1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <memory> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "memoryssa" 59 60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 61 true) 62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 64 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 65 true) 66 67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 68 "Memory SSA Printer", false, false) 69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 71 "Memory SSA Printer", false, false) 72 73 static cl::opt<unsigned> MaxCheckLimit( 74 "memssa-check-limit", cl::Hidden, cl::init(100), 75 cl::desc("The maximum number of stores/phis MemorySSA" 76 "will consider trying to walk past (default = 100)")); 77 78 // Always verify MemorySSA if expensive checking is enabled. 79 #ifdef EXPENSIVE_CHECKS 80 bool llvm::VerifyMemorySSA = true; 81 #else 82 bool llvm::VerifyMemorySSA = false; 83 #endif 84 static cl::opt<bool, true> 85 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 86 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 87 88 namespace llvm { 89 90 /// An assembly annotator class to print Memory SSA information in 91 /// comments. 92 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 93 friend class MemorySSA; 94 95 const MemorySSA *MSSA; 96 97 public: 98 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 99 100 void emitBasicBlockStartAnnot(const BasicBlock *BB, 101 formatted_raw_ostream &OS) override { 102 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 103 OS << "; " << *MA << "\n"; 104 } 105 106 void emitInstructionAnnot(const Instruction *I, 107 formatted_raw_ostream &OS) override { 108 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 109 OS << "; " << *MA << "\n"; 110 } 111 }; 112 113 } // end namespace llvm 114 115 namespace { 116 117 /// Our current alias analysis API differentiates heavily between calls and 118 /// non-calls, and functions called on one usually assert on the other. 119 /// This class encapsulates the distinction to simplify other code that wants 120 /// "Memory affecting instructions and related data" to use as a key. 121 /// For example, this class is used as a densemap key in the use optimizer. 122 class MemoryLocOrCall { 123 public: 124 bool IsCall = false; 125 126 MemoryLocOrCall(MemoryUseOrDef *MUD) 127 : MemoryLocOrCall(MUD->getMemoryInst()) {} 128 MemoryLocOrCall(const MemoryUseOrDef *MUD) 129 : MemoryLocOrCall(MUD->getMemoryInst()) {} 130 131 MemoryLocOrCall(Instruction *Inst) { 132 if (auto *C = dyn_cast<CallBase>(Inst)) { 133 IsCall = true; 134 Call = C; 135 } else { 136 IsCall = false; 137 // There is no such thing as a memorylocation for a fence inst, and it is 138 // unique in that regard. 139 if (!isa<FenceInst>(Inst)) 140 Loc = MemoryLocation::get(Inst); 141 } 142 } 143 144 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 145 146 const CallBase *getCall() const { 147 assert(IsCall); 148 return Call; 149 } 150 151 MemoryLocation getLoc() const { 152 assert(!IsCall); 153 return Loc; 154 } 155 156 bool operator==(const MemoryLocOrCall &Other) const { 157 if (IsCall != Other.IsCall) 158 return false; 159 160 if (!IsCall) 161 return Loc == Other.Loc; 162 163 if (Call->getCalledValue() != Other.Call->getCalledValue()) 164 return false; 165 166 return Call->arg_size() == Other.Call->arg_size() && 167 std::equal(Call->arg_begin(), Call->arg_end(), 168 Other.Call->arg_begin()); 169 } 170 171 private: 172 union { 173 const CallBase *Call; 174 MemoryLocation Loc; 175 }; 176 }; 177 178 } // end anonymous namespace 179 180 namespace llvm { 181 182 template <> struct DenseMapInfo<MemoryLocOrCall> { 183 static inline MemoryLocOrCall getEmptyKey() { 184 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 185 } 186 187 static inline MemoryLocOrCall getTombstoneKey() { 188 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 189 } 190 191 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 192 if (!MLOC.IsCall) 193 return hash_combine( 194 MLOC.IsCall, 195 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 196 197 hash_code hash = 198 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 199 MLOC.getCall()->getCalledValue())); 200 201 for (const Value *Arg : MLOC.getCall()->args()) 202 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 203 return hash; 204 } 205 206 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 207 return LHS == RHS; 208 } 209 }; 210 211 } // end namespace llvm 212 213 /// This does one-way checks to see if Use could theoretically be hoisted above 214 /// MayClobber. This will not check the other way around. 215 /// 216 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 217 /// MayClobber, with no potentially clobbering operations in between them. 218 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 219 static bool areLoadsReorderable(const LoadInst *Use, 220 const LoadInst *MayClobber) { 221 bool VolatileUse = Use->isVolatile(); 222 bool VolatileClobber = MayClobber->isVolatile(); 223 // Volatile operations may never be reordered with other volatile operations. 224 if (VolatileUse && VolatileClobber) 225 return false; 226 // Otherwise, volatile doesn't matter here. From the language reference: 227 // 'optimizers may change the order of volatile operations relative to 228 // non-volatile operations.'" 229 230 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 231 // is weaker, it can be moved above other loads. We just need to be sure that 232 // MayClobber isn't an acquire load, because loads can't be moved above 233 // acquire loads. 234 // 235 // Note that this explicitly *does* allow the free reordering of monotonic (or 236 // weaker) loads of the same address. 237 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 238 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 239 AtomicOrdering::Acquire); 240 return !(SeqCstUse || MayClobberIsAcquire); 241 } 242 243 namespace { 244 245 struct ClobberAlias { 246 bool IsClobber; 247 Optional<AliasResult> AR; 248 }; 249 250 } // end anonymous namespace 251 252 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 253 // ignored if IsClobber = false. 254 template <typename AliasAnalysisType> 255 static ClobberAlias 256 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 257 const Instruction *UseInst, AliasAnalysisType &AA) { 258 Instruction *DefInst = MD->getMemoryInst(); 259 assert(DefInst && "Defining instruction not actually an instruction"); 260 const auto *UseCall = dyn_cast<CallBase>(UseInst); 261 Optional<AliasResult> AR; 262 263 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 264 // These intrinsics will show up as affecting memory, but they are just 265 // markers, mostly. 266 // 267 // FIXME: We probably don't actually want MemorySSA to model these at all 268 // (including creating MemoryAccesses for them): we just end up inventing 269 // clobbers where they don't really exist at all. Please see D43269 for 270 // context. 271 switch (II->getIntrinsicID()) { 272 case Intrinsic::lifetime_start: 273 if (UseCall) 274 return {false, NoAlias}; 275 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 276 return {AR != NoAlias, AR}; 277 case Intrinsic::lifetime_end: 278 case Intrinsic::invariant_start: 279 case Intrinsic::invariant_end: 280 case Intrinsic::assume: 281 return {false, NoAlias}; 282 default: 283 break; 284 } 285 } 286 287 if (UseCall) { 288 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 289 AR = isMustSet(I) ? MustAlias : MayAlias; 290 return {isModOrRefSet(I), AR}; 291 } 292 293 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 294 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 295 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 296 297 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 298 AR = isMustSet(I) ? MustAlias : MayAlias; 299 return {isModSet(I), AR}; 300 } 301 302 template <typename AliasAnalysisType> 303 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 304 const MemoryUseOrDef *MU, 305 const MemoryLocOrCall &UseMLOC, 306 AliasAnalysisType &AA) { 307 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 308 // to exist while MemoryLocOrCall is pushed through places. 309 if (UseMLOC.IsCall) 310 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 311 AA); 312 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 313 AA); 314 } 315 316 // Return true when MD may alias MU, return false otherwise. 317 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 318 AliasAnalysis &AA) { 319 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 320 } 321 322 namespace { 323 324 struct UpwardsMemoryQuery { 325 // True if our original query started off as a call 326 bool IsCall = false; 327 // The pointer location we started the query with. This will be empty if 328 // IsCall is true. 329 MemoryLocation StartingLoc; 330 // This is the instruction we were querying about. 331 const Instruction *Inst = nullptr; 332 // The MemoryAccess we actually got called with, used to test local domination 333 const MemoryAccess *OriginalAccess = nullptr; 334 Optional<AliasResult> AR = MayAlias; 335 bool SkipSelfAccess = false; 336 337 UpwardsMemoryQuery() = default; 338 339 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 340 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 341 if (!IsCall) 342 StartingLoc = MemoryLocation::get(Inst); 343 } 344 }; 345 346 } // end anonymous namespace 347 348 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 349 BatchAAResults &AA) { 350 Instruction *Inst = MD->getMemoryInst(); 351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 352 switch (II->getIntrinsicID()) { 353 case Intrinsic::lifetime_end: 354 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 355 default: 356 return false; 357 } 358 } 359 return false; 360 } 361 362 template <typename AliasAnalysisType> 363 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 364 const Instruction *I) { 365 // If the memory can't be changed, then loads of the memory can't be 366 // clobbered. 367 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 368 AA.pointsToConstantMemory(MemoryLocation( 369 cast<LoadInst>(I)->getPointerOperand()))); 370 } 371 372 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 373 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 374 /// 375 /// This is meant to be as simple and self-contained as possible. Because it 376 /// uses no cache, etc., it can be relatively expensive. 377 /// 378 /// \param Start The MemoryAccess that we want to walk from. 379 /// \param ClobberAt A clobber for Start. 380 /// \param StartLoc The MemoryLocation for Start. 381 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 382 /// \param Query The UpwardsMemoryQuery we used for our search. 383 /// \param AA The AliasAnalysis we used for our search. 384 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 385 386 template <typename AliasAnalysisType> 387 LLVM_ATTRIBUTE_UNUSED static void 388 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 389 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 390 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 391 bool AllowImpreciseClobber = false) { 392 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 393 394 if (MSSA.isLiveOnEntryDef(Start)) { 395 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 396 "liveOnEntry must clobber itself"); 397 return; 398 } 399 400 bool FoundClobber = false; 401 DenseSet<ConstMemoryAccessPair> VisitedPhis; 402 SmallVector<ConstMemoryAccessPair, 8> Worklist; 403 Worklist.emplace_back(Start, StartLoc); 404 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 405 // is found, complain. 406 while (!Worklist.empty()) { 407 auto MAP = Worklist.pop_back_val(); 408 // All we care about is that nothing from Start to ClobberAt clobbers Start. 409 // We learn nothing from revisiting nodes. 410 if (!VisitedPhis.insert(MAP).second) 411 continue; 412 413 for (const auto *MA : def_chain(MAP.first)) { 414 if (MA == ClobberAt) { 415 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 416 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 417 // since it won't let us short-circuit. 418 // 419 // Also, note that this can't be hoisted out of the `Worklist` loop, 420 // since MD may only act as a clobber for 1 of N MemoryLocations. 421 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 422 if (!FoundClobber) { 423 ClobberAlias CA = 424 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 425 if (CA.IsClobber) { 426 FoundClobber = true; 427 // Not used: CA.AR; 428 } 429 } 430 } 431 break; 432 } 433 434 // We should never hit liveOnEntry, unless it's the clobber. 435 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 436 437 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 438 // If Start is a Def, skip self. 439 if (MD == Start) 440 continue; 441 442 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 443 .IsClobber && 444 "Found clobber before reaching ClobberAt!"); 445 continue; 446 } 447 448 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 449 (void)MU; 450 assert (MU == Start && 451 "Can only find use in def chain if Start is a use"); 452 continue; 453 } 454 455 assert(isa<MemoryPhi>(MA)); 456 Worklist.append( 457 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 458 upward_defs_end()); 459 } 460 } 461 462 // If the verify is done following an optimization, it's possible that 463 // ClobberAt was a conservative clobbering, that we can now infer is not a 464 // true clobbering access. Don't fail the verify if that's the case. 465 // We do have accesses that claim they're optimized, but could be optimized 466 // further. Updating all these can be expensive, so allow it for now (FIXME). 467 if (AllowImpreciseClobber) 468 return; 469 470 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 471 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 472 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 473 "ClobberAt never acted as a clobber"); 474 } 475 476 namespace { 477 478 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 479 /// in one class. 480 template <class AliasAnalysisType> class ClobberWalker { 481 /// Save a few bytes by using unsigned instead of size_t. 482 using ListIndex = unsigned; 483 484 /// Represents a span of contiguous MemoryDefs, potentially ending in a 485 /// MemoryPhi. 486 struct DefPath { 487 MemoryLocation Loc; 488 // Note that, because we always walk in reverse, Last will always dominate 489 // First. Also note that First and Last are inclusive. 490 MemoryAccess *First; 491 MemoryAccess *Last; 492 Optional<ListIndex> Previous; 493 494 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 495 Optional<ListIndex> Previous) 496 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 497 498 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 499 Optional<ListIndex> Previous) 500 : DefPath(Loc, Init, Init, Previous) {} 501 }; 502 503 const MemorySSA &MSSA; 504 AliasAnalysisType &AA; 505 DominatorTree &DT; 506 UpwardsMemoryQuery *Query; 507 unsigned *UpwardWalkLimit; 508 509 // Phi optimization bookkeeping 510 SmallVector<DefPath, 32> Paths; 511 DenseSet<ConstMemoryAccessPair> VisitedPhis; 512 513 /// Find the nearest def or phi that `From` can legally be optimized to. 514 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 515 assert(From->getNumOperands() && "Phi with no operands?"); 516 517 BasicBlock *BB = From->getBlock(); 518 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 519 DomTreeNode *Node = DT.getNode(BB); 520 while ((Node = Node->getIDom())) { 521 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 522 if (Defs) 523 return &*Defs->rbegin(); 524 } 525 return Result; 526 } 527 528 /// Result of calling walkToPhiOrClobber. 529 struct UpwardsWalkResult { 530 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 531 /// both. Include alias info when clobber found. 532 MemoryAccess *Result; 533 bool IsKnownClobber; 534 Optional<AliasResult> AR; 535 }; 536 537 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 538 /// This will update Desc.Last as it walks. It will (optionally) also stop at 539 /// StopAt. 540 /// 541 /// This does not test for whether StopAt is a clobber 542 UpwardsWalkResult 543 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 544 const MemoryAccess *SkipStopAt = nullptr) const { 545 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 546 assert(UpwardWalkLimit && "Need a valid walk limit"); 547 bool LimitAlreadyReached = false; 548 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 549 // it to 1. This will not do any alias() calls. It either returns in the 550 // first iteration in the loop below, or is set back to 0 if all def chains 551 // are free of MemoryDefs. 552 if (!*UpwardWalkLimit) { 553 *UpwardWalkLimit = 1; 554 LimitAlreadyReached = true; 555 } 556 557 for (MemoryAccess *Current : def_chain(Desc.Last)) { 558 Desc.Last = Current; 559 if (Current == StopAt || Current == SkipStopAt) 560 return {Current, false, MayAlias}; 561 562 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 563 if (MSSA.isLiveOnEntryDef(MD)) 564 return {MD, true, MustAlias}; 565 566 if (!--*UpwardWalkLimit) 567 return {Current, true, MayAlias}; 568 569 ClobberAlias CA = 570 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 571 if (CA.IsClobber) 572 return {MD, true, CA.AR}; 573 } 574 } 575 576 if (LimitAlreadyReached) 577 *UpwardWalkLimit = 0; 578 579 assert(isa<MemoryPhi>(Desc.Last) && 580 "Ended at a non-clobber that's not a phi?"); 581 return {Desc.Last, false, MayAlias}; 582 } 583 584 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 585 ListIndex PriorNode) { 586 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 587 upward_defs_end()); 588 for (const MemoryAccessPair &P : UpwardDefs) { 589 PausedSearches.push_back(Paths.size()); 590 Paths.emplace_back(P.second, P.first, PriorNode); 591 } 592 } 593 594 /// Represents a search that terminated after finding a clobber. This clobber 595 /// may or may not be present in the path of defs from LastNode..SearchStart, 596 /// since it may have been retrieved from cache. 597 struct TerminatedPath { 598 MemoryAccess *Clobber; 599 ListIndex LastNode; 600 }; 601 602 /// Get an access that keeps us from optimizing to the given phi. 603 /// 604 /// PausedSearches is an array of indices into the Paths array. Its incoming 605 /// value is the indices of searches that stopped at the last phi optimization 606 /// target. It's left in an unspecified state. 607 /// 608 /// If this returns None, NewPaused is a vector of searches that terminated 609 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 610 Optional<TerminatedPath> 611 getBlockingAccess(const MemoryAccess *StopWhere, 612 SmallVectorImpl<ListIndex> &PausedSearches, 613 SmallVectorImpl<ListIndex> &NewPaused, 614 SmallVectorImpl<TerminatedPath> &Terminated) { 615 assert(!PausedSearches.empty() && "No searches to continue?"); 616 617 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 618 // PausedSearches as our stack. 619 while (!PausedSearches.empty()) { 620 ListIndex PathIndex = PausedSearches.pop_back_val(); 621 DefPath &Node = Paths[PathIndex]; 622 623 // If we've already visited this path with this MemoryLocation, we don't 624 // need to do so again. 625 // 626 // NOTE: That we just drop these paths on the ground makes caching 627 // behavior sporadic. e.g. given a diamond: 628 // A 629 // B C 630 // D 631 // 632 // ...If we walk D, B, A, C, we'll only cache the result of phi 633 // optimization for A, B, and D; C will be skipped because it dies here. 634 // This arguably isn't the worst thing ever, since: 635 // - We generally query things in a top-down order, so if we got below D 636 // without needing cache entries for {C, MemLoc}, then chances are 637 // that those cache entries would end up ultimately unused. 638 // - We still cache things for A, so C only needs to walk up a bit. 639 // If this behavior becomes problematic, we can fix without a ton of extra 640 // work. 641 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 642 continue; 643 644 const MemoryAccess *SkipStopWhere = nullptr; 645 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 646 assert(isa<MemoryDef>(Query->OriginalAccess)); 647 SkipStopWhere = Query->OriginalAccess; 648 } 649 650 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 651 /*StopAt=*/StopWhere, 652 /*SkipStopAt=*/SkipStopWhere); 653 if (Res.IsKnownClobber) { 654 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 655 656 // If this wasn't a cache hit, we hit a clobber when walking. That's a 657 // failure. 658 TerminatedPath Term{Res.Result, PathIndex}; 659 if (!MSSA.dominates(Res.Result, StopWhere)) 660 return Term; 661 662 // Otherwise, it's a valid thing to potentially optimize to. 663 Terminated.push_back(Term); 664 continue; 665 } 666 667 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 668 // We've hit our target. Save this path off for if we want to continue 669 // walking. If we are in the mode of skipping the OriginalAccess, and 670 // we've reached back to the OriginalAccess, do not save path, we've 671 // just looped back to self. 672 if (Res.Result != SkipStopWhere) 673 NewPaused.push_back(PathIndex); 674 continue; 675 } 676 677 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 678 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 679 } 680 681 return None; 682 } 683 684 template <typename T, typename Walker> 685 struct generic_def_path_iterator 686 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 687 std::forward_iterator_tag, T *> { 688 generic_def_path_iterator() {} 689 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 690 691 T &operator*() const { return curNode(); } 692 693 generic_def_path_iterator &operator++() { 694 N = curNode().Previous; 695 return *this; 696 } 697 698 bool operator==(const generic_def_path_iterator &O) const { 699 if (N.hasValue() != O.N.hasValue()) 700 return false; 701 return !N.hasValue() || *N == *O.N; 702 } 703 704 private: 705 T &curNode() const { return W->Paths[*N]; } 706 707 Walker *W = nullptr; 708 Optional<ListIndex> N = None; 709 }; 710 711 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 712 using const_def_path_iterator = 713 generic_def_path_iterator<const DefPath, const ClobberWalker>; 714 715 iterator_range<def_path_iterator> def_path(ListIndex From) { 716 return make_range(def_path_iterator(this, From), def_path_iterator()); 717 } 718 719 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 720 return make_range(const_def_path_iterator(this, From), 721 const_def_path_iterator()); 722 } 723 724 struct OptznResult { 725 /// The path that contains our result. 726 TerminatedPath PrimaryClobber; 727 /// The paths that we can legally cache back from, but that aren't 728 /// necessarily the result of the Phi optimization. 729 SmallVector<TerminatedPath, 4> OtherClobbers; 730 }; 731 732 ListIndex defPathIndex(const DefPath &N) const { 733 // The assert looks nicer if we don't need to do &N 734 const DefPath *NP = &N; 735 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 736 "Out of bounds DefPath!"); 737 return NP - &Paths.front(); 738 } 739 740 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 741 /// that act as legal clobbers. Note that this won't return *all* clobbers. 742 /// 743 /// Phi optimization algorithm tl;dr: 744 /// - Find the earliest def/phi, A, we can optimize to 745 /// - Find if all paths from the starting memory access ultimately reach A 746 /// - If not, optimization isn't possible. 747 /// - Otherwise, walk from A to another clobber or phi, A'. 748 /// - If A' is a def, we're done. 749 /// - If A' is a phi, try to optimize it. 750 /// 751 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 752 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 753 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 754 const MemoryLocation &Loc) { 755 assert(Paths.empty() && VisitedPhis.empty() && 756 "Reset the optimization state."); 757 758 Paths.emplace_back(Loc, Start, Phi, None); 759 // Stores how many "valid" optimization nodes we had prior to calling 760 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 761 auto PriorPathsSize = Paths.size(); 762 763 SmallVector<ListIndex, 16> PausedSearches; 764 SmallVector<ListIndex, 8> NewPaused; 765 SmallVector<TerminatedPath, 4> TerminatedPaths; 766 767 addSearches(Phi, PausedSearches, 0); 768 769 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 770 // Paths. 771 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 772 assert(!Paths.empty() && "Need a path to move"); 773 auto Dom = Paths.begin(); 774 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 775 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 776 Dom = I; 777 auto Last = Paths.end() - 1; 778 if (Last != Dom) 779 std::iter_swap(Last, Dom); 780 }; 781 782 MemoryPhi *Current = Phi; 783 while (true) { 784 assert(!MSSA.isLiveOnEntryDef(Current) && 785 "liveOnEntry wasn't treated as a clobber?"); 786 787 const auto *Target = getWalkTarget(Current); 788 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 789 // optimization for the prior phi. 790 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 791 return MSSA.dominates(P.Clobber, Target); 792 })); 793 794 // FIXME: This is broken, because the Blocker may be reported to be 795 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 796 // For the moment, this is fine, since we do nothing with blocker info. 797 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 798 Target, PausedSearches, NewPaused, TerminatedPaths)) { 799 800 // Find the node we started at. We can't search based on N->Last, since 801 // we may have gone around a loop with a different MemoryLocation. 802 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 803 return defPathIndex(N) < PriorPathsSize; 804 }); 805 assert(Iter != def_path_iterator()); 806 807 DefPath &CurNode = *Iter; 808 assert(CurNode.Last == Current); 809 810 // Two things: 811 // A. We can't reliably cache all of NewPaused back. Consider a case 812 // where we have two paths in NewPaused; one of which can't optimize 813 // above this phi, whereas the other can. If we cache the second path 814 // back, we'll end up with suboptimal cache entries. We can handle 815 // cases like this a bit better when we either try to find all 816 // clobbers that block phi optimization, or when our cache starts 817 // supporting unfinished searches. 818 // B. We can't reliably cache TerminatedPaths back here without doing 819 // extra checks; consider a case like: 820 // T 821 // / \ 822 // D C 823 // \ / 824 // S 825 // Where T is our target, C is a node with a clobber on it, D is a 826 // diamond (with a clobber *only* on the left or right node, N), and 827 // S is our start. Say we walk to D, through the node opposite N 828 // (read: ignoring the clobber), and see a cache entry in the top 829 // node of D. That cache entry gets put into TerminatedPaths. We then 830 // walk up to C (N is later in our worklist), find the clobber, and 831 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 832 // the bottom part of D to the cached clobber, ignoring the clobber 833 // in N. Again, this problem goes away if we start tracking all 834 // blockers for a given phi optimization. 835 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 836 return {Result, {}}; 837 } 838 839 // If there's nothing left to search, then all paths led to valid clobbers 840 // that we got from our cache; pick the nearest to the start, and allow 841 // the rest to be cached back. 842 if (NewPaused.empty()) { 843 MoveDominatedPathToEnd(TerminatedPaths); 844 TerminatedPath Result = TerminatedPaths.pop_back_val(); 845 return {Result, std::move(TerminatedPaths)}; 846 } 847 848 MemoryAccess *DefChainEnd = nullptr; 849 SmallVector<TerminatedPath, 4> Clobbers; 850 for (ListIndex Paused : NewPaused) { 851 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 852 if (WR.IsKnownClobber) 853 Clobbers.push_back({WR.Result, Paused}); 854 else 855 // Micro-opt: If we hit the end of the chain, save it. 856 DefChainEnd = WR.Result; 857 } 858 859 if (!TerminatedPaths.empty()) { 860 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 861 // do it now. 862 if (!DefChainEnd) 863 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 864 DefChainEnd = MA; 865 866 // If any of the terminated paths don't dominate the phi we'll try to 867 // optimize, we need to figure out what they are and quit. 868 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 869 for (const TerminatedPath &TP : TerminatedPaths) { 870 // Because we know that DefChainEnd is as "high" as we can go, we 871 // don't need local dominance checks; BB dominance is sufficient. 872 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 873 Clobbers.push_back(TP); 874 } 875 } 876 877 // If we have clobbers in the def chain, find the one closest to Current 878 // and quit. 879 if (!Clobbers.empty()) { 880 MoveDominatedPathToEnd(Clobbers); 881 TerminatedPath Result = Clobbers.pop_back_val(); 882 return {Result, std::move(Clobbers)}; 883 } 884 885 assert(all_of(NewPaused, 886 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 887 888 // Because liveOnEntry is a clobber, this must be a phi. 889 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 890 891 PriorPathsSize = Paths.size(); 892 PausedSearches.clear(); 893 for (ListIndex I : NewPaused) 894 addSearches(DefChainPhi, PausedSearches, I); 895 NewPaused.clear(); 896 897 Current = DefChainPhi; 898 } 899 } 900 901 void verifyOptResult(const OptznResult &R) const { 902 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 903 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 904 })); 905 } 906 907 void resetPhiOptznState() { 908 Paths.clear(); 909 VisitedPhis.clear(); 910 } 911 912 public: 913 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 914 : MSSA(MSSA), AA(AA), DT(DT) {} 915 916 AliasAnalysisType *getAA() { return &AA; } 917 /// Finds the nearest clobber for the given query, optimizing phis if 918 /// possible. 919 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 920 unsigned &UpWalkLimit) { 921 Query = &Q; 922 UpwardWalkLimit = &UpWalkLimit; 923 // Starting limit must be > 0. 924 if (!UpWalkLimit) 925 UpWalkLimit++; 926 927 MemoryAccess *Current = Start; 928 // This walker pretends uses don't exist. If we're handed one, silently grab 929 // its def. (This has the nice side-effect of ensuring we never cache uses) 930 if (auto *MU = dyn_cast<MemoryUse>(Start)) 931 Current = MU->getDefiningAccess(); 932 933 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 934 // Fast path for the overly-common case (no crazy phi optimization 935 // necessary) 936 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 937 MemoryAccess *Result; 938 if (WalkResult.IsKnownClobber) { 939 Result = WalkResult.Result; 940 Q.AR = WalkResult.AR; 941 } else { 942 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 943 Current, Q.StartingLoc); 944 verifyOptResult(OptRes); 945 resetPhiOptznState(); 946 Result = OptRes.PrimaryClobber.Clobber; 947 } 948 949 #ifdef EXPENSIVE_CHECKS 950 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 951 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 952 #endif 953 return Result; 954 } 955 }; 956 957 struct RenamePassData { 958 DomTreeNode *DTN; 959 DomTreeNode::const_iterator ChildIt; 960 MemoryAccess *IncomingVal; 961 962 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 963 MemoryAccess *M) 964 : DTN(D), ChildIt(It), IncomingVal(M) {} 965 966 void swap(RenamePassData &RHS) { 967 std::swap(DTN, RHS.DTN); 968 std::swap(ChildIt, RHS.ChildIt); 969 std::swap(IncomingVal, RHS.IncomingVal); 970 } 971 }; 972 973 } // end anonymous namespace 974 975 namespace llvm { 976 977 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 978 ClobberWalker<AliasAnalysisType> Walker; 979 MemorySSA *MSSA; 980 981 public: 982 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 983 : Walker(*M, *A, *D), MSSA(M) {} 984 985 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 986 const MemoryLocation &, 987 unsigned &); 988 // Third argument (bool), defines whether the clobber search should skip the 989 // original queried access. If true, there will be a follow-up query searching 990 // for a clobber access past "self". Note that the Optimized access is not 991 // updated if a new clobber is found by this SkipSelf search. If this 992 // additional query becomes heavily used we may decide to cache the result. 993 // Walker instantiations will decide how to set the SkipSelf bool. 994 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 995 }; 996 997 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 998 /// longer does caching on its own, but the name has been retained for the 999 /// moment. 1000 template <class AliasAnalysisType> 1001 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1002 ClobberWalkerBase<AliasAnalysisType> *Walker; 1003 1004 public: 1005 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1006 : MemorySSAWalker(M), Walker(W) {} 1007 ~CachingWalker() override = default; 1008 1009 using MemorySSAWalker::getClobberingMemoryAccess; 1010 1011 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1012 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1013 } 1014 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1015 const MemoryLocation &Loc, 1016 unsigned &UWL) { 1017 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1018 } 1019 1020 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1021 unsigned UpwardWalkLimit = MaxCheckLimit; 1022 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1023 } 1024 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1025 const MemoryLocation &Loc) override { 1026 unsigned UpwardWalkLimit = MaxCheckLimit; 1027 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1028 } 1029 1030 void invalidateInfo(MemoryAccess *MA) override { 1031 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1032 MUD->resetOptimized(); 1033 } 1034 }; 1035 1036 template <class AliasAnalysisType> 1037 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1038 ClobberWalkerBase<AliasAnalysisType> *Walker; 1039 1040 public: 1041 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1042 : MemorySSAWalker(M), Walker(W) {} 1043 ~SkipSelfWalker() override = default; 1044 1045 using MemorySSAWalker::getClobberingMemoryAccess; 1046 1047 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1048 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1049 } 1050 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1051 const MemoryLocation &Loc, 1052 unsigned &UWL) { 1053 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1054 } 1055 1056 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1057 unsigned UpwardWalkLimit = MaxCheckLimit; 1058 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1059 } 1060 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1061 const MemoryLocation &Loc) override { 1062 unsigned UpwardWalkLimit = MaxCheckLimit; 1063 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1064 } 1065 1066 void invalidateInfo(MemoryAccess *MA) override { 1067 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1068 MUD->resetOptimized(); 1069 } 1070 }; 1071 1072 } // end namespace llvm 1073 1074 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1075 bool RenameAllUses) { 1076 // Pass through values to our successors 1077 for (const BasicBlock *S : successors(BB)) { 1078 auto It = PerBlockAccesses.find(S); 1079 // Rename the phi nodes in our successor block 1080 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1081 continue; 1082 AccessList *Accesses = It->second.get(); 1083 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1084 if (RenameAllUses) { 1085 int PhiIndex = Phi->getBasicBlockIndex(BB); 1086 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 1087 Phi->setIncomingValue(PhiIndex, IncomingVal); 1088 } else 1089 Phi->addIncoming(IncomingVal, BB); 1090 } 1091 } 1092 1093 /// Rename a single basic block into MemorySSA form. 1094 /// Uses the standard SSA renaming algorithm. 1095 /// \returns The new incoming value. 1096 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1097 bool RenameAllUses) { 1098 auto It = PerBlockAccesses.find(BB); 1099 // Skip most processing if the list is empty. 1100 if (It != PerBlockAccesses.end()) { 1101 AccessList *Accesses = It->second.get(); 1102 for (MemoryAccess &L : *Accesses) { 1103 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1104 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1105 MUD->setDefiningAccess(IncomingVal); 1106 if (isa<MemoryDef>(&L)) 1107 IncomingVal = &L; 1108 } else { 1109 IncomingVal = &L; 1110 } 1111 } 1112 } 1113 return IncomingVal; 1114 } 1115 1116 /// This is the standard SSA renaming algorithm. 1117 /// 1118 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1119 /// in phi nodes in our successors. 1120 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1121 SmallPtrSetImpl<BasicBlock *> &Visited, 1122 bool SkipVisited, bool RenameAllUses) { 1123 SmallVector<RenamePassData, 32> WorkStack; 1124 // Skip everything if we already renamed this block and we are skipping. 1125 // Note: You can't sink this into the if, because we need it to occur 1126 // regardless of whether we skip blocks or not. 1127 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1128 if (SkipVisited && AlreadyVisited) 1129 return; 1130 1131 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1132 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1133 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1134 1135 while (!WorkStack.empty()) { 1136 DomTreeNode *Node = WorkStack.back().DTN; 1137 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1138 IncomingVal = WorkStack.back().IncomingVal; 1139 1140 if (ChildIt == Node->end()) { 1141 WorkStack.pop_back(); 1142 } else { 1143 DomTreeNode *Child = *ChildIt; 1144 ++WorkStack.back().ChildIt; 1145 BasicBlock *BB = Child->getBlock(); 1146 // Note: You can't sink this into the if, because we need it to occur 1147 // regardless of whether we skip blocks or not. 1148 AlreadyVisited = !Visited.insert(BB).second; 1149 if (SkipVisited && AlreadyVisited) { 1150 // We already visited this during our renaming, which can happen when 1151 // being asked to rename multiple blocks. Figure out the incoming val, 1152 // which is the last def. 1153 // Incoming value can only change if there is a block def, and in that 1154 // case, it's the last block def in the list. 1155 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1156 IncomingVal = &*BlockDefs->rbegin(); 1157 } else 1158 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1159 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1160 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1161 } 1162 } 1163 } 1164 1165 /// This handles unreachable block accesses by deleting phi nodes in 1166 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1167 /// being uses of the live on entry definition. 1168 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1169 assert(!DT->isReachableFromEntry(BB) && 1170 "Reachable block found while handling unreachable blocks"); 1171 1172 // Make sure phi nodes in our reachable successors end up with a 1173 // LiveOnEntryDef for our incoming edge, even though our block is forward 1174 // unreachable. We could just disconnect these blocks from the CFG fully, 1175 // but we do not right now. 1176 for (const BasicBlock *S : successors(BB)) { 1177 if (!DT->isReachableFromEntry(S)) 1178 continue; 1179 auto It = PerBlockAccesses.find(S); 1180 // Rename the phi nodes in our successor block 1181 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1182 continue; 1183 AccessList *Accesses = It->second.get(); 1184 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1185 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1186 } 1187 1188 auto It = PerBlockAccesses.find(BB); 1189 if (It == PerBlockAccesses.end()) 1190 return; 1191 1192 auto &Accesses = It->second; 1193 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1194 auto Next = std::next(AI); 1195 // If we have a phi, just remove it. We are going to replace all 1196 // users with live on entry. 1197 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1198 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1199 else 1200 Accesses->erase(AI); 1201 AI = Next; 1202 } 1203 } 1204 1205 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1206 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1207 SkipWalker(nullptr), NextID(0) { 1208 // Build MemorySSA using a batch alias analysis. This reuses the internal 1209 // state that AA collects during an alias()/getModRefInfo() call. This is 1210 // safe because there are no CFG changes while building MemorySSA and can 1211 // significantly reduce the time spent by the compiler in AA, because we will 1212 // make queries about all the instructions in the Function. 1213 BatchAAResults BatchAA(*AA); 1214 buildMemorySSA(BatchAA); 1215 // Intentionally leave AA to nullptr while building so we don't accidently 1216 // use non-batch AliasAnalysis. 1217 this->AA = AA; 1218 // Also create the walker here. 1219 getWalker(); 1220 } 1221 1222 MemorySSA::~MemorySSA() { 1223 // Drop all our references 1224 for (const auto &Pair : PerBlockAccesses) 1225 for (MemoryAccess &MA : *Pair.second) 1226 MA.dropAllReferences(); 1227 } 1228 1229 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1230 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1231 1232 if (Res.second) 1233 Res.first->second = llvm::make_unique<AccessList>(); 1234 return Res.first->second.get(); 1235 } 1236 1237 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1238 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1239 1240 if (Res.second) 1241 Res.first->second = llvm::make_unique<DefsList>(); 1242 return Res.first->second.get(); 1243 } 1244 1245 namespace llvm { 1246 1247 /// This class is a batch walker of all MemoryUse's in the program, and points 1248 /// their defining access at the thing that actually clobbers them. Because it 1249 /// is a batch walker that touches everything, it does not operate like the 1250 /// other walkers. This walker is basically performing a top-down SSA renaming 1251 /// pass, where the version stack is used as the cache. This enables it to be 1252 /// significantly more time and memory efficient than using the regular walker, 1253 /// which is walking bottom-up. 1254 class MemorySSA::OptimizeUses { 1255 public: 1256 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1257 BatchAAResults *BAA, DominatorTree *DT) 1258 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1259 1260 void optimizeUses(); 1261 1262 private: 1263 /// This represents where a given memorylocation is in the stack. 1264 struct MemlocStackInfo { 1265 // This essentially is keeping track of versions of the stack. Whenever 1266 // the stack changes due to pushes or pops, these versions increase. 1267 unsigned long StackEpoch; 1268 unsigned long PopEpoch; 1269 // This is the lower bound of places on the stack to check. It is equal to 1270 // the place the last stack walk ended. 1271 // Note: Correctness depends on this being initialized to 0, which densemap 1272 // does 1273 unsigned long LowerBound; 1274 const BasicBlock *LowerBoundBlock; 1275 // This is where the last walk for this memory location ended. 1276 unsigned long LastKill; 1277 bool LastKillValid; 1278 Optional<AliasResult> AR; 1279 }; 1280 1281 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1282 SmallVectorImpl<MemoryAccess *> &, 1283 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1284 1285 MemorySSA *MSSA; 1286 CachingWalker<BatchAAResults> *Walker; 1287 BatchAAResults *AA; 1288 DominatorTree *DT; 1289 }; 1290 1291 } // end namespace llvm 1292 1293 /// Optimize the uses in a given block This is basically the SSA renaming 1294 /// algorithm, with one caveat: We are able to use a single stack for all 1295 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1296 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1297 /// going to be some position in that stack of possible ones. 1298 /// 1299 /// We track the stack positions that each MemoryLocation needs 1300 /// to check, and last ended at. This is because we only want to check the 1301 /// things that changed since last time. The same MemoryLocation should 1302 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1303 /// things like this, and if they start, we can modify MemoryLocOrCall to 1304 /// include relevant data) 1305 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1306 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1307 SmallVectorImpl<MemoryAccess *> &VersionStack, 1308 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1309 1310 /// If no accesses, nothing to do. 1311 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1312 if (Accesses == nullptr) 1313 return; 1314 1315 // Pop everything that doesn't dominate the current block off the stack, 1316 // increment the PopEpoch to account for this. 1317 while (true) { 1318 assert( 1319 !VersionStack.empty() && 1320 "Version stack should have liveOnEntry sentinel dominating everything"); 1321 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1322 if (DT->dominates(BackBlock, BB)) 1323 break; 1324 while (VersionStack.back()->getBlock() == BackBlock) 1325 VersionStack.pop_back(); 1326 ++PopEpoch; 1327 } 1328 1329 for (MemoryAccess &MA : *Accesses) { 1330 auto *MU = dyn_cast<MemoryUse>(&MA); 1331 if (!MU) { 1332 VersionStack.push_back(&MA); 1333 ++StackEpoch; 1334 continue; 1335 } 1336 1337 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1338 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1339 continue; 1340 } 1341 1342 MemoryLocOrCall UseMLOC(MU); 1343 auto &LocInfo = LocStackInfo[UseMLOC]; 1344 // If the pop epoch changed, it means we've removed stuff from top of 1345 // stack due to changing blocks. We may have to reset the lower bound or 1346 // last kill info. 1347 if (LocInfo.PopEpoch != PopEpoch) { 1348 LocInfo.PopEpoch = PopEpoch; 1349 LocInfo.StackEpoch = StackEpoch; 1350 // If the lower bound was in something that no longer dominates us, we 1351 // have to reset it. 1352 // We can't simply track stack size, because the stack may have had 1353 // pushes/pops in the meantime. 1354 // XXX: This is non-optimal, but only is slower cases with heavily 1355 // branching dominator trees. To get the optimal number of queries would 1356 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1357 // the top of that stack dominates us. This does not seem worth it ATM. 1358 // A much cheaper optimization would be to always explore the deepest 1359 // branch of the dominator tree first. This will guarantee this resets on 1360 // the smallest set of blocks. 1361 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1362 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1363 // Reset the lower bound of things to check. 1364 // TODO: Some day we should be able to reset to last kill, rather than 1365 // 0. 1366 LocInfo.LowerBound = 0; 1367 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1368 LocInfo.LastKillValid = false; 1369 } 1370 } else if (LocInfo.StackEpoch != StackEpoch) { 1371 // If all that has changed is the StackEpoch, we only have to check the 1372 // new things on the stack, because we've checked everything before. In 1373 // this case, the lower bound of things to check remains the same. 1374 LocInfo.PopEpoch = PopEpoch; 1375 LocInfo.StackEpoch = StackEpoch; 1376 } 1377 if (!LocInfo.LastKillValid) { 1378 LocInfo.LastKill = VersionStack.size() - 1; 1379 LocInfo.LastKillValid = true; 1380 LocInfo.AR = MayAlias; 1381 } 1382 1383 // At this point, we should have corrected last kill and LowerBound to be 1384 // in bounds. 1385 assert(LocInfo.LowerBound < VersionStack.size() && 1386 "Lower bound out of range"); 1387 assert(LocInfo.LastKill < VersionStack.size() && 1388 "Last kill info out of range"); 1389 // In any case, the new upper bound is the top of the stack. 1390 unsigned long UpperBound = VersionStack.size() - 1; 1391 1392 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1393 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1394 << *(MU->getMemoryInst()) << ")" 1395 << " because there are " 1396 << UpperBound - LocInfo.LowerBound 1397 << " stores to disambiguate\n"); 1398 // Because we did not walk, LastKill is no longer valid, as this may 1399 // have been a kill. 1400 LocInfo.LastKillValid = false; 1401 continue; 1402 } 1403 bool FoundClobberResult = false; 1404 unsigned UpwardWalkLimit = MaxCheckLimit; 1405 while (UpperBound > LocInfo.LowerBound) { 1406 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1407 // For phis, use the walker, see where we ended up, go there 1408 MemoryAccess *Result = 1409 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1410 // We are guaranteed to find it or something is wrong 1411 while (VersionStack[UpperBound] != Result) { 1412 assert(UpperBound != 0); 1413 --UpperBound; 1414 } 1415 FoundClobberResult = true; 1416 break; 1417 } 1418 1419 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1420 // If the lifetime of the pointer ends at this instruction, it's live on 1421 // entry. 1422 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1423 // Reset UpperBound to liveOnEntryDef's place in the stack 1424 UpperBound = 0; 1425 FoundClobberResult = true; 1426 LocInfo.AR = MustAlias; 1427 break; 1428 } 1429 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1430 if (CA.IsClobber) { 1431 FoundClobberResult = true; 1432 LocInfo.AR = CA.AR; 1433 break; 1434 } 1435 --UpperBound; 1436 } 1437 1438 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1439 1440 // At the end of this loop, UpperBound is either a clobber, or lower bound 1441 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1442 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1443 // We were last killed now by where we got to 1444 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1445 LocInfo.AR = None; 1446 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1447 LocInfo.LastKill = UpperBound; 1448 } else { 1449 // Otherwise, we checked all the new ones, and now we know we can get to 1450 // LastKill. 1451 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1452 } 1453 LocInfo.LowerBound = VersionStack.size() - 1; 1454 LocInfo.LowerBoundBlock = BB; 1455 } 1456 } 1457 1458 /// Optimize uses to point to their actual clobbering definitions. 1459 void MemorySSA::OptimizeUses::optimizeUses() { 1460 SmallVector<MemoryAccess *, 16> VersionStack; 1461 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1462 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1463 1464 unsigned long StackEpoch = 1; 1465 unsigned long PopEpoch = 1; 1466 // We perform a non-recursive top-down dominator tree walk. 1467 for (const auto *DomNode : depth_first(DT->getRootNode())) 1468 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1469 LocStackInfo); 1470 } 1471 1472 void MemorySSA::placePHINodes( 1473 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1474 // Determine where our MemoryPhi's should go 1475 ForwardIDFCalculator IDFs(*DT); 1476 IDFs.setDefiningBlocks(DefiningBlocks); 1477 SmallVector<BasicBlock *, 32> IDFBlocks; 1478 IDFs.calculate(IDFBlocks); 1479 1480 // Now place MemoryPhi nodes. 1481 for (auto &BB : IDFBlocks) 1482 createMemoryPhi(BB); 1483 } 1484 1485 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1486 // We create an access to represent "live on entry", for things like 1487 // arguments or users of globals, where the memory they use is defined before 1488 // the beginning of the function. We do not actually insert it into the IR. 1489 // We do not define a live on exit for the immediate uses, and thus our 1490 // semantics do *not* imply that something with no immediate uses can simply 1491 // be removed. 1492 BasicBlock &StartingPoint = F.getEntryBlock(); 1493 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1494 &StartingPoint, NextID++)); 1495 1496 // We maintain lists of memory accesses per-block, trading memory for time. We 1497 // could just look up the memory access for every possible instruction in the 1498 // stream. 1499 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1500 // Go through each block, figure out where defs occur, and chain together all 1501 // the accesses. 1502 for (BasicBlock &B : F) { 1503 bool InsertIntoDef = false; 1504 AccessList *Accesses = nullptr; 1505 DefsList *Defs = nullptr; 1506 for (Instruction &I : B) { 1507 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1508 if (!MUD) 1509 continue; 1510 1511 if (!Accesses) 1512 Accesses = getOrCreateAccessList(&B); 1513 Accesses->push_back(MUD); 1514 if (isa<MemoryDef>(MUD)) { 1515 InsertIntoDef = true; 1516 if (!Defs) 1517 Defs = getOrCreateDefsList(&B); 1518 Defs->push_back(*MUD); 1519 } 1520 } 1521 if (InsertIntoDef) 1522 DefiningBlocks.insert(&B); 1523 } 1524 placePHINodes(DefiningBlocks); 1525 1526 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1527 // filled in with all blocks. 1528 SmallPtrSet<BasicBlock *, 16> Visited; 1529 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1530 1531 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1532 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1533 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1534 1535 // Mark the uses in unreachable blocks as live on entry, so that they go 1536 // somewhere. 1537 for (auto &BB : F) 1538 if (!Visited.count(&BB)) 1539 markUnreachableAsLiveOnEntry(&BB); 1540 } 1541 1542 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1543 1544 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1545 if (Walker) 1546 return Walker.get(); 1547 1548 if (!WalkerBase) 1549 WalkerBase = 1550 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1551 1552 Walker = 1553 llvm::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1554 return Walker.get(); 1555 } 1556 1557 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1558 if (SkipWalker) 1559 return SkipWalker.get(); 1560 1561 if (!WalkerBase) 1562 WalkerBase = 1563 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1564 1565 SkipWalker = 1566 llvm::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1567 return SkipWalker.get(); 1568 } 1569 1570 1571 // This is a helper function used by the creation routines. It places NewAccess 1572 // into the access and defs lists for a given basic block, at the given 1573 // insertion point. 1574 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1575 const BasicBlock *BB, 1576 InsertionPlace Point) { 1577 auto *Accesses = getOrCreateAccessList(BB); 1578 if (Point == Beginning) { 1579 // If it's a phi node, it goes first, otherwise, it goes after any phi 1580 // nodes. 1581 if (isa<MemoryPhi>(NewAccess)) { 1582 Accesses->push_front(NewAccess); 1583 auto *Defs = getOrCreateDefsList(BB); 1584 Defs->push_front(*NewAccess); 1585 } else { 1586 auto AI = find_if_not( 1587 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1588 Accesses->insert(AI, NewAccess); 1589 if (!isa<MemoryUse>(NewAccess)) { 1590 auto *Defs = getOrCreateDefsList(BB); 1591 auto DI = find_if_not( 1592 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1593 Defs->insert(DI, *NewAccess); 1594 } 1595 } 1596 } else { 1597 Accesses->push_back(NewAccess); 1598 if (!isa<MemoryUse>(NewAccess)) { 1599 auto *Defs = getOrCreateDefsList(BB); 1600 Defs->push_back(*NewAccess); 1601 } 1602 } 1603 BlockNumberingValid.erase(BB); 1604 } 1605 1606 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1607 AccessList::iterator InsertPt) { 1608 auto *Accesses = getWritableBlockAccesses(BB); 1609 bool WasEnd = InsertPt == Accesses->end(); 1610 Accesses->insert(AccessList::iterator(InsertPt), What); 1611 if (!isa<MemoryUse>(What)) { 1612 auto *Defs = getOrCreateDefsList(BB); 1613 // If we got asked to insert at the end, we have an easy job, just shove it 1614 // at the end. If we got asked to insert before an existing def, we also get 1615 // an iterator. If we got asked to insert before a use, we have to hunt for 1616 // the next def. 1617 if (WasEnd) { 1618 Defs->push_back(*What); 1619 } else if (isa<MemoryDef>(InsertPt)) { 1620 Defs->insert(InsertPt->getDefsIterator(), *What); 1621 } else { 1622 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1623 ++InsertPt; 1624 // Either we found a def, or we are inserting at the end 1625 if (InsertPt == Accesses->end()) 1626 Defs->push_back(*What); 1627 else 1628 Defs->insert(InsertPt->getDefsIterator(), *What); 1629 } 1630 } 1631 BlockNumberingValid.erase(BB); 1632 } 1633 1634 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1635 // Keep it in the lookup tables, remove from the lists 1636 removeFromLists(What, false); 1637 1638 // Note that moving should implicitly invalidate the optimized state of a 1639 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1640 // MemoryDef. 1641 if (auto *MD = dyn_cast<MemoryDef>(What)) 1642 MD->resetOptimized(); 1643 What->setBlock(BB); 1644 } 1645 1646 // Move What before Where in the IR. The end result is that What will belong to 1647 // the right lists and have the right Block set, but will not otherwise be 1648 // correct. It will not have the right defining access, and if it is a def, 1649 // things below it will not properly be updated. 1650 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1651 AccessList::iterator Where) { 1652 prepareForMoveTo(What, BB); 1653 insertIntoListsBefore(What, BB, Where); 1654 } 1655 1656 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1657 InsertionPlace Point) { 1658 if (isa<MemoryPhi>(What)) { 1659 assert(Point == Beginning && 1660 "Can only move a Phi at the beginning of the block"); 1661 // Update lookup table entry 1662 ValueToMemoryAccess.erase(What->getBlock()); 1663 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1664 (void)Inserted; 1665 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1666 } 1667 1668 prepareForMoveTo(What, BB); 1669 insertIntoListsForBlock(What, BB, Point); 1670 } 1671 1672 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1673 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1674 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1675 // Phi's always are placed at the front of the block. 1676 insertIntoListsForBlock(Phi, BB, Beginning); 1677 ValueToMemoryAccess[BB] = Phi; 1678 return Phi; 1679 } 1680 1681 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1682 MemoryAccess *Definition, 1683 const MemoryUseOrDef *Template) { 1684 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1685 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1686 assert( 1687 NewAccess != nullptr && 1688 "Tried to create a memory access for a non-memory touching instruction"); 1689 NewAccess->setDefiningAccess(Definition); 1690 return NewAccess; 1691 } 1692 1693 // Return true if the instruction has ordering constraints. 1694 // Note specifically that this only considers stores and loads 1695 // because others are still considered ModRef by getModRefInfo. 1696 static inline bool isOrdered(const Instruction *I) { 1697 if (auto *SI = dyn_cast<StoreInst>(I)) { 1698 if (!SI->isUnordered()) 1699 return true; 1700 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1701 if (!LI->isUnordered()) 1702 return true; 1703 } 1704 return false; 1705 } 1706 1707 /// Helper function to create new memory accesses 1708 template <typename AliasAnalysisType> 1709 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1710 AliasAnalysisType *AAP, 1711 const MemoryUseOrDef *Template) { 1712 // The assume intrinsic has a control dependency which we model by claiming 1713 // that it writes arbitrarily. Ignore that fake memory dependency here. 1714 // FIXME: Replace this special casing with a more accurate modelling of 1715 // assume's control dependency. 1716 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1717 if (II->getIntrinsicID() == Intrinsic::assume) 1718 return nullptr; 1719 1720 bool Def, Use; 1721 if (Template) { 1722 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1723 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1724 #if !defined(NDEBUG) 1725 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1726 bool DefCheck, UseCheck; 1727 DefCheck = isModSet(ModRef) || isOrdered(I); 1728 UseCheck = isRefSet(ModRef); 1729 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1730 #endif 1731 } else { 1732 // Find out what affect this instruction has on memory. 1733 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1734 // The isOrdered check is used to ensure that volatiles end up as defs 1735 // (atomics end up as ModRef right now anyway). Until we separate the 1736 // ordering chain from the memory chain, this enables people to see at least 1737 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1738 // will still give an answer that bypasses other volatile loads. TODO: 1739 // Separate memory aliasing and ordering into two different chains so that 1740 // we can precisely represent both "what memory will this read/write/is 1741 // clobbered by" and "what instructions can I move this past". 1742 Def = isModSet(ModRef) || isOrdered(I); 1743 Use = isRefSet(ModRef); 1744 } 1745 1746 // It's possible for an instruction to not modify memory at all. During 1747 // construction, we ignore them. 1748 if (!Def && !Use) 1749 return nullptr; 1750 1751 MemoryUseOrDef *MUD; 1752 if (Def) 1753 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1754 else 1755 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1756 ValueToMemoryAccess[I] = MUD; 1757 return MUD; 1758 } 1759 1760 /// Returns true if \p Replacer dominates \p Replacee . 1761 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1762 const MemoryAccess *Replacee) const { 1763 if (isa<MemoryUseOrDef>(Replacee)) 1764 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1765 const auto *MP = cast<MemoryPhi>(Replacee); 1766 // For a phi node, the use occurs in the predecessor block of the phi node. 1767 // Since we may occur multiple times in the phi node, we have to check each 1768 // operand to ensure Replacer dominates each operand where Replacee occurs. 1769 for (const Use &Arg : MP->operands()) { 1770 if (Arg.get() != Replacee && 1771 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1772 return false; 1773 } 1774 return true; 1775 } 1776 1777 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1778 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1779 assert(MA->use_empty() && 1780 "Trying to remove memory access that still has uses"); 1781 BlockNumbering.erase(MA); 1782 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1783 MUD->setDefiningAccess(nullptr); 1784 // Invalidate our walker's cache if necessary 1785 if (!isa<MemoryUse>(MA)) 1786 getWalker()->invalidateInfo(MA); 1787 1788 Value *MemoryInst; 1789 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1790 MemoryInst = MUD->getMemoryInst(); 1791 else 1792 MemoryInst = MA->getBlock(); 1793 1794 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1795 if (VMA->second == MA) 1796 ValueToMemoryAccess.erase(VMA); 1797 } 1798 1799 /// Properly remove \p MA from all of MemorySSA's lists. 1800 /// 1801 /// Because of the way the intrusive list and use lists work, it is important to 1802 /// do removal in the right order. 1803 /// ShouldDelete defaults to true, and will cause the memory access to also be 1804 /// deleted, not just removed. 1805 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1806 BasicBlock *BB = MA->getBlock(); 1807 // The access list owns the reference, so we erase it from the non-owning list 1808 // first. 1809 if (!isa<MemoryUse>(MA)) { 1810 auto DefsIt = PerBlockDefs.find(BB); 1811 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1812 Defs->remove(*MA); 1813 if (Defs->empty()) 1814 PerBlockDefs.erase(DefsIt); 1815 } 1816 1817 // The erase call here will delete it. If we don't want it deleted, we call 1818 // remove instead. 1819 auto AccessIt = PerBlockAccesses.find(BB); 1820 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1821 if (ShouldDelete) 1822 Accesses->erase(MA); 1823 else 1824 Accesses->remove(MA); 1825 1826 if (Accesses->empty()) { 1827 PerBlockAccesses.erase(AccessIt); 1828 BlockNumberingValid.erase(BB); 1829 } 1830 } 1831 1832 void MemorySSA::print(raw_ostream &OS) const { 1833 MemorySSAAnnotatedWriter Writer(this); 1834 F.print(OS, &Writer); 1835 } 1836 1837 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1838 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1839 #endif 1840 1841 void MemorySSA::verifyMemorySSA() const { 1842 verifyDefUses(F); 1843 verifyDomination(F); 1844 verifyOrdering(F); 1845 verifyDominationNumbers(F); 1846 // Previously, the verification used to also verify that the clobberingAccess 1847 // cached by MemorySSA is the same as the clobberingAccess found at a later 1848 // query to AA. This does not hold true in general due to the current fragility 1849 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1850 // up. As a result, transformations that are correct, will lead to BasicAA 1851 // returning different Alias answers before and after that transformation. 1852 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1853 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1854 // every transformation, which defeats the purpose of using it. For such an 1855 // example, see test4 added in D51960. 1856 } 1857 1858 /// Verify that all of the blocks we believe to have valid domination numbers 1859 /// actually have valid domination numbers. 1860 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1861 #ifndef NDEBUG 1862 if (BlockNumberingValid.empty()) 1863 return; 1864 1865 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1866 for (const BasicBlock &BB : F) { 1867 if (!ValidBlocks.count(&BB)) 1868 continue; 1869 1870 ValidBlocks.erase(&BB); 1871 1872 const AccessList *Accesses = getBlockAccesses(&BB); 1873 // It's correct to say an empty block has valid numbering. 1874 if (!Accesses) 1875 continue; 1876 1877 // Block numbering starts at 1. 1878 unsigned long LastNumber = 0; 1879 for (const MemoryAccess &MA : *Accesses) { 1880 auto ThisNumberIter = BlockNumbering.find(&MA); 1881 assert(ThisNumberIter != BlockNumbering.end() && 1882 "MemoryAccess has no domination number in a valid block!"); 1883 1884 unsigned long ThisNumber = ThisNumberIter->second; 1885 assert(ThisNumber > LastNumber && 1886 "Domination numbers should be strictly increasing!"); 1887 LastNumber = ThisNumber; 1888 } 1889 } 1890 1891 assert(ValidBlocks.empty() && 1892 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1893 #endif 1894 } 1895 1896 /// Verify that the order and existence of MemoryAccesses matches the 1897 /// order and existence of memory affecting instructions. 1898 void MemorySSA::verifyOrdering(Function &F) const { 1899 #ifndef NDEBUG 1900 // Walk all the blocks, comparing what the lookups think and what the access 1901 // lists think, as well as the order in the blocks vs the order in the access 1902 // lists. 1903 SmallVector<MemoryAccess *, 32> ActualAccesses; 1904 SmallVector<MemoryAccess *, 32> ActualDefs; 1905 for (BasicBlock &B : F) { 1906 const AccessList *AL = getBlockAccesses(&B); 1907 const auto *DL = getBlockDefs(&B); 1908 MemoryAccess *Phi = getMemoryAccess(&B); 1909 if (Phi) { 1910 ActualAccesses.push_back(Phi); 1911 ActualDefs.push_back(Phi); 1912 } 1913 1914 for (Instruction &I : B) { 1915 MemoryAccess *MA = getMemoryAccess(&I); 1916 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1917 "We have memory affecting instructions " 1918 "in this block but they are not in the " 1919 "access list or defs list"); 1920 if (MA) { 1921 ActualAccesses.push_back(MA); 1922 if (isa<MemoryDef>(MA)) 1923 ActualDefs.push_back(MA); 1924 } 1925 } 1926 // Either we hit the assert, really have no accesses, or we have both 1927 // accesses and an access list. 1928 // Same with defs. 1929 if (!AL && !DL) 1930 continue; 1931 assert(AL->size() == ActualAccesses.size() && 1932 "We don't have the same number of accesses in the block as on the " 1933 "access list"); 1934 assert((DL || ActualDefs.size() == 0) && 1935 "Either we should have a defs list, or we should have no defs"); 1936 assert((!DL || DL->size() == ActualDefs.size()) && 1937 "We don't have the same number of defs in the block as on the " 1938 "def list"); 1939 auto ALI = AL->begin(); 1940 auto AAI = ActualAccesses.begin(); 1941 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1942 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1943 ++ALI; 1944 ++AAI; 1945 } 1946 ActualAccesses.clear(); 1947 if (DL) { 1948 auto DLI = DL->begin(); 1949 auto ADI = ActualDefs.begin(); 1950 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1951 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1952 ++DLI; 1953 ++ADI; 1954 } 1955 } 1956 ActualDefs.clear(); 1957 } 1958 #endif 1959 } 1960 1961 /// Verify the domination properties of MemorySSA by checking that each 1962 /// definition dominates all of its uses. 1963 void MemorySSA::verifyDomination(Function &F) const { 1964 #ifndef NDEBUG 1965 for (BasicBlock &B : F) { 1966 // Phi nodes are attached to basic blocks 1967 if (MemoryPhi *MP = getMemoryAccess(&B)) 1968 for (const Use &U : MP->uses()) 1969 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1970 1971 for (Instruction &I : B) { 1972 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1973 if (!MD) 1974 continue; 1975 1976 for (const Use &U : MD->uses()) 1977 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1978 } 1979 } 1980 #endif 1981 } 1982 1983 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 1984 /// appears in the use list of \p Def. 1985 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1986 #ifndef NDEBUG 1987 // The live on entry use may cause us to get a NULL def here 1988 if (!Def) 1989 assert(isLiveOnEntryDef(Use) && 1990 "Null def but use not point to live on entry def"); 1991 else 1992 assert(is_contained(Def->users(), Use) && 1993 "Did not find use in def's use list"); 1994 #endif 1995 } 1996 1997 /// Verify the immediate use information, by walking all the memory 1998 /// accesses and verifying that, for each use, it appears in the 1999 /// appropriate def's use list 2000 void MemorySSA::verifyDefUses(Function &F) const { 2001 #ifndef NDEBUG 2002 for (BasicBlock &B : F) { 2003 // Phi nodes are attached to basic blocks 2004 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 2005 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2006 pred_begin(&B), pred_end(&B))) && 2007 "Incomplete MemoryPhi Node"); 2008 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2009 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2010 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2011 pred_end(&B) && 2012 "Incoming phi block not a block predecessor"); 2013 } 2014 } 2015 2016 for (Instruction &I : B) { 2017 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 2018 verifyUseInDefs(MA->getDefiningAccess(), MA); 2019 } 2020 } 2021 } 2022 #endif 2023 } 2024 2025 /// Perform a local numbering on blocks so that instruction ordering can be 2026 /// determined in constant time. 2027 /// TODO: We currently just number in order. If we numbered by N, we could 2028 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2029 /// log2(N) sequences of mixed before and after) without needing to invalidate 2030 /// the numbering. 2031 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2032 // The pre-increment ensures the numbers really start at 1. 2033 unsigned long CurrentNumber = 0; 2034 const AccessList *AL = getBlockAccesses(B); 2035 assert(AL != nullptr && "Asking to renumber an empty block"); 2036 for (const auto &I : *AL) 2037 BlockNumbering[&I] = ++CurrentNumber; 2038 BlockNumberingValid.insert(B); 2039 } 2040 2041 /// Determine, for two memory accesses in the same block, 2042 /// whether \p Dominator dominates \p Dominatee. 2043 /// \returns True if \p Dominator dominates \p Dominatee. 2044 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2045 const MemoryAccess *Dominatee) const { 2046 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2047 2048 assert((DominatorBlock == Dominatee->getBlock()) && 2049 "Asking for local domination when accesses are in different blocks!"); 2050 // A node dominates itself. 2051 if (Dominatee == Dominator) 2052 return true; 2053 2054 // When Dominatee is defined on function entry, it is not dominated by another 2055 // memory access. 2056 if (isLiveOnEntryDef(Dominatee)) 2057 return false; 2058 2059 // When Dominator is defined on function entry, it dominates the other memory 2060 // access. 2061 if (isLiveOnEntryDef(Dominator)) 2062 return true; 2063 2064 if (!BlockNumberingValid.count(DominatorBlock)) 2065 renumberBlock(DominatorBlock); 2066 2067 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2068 // All numbers start with 1 2069 assert(DominatorNum != 0 && "Block was not numbered properly"); 2070 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2071 assert(DominateeNum != 0 && "Block was not numbered properly"); 2072 return DominatorNum < DominateeNum; 2073 } 2074 2075 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2076 const MemoryAccess *Dominatee) const { 2077 if (Dominator == Dominatee) 2078 return true; 2079 2080 if (isLiveOnEntryDef(Dominatee)) 2081 return false; 2082 2083 if (Dominator->getBlock() != Dominatee->getBlock()) 2084 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2085 return locallyDominates(Dominator, Dominatee); 2086 } 2087 2088 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2089 const Use &Dominatee) const { 2090 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2091 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2092 // The def must dominate the incoming block of the phi. 2093 if (UseBB != Dominator->getBlock()) 2094 return DT->dominates(Dominator->getBlock(), UseBB); 2095 // If the UseBB and the DefBB are the same, compare locally. 2096 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2097 } 2098 // If it's not a PHI node use, the normal dominates can already handle it. 2099 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2100 } 2101 2102 const static char LiveOnEntryStr[] = "liveOnEntry"; 2103 2104 void MemoryAccess::print(raw_ostream &OS) const { 2105 switch (getValueID()) { 2106 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2107 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2108 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2109 } 2110 llvm_unreachable("invalid value id"); 2111 } 2112 2113 void MemoryDef::print(raw_ostream &OS) const { 2114 MemoryAccess *UO = getDefiningAccess(); 2115 2116 auto printID = [&OS](MemoryAccess *A) { 2117 if (A && A->getID()) 2118 OS << A->getID(); 2119 else 2120 OS << LiveOnEntryStr; 2121 }; 2122 2123 OS << getID() << " = MemoryDef("; 2124 printID(UO); 2125 OS << ")"; 2126 2127 if (isOptimized()) { 2128 OS << "->"; 2129 printID(getOptimized()); 2130 2131 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2132 OS << " " << *AR; 2133 } 2134 } 2135 2136 void MemoryPhi::print(raw_ostream &OS) const { 2137 bool First = true; 2138 OS << getID() << " = MemoryPhi("; 2139 for (const auto &Op : operands()) { 2140 BasicBlock *BB = getIncomingBlock(Op); 2141 MemoryAccess *MA = cast<MemoryAccess>(Op); 2142 if (!First) 2143 OS << ','; 2144 else 2145 First = false; 2146 2147 OS << '{'; 2148 if (BB->hasName()) 2149 OS << BB->getName(); 2150 else 2151 BB->printAsOperand(OS, false); 2152 OS << ','; 2153 if (unsigned ID = MA->getID()) 2154 OS << ID; 2155 else 2156 OS << LiveOnEntryStr; 2157 OS << '}'; 2158 } 2159 OS << ')'; 2160 } 2161 2162 void MemoryUse::print(raw_ostream &OS) const { 2163 MemoryAccess *UO = getDefiningAccess(); 2164 OS << "MemoryUse("; 2165 if (UO && UO->getID()) 2166 OS << UO->getID(); 2167 else 2168 OS << LiveOnEntryStr; 2169 OS << ')'; 2170 2171 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2172 OS << " " << *AR; 2173 } 2174 2175 void MemoryAccess::dump() const { 2176 // Cannot completely remove virtual function even in release mode. 2177 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2178 print(dbgs()); 2179 dbgs() << "\n"; 2180 #endif 2181 } 2182 2183 char MemorySSAPrinterLegacyPass::ID = 0; 2184 2185 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2186 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2187 } 2188 2189 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2190 AU.setPreservesAll(); 2191 AU.addRequired<MemorySSAWrapperPass>(); 2192 } 2193 2194 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2195 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2196 MSSA.print(dbgs()); 2197 if (VerifyMemorySSA) 2198 MSSA.verifyMemorySSA(); 2199 return false; 2200 } 2201 2202 AnalysisKey MemorySSAAnalysis::Key; 2203 2204 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2205 FunctionAnalysisManager &AM) { 2206 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2207 auto &AA = AM.getResult<AAManager>(F); 2208 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 2209 } 2210 2211 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2212 FunctionAnalysisManager &AM) { 2213 OS << "MemorySSA for function: " << F.getName() << "\n"; 2214 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2215 2216 return PreservedAnalyses::all(); 2217 } 2218 2219 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2220 FunctionAnalysisManager &AM) { 2221 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2222 2223 return PreservedAnalyses::all(); 2224 } 2225 2226 char MemorySSAWrapperPass::ID = 0; 2227 2228 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2229 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2230 } 2231 2232 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2233 2234 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2235 AU.setPreservesAll(); 2236 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2237 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2238 } 2239 2240 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2241 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2242 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2243 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2244 return false; 2245 } 2246 2247 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2248 2249 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2250 MSSA->print(OS); 2251 } 2252 2253 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2254 2255 /// Walk the use-def chains starting at \p StartingAccess and find 2256 /// the MemoryAccess that actually clobbers Loc. 2257 /// 2258 /// \returns our clobbering memory access 2259 template <typename AliasAnalysisType> 2260 MemoryAccess * 2261 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2262 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2263 unsigned &UpwardWalkLimit) { 2264 if (isa<MemoryPhi>(StartingAccess)) 2265 return StartingAccess; 2266 2267 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2268 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2269 return StartingUseOrDef; 2270 2271 Instruction *I = StartingUseOrDef->getMemoryInst(); 2272 2273 // Conservatively, fences are always clobbers, so don't perform the walk if we 2274 // hit a fence. 2275 if (!isa<CallBase>(I) && I->isFenceLike()) 2276 return StartingUseOrDef; 2277 2278 UpwardsMemoryQuery Q; 2279 Q.OriginalAccess = StartingUseOrDef; 2280 Q.StartingLoc = Loc; 2281 Q.Inst = I; 2282 Q.IsCall = false; 2283 2284 // Unlike the other function, do not walk to the def of a def, because we are 2285 // handed something we already believe is the clobbering access. 2286 // We never set SkipSelf to true in Q in this method. 2287 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2288 ? StartingUseOrDef->getDefiningAccess() 2289 : StartingUseOrDef; 2290 2291 MemoryAccess *Clobber = 2292 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2293 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2294 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2295 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2296 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2297 return Clobber; 2298 } 2299 2300 template <typename AliasAnalysisType> 2301 MemoryAccess * 2302 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2303 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2304 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2305 // If this is a MemoryPhi, we can't do anything. 2306 if (!StartingAccess) 2307 return MA; 2308 2309 bool IsOptimized = false; 2310 2311 // If this is an already optimized use or def, return the optimized result. 2312 // Note: Currently, we store the optimized def result in a separate field, 2313 // since we can't use the defining access. 2314 if (StartingAccess->isOptimized()) { 2315 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2316 return StartingAccess->getOptimized(); 2317 IsOptimized = true; 2318 } 2319 2320 const Instruction *I = StartingAccess->getMemoryInst(); 2321 // We can't sanely do anything with a fence, since they conservatively clobber 2322 // all memory, and have no locations to get pointers from to try to 2323 // disambiguate. 2324 if (!isa<CallBase>(I) && I->isFenceLike()) 2325 return StartingAccess; 2326 2327 UpwardsMemoryQuery Q(I, StartingAccess); 2328 2329 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2330 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2331 StartingAccess->setOptimized(LiveOnEntry); 2332 StartingAccess->setOptimizedAccessType(None); 2333 return LiveOnEntry; 2334 } 2335 2336 MemoryAccess *OptimizedAccess; 2337 if (!IsOptimized) { 2338 // Start with the thing we already think clobbers this location 2339 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2340 2341 // At this point, DefiningAccess may be the live on entry def. 2342 // If it is, we will not get a better result. 2343 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2344 StartingAccess->setOptimized(DefiningAccess); 2345 StartingAccess->setOptimizedAccessType(None); 2346 return DefiningAccess; 2347 } 2348 2349 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2350 StartingAccess->setOptimized(OptimizedAccess); 2351 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2352 StartingAccess->setOptimizedAccessType(None); 2353 else if (Q.AR == MustAlias) 2354 StartingAccess->setOptimizedAccessType(MustAlias); 2355 } else 2356 OptimizedAccess = StartingAccess->getOptimized(); 2357 2358 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2359 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2360 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2361 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2362 2363 MemoryAccess *Result; 2364 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2365 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2366 assert(isa<MemoryDef>(Q.OriginalAccess)); 2367 Q.SkipSelfAccess = true; 2368 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2369 } else 2370 Result = OptimizedAccess; 2371 2372 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2373 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2374 2375 return Result; 2376 } 2377 2378 MemoryAccess * 2379 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2380 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2381 return Use->getDefiningAccess(); 2382 return MA; 2383 } 2384 2385 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2386 MemoryAccess *StartingAccess, const MemoryLocation &) { 2387 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2388 return Use->getDefiningAccess(); 2389 return StartingAccess; 2390 } 2391 2392 void MemoryPhi::deleteMe(DerivedUser *Self) { 2393 delete static_cast<MemoryPhi *>(Self); 2394 } 2395 2396 void MemoryDef::deleteMe(DerivedUser *Self) { 2397 delete static_cast<MemoryDef *>(Self); 2398 } 2399 2400 void MemoryUse::deleteMe(DerivedUser *Self) { 2401 delete static_cast<MemoryUse *>(Self); 2402 } 2403