1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the MemorySSA class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemorySSA.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/PassManager.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "memoryssa" 60 61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 62 true) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 66 true) 67 68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 69 "Memory SSA Printer", false, false) 70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 72 "Memory SSA Printer", false, false) 73 74 static cl::opt<unsigned> MaxCheckLimit( 75 "memssa-check-limit", cl::Hidden, cl::init(100), 76 cl::desc("The maximum number of stores/phis MemorySSA" 77 "will consider trying to walk past (default = 100)")); 78 79 static cl::opt<bool> 80 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, 81 cl::desc("Verify MemorySSA in legacy printer pass.")); 82 83 namespace llvm { 84 85 /// \brief An assembly annotator class to print Memory SSA information in 86 /// comments. 87 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 88 friend class MemorySSA; 89 90 const MemorySSA *MSSA; 91 92 public: 93 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 94 95 void emitBasicBlockStartAnnot(const BasicBlock *BB, 96 formatted_raw_ostream &OS) override { 97 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 98 OS << "; " << *MA << "\n"; 99 } 100 101 void emitInstructionAnnot(const Instruction *I, 102 formatted_raw_ostream &OS) override { 103 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 104 OS << "; " << *MA << "\n"; 105 } 106 }; 107 108 } // end namespace llvm 109 110 namespace { 111 112 /// Our current alias analysis API differentiates heavily between calls and 113 /// non-calls, and functions called on one usually assert on the other. 114 /// This class encapsulates the distinction to simplify other code that wants 115 /// "Memory affecting instructions and related data" to use as a key. 116 /// For example, this class is used as a densemap key in the use optimizer. 117 class MemoryLocOrCall { 118 public: 119 bool IsCall = false; 120 121 MemoryLocOrCall() = default; 122 MemoryLocOrCall(MemoryUseOrDef *MUD) 123 : MemoryLocOrCall(MUD->getMemoryInst()) {} 124 MemoryLocOrCall(const MemoryUseOrDef *MUD) 125 : MemoryLocOrCall(MUD->getMemoryInst()) {} 126 127 MemoryLocOrCall(Instruction *Inst) { 128 if (ImmutableCallSite(Inst)) { 129 IsCall = true; 130 CS = ImmutableCallSite(Inst); 131 } else { 132 IsCall = false; 133 // There is no such thing as a memorylocation for a fence inst, and it is 134 // unique in that regard. 135 if (!isa<FenceInst>(Inst)) 136 Loc = MemoryLocation::get(Inst); 137 } 138 } 139 140 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 141 142 ImmutableCallSite getCS() const { 143 assert(IsCall); 144 return CS; 145 } 146 147 MemoryLocation getLoc() const { 148 assert(!IsCall); 149 return Loc; 150 } 151 152 bool operator==(const MemoryLocOrCall &Other) const { 153 if (IsCall != Other.IsCall) 154 return false; 155 156 if (IsCall) 157 return CS.getCalledValue() == Other.CS.getCalledValue(); 158 return Loc == Other.Loc; 159 } 160 161 private: 162 union { 163 ImmutableCallSite CS; 164 MemoryLocation Loc; 165 }; 166 }; 167 168 } // end anonymous namespace 169 170 namespace llvm { 171 172 template <> struct DenseMapInfo<MemoryLocOrCall> { 173 static inline MemoryLocOrCall getEmptyKey() { 174 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 175 } 176 177 static inline MemoryLocOrCall getTombstoneKey() { 178 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 179 } 180 181 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 182 if (MLOC.IsCall) 183 return hash_combine(MLOC.IsCall, 184 DenseMapInfo<const Value *>::getHashValue( 185 MLOC.getCS().getCalledValue())); 186 return hash_combine( 187 MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 188 } 189 190 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 191 return LHS == RHS; 192 } 193 }; 194 195 enum class Reorderability { Always, IfNoAlias, Never }; 196 197 } // end namespace llvm 198 199 /// This does one-way checks to see if Use could theoretically be hoisted above 200 /// MayClobber. This will not check the other way around. 201 /// 202 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 203 /// MayClobber, with no potentially clobbering operations in between them. 204 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 205 static Reorderability getLoadReorderability(const LoadInst *Use, 206 const LoadInst *MayClobber) { 207 bool VolatileUse = Use->isVolatile(); 208 bool VolatileClobber = MayClobber->isVolatile(); 209 // Volatile operations may never be reordered with other volatile operations. 210 if (VolatileUse && VolatileClobber) 211 return Reorderability::Never; 212 213 // The lang ref allows reordering of volatile and non-volatile operations. 214 // Whether an aliasing nonvolatile load and volatile load can be reordered, 215 // though, is ambiguous. Because it may not be best to exploit this ambiguity, 216 // we only allow volatile/non-volatile reordering if the volatile and 217 // non-volatile operations don't alias. 218 Reorderability Result = VolatileUse || VolatileClobber 219 ? Reorderability::IfNoAlias 220 : Reorderability::Always; 221 222 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 223 // is weaker, it can be moved above other loads. We just need to be sure that 224 // MayClobber isn't an acquire load, because loads can't be moved above 225 // acquire loads. 226 // 227 // Note that this explicitly *does* allow the free reordering of monotonic (or 228 // weaker) loads of the same address. 229 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 230 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 231 AtomicOrdering::Acquire); 232 if (SeqCstUse || MayClobberIsAcquire) 233 return Reorderability::Never; 234 return Result; 235 } 236 237 static bool instructionClobbersQuery(MemoryDef *MD, 238 const MemoryLocation &UseLoc, 239 const Instruction *UseInst, 240 AliasAnalysis &AA) { 241 Instruction *DefInst = MD->getMemoryInst(); 242 assert(DefInst && "Defining instruction not actually an instruction"); 243 ImmutableCallSite UseCS(UseInst); 244 245 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 246 // These intrinsics will show up as affecting memory, but they are just 247 // markers. 248 switch (II->getIntrinsicID()) { 249 case Intrinsic::lifetime_start: 250 if (UseCS) 251 return false; 252 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc); 253 case Intrinsic::lifetime_end: 254 case Intrinsic::invariant_start: 255 case Intrinsic::invariant_end: 256 case Intrinsic::assume: 257 return false; 258 default: 259 break; 260 } 261 } 262 263 if (UseCS) { 264 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); 265 return I != MRI_NoModRef; 266 } 267 268 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) { 269 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) { 270 switch (getLoadReorderability(UseLoad, DefLoad)) { 271 case Reorderability::Always: 272 return false; 273 case Reorderability::Never: 274 return true; 275 case Reorderability::IfNoAlias: 276 return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad)); 277 } 278 } 279 } 280 281 return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod; 282 } 283 284 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, 285 const MemoryLocOrCall &UseMLOC, 286 AliasAnalysis &AA) { 287 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 288 // to exist while MemoryLocOrCall is pushed through places. 289 if (UseMLOC.IsCall) 290 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 291 AA); 292 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 293 AA); 294 } 295 296 // Return true when MD may alias MU, return false otherwise. 297 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 298 AliasAnalysis &AA) { 299 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); 300 } 301 302 namespace { 303 304 struct UpwardsMemoryQuery { 305 // True if our original query started off as a call 306 bool IsCall = false; 307 // The pointer location we started the query with. This will be empty if 308 // IsCall is true. 309 MemoryLocation StartingLoc; 310 // This is the instruction we were querying about. 311 const Instruction *Inst = nullptr; 312 // The MemoryAccess we actually got called with, used to test local domination 313 const MemoryAccess *OriginalAccess = nullptr; 314 315 UpwardsMemoryQuery() = default; 316 317 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 318 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { 319 if (!IsCall) 320 StartingLoc = MemoryLocation::get(Inst); 321 } 322 }; 323 324 } // end anonymous namespace 325 326 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 327 AliasAnalysis &AA) { 328 Instruction *Inst = MD->getMemoryInst(); 329 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 330 switch (II->getIntrinsicID()) { 331 case Intrinsic::lifetime_end: 332 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); 333 default: 334 return false; 335 } 336 } 337 return false; 338 } 339 340 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, 341 const Instruction *I) { 342 // If the memory can't be changed, then loads of the memory can't be 343 // clobbered. 344 // 345 // FIXME: We should handle invariant groups, as well. It's a bit harder, 346 // because we need to pay close attention to invariant group barriers. 347 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 348 AA.pointsToConstantMemory(cast<LoadInst>(I)-> 349 getPointerOperand())); 350 } 351 352 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 353 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 354 /// 355 /// This is meant to be as simple and self-contained as possible. Because it 356 /// uses no cache, etc., it can be relatively expensive. 357 /// 358 /// \param Start The MemoryAccess that we want to walk from. 359 /// \param ClobberAt A clobber for Start. 360 /// \param StartLoc The MemoryLocation for Start. 361 /// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. 362 /// \param Query The UpwardsMemoryQuery we used for our search. 363 /// \param AA The AliasAnalysis we used for our search. 364 static void LLVM_ATTRIBUTE_UNUSED 365 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, 366 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 367 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { 368 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 369 370 if (MSSA.isLiveOnEntryDef(Start)) { 371 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 372 "liveOnEntry must clobber itself"); 373 return; 374 } 375 376 bool FoundClobber = false; 377 DenseSet<MemoryAccessPair> VisitedPhis; 378 SmallVector<MemoryAccessPair, 8> Worklist; 379 Worklist.emplace_back(Start, StartLoc); 380 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 381 // is found, complain. 382 while (!Worklist.empty()) { 383 MemoryAccessPair MAP = Worklist.pop_back_val(); 384 // All we care about is that nothing from Start to ClobberAt clobbers Start. 385 // We learn nothing from revisiting nodes. 386 if (!VisitedPhis.insert(MAP).second) 387 continue; 388 389 for (MemoryAccess *MA : def_chain(MAP.first)) { 390 if (MA == ClobberAt) { 391 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 392 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 393 // since it won't let us short-circuit. 394 // 395 // Also, note that this can't be hoisted out of the `Worklist` loop, 396 // since MD may only act as a clobber for 1 of N MemoryLocations. 397 FoundClobber = 398 FoundClobber || MSSA.isLiveOnEntryDef(MD) || 399 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 400 } 401 break; 402 } 403 404 // We should never hit liveOnEntry, unless it's the clobber. 405 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 406 407 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 408 (void)MD; 409 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && 410 "Found clobber before reaching ClobberAt!"); 411 continue; 412 } 413 414 assert(isa<MemoryPhi>(MA)); 415 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); 416 } 417 } 418 419 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 420 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 421 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 422 "ClobberAt never acted as a clobber"); 423 } 424 425 namespace { 426 427 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 428 /// in one class. 429 class ClobberWalker { 430 /// Save a few bytes by using unsigned instead of size_t. 431 using ListIndex = unsigned; 432 433 /// Represents a span of contiguous MemoryDefs, potentially ending in a 434 /// MemoryPhi. 435 struct DefPath { 436 MemoryLocation Loc; 437 // Note that, because we always walk in reverse, Last will always dominate 438 // First. Also note that First and Last are inclusive. 439 MemoryAccess *First; 440 MemoryAccess *Last; 441 Optional<ListIndex> Previous; 442 443 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 444 Optional<ListIndex> Previous) 445 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 446 447 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 448 Optional<ListIndex> Previous) 449 : DefPath(Loc, Init, Init, Previous) {} 450 }; 451 452 const MemorySSA &MSSA; 453 AliasAnalysis &AA; 454 DominatorTree &DT; 455 UpwardsMemoryQuery *Query; 456 457 // Phi optimization bookkeeping 458 SmallVector<DefPath, 32> Paths; 459 DenseSet<ConstMemoryAccessPair> VisitedPhis; 460 461 /// Find the nearest def or phi that `From` can legally be optimized to. 462 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 463 assert(From->getNumOperands() && "Phi with no operands?"); 464 465 BasicBlock *BB = From->getBlock(); 466 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 467 DomTreeNode *Node = DT.getNode(BB); 468 while ((Node = Node->getIDom())) { 469 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 470 if (Defs) 471 return &*Defs->rbegin(); 472 } 473 return Result; 474 } 475 476 /// Result of calling walkToPhiOrClobber. 477 struct UpwardsWalkResult { 478 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 479 /// both. 480 MemoryAccess *Result; 481 bool IsKnownClobber; 482 }; 483 484 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 485 /// This will update Desc.Last as it walks. It will (optionally) also stop at 486 /// StopAt. 487 /// 488 /// This does not test for whether StopAt is a clobber 489 UpwardsWalkResult 490 walkToPhiOrClobber(DefPath &Desc, 491 const MemoryAccess *StopAt = nullptr) const { 492 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 493 494 for (MemoryAccess *Current : def_chain(Desc.Last)) { 495 Desc.Last = Current; 496 if (Current == StopAt) 497 return {Current, false}; 498 499 if (auto *MD = dyn_cast<MemoryDef>(Current)) 500 if (MSSA.isLiveOnEntryDef(MD) || 501 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA)) 502 return {MD, true}; 503 } 504 505 assert(isa<MemoryPhi>(Desc.Last) && 506 "Ended at a non-clobber that's not a phi?"); 507 return {Desc.Last, false}; 508 } 509 510 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 511 ListIndex PriorNode) { 512 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 513 upward_defs_end()); 514 for (const MemoryAccessPair &P : UpwardDefs) { 515 PausedSearches.push_back(Paths.size()); 516 Paths.emplace_back(P.second, P.first, PriorNode); 517 } 518 } 519 520 /// Represents a search that terminated after finding a clobber. This clobber 521 /// may or may not be present in the path of defs from LastNode..SearchStart, 522 /// since it may have been retrieved from cache. 523 struct TerminatedPath { 524 MemoryAccess *Clobber; 525 ListIndex LastNode; 526 }; 527 528 /// Get an access that keeps us from optimizing to the given phi. 529 /// 530 /// PausedSearches is an array of indices into the Paths array. Its incoming 531 /// value is the indices of searches that stopped at the last phi optimization 532 /// target. It's left in an unspecified state. 533 /// 534 /// If this returns None, NewPaused is a vector of searches that terminated 535 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 536 Optional<TerminatedPath> 537 getBlockingAccess(const MemoryAccess *StopWhere, 538 SmallVectorImpl<ListIndex> &PausedSearches, 539 SmallVectorImpl<ListIndex> &NewPaused, 540 SmallVectorImpl<TerminatedPath> &Terminated) { 541 assert(!PausedSearches.empty() && "No searches to continue?"); 542 543 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 544 // PausedSearches as our stack. 545 while (!PausedSearches.empty()) { 546 ListIndex PathIndex = PausedSearches.pop_back_val(); 547 DefPath &Node = Paths[PathIndex]; 548 549 // If we've already visited this path with this MemoryLocation, we don't 550 // need to do so again. 551 // 552 // NOTE: That we just drop these paths on the ground makes caching 553 // behavior sporadic. e.g. given a diamond: 554 // A 555 // B C 556 // D 557 // 558 // ...If we walk D, B, A, C, we'll only cache the result of phi 559 // optimization for A, B, and D; C will be skipped because it dies here. 560 // This arguably isn't the worst thing ever, since: 561 // - We generally query things in a top-down order, so if we got below D 562 // without needing cache entries for {C, MemLoc}, then chances are 563 // that those cache entries would end up ultimately unused. 564 // - We still cache things for A, so C only needs to walk up a bit. 565 // If this behavior becomes problematic, we can fix without a ton of extra 566 // work. 567 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 568 continue; 569 570 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); 571 if (Res.IsKnownClobber) { 572 assert(Res.Result != StopWhere); 573 // If this wasn't a cache hit, we hit a clobber when walking. That's a 574 // failure. 575 TerminatedPath Term{Res.Result, PathIndex}; 576 if (!MSSA.dominates(Res.Result, StopWhere)) 577 return Term; 578 579 // Otherwise, it's a valid thing to potentially optimize to. 580 Terminated.push_back(Term); 581 continue; 582 } 583 584 if (Res.Result == StopWhere) { 585 // We've hit our target. Save this path off for if we want to continue 586 // walking. 587 NewPaused.push_back(PathIndex); 588 continue; 589 } 590 591 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 592 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 593 } 594 595 return None; 596 } 597 598 template <typename T, typename Walker> 599 struct generic_def_path_iterator 600 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 601 std::forward_iterator_tag, T *> { 602 generic_def_path_iterator() = default; 603 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 604 605 T &operator*() const { return curNode(); } 606 607 generic_def_path_iterator &operator++() { 608 N = curNode().Previous; 609 return *this; 610 } 611 612 bool operator==(const generic_def_path_iterator &O) const { 613 if (N.hasValue() != O.N.hasValue()) 614 return false; 615 return !N.hasValue() || *N == *O.N; 616 } 617 618 private: 619 T &curNode() const { return W->Paths[*N]; } 620 621 Walker *W = nullptr; 622 Optional<ListIndex> N = None; 623 }; 624 625 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 626 using const_def_path_iterator = 627 generic_def_path_iterator<const DefPath, const ClobberWalker>; 628 629 iterator_range<def_path_iterator> def_path(ListIndex From) { 630 return make_range(def_path_iterator(this, From), def_path_iterator()); 631 } 632 633 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 634 return make_range(const_def_path_iterator(this, From), 635 const_def_path_iterator()); 636 } 637 638 struct OptznResult { 639 /// The path that contains our result. 640 TerminatedPath PrimaryClobber; 641 /// The paths that we can legally cache back from, but that aren't 642 /// necessarily the result of the Phi optimization. 643 SmallVector<TerminatedPath, 4> OtherClobbers; 644 }; 645 646 ListIndex defPathIndex(const DefPath &N) const { 647 // The assert looks nicer if we don't need to do &N 648 const DefPath *NP = &N; 649 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 650 "Out of bounds DefPath!"); 651 return NP - &Paths.front(); 652 } 653 654 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 655 /// that act as legal clobbers. Note that this won't return *all* clobbers. 656 /// 657 /// Phi optimization algorithm tl;dr: 658 /// - Find the earliest def/phi, A, we can optimize to 659 /// - Find if all paths from the starting memory access ultimately reach A 660 /// - If not, optimization isn't possible. 661 /// - Otherwise, walk from A to another clobber or phi, A'. 662 /// - If A' is a def, we're done. 663 /// - If A' is a phi, try to optimize it. 664 /// 665 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 666 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 667 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 668 const MemoryLocation &Loc) { 669 assert(Paths.empty() && VisitedPhis.empty() && 670 "Reset the optimization state."); 671 672 Paths.emplace_back(Loc, Start, Phi, None); 673 // Stores how many "valid" optimization nodes we had prior to calling 674 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 675 auto PriorPathsSize = Paths.size(); 676 677 SmallVector<ListIndex, 16> PausedSearches; 678 SmallVector<ListIndex, 8> NewPaused; 679 SmallVector<TerminatedPath, 4> TerminatedPaths; 680 681 addSearches(Phi, PausedSearches, 0); 682 683 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 684 // Paths. 685 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 686 assert(!Paths.empty() && "Need a path to move"); 687 auto Dom = Paths.begin(); 688 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 689 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 690 Dom = I; 691 auto Last = Paths.end() - 1; 692 if (Last != Dom) 693 std::iter_swap(Last, Dom); 694 }; 695 696 MemoryPhi *Current = Phi; 697 while (true) { 698 assert(!MSSA.isLiveOnEntryDef(Current) && 699 "liveOnEntry wasn't treated as a clobber?"); 700 701 const auto *Target = getWalkTarget(Current); 702 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 703 // optimization for the prior phi. 704 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 705 return MSSA.dominates(P.Clobber, Target); 706 })); 707 708 // FIXME: This is broken, because the Blocker may be reported to be 709 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 710 // For the moment, this is fine, since we do nothing with blocker info. 711 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 712 Target, PausedSearches, NewPaused, TerminatedPaths)) { 713 714 // Find the node we started at. We can't search based on N->Last, since 715 // we may have gone around a loop with a different MemoryLocation. 716 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 717 return defPathIndex(N) < PriorPathsSize; 718 }); 719 assert(Iter != def_path_iterator()); 720 721 DefPath &CurNode = *Iter; 722 assert(CurNode.Last == Current); 723 724 // Two things: 725 // A. We can't reliably cache all of NewPaused back. Consider a case 726 // where we have two paths in NewPaused; one of which can't optimize 727 // above this phi, whereas the other can. If we cache the second path 728 // back, we'll end up with suboptimal cache entries. We can handle 729 // cases like this a bit better when we either try to find all 730 // clobbers that block phi optimization, or when our cache starts 731 // supporting unfinished searches. 732 // B. We can't reliably cache TerminatedPaths back here without doing 733 // extra checks; consider a case like: 734 // T 735 // / \ 736 // D C 737 // \ / 738 // S 739 // Where T is our target, C is a node with a clobber on it, D is a 740 // diamond (with a clobber *only* on the left or right node, N), and 741 // S is our start. Say we walk to D, through the node opposite N 742 // (read: ignoring the clobber), and see a cache entry in the top 743 // node of D. That cache entry gets put into TerminatedPaths. We then 744 // walk up to C (N is later in our worklist), find the clobber, and 745 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 746 // the bottom part of D to the cached clobber, ignoring the clobber 747 // in N. Again, this problem goes away if we start tracking all 748 // blockers for a given phi optimization. 749 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 750 return {Result, {}}; 751 } 752 753 // If there's nothing left to search, then all paths led to valid clobbers 754 // that we got from our cache; pick the nearest to the start, and allow 755 // the rest to be cached back. 756 if (NewPaused.empty()) { 757 MoveDominatedPathToEnd(TerminatedPaths); 758 TerminatedPath Result = TerminatedPaths.pop_back_val(); 759 return {Result, std::move(TerminatedPaths)}; 760 } 761 762 MemoryAccess *DefChainEnd = nullptr; 763 SmallVector<TerminatedPath, 4> Clobbers; 764 for (ListIndex Paused : NewPaused) { 765 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 766 if (WR.IsKnownClobber) 767 Clobbers.push_back({WR.Result, Paused}); 768 else 769 // Micro-opt: If we hit the end of the chain, save it. 770 DefChainEnd = WR.Result; 771 } 772 773 if (!TerminatedPaths.empty()) { 774 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 775 // do it now. 776 if (!DefChainEnd) 777 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 778 DefChainEnd = MA; 779 780 // If any of the terminated paths don't dominate the phi we'll try to 781 // optimize, we need to figure out what they are and quit. 782 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 783 for (const TerminatedPath &TP : TerminatedPaths) { 784 // Because we know that DefChainEnd is as "high" as we can go, we 785 // don't need local dominance checks; BB dominance is sufficient. 786 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 787 Clobbers.push_back(TP); 788 } 789 } 790 791 // If we have clobbers in the def chain, find the one closest to Current 792 // and quit. 793 if (!Clobbers.empty()) { 794 MoveDominatedPathToEnd(Clobbers); 795 TerminatedPath Result = Clobbers.pop_back_val(); 796 return {Result, std::move(Clobbers)}; 797 } 798 799 assert(all_of(NewPaused, 800 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 801 802 // Because liveOnEntry is a clobber, this must be a phi. 803 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 804 805 PriorPathsSize = Paths.size(); 806 PausedSearches.clear(); 807 for (ListIndex I : NewPaused) 808 addSearches(DefChainPhi, PausedSearches, I); 809 NewPaused.clear(); 810 811 Current = DefChainPhi; 812 } 813 } 814 815 void verifyOptResult(const OptznResult &R) const { 816 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 817 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 818 })); 819 } 820 821 void resetPhiOptznState() { 822 Paths.clear(); 823 VisitedPhis.clear(); 824 } 825 826 public: 827 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) 828 : MSSA(MSSA), AA(AA), DT(DT) {} 829 830 void reset() {} 831 832 /// Finds the nearest clobber for the given query, optimizing phis if 833 /// possible. 834 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { 835 Query = &Q; 836 837 MemoryAccess *Current = Start; 838 // This walker pretends uses don't exist. If we're handed one, silently grab 839 // its def. (This has the nice side-effect of ensuring we never cache uses) 840 if (auto *MU = dyn_cast<MemoryUse>(Start)) 841 Current = MU->getDefiningAccess(); 842 843 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 844 // Fast path for the overly-common case (no crazy phi optimization 845 // necessary) 846 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 847 MemoryAccess *Result; 848 if (WalkResult.IsKnownClobber) { 849 Result = WalkResult.Result; 850 } else { 851 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 852 Current, Q.StartingLoc); 853 verifyOptResult(OptRes); 854 resetPhiOptznState(); 855 Result = OptRes.PrimaryClobber.Clobber; 856 } 857 858 #ifdef EXPENSIVE_CHECKS 859 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 860 #endif 861 return Result; 862 } 863 864 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } 865 }; 866 867 struct RenamePassData { 868 DomTreeNode *DTN; 869 DomTreeNode::const_iterator ChildIt; 870 MemoryAccess *IncomingVal; 871 872 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 873 MemoryAccess *M) 874 : DTN(D), ChildIt(It), IncomingVal(M) {} 875 876 void swap(RenamePassData &RHS) { 877 std::swap(DTN, RHS.DTN); 878 std::swap(ChildIt, RHS.ChildIt); 879 std::swap(IncomingVal, RHS.IncomingVal); 880 } 881 }; 882 883 } // end anonymous namespace 884 885 namespace llvm { 886 887 /// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no 888 /// longer does caching on its own, 889 /// but the name has been retained for the moment. 890 class MemorySSA::CachingWalker final : public MemorySSAWalker { 891 ClobberWalker Walker; 892 bool AutoResetWalker = true; 893 894 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); 895 void verifyRemoved(MemoryAccess *); 896 897 public: 898 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); 899 ~CachingWalker() override = default; 900 901 using MemorySSAWalker::getClobberingMemoryAccess; 902 903 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; 904 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 905 const MemoryLocation &) override; 906 void invalidateInfo(MemoryAccess *) override; 907 908 /// Whether we call resetClobberWalker() after each time we *actually* walk to 909 /// answer a clobber query. 910 void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } 911 912 /// Drop the walker's persistent data structures. 913 void resetClobberWalker() { Walker.reset(); } 914 915 void verify(const MemorySSA *MSSA) override { 916 MemorySSAWalker::verify(MSSA); 917 Walker.verify(MSSA); 918 } 919 }; 920 921 } // end namespace llvm 922 923 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 924 bool RenameAllUses) { 925 // Pass through values to our successors 926 for (const BasicBlock *S : successors(BB)) { 927 auto It = PerBlockAccesses.find(S); 928 // Rename the phi nodes in our successor block 929 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 930 continue; 931 AccessList *Accesses = It->second.get(); 932 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 933 if (RenameAllUses) { 934 int PhiIndex = Phi->getBasicBlockIndex(BB); 935 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 936 Phi->setIncomingValue(PhiIndex, IncomingVal); 937 } else 938 Phi->addIncoming(IncomingVal, BB); 939 } 940 } 941 942 /// \brief Rename a single basic block into MemorySSA form. 943 /// Uses the standard SSA renaming algorithm. 944 /// \returns The new incoming value. 945 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 946 bool RenameAllUses) { 947 auto It = PerBlockAccesses.find(BB); 948 // Skip most processing if the list is empty. 949 if (It != PerBlockAccesses.end()) { 950 AccessList *Accesses = It->second.get(); 951 for (MemoryAccess &L : *Accesses) { 952 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 953 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 954 MUD->setDefiningAccess(IncomingVal); 955 if (isa<MemoryDef>(&L)) 956 IncomingVal = &L; 957 } else { 958 IncomingVal = &L; 959 } 960 } 961 } 962 return IncomingVal; 963 } 964 965 /// \brief This is the standard SSA renaming algorithm. 966 /// 967 /// We walk the dominator tree in preorder, renaming accesses, and then filling 968 /// in phi nodes in our successors. 969 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 970 SmallPtrSetImpl<BasicBlock *> &Visited, 971 bool SkipVisited, bool RenameAllUses) { 972 SmallVector<RenamePassData, 32> WorkStack; 973 // Skip everything if we already renamed this block and we are skipping. 974 // Note: You can't sink this into the if, because we need it to occur 975 // regardless of whether we skip blocks or not. 976 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 977 if (SkipVisited && AlreadyVisited) 978 return; 979 980 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 981 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 982 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 983 984 while (!WorkStack.empty()) { 985 DomTreeNode *Node = WorkStack.back().DTN; 986 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 987 IncomingVal = WorkStack.back().IncomingVal; 988 989 if (ChildIt == Node->end()) { 990 WorkStack.pop_back(); 991 } else { 992 DomTreeNode *Child = *ChildIt; 993 ++WorkStack.back().ChildIt; 994 BasicBlock *BB = Child->getBlock(); 995 // Note: You can't sink this into the if, because we need it to occur 996 // regardless of whether we skip blocks or not. 997 AlreadyVisited = !Visited.insert(BB).second; 998 if (SkipVisited && AlreadyVisited) { 999 // We already visited this during our renaming, which can happen when 1000 // being asked to rename multiple blocks. Figure out the incoming val, 1001 // which is the last def. 1002 // Incoming value can only change if there is a block def, and in that 1003 // case, it's the last block def in the list. 1004 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1005 IncomingVal = &*BlockDefs->rbegin(); 1006 } else 1007 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1008 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1009 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1010 } 1011 } 1012 } 1013 1014 /// \brief This handles unreachable block accesses by deleting phi nodes in 1015 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1016 /// being uses of the live on entry definition. 1017 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1018 assert(!DT->isReachableFromEntry(BB) && 1019 "Reachable block found while handling unreachable blocks"); 1020 1021 // Make sure phi nodes in our reachable successors end up with a 1022 // LiveOnEntryDef for our incoming edge, even though our block is forward 1023 // unreachable. We could just disconnect these blocks from the CFG fully, 1024 // but we do not right now. 1025 for (const BasicBlock *S : successors(BB)) { 1026 if (!DT->isReachableFromEntry(S)) 1027 continue; 1028 auto It = PerBlockAccesses.find(S); 1029 // Rename the phi nodes in our successor block 1030 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1031 continue; 1032 AccessList *Accesses = It->second.get(); 1033 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1034 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1035 } 1036 1037 auto It = PerBlockAccesses.find(BB); 1038 if (It == PerBlockAccesses.end()) 1039 return; 1040 1041 auto &Accesses = It->second; 1042 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1043 auto Next = std::next(AI); 1044 // If we have a phi, just remove it. We are going to replace all 1045 // users with live on entry. 1046 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1047 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1048 else 1049 Accesses->erase(AI); 1050 AI = Next; 1051 } 1052 } 1053 1054 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1055 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1056 NextID(INVALID_MEMORYACCESS_ID) { 1057 buildMemorySSA(); 1058 } 1059 1060 MemorySSA::~MemorySSA() { 1061 // Drop all our references 1062 for (const auto &Pair : PerBlockAccesses) 1063 for (MemoryAccess &MA : *Pair.second) 1064 MA.dropAllReferences(); 1065 } 1066 1067 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1068 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1069 1070 if (Res.second) 1071 Res.first->second = llvm::make_unique<AccessList>(); 1072 return Res.first->second.get(); 1073 } 1074 1075 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1076 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1077 1078 if (Res.second) 1079 Res.first->second = llvm::make_unique<DefsList>(); 1080 return Res.first->second.get(); 1081 } 1082 1083 namespace llvm { 1084 1085 /// This class is a batch walker of all MemoryUse's in the program, and points 1086 /// their defining access at the thing that actually clobbers them. Because it 1087 /// is a batch walker that touches everything, it does not operate like the 1088 /// other walkers. This walker is basically performing a top-down SSA renaming 1089 /// pass, where the version stack is used as the cache. This enables it to be 1090 /// significantly more time and memory efficient than using the regular walker, 1091 /// which is walking bottom-up. 1092 class MemorySSA::OptimizeUses { 1093 public: 1094 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, 1095 DominatorTree *DT) 1096 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { 1097 Walker = MSSA->getWalker(); 1098 } 1099 1100 void optimizeUses(); 1101 1102 private: 1103 /// This represents where a given memorylocation is in the stack. 1104 struct MemlocStackInfo { 1105 // This essentially is keeping track of versions of the stack. Whenever 1106 // the stack changes due to pushes or pops, these versions increase. 1107 unsigned long StackEpoch; 1108 unsigned long PopEpoch; 1109 // This is the lower bound of places on the stack to check. It is equal to 1110 // the place the last stack walk ended. 1111 // Note: Correctness depends on this being initialized to 0, which densemap 1112 // does 1113 unsigned long LowerBound; 1114 const BasicBlock *LowerBoundBlock; 1115 // This is where the last walk for this memory location ended. 1116 unsigned long LastKill; 1117 bool LastKillValid; 1118 }; 1119 1120 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1121 SmallVectorImpl<MemoryAccess *> &, 1122 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1123 1124 MemorySSA *MSSA; 1125 MemorySSAWalker *Walker; 1126 AliasAnalysis *AA; 1127 DominatorTree *DT; 1128 }; 1129 1130 } // end namespace llvm 1131 1132 /// Optimize the uses in a given block This is basically the SSA renaming 1133 /// algorithm, with one caveat: We are able to use a single stack for all 1134 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1135 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1136 /// going to be some position in that stack of possible ones. 1137 /// 1138 /// We track the stack positions that each MemoryLocation needs 1139 /// to check, and last ended at. This is because we only want to check the 1140 /// things that changed since last time. The same MemoryLocation should 1141 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1142 /// things like this, and if they start, we can modify MemoryLocOrCall to 1143 /// include relevant data) 1144 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1145 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1146 SmallVectorImpl<MemoryAccess *> &VersionStack, 1147 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1148 1149 /// If no accesses, nothing to do. 1150 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1151 if (Accesses == nullptr) 1152 return; 1153 1154 // Pop everything that doesn't dominate the current block off the stack, 1155 // increment the PopEpoch to account for this. 1156 while (true) { 1157 assert( 1158 !VersionStack.empty() && 1159 "Version stack should have liveOnEntry sentinel dominating everything"); 1160 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1161 if (DT->dominates(BackBlock, BB)) 1162 break; 1163 while (VersionStack.back()->getBlock() == BackBlock) 1164 VersionStack.pop_back(); 1165 ++PopEpoch; 1166 } 1167 1168 for (MemoryAccess &MA : *Accesses) { 1169 auto *MU = dyn_cast<MemoryUse>(&MA); 1170 if (!MU) { 1171 VersionStack.push_back(&MA); 1172 ++StackEpoch; 1173 continue; 1174 } 1175 1176 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1177 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true); 1178 continue; 1179 } 1180 1181 MemoryLocOrCall UseMLOC(MU); 1182 auto &LocInfo = LocStackInfo[UseMLOC]; 1183 // If the pop epoch changed, it means we've removed stuff from top of 1184 // stack due to changing blocks. We may have to reset the lower bound or 1185 // last kill info. 1186 if (LocInfo.PopEpoch != PopEpoch) { 1187 LocInfo.PopEpoch = PopEpoch; 1188 LocInfo.StackEpoch = StackEpoch; 1189 // If the lower bound was in something that no longer dominates us, we 1190 // have to reset it. 1191 // We can't simply track stack size, because the stack may have had 1192 // pushes/pops in the meantime. 1193 // XXX: This is non-optimal, but only is slower cases with heavily 1194 // branching dominator trees. To get the optimal number of queries would 1195 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1196 // the top of that stack dominates us. This does not seem worth it ATM. 1197 // A much cheaper optimization would be to always explore the deepest 1198 // branch of the dominator tree first. This will guarantee this resets on 1199 // the smallest set of blocks. 1200 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1201 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1202 // Reset the lower bound of things to check. 1203 // TODO: Some day we should be able to reset to last kill, rather than 1204 // 0. 1205 LocInfo.LowerBound = 0; 1206 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1207 LocInfo.LastKillValid = false; 1208 } 1209 } else if (LocInfo.StackEpoch != StackEpoch) { 1210 // If all that has changed is the StackEpoch, we only have to check the 1211 // new things on the stack, because we've checked everything before. In 1212 // this case, the lower bound of things to check remains the same. 1213 LocInfo.PopEpoch = PopEpoch; 1214 LocInfo.StackEpoch = StackEpoch; 1215 } 1216 if (!LocInfo.LastKillValid) { 1217 LocInfo.LastKill = VersionStack.size() - 1; 1218 LocInfo.LastKillValid = true; 1219 } 1220 1221 // At this point, we should have corrected last kill and LowerBound to be 1222 // in bounds. 1223 assert(LocInfo.LowerBound < VersionStack.size() && 1224 "Lower bound out of range"); 1225 assert(LocInfo.LastKill < VersionStack.size() && 1226 "Last kill info out of range"); 1227 // In any case, the new upper bound is the top of the stack. 1228 unsigned long UpperBound = VersionStack.size() - 1; 1229 1230 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1231 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1232 << *(MU->getMemoryInst()) << ")" 1233 << " because there are " << UpperBound - LocInfo.LowerBound 1234 << " stores to disambiguate\n"); 1235 // Because we did not walk, LastKill is no longer valid, as this may 1236 // have been a kill. 1237 LocInfo.LastKillValid = false; 1238 continue; 1239 } 1240 bool FoundClobberResult = false; 1241 while (UpperBound > LocInfo.LowerBound) { 1242 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1243 // For phis, use the walker, see where we ended up, go there 1244 Instruction *UseInst = MU->getMemoryInst(); 1245 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); 1246 // We are guaranteed to find it or something is wrong 1247 while (VersionStack[UpperBound] != Result) { 1248 assert(UpperBound != 0); 1249 --UpperBound; 1250 } 1251 FoundClobberResult = true; 1252 break; 1253 } 1254 1255 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1256 // If the lifetime of the pointer ends at this instruction, it's live on 1257 // entry. 1258 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1259 // Reset UpperBound to liveOnEntryDef's place in the stack 1260 UpperBound = 0; 1261 FoundClobberResult = true; 1262 break; 1263 } 1264 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { 1265 FoundClobberResult = true; 1266 break; 1267 } 1268 --UpperBound; 1269 } 1270 // At the end of this loop, UpperBound is either a clobber, or lower bound 1271 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1272 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1273 MU->setDefiningAccess(VersionStack[UpperBound], true); 1274 // We were last killed now by where we got to 1275 LocInfo.LastKill = UpperBound; 1276 } else { 1277 // Otherwise, we checked all the new ones, and now we know we can get to 1278 // LastKill. 1279 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); 1280 } 1281 LocInfo.LowerBound = VersionStack.size() - 1; 1282 LocInfo.LowerBoundBlock = BB; 1283 } 1284 } 1285 1286 /// Optimize uses to point to their actual clobbering definitions. 1287 void MemorySSA::OptimizeUses::optimizeUses() { 1288 SmallVector<MemoryAccess *, 16> VersionStack; 1289 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1290 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1291 1292 unsigned long StackEpoch = 1; 1293 unsigned long PopEpoch = 1; 1294 // We perform a non-recursive top-down dominator tree walk. 1295 for (const auto *DomNode : depth_first(DT->getRootNode())) 1296 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1297 LocStackInfo); 1298 } 1299 1300 void MemorySSA::placePHINodes( 1301 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks, 1302 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) { 1303 // Determine where our MemoryPhi's should go 1304 ForwardIDFCalculator IDFs(*DT); 1305 IDFs.setDefiningBlocks(DefiningBlocks); 1306 SmallVector<BasicBlock *, 32> IDFBlocks; 1307 IDFs.calculate(IDFBlocks); 1308 1309 std::sort(IDFBlocks.begin(), IDFBlocks.end(), 1310 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) { 1311 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 1312 }); 1313 1314 // Now place MemoryPhi nodes. 1315 for (auto &BB : IDFBlocks) 1316 createMemoryPhi(BB); 1317 } 1318 1319 void MemorySSA::buildMemorySSA() { 1320 // We create an access to represent "live on entry", for things like 1321 // arguments or users of globals, where the memory they use is defined before 1322 // the beginning of the function. We do not actually insert it into the IR. 1323 // We do not define a live on exit for the immediate uses, and thus our 1324 // semantics do *not* imply that something with no immediate uses can simply 1325 // be removed. 1326 BasicBlock &StartingPoint = F.getEntryBlock(); 1327 LiveOnEntryDef = 1328 llvm::make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, 1329 &StartingPoint, NextID++); 1330 DenseMap<const BasicBlock *, unsigned int> BBNumbers; 1331 unsigned NextBBNum = 0; 1332 1333 // We maintain lists of memory accesses per-block, trading memory for time. We 1334 // could just look up the memory access for every possible instruction in the 1335 // stream. 1336 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1337 // Go through each block, figure out where defs occur, and chain together all 1338 // the accesses. 1339 for (BasicBlock &B : F) { 1340 BBNumbers[&B] = NextBBNum++; 1341 bool InsertIntoDef = false; 1342 AccessList *Accesses = nullptr; 1343 DefsList *Defs = nullptr; 1344 for (Instruction &I : B) { 1345 MemoryUseOrDef *MUD = createNewAccess(&I); 1346 if (!MUD) 1347 continue; 1348 1349 if (!Accesses) 1350 Accesses = getOrCreateAccessList(&B); 1351 Accesses->push_back(MUD); 1352 if (isa<MemoryDef>(MUD)) { 1353 InsertIntoDef = true; 1354 if (!Defs) 1355 Defs = getOrCreateDefsList(&B); 1356 Defs->push_back(*MUD); 1357 } 1358 } 1359 if (InsertIntoDef) 1360 DefiningBlocks.insert(&B); 1361 } 1362 placePHINodes(DefiningBlocks, BBNumbers); 1363 1364 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1365 // filled in with all blocks. 1366 SmallPtrSet<BasicBlock *, 16> Visited; 1367 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1368 1369 CachingWalker *Walker = getWalkerImpl(); 1370 1371 // We're doing a batch of updates; don't drop useful caches between them. 1372 Walker->setAutoResetWalker(false); 1373 OptimizeUses(this, Walker, AA, DT).optimizeUses(); 1374 Walker->setAutoResetWalker(true); 1375 Walker->resetClobberWalker(); 1376 1377 // Mark the uses in unreachable blocks as live on entry, so that they go 1378 // somewhere. 1379 for (auto &BB : F) 1380 if (!Visited.count(&BB)) 1381 markUnreachableAsLiveOnEntry(&BB); 1382 } 1383 1384 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1385 1386 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1387 if (Walker) 1388 return Walker.get(); 1389 1390 Walker = llvm::make_unique<CachingWalker>(this, AA, DT); 1391 return Walker.get(); 1392 } 1393 1394 // This is a helper function used by the creation routines. It places NewAccess 1395 // into the access and defs lists for a given basic block, at the given 1396 // insertion point. 1397 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1398 const BasicBlock *BB, 1399 InsertionPlace Point) { 1400 auto *Accesses = getOrCreateAccessList(BB); 1401 if (Point == Beginning) { 1402 // If it's a phi node, it goes first, otherwise, it goes after any phi 1403 // nodes. 1404 if (isa<MemoryPhi>(NewAccess)) { 1405 Accesses->push_front(NewAccess); 1406 auto *Defs = getOrCreateDefsList(BB); 1407 Defs->push_front(*NewAccess); 1408 } else { 1409 auto AI = find_if_not( 1410 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1411 Accesses->insert(AI, NewAccess); 1412 if (!isa<MemoryUse>(NewAccess)) { 1413 auto *Defs = getOrCreateDefsList(BB); 1414 auto DI = find_if_not( 1415 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1416 Defs->insert(DI, *NewAccess); 1417 } 1418 } 1419 } else { 1420 Accesses->push_back(NewAccess); 1421 if (!isa<MemoryUse>(NewAccess)) { 1422 auto *Defs = getOrCreateDefsList(BB); 1423 Defs->push_back(*NewAccess); 1424 } 1425 } 1426 BlockNumberingValid.erase(BB); 1427 } 1428 1429 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1430 AccessList::iterator InsertPt) { 1431 auto *Accesses = getWritableBlockAccesses(BB); 1432 bool WasEnd = InsertPt == Accesses->end(); 1433 Accesses->insert(AccessList::iterator(InsertPt), What); 1434 if (!isa<MemoryUse>(What)) { 1435 auto *Defs = getOrCreateDefsList(BB); 1436 // If we got asked to insert at the end, we have an easy job, just shove it 1437 // at the end. If we got asked to insert before an existing def, we also get 1438 // an terator. If we got asked to insert before a use, we have to hunt for 1439 // the next def. 1440 if (WasEnd) { 1441 Defs->push_back(*What); 1442 } else if (isa<MemoryDef>(InsertPt)) { 1443 Defs->insert(InsertPt->getDefsIterator(), *What); 1444 } else { 1445 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1446 ++InsertPt; 1447 // Either we found a def, or we are inserting at the end 1448 if (InsertPt == Accesses->end()) 1449 Defs->push_back(*What); 1450 else 1451 Defs->insert(InsertPt->getDefsIterator(), *What); 1452 } 1453 } 1454 BlockNumberingValid.erase(BB); 1455 } 1456 1457 // Move What before Where in the IR. The end result is taht What will belong to 1458 // the right lists and have the right Block set, but will not otherwise be 1459 // correct. It will not have the right defining access, and if it is a def, 1460 // things below it will not properly be updated. 1461 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1462 AccessList::iterator Where) { 1463 // Keep it in the lookup tables, remove from the lists 1464 removeFromLists(What, false); 1465 What->setBlock(BB); 1466 insertIntoListsBefore(What, BB, Where); 1467 } 1468 1469 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1470 InsertionPlace Point) { 1471 removeFromLists(What, false); 1472 What->setBlock(BB); 1473 insertIntoListsForBlock(What, BB, Point); 1474 } 1475 1476 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1477 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1478 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1479 // Phi's always are placed at the front of the block. 1480 insertIntoListsForBlock(Phi, BB, Beginning); 1481 ValueToMemoryAccess[BB] = Phi; 1482 return Phi; 1483 } 1484 1485 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1486 MemoryAccess *Definition) { 1487 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1488 MemoryUseOrDef *NewAccess = createNewAccess(I); 1489 assert( 1490 NewAccess != nullptr && 1491 "Tried to create a memory access for a non-memory touching instruction"); 1492 NewAccess->setDefiningAccess(Definition); 1493 return NewAccess; 1494 } 1495 1496 // Return true if the instruction has ordering constraints. 1497 // Note specifically that this only considers stores and loads 1498 // because others are still considered ModRef by getModRefInfo. 1499 static inline bool isOrdered(const Instruction *I) { 1500 if (auto *SI = dyn_cast<StoreInst>(I)) { 1501 if (!SI->isUnordered()) 1502 return true; 1503 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1504 if (!LI->isUnordered()) 1505 return true; 1506 } 1507 return false; 1508 } 1509 1510 /// \brief Helper function to create new memory accesses 1511 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { 1512 // The assume intrinsic has a control dependency which we model by claiming 1513 // that it writes arbitrarily. Ignore that fake memory dependency here. 1514 // FIXME: Replace this special casing with a more accurate modelling of 1515 // assume's control dependency. 1516 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1517 if (II->getIntrinsicID() == Intrinsic::assume) 1518 return nullptr; 1519 1520 // Find out what affect this instruction has on memory. 1521 ModRefInfo ModRef = AA->getModRefInfo(I, None); 1522 // The isOrdered check is used to ensure that volatiles end up as defs 1523 // (atomics end up as ModRef right now anyway). Until we separate the 1524 // ordering chain from the memory chain, this enables people to see at least 1525 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1526 // will still give an answer that bypasses other volatile loads. TODO: 1527 // Separate memory aliasing and ordering into two different chains so that we 1528 // can precisely represent both "what memory will this read/write/is clobbered 1529 // by" and "what instructions can I move this past". 1530 bool Def = bool(ModRef & MRI_Mod) || isOrdered(I); 1531 bool Use = bool(ModRef & MRI_Ref); 1532 1533 // It's possible for an instruction to not modify memory at all. During 1534 // construction, we ignore them. 1535 if (!Def && !Use) 1536 return nullptr; 1537 1538 assert((Def || Use) && 1539 "Trying to create a memory access with a non-memory instruction"); 1540 1541 MemoryUseOrDef *MUD; 1542 if (Def) 1543 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1544 else 1545 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1546 ValueToMemoryAccess[I] = MUD; 1547 return MUD; 1548 } 1549 1550 /// \brief Returns true if \p Replacer dominates \p Replacee . 1551 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1552 const MemoryAccess *Replacee) const { 1553 if (isa<MemoryUseOrDef>(Replacee)) 1554 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1555 const auto *MP = cast<MemoryPhi>(Replacee); 1556 // For a phi node, the use occurs in the predecessor block of the phi node. 1557 // Since we may occur multiple times in the phi node, we have to check each 1558 // operand to ensure Replacer dominates each operand where Replacee occurs. 1559 for (const Use &Arg : MP->operands()) { 1560 if (Arg.get() != Replacee && 1561 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1562 return false; 1563 } 1564 return true; 1565 } 1566 1567 /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. 1568 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1569 assert(MA->use_empty() && 1570 "Trying to remove memory access that still has uses"); 1571 BlockNumbering.erase(MA); 1572 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1573 MUD->setDefiningAccess(nullptr); 1574 // Invalidate our walker's cache if necessary 1575 if (!isa<MemoryUse>(MA)) 1576 Walker->invalidateInfo(MA); 1577 // The call below to erase will destroy MA, so we can't change the order we 1578 // are doing things here 1579 Value *MemoryInst; 1580 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { 1581 MemoryInst = MUD->getMemoryInst(); 1582 } else { 1583 MemoryInst = MA->getBlock(); 1584 } 1585 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1586 if (VMA->second == MA) 1587 ValueToMemoryAccess.erase(VMA); 1588 } 1589 1590 /// \brief Properly remove \p MA from all of MemorySSA's lists. 1591 /// 1592 /// Because of the way the intrusive list and use lists work, it is important to 1593 /// do removal in the right order. 1594 /// ShouldDelete defaults to true, and will cause the memory access to also be 1595 /// deleted, not just removed. 1596 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1597 // The access list owns the reference, so we erase it from the non-owning list 1598 // first. 1599 if (!isa<MemoryUse>(MA)) { 1600 auto DefsIt = PerBlockDefs.find(MA->getBlock()); 1601 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1602 Defs->remove(*MA); 1603 if (Defs->empty()) 1604 PerBlockDefs.erase(DefsIt); 1605 } 1606 1607 // The erase call here will delete it. If we don't want it deleted, we call 1608 // remove instead. 1609 auto AccessIt = PerBlockAccesses.find(MA->getBlock()); 1610 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1611 if (ShouldDelete) 1612 Accesses->erase(MA); 1613 else 1614 Accesses->remove(MA); 1615 1616 if (Accesses->empty()) 1617 PerBlockAccesses.erase(AccessIt); 1618 } 1619 1620 void MemorySSA::print(raw_ostream &OS) const { 1621 MemorySSAAnnotatedWriter Writer(this); 1622 F.print(OS, &Writer); 1623 } 1624 1625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1626 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1627 #endif 1628 1629 void MemorySSA::verifyMemorySSA() const { 1630 verifyDefUses(F); 1631 verifyDomination(F); 1632 verifyOrdering(F); 1633 Walker->verify(this); 1634 } 1635 1636 /// \brief Verify that the order and existence of MemoryAccesses matches the 1637 /// order and existence of memory affecting instructions. 1638 void MemorySSA::verifyOrdering(Function &F) const { 1639 // Walk all the blocks, comparing what the lookups think and what the access 1640 // lists think, as well as the order in the blocks vs the order in the access 1641 // lists. 1642 SmallVector<MemoryAccess *, 32> ActualAccesses; 1643 SmallVector<MemoryAccess *, 32> ActualDefs; 1644 for (BasicBlock &B : F) { 1645 const AccessList *AL = getBlockAccesses(&B); 1646 const auto *DL = getBlockDefs(&B); 1647 MemoryAccess *Phi = getMemoryAccess(&B); 1648 if (Phi) { 1649 ActualAccesses.push_back(Phi); 1650 ActualDefs.push_back(Phi); 1651 } 1652 1653 for (Instruction &I : B) { 1654 MemoryAccess *MA = getMemoryAccess(&I); 1655 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1656 "We have memory affecting instructions " 1657 "in this block but they are not in the " 1658 "access list or defs list"); 1659 if (MA) { 1660 ActualAccesses.push_back(MA); 1661 if (isa<MemoryDef>(MA)) 1662 ActualDefs.push_back(MA); 1663 } 1664 } 1665 // Either we hit the assert, really have no accesses, or we have both 1666 // accesses and an access list. 1667 // Same with defs. 1668 if (!AL && !DL) 1669 continue; 1670 assert(AL->size() == ActualAccesses.size() && 1671 "We don't have the same number of accesses in the block as on the " 1672 "access list"); 1673 assert((DL || ActualDefs.size() == 0) && 1674 "Either we should have a defs list, or we should have no defs"); 1675 assert((!DL || DL->size() == ActualDefs.size()) && 1676 "We don't have the same number of defs in the block as on the " 1677 "def list"); 1678 auto ALI = AL->begin(); 1679 auto AAI = ActualAccesses.begin(); 1680 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1681 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1682 ++ALI; 1683 ++AAI; 1684 } 1685 ActualAccesses.clear(); 1686 if (DL) { 1687 auto DLI = DL->begin(); 1688 auto ADI = ActualDefs.begin(); 1689 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1690 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1691 ++DLI; 1692 ++ADI; 1693 } 1694 } 1695 ActualDefs.clear(); 1696 } 1697 } 1698 1699 /// \brief Verify the domination properties of MemorySSA by checking that each 1700 /// definition dominates all of its uses. 1701 void MemorySSA::verifyDomination(Function &F) const { 1702 #ifndef NDEBUG 1703 for (BasicBlock &B : F) { 1704 // Phi nodes are attached to basic blocks 1705 if (MemoryPhi *MP = getMemoryAccess(&B)) 1706 for (const Use &U : MP->uses()) 1707 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1708 1709 for (Instruction &I : B) { 1710 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1711 if (!MD) 1712 continue; 1713 1714 for (const Use &U : MD->uses()) 1715 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1716 } 1717 } 1718 #endif 1719 } 1720 1721 /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use 1722 /// appears in the use list of \p Def. 1723 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1724 #ifndef NDEBUG 1725 // The live on entry use may cause us to get a NULL def here 1726 if (!Def) 1727 assert(isLiveOnEntryDef(Use) && 1728 "Null def but use not point to live on entry def"); 1729 else 1730 assert(is_contained(Def->users(), Use) && 1731 "Did not find use in def's use list"); 1732 #endif 1733 } 1734 1735 /// \brief Verify the immediate use information, by walking all the memory 1736 /// accesses and verifying that, for each use, it appears in the 1737 /// appropriate def's use list 1738 void MemorySSA::verifyDefUses(Function &F) const { 1739 for (BasicBlock &B : F) { 1740 // Phi nodes are attached to basic blocks 1741 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 1742 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1743 pred_begin(&B), pred_end(&B))) && 1744 "Incomplete MemoryPhi Node"); 1745 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1746 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1747 } 1748 1749 for (Instruction &I : B) { 1750 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 1751 verifyUseInDefs(MA->getDefiningAccess(), MA); 1752 } 1753 } 1754 } 1755 } 1756 1757 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { 1758 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); 1759 } 1760 1761 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { 1762 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); 1763 } 1764 1765 /// Perform a local numbering on blocks so that instruction ordering can be 1766 /// determined in constant time. 1767 /// TODO: We currently just number in order. If we numbered by N, we could 1768 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 1769 /// log2(N) sequences of mixed before and after) without needing to invalidate 1770 /// the numbering. 1771 void MemorySSA::renumberBlock(const BasicBlock *B) const { 1772 // The pre-increment ensures the numbers really start at 1. 1773 unsigned long CurrentNumber = 0; 1774 const AccessList *AL = getBlockAccesses(B); 1775 assert(AL != nullptr && "Asking to renumber an empty block"); 1776 for (const auto &I : *AL) 1777 BlockNumbering[&I] = ++CurrentNumber; 1778 BlockNumberingValid.insert(B); 1779 } 1780 1781 /// \brief Determine, for two memory accesses in the same block, 1782 /// whether \p Dominator dominates \p Dominatee. 1783 /// \returns True if \p Dominator dominates \p Dominatee. 1784 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 1785 const MemoryAccess *Dominatee) const { 1786 const BasicBlock *DominatorBlock = Dominator->getBlock(); 1787 1788 assert((DominatorBlock == Dominatee->getBlock()) && 1789 "Asking for local domination when accesses are in different blocks!"); 1790 // A node dominates itself. 1791 if (Dominatee == Dominator) 1792 return true; 1793 1794 // When Dominatee is defined on function entry, it is not dominated by another 1795 // memory access. 1796 if (isLiveOnEntryDef(Dominatee)) 1797 return false; 1798 1799 // When Dominator is defined on function entry, it dominates the other memory 1800 // access. 1801 if (isLiveOnEntryDef(Dominator)) 1802 return true; 1803 1804 if (!BlockNumberingValid.count(DominatorBlock)) 1805 renumberBlock(DominatorBlock); 1806 1807 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 1808 // All numbers start with 1 1809 assert(DominatorNum != 0 && "Block was not numbered properly"); 1810 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 1811 assert(DominateeNum != 0 && "Block was not numbered properly"); 1812 return DominatorNum < DominateeNum; 1813 } 1814 1815 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1816 const MemoryAccess *Dominatee) const { 1817 if (Dominator == Dominatee) 1818 return true; 1819 1820 if (isLiveOnEntryDef(Dominatee)) 1821 return false; 1822 1823 if (Dominator->getBlock() != Dominatee->getBlock()) 1824 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 1825 return locallyDominates(Dominator, Dominatee); 1826 } 1827 1828 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1829 const Use &Dominatee) const { 1830 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 1831 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 1832 // The def must dominate the incoming block of the phi. 1833 if (UseBB != Dominator->getBlock()) 1834 return DT->dominates(Dominator->getBlock(), UseBB); 1835 // If the UseBB and the DefBB are the same, compare locally. 1836 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 1837 } 1838 // If it's not a PHI node use, the normal dominates can already handle it. 1839 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 1840 } 1841 1842 const static char LiveOnEntryStr[] = "liveOnEntry"; 1843 1844 void MemoryAccess::print(raw_ostream &OS) const { 1845 switch (getValueID()) { 1846 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 1847 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 1848 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 1849 } 1850 llvm_unreachable("invalid value id"); 1851 } 1852 1853 void MemoryDef::print(raw_ostream &OS) const { 1854 MemoryAccess *UO = getDefiningAccess(); 1855 1856 OS << getID() << " = MemoryDef("; 1857 if (UO && UO->getID()) 1858 OS << UO->getID(); 1859 else 1860 OS << LiveOnEntryStr; 1861 OS << ')'; 1862 } 1863 1864 void MemoryPhi::print(raw_ostream &OS) const { 1865 bool First = true; 1866 OS << getID() << " = MemoryPhi("; 1867 for (const auto &Op : operands()) { 1868 BasicBlock *BB = getIncomingBlock(Op); 1869 MemoryAccess *MA = cast<MemoryAccess>(Op); 1870 if (!First) 1871 OS << ','; 1872 else 1873 First = false; 1874 1875 OS << '{'; 1876 if (BB->hasName()) 1877 OS << BB->getName(); 1878 else 1879 BB->printAsOperand(OS, false); 1880 OS << ','; 1881 if (unsigned ID = MA->getID()) 1882 OS << ID; 1883 else 1884 OS << LiveOnEntryStr; 1885 OS << '}'; 1886 } 1887 OS << ')'; 1888 } 1889 1890 void MemoryUse::print(raw_ostream &OS) const { 1891 MemoryAccess *UO = getDefiningAccess(); 1892 OS << "MemoryUse("; 1893 if (UO && UO->getID()) 1894 OS << UO->getID(); 1895 else 1896 OS << LiveOnEntryStr; 1897 OS << ')'; 1898 } 1899 1900 void MemoryAccess::dump() const { 1901 // Cannot completely remove virtual function even in release mode. 1902 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1903 print(dbgs()); 1904 dbgs() << "\n"; 1905 #endif 1906 } 1907 1908 char MemorySSAPrinterLegacyPass::ID = 0; 1909 1910 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 1911 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 1912 } 1913 1914 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 1915 AU.setPreservesAll(); 1916 AU.addRequired<MemorySSAWrapperPass>(); 1917 } 1918 1919 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 1920 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1921 MSSA.print(dbgs()); 1922 if (VerifyMemorySSA) 1923 MSSA.verifyMemorySSA(); 1924 return false; 1925 } 1926 1927 AnalysisKey MemorySSAAnalysis::Key; 1928 1929 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 1930 FunctionAnalysisManager &AM) { 1931 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1932 auto &AA = AM.getResult<AAManager>(F); 1933 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 1934 } 1935 1936 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 1937 FunctionAnalysisManager &AM) { 1938 OS << "MemorySSA for function: " << F.getName() << "\n"; 1939 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 1940 1941 return PreservedAnalyses::all(); 1942 } 1943 1944 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 1945 FunctionAnalysisManager &AM) { 1946 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 1947 1948 return PreservedAnalyses::all(); 1949 } 1950 1951 char MemorySSAWrapperPass::ID = 0; 1952 1953 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 1954 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 1955 } 1956 1957 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 1958 1959 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1960 AU.setPreservesAll(); 1961 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1962 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1963 } 1964 1965 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 1966 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1967 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1968 MSSA.reset(new MemorySSA(F, &AA, &DT)); 1969 return false; 1970 } 1971 1972 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 1973 1974 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 1975 MSSA->print(OS); 1976 } 1977 1978 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 1979 1980 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, 1981 DominatorTree *D) 1982 : MemorySSAWalker(M), Walker(*M, *A, *D) {} 1983 1984 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { 1985 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1986 MUD->resetOptimized(); 1987 } 1988 1989 /// \brief Walk the use-def chains starting at \p MA and find 1990 /// the MemoryAccess that actually clobbers Loc. 1991 /// 1992 /// \returns our clobbering memory access 1993 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 1994 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { 1995 MemoryAccess *New = Walker.findClobber(StartingAccess, Q); 1996 #ifdef EXPENSIVE_CHECKS 1997 MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q); 1998 assert(NewNoCache == New && "Cache made us hand back a different result?"); 1999 (void)NewNoCache; 2000 #endif 2001 if (AutoResetWalker) 2002 resetClobberWalker(); 2003 return New; 2004 } 2005 2006 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 2007 MemoryAccess *StartingAccess, const MemoryLocation &Loc) { 2008 if (isa<MemoryPhi>(StartingAccess)) 2009 return StartingAccess; 2010 2011 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2012 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2013 return StartingUseOrDef; 2014 2015 Instruction *I = StartingUseOrDef->getMemoryInst(); 2016 2017 // Conservatively, fences are always clobbers, so don't perform the walk if we 2018 // hit a fence. 2019 if (!ImmutableCallSite(I) && I->isFenceLike()) 2020 return StartingUseOrDef; 2021 2022 UpwardsMemoryQuery Q; 2023 Q.OriginalAccess = StartingUseOrDef; 2024 Q.StartingLoc = Loc; 2025 Q.Inst = I; 2026 Q.IsCall = false; 2027 2028 // Unlike the other function, do not walk to the def of a def, because we are 2029 // handed something we already believe is the clobbering access. 2030 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2031 ? StartingUseOrDef->getDefiningAccess() 2032 : StartingUseOrDef; 2033 2034 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); 2035 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2036 DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2037 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2038 DEBUG(dbgs() << *Clobber << "\n"); 2039 return Clobber; 2040 } 2041 2042 MemoryAccess * 2043 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2044 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2045 // If this is a MemoryPhi, we can't do anything. 2046 if (!StartingAccess) 2047 return MA; 2048 2049 // If this is an already optimized use or def, return the optimized result. 2050 // Note: Currently, we do not store the optimized def result because we'd need 2051 // a separate field, since we can't use it as the defining access. 2052 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2053 if (MUD->isOptimized()) 2054 return MUD->getOptimized(); 2055 2056 const Instruction *I = StartingAccess->getMemoryInst(); 2057 UpwardsMemoryQuery Q(I, StartingAccess); 2058 // We can't sanely do anything with a fences, they conservatively 2059 // clobber all memory, and have no locations to get pointers from to 2060 // try to disambiguate. 2061 if (!Q.IsCall && I->isFenceLike()) 2062 return StartingAccess; 2063 2064 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { 2065 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2066 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2067 MUD->setOptimized(LiveOnEntry); 2068 return LiveOnEntry; 2069 } 2070 2071 // Start with the thing we already think clobbers this location 2072 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2073 2074 // At this point, DefiningAccess may be the live on entry def. 2075 // If it is, we will not get a better result. 2076 if (MSSA->isLiveOnEntryDef(DefiningAccess)) 2077 return DefiningAccess; 2078 2079 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); 2080 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2081 DEBUG(dbgs() << *DefiningAccess << "\n"); 2082 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2083 DEBUG(dbgs() << *Result << "\n"); 2084 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2085 MUD->setOptimized(Result); 2086 2087 return Result; 2088 } 2089 2090 MemoryAccess * 2091 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2092 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2093 return Use->getDefiningAccess(); 2094 return MA; 2095 } 2096 2097 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2098 MemoryAccess *StartingAccess, const MemoryLocation &) { 2099 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2100 return Use->getDefiningAccess(); 2101 return StartingAccess; 2102 } 2103 2104 void MemoryPhi::deleteMe(DerivedUser *Self) { 2105 delete static_cast<MemoryPhi *>(Self); 2106 } 2107 2108 void MemoryDef::deleteMe(DerivedUser *Self) { 2109 delete static_cast<MemoryDef *>(Self); 2110 } 2111 2112 void MemoryUse::deleteMe(DerivedUser *Self) { 2113 delete static_cast<MemoryUse *>(Self); 2114 } 2115