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2379 2380 return Result; 2381 } 2382 2383 MemoryAccess * 2384 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2385 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2386 return Use->getDefiningAccess(); 2387 return MA; 2388 } 2389 2390 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2391 MemoryAccess *StartingAccess, const MemoryLocation &) { 2392 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2393 return Use->getDefiningAccess(); 2394 return StartingAccess; 2395 } 2396 2397 void MemoryPhi::deleteMe(DerivedUser *Self) { 2398 delete static_cast<MemoryPhi *>(Self); 2399 } 2400 2401 void MemoryDef::deleteMe(DerivedUser *Self) { 2402 delete static_cast<MemoryDef *>(Self); 2403 } 2404 2405 void MemoryUse::deleteMe(DerivedUser *Self) { 2406 delete static_cast<MemoryUse *>(Self); 2407 } 2408