1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSA class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/PassManager.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <iterator>
54 #include <memory>
55 #include <utility>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "memoryssa"
60 
61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
62                       true)
63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66                     true)
67 
68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69                       "Memory SSA Printer", false, false)
70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72                     "Memory SSA Printer", false, false)
73 
74 static cl::opt<unsigned> MaxCheckLimit(
75     "memssa-check-limit", cl::Hidden, cl::init(100),
76     cl::desc("The maximum number of stores/phis MemorySSA"
77              "will consider trying to walk past (default = 100)"));
78 
79 static cl::opt<bool>
80     VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
81                     cl::desc("Verify MemorySSA in legacy printer pass."));
82 
83 namespace llvm {
84 
85 /// \brief An assembly annotator class to print Memory SSA information in
86 /// comments.
87 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
88   friend class MemorySSA;
89 
90   const MemorySSA *MSSA;
91 
92 public:
93   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
94 
95   void emitBasicBlockStartAnnot(const BasicBlock *BB,
96                                 formatted_raw_ostream &OS) override {
97     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
98       OS << "; " << *MA << "\n";
99   }
100 
101   void emitInstructionAnnot(const Instruction *I,
102                             formatted_raw_ostream &OS) override {
103     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
104       OS << "; " << *MA << "\n";
105   }
106 };
107 
108 } // end namespace llvm
109 
110 namespace {
111 
112 /// Our current alias analysis API differentiates heavily between calls and
113 /// non-calls, and functions called on one usually assert on the other.
114 /// This class encapsulates the distinction to simplify other code that wants
115 /// "Memory affecting instructions and related data" to use as a key.
116 /// For example, this class is used as a densemap key in the use optimizer.
117 class MemoryLocOrCall {
118 public:
119   bool IsCall = false;
120 
121   MemoryLocOrCall() = default;
122   MemoryLocOrCall(MemoryUseOrDef *MUD)
123       : MemoryLocOrCall(MUD->getMemoryInst()) {}
124   MemoryLocOrCall(const MemoryUseOrDef *MUD)
125       : MemoryLocOrCall(MUD->getMemoryInst()) {}
126 
127   MemoryLocOrCall(Instruction *Inst) {
128     if (ImmutableCallSite(Inst)) {
129       IsCall = true;
130       CS = ImmutableCallSite(Inst);
131     } else {
132       IsCall = false;
133       // There is no such thing as a memorylocation for a fence inst, and it is
134       // unique in that regard.
135       if (!isa<FenceInst>(Inst))
136         Loc = MemoryLocation::get(Inst);
137     }
138   }
139 
140   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
141 
142   ImmutableCallSite getCS() const {
143     assert(IsCall);
144     return CS;
145   }
146 
147   MemoryLocation getLoc() const {
148     assert(!IsCall);
149     return Loc;
150   }
151 
152   bool operator==(const MemoryLocOrCall &Other) const {
153     if (IsCall != Other.IsCall)
154       return false;
155 
156     if (IsCall)
157       return CS.getCalledValue() == Other.CS.getCalledValue();
158     return Loc == Other.Loc;
159   }
160 
161 private:
162   union {
163     ImmutableCallSite CS;
164     MemoryLocation Loc;
165   };
166 };
167 
168 } // end anonymous namespace
169 
170 namespace llvm {
171 
172 template <> struct DenseMapInfo<MemoryLocOrCall> {
173   static inline MemoryLocOrCall getEmptyKey() {
174     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
175   }
176 
177   static inline MemoryLocOrCall getTombstoneKey() {
178     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
179   }
180 
181   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
182     if (MLOC.IsCall)
183       return hash_combine(MLOC.IsCall,
184                           DenseMapInfo<const Value *>::getHashValue(
185                               MLOC.getCS().getCalledValue()));
186     return hash_combine(
187         MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
188   }
189 
190   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
191     return LHS == RHS;
192   }
193 };
194 
195 enum class Reorderability { Always, IfNoAlias, Never };
196 
197 } // end namespace llvm
198 
199 /// This does one-way checks to see if Use could theoretically be hoisted above
200 /// MayClobber. This will not check the other way around.
201 ///
202 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
203 /// MayClobber, with no potentially clobbering operations in between them.
204 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
205 static Reorderability getLoadReorderability(const LoadInst *Use,
206                                             const LoadInst *MayClobber) {
207   bool VolatileUse = Use->isVolatile();
208   bool VolatileClobber = MayClobber->isVolatile();
209   // Volatile operations may never be reordered with other volatile operations.
210   if (VolatileUse && VolatileClobber)
211     return Reorderability::Never;
212 
213   // The lang ref allows reordering of volatile and non-volatile operations.
214   // Whether an aliasing nonvolatile load and volatile load can be reordered,
215   // though, is ambiguous. Because it may not be best to exploit this ambiguity,
216   // we only allow volatile/non-volatile reordering if the volatile and
217   // non-volatile operations don't alias.
218   Reorderability Result = VolatileUse || VolatileClobber
219                               ? Reorderability::IfNoAlias
220                               : Reorderability::Always;
221 
222   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
223   // is weaker, it can be moved above other loads. We just need to be sure that
224   // MayClobber isn't an acquire load, because loads can't be moved above
225   // acquire loads.
226   //
227   // Note that this explicitly *does* allow the free reordering of monotonic (or
228   // weaker) loads of the same address.
229   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
230   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
231                                                      AtomicOrdering::Acquire);
232   if (SeqCstUse || MayClobberIsAcquire)
233     return Reorderability::Never;
234   return Result;
235 }
236 
237 static bool instructionClobbersQuery(MemoryDef *MD,
238                                      const MemoryLocation &UseLoc,
239                                      const Instruction *UseInst,
240                                      AliasAnalysis &AA) {
241   Instruction *DefInst = MD->getMemoryInst();
242   assert(DefInst && "Defining instruction not actually an instruction");
243   ImmutableCallSite UseCS(UseInst);
244 
245   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
246     // These intrinsics will show up as affecting memory, but they are just
247     // markers.
248     switch (II->getIntrinsicID()) {
249     case Intrinsic::lifetime_start:
250       if (UseCS)
251         return false;
252       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc);
253     case Intrinsic::lifetime_end:
254     case Intrinsic::invariant_start:
255     case Intrinsic::invariant_end:
256     case Intrinsic::assume:
257       return false;
258     default:
259       break;
260     }
261   }
262 
263   if (UseCS) {
264     ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
265     return I != MRI_NoModRef;
266   }
267 
268   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) {
269     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) {
270       switch (getLoadReorderability(UseLoad, DefLoad)) {
271       case Reorderability::Always:
272         return false;
273       case Reorderability::Never:
274         return true;
275       case Reorderability::IfNoAlias:
276         return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad));
277       }
278     }
279   }
280 
281   return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod;
282 }
283 
284 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
285                                      const MemoryLocOrCall &UseMLOC,
286                                      AliasAnalysis &AA) {
287   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
288   // to exist while MemoryLocOrCall is pushed through places.
289   if (UseMLOC.IsCall)
290     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
291                                     AA);
292   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
293                                   AA);
294 }
295 
296 // Return true when MD may alias MU, return false otherwise.
297 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
298                                         AliasAnalysis &AA) {
299   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
300 }
301 
302 namespace {
303 
304 struct UpwardsMemoryQuery {
305   // True if our original query started off as a call
306   bool IsCall = false;
307   // The pointer location we started the query with. This will be empty if
308   // IsCall is true.
309   MemoryLocation StartingLoc;
310   // This is the instruction we were querying about.
311   const Instruction *Inst = nullptr;
312   // The MemoryAccess we actually got called with, used to test local domination
313   const MemoryAccess *OriginalAccess = nullptr;
314 
315   UpwardsMemoryQuery() = default;
316 
317   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
318       : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
319     if (!IsCall)
320       StartingLoc = MemoryLocation::get(Inst);
321   }
322 };
323 
324 } // end anonymous namespace
325 
326 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
327                            AliasAnalysis &AA) {
328   Instruction *Inst = MD->getMemoryInst();
329   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
330     switch (II->getIntrinsicID()) {
331     case Intrinsic::lifetime_end:
332       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
333     default:
334       return false;
335     }
336   }
337   return false;
338 }
339 
340 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
341                                                    const Instruction *I) {
342   // If the memory can't be changed, then loads of the memory can't be
343   // clobbered.
344   //
345   // FIXME: We should handle invariant groups, as well. It's a bit harder,
346   // because we need to pay close attention to invariant group barriers.
347   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
348                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
349                                                           getPointerOperand()));
350 }
351 
352 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
353 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
354 ///
355 /// This is meant to be as simple and self-contained as possible. Because it
356 /// uses no cache, etc., it can be relatively expensive.
357 ///
358 /// \param Start     The MemoryAccess that we want to walk from.
359 /// \param ClobberAt A clobber for Start.
360 /// \param StartLoc  The MemoryLocation for Start.
361 /// \param MSSA      The MemorySSA isntance that Start and ClobberAt belong to.
362 /// \param Query     The UpwardsMemoryQuery we used for our search.
363 /// \param AA        The AliasAnalysis we used for our search.
364 static void LLVM_ATTRIBUTE_UNUSED
365 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
366                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
367                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
368   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
369 
370   if (MSSA.isLiveOnEntryDef(Start)) {
371     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
372            "liveOnEntry must clobber itself");
373     return;
374   }
375 
376   bool FoundClobber = false;
377   DenseSet<MemoryAccessPair> VisitedPhis;
378   SmallVector<MemoryAccessPair, 8> Worklist;
379   Worklist.emplace_back(Start, StartLoc);
380   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
381   // is found, complain.
382   while (!Worklist.empty()) {
383     MemoryAccessPair MAP = Worklist.pop_back_val();
384     // All we care about is that nothing from Start to ClobberAt clobbers Start.
385     // We learn nothing from revisiting nodes.
386     if (!VisitedPhis.insert(MAP).second)
387       continue;
388 
389     for (MemoryAccess *MA : def_chain(MAP.first)) {
390       if (MA == ClobberAt) {
391         if (auto *MD = dyn_cast<MemoryDef>(MA)) {
392           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
393           // since it won't let us short-circuit.
394           //
395           // Also, note that this can't be hoisted out of the `Worklist` loop,
396           // since MD may only act as a clobber for 1 of N MemoryLocations.
397           FoundClobber =
398               FoundClobber || MSSA.isLiveOnEntryDef(MD) ||
399               instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
400         }
401         break;
402       }
403 
404       // We should never hit liveOnEntry, unless it's the clobber.
405       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
406 
407       if (auto *MD = dyn_cast<MemoryDef>(MA)) {
408         (void)MD;
409         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
410                "Found clobber before reaching ClobberAt!");
411         continue;
412       }
413 
414       assert(isa<MemoryPhi>(MA));
415       Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
416     }
417   }
418 
419   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
420   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
421   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
422          "ClobberAt never acted as a clobber");
423 }
424 
425 namespace {
426 
427 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
428 /// in one class.
429 class ClobberWalker {
430   /// Save a few bytes by using unsigned instead of size_t.
431   using ListIndex = unsigned;
432 
433   /// Represents a span of contiguous MemoryDefs, potentially ending in a
434   /// MemoryPhi.
435   struct DefPath {
436     MemoryLocation Loc;
437     // Note that, because we always walk in reverse, Last will always dominate
438     // First. Also note that First and Last are inclusive.
439     MemoryAccess *First;
440     MemoryAccess *Last;
441     Optional<ListIndex> Previous;
442 
443     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
444             Optional<ListIndex> Previous)
445         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
446 
447     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
448             Optional<ListIndex> Previous)
449         : DefPath(Loc, Init, Init, Previous) {}
450   };
451 
452   const MemorySSA &MSSA;
453   AliasAnalysis &AA;
454   DominatorTree &DT;
455   UpwardsMemoryQuery *Query;
456 
457   // Phi optimization bookkeeping
458   SmallVector<DefPath, 32> Paths;
459   DenseSet<ConstMemoryAccessPair> VisitedPhis;
460 
461   /// Find the nearest def or phi that `From` can legally be optimized to.
462   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
463     assert(From->getNumOperands() && "Phi with no operands?");
464 
465     BasicBlock *BB = From->getBlock();
466     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
467     DomTreeNode *Node = DT.getNode(BB);
468     while ((Node = Node->getIDom())) {
469       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
470       if (Defs)
471         return &*Defs->rbegin();
472     }
473     return Result;
474   }
475 
476   /// Result of calling walkToPhiOrClobber.
477   struct UpwardsWalkResult {
478     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
479     /// both.
480     MemoryAccess *Result;
481     bool IsKnownClobber;
482   };
483 
484   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
485   /// This will update Desc.Last as it walks. It will (optionally) also stop at
486   /// StopAt.
487   ///
488   /// This does not test for whether StopAt is a clobber
489   UpwardsWalkResult
490   walkToPhiOrClobber(DefPath &Desc,
491                      const MemoryAccess *StopAt = nullptr) const {
492     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
493 
494     for (MemoryAccess *Current : def_chain(Desc.Last)) {
495       Desc.Last = Current;
496       if (Current == StopAt)
497         return {Current, false};
498 
499       if (auto *MD = dyn_cast<MemoryDef>(Current))
500         if (MSSA.isLiveOnEntryDef(MD) ||
501             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA))
502           return {MD, true};
503     }
504 
505     assert(isa<MemoryPhi>(Desc.Last) &&
506            "Ended at a non-clobber that's not a phi?");
507     return {Desc.Last, false};
508   }
509 
510   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
511                    ListIndex PriorNode) {
512     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
513                                  upward_defs_end());
514     for (const MemoryAccessPair &P : UpwardDefs) {
515       PausedSearches.push_back(Paths.size());
516       Paths.emplace_back(P.second, P.first, PriorNode);
517     }
518   }
519 
520   /// Represents a search that terminated after finding a clobber. This clobber
521   /// may or may not be present in the path of defs from LastNode..SearchStart,
522   /// since it may have been retrieved from cache.
523   struct TerminatedPath {
524     MemoryAccess *Clobber;
525     ListIndex LastNode;
526   };
527 
528   /// Get an access that keeps us from optimizing to the given phi.
529   ///
530   /// PausedSearches is an array of indices into the Paths array. Its incoming
531   /// value is the indices of searches that stopped at the last phi optimization
532   /// target. It's left in an unspecified state.
533   ///
534   /// If this returns None, NewPaused is a vector of searches that terminated
535   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
536   Optional<TerminatedPath>
537   getBlockingAccess(const MemoryAccess *StopWhere,
538                     SmallVectorImpl<ListIndex> &PausedSearches,
539                     SmallVectorImpl<ListIndex> &NewPaused,
540                     SmallVectorImpl<TerminatedPath> &Terminated) {
541     assert(!PausedSearches.empty() && "No searches to continue?");
542 
543     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
544     // PausedSearches as our stack.
545     while (!PausedSearches.empty()) {
546       ListIndex PathIndex = PausedSearches.pop_back_val();
547       DefPath &Node = Paths[PathIndex];
548 
549       // If we've already visited this path with this MemoryLocation, we don't
550       // need to do so again.
551       //
552       // NOTE: That we just drop these paths on the ground makes caching
553       // behavior sporadic. e.g. given a diamond:
554       //  A
555       // B C
556       //  D
557       //
558       // ...If we walk D, B, A, C, we'll only cache the result of phi
559       // optimization for A, B, and D; C will be skipped because it dies here.
560       // This arguably isn't the worst thing ever, since:
561       //   - We generally query things in a top-down order, so if we got below D
562       //     without needing cache entries for {C, MemLoc}, then chances are
563       //     that those cache entries would end up ultimately unused.
564       //   - We still cache things for A, so C only needs to walk up a bit.
565       // If this behavior becomes problematic, we can fix without a ton of extra
566       // work.
567       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
568         continue;
569 
570       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
571       if (Res.IsKnownClobber) {
572         assert(Res.Result != StopWhere);
573         // If this wasn't a cache hit, we hit a clobber when walking. That's a
574         // failure.
575         TerminatedPath Term{Res.Result, PathIndex};
576         if (!MSSA.dominates(Res.Result, StopWhere))
577           return Term;
578 
579         // Otherwise, it's a valid thing to potentially optimize to.
580         Terminated.push_back(Term);
581         continue;
582       }
583 
584       if (Res.Result == StopWhere) {
585         // We've hit our target. Save this path off for if we want to continue
586         // walking.
587         NewPaused.push_back(PathIndex);
588         continue;
589       }
590 
591       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
592       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
593     }
594 
595     return None;
596   }
597 
598   template <typename T, typename Walker>
599   struct generic_def_path_iterator
600       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
601                                     std::forward_iterator_tag, T *> {
602     generic_def_path_iterator() = default;
603     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
604 
605     T &operator*() const { return curNode(); }
606 
607     generic_def_path_iterator &operator++() {
608       N = curNode().Previous;
609       return *this;
610     }
611 
612     bool operator==(const generic_def_path_iterator &O) const {
613       if (N.hasValue() != O.N.hasValue())
614         return false;
615       return !N.hasValue() || *N == *O.N;
616     }
617 
618   private:
619     T &curNode() const { return W->Paths[*N]; }
620 
621     Walker *W = nullptr;
622     Optional<ListIndex> N = None;
623   };
624 
625   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
626   using const_def_path_iterator =
627       generic_def_path_iterator<const DefPath, const ClobberWalker>;
628 
629   iterator_range<def_path_iterator> def_path(ListIndex From) {
630     return make_range(def_path_iterator(this, From), def_path_iterator());
631   }
632 
633   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
634     return make_range(const_def_path_iterator(this, From),
635                       const_def_path_iterator());
636   }
637 
638   struct OptznResult {
639     /// The path that contains our result.
640     TerminatedPath PrimaryClobber;
641     /// The paths that we can legally cache back from, but that aren't
642     /// necessarily the result of the Phi optimization.
643     SmallVector<TerminatedPath, 4> OtherClobbers;
644   };
645 
646   ListIndex defPathIndex(const DefPath &N) const {
647     // The assert looks nicer if we don't need to do &N
648     const DefPath *NP = &N;
649     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
650            "Out of bounds DefPath!");
651     return NP - &Paths.front();
652   }
653 
654   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
655   /// that act as legal clobbers. Note that this won't return *all* clobbers.
656   ///
657   /// Phi optimization algorithm tl;dr:
658   ///   - Find the earliest def/phi, A, we can optimize to
659   ///   - Find if all paths from the starting memory access ultimately reach A
660   ///     - If not, optimization isn't possible.
661   ///     - Otherwise, walk from A to another clobber or phi, A'.
662   ///       - If A' is a def, we're done.
663   ///       - If A' is a phi, try to optimize it.
664   ///
665   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
666   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
667   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
668                              const MemoryLocation &Loc) {
669     assert(Paths.empty() && VisitedPhis.empty() &&
670            "Reset the optimization state.");
671 
672     Paths.emplace_back(Loc, Start, Phi, None);
673     // Stores how many "valid" optimization nodes we had prior to calling
674     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
675     auto PriorPathsSize = Paths.size();
676 
677     SmallVector<ListIndex, 16> PausedSearches;
678     SmallVector<ListIndex, 8> NewPaused;
679     SmallVector<TerminatedPath, 4> TerminatedPaths;
680 
681     addSearches(Phi, PausedSearches, 0);
682 
683     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
684     // Paths.
685     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
686       assert(!Paths.empty() && "Need a path to move");
687       auto Dom = Paths.begin();
688       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
689         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
690           Dom = I;
691       auto Last = Paths.end() - 1;
692       if (Last != Dom)
693         std::iter_swap(Last, Dom);
694     };
695 
696     MemoryPhi *Current = Phi;
697     while (true) {
698       assert(!MSSA.isLiveOnEntryDef(Current) &&
699              "liveOnEntry wasn't treated as a clobber?");
700 
701       const auto *Target = getWalkTarget(Current);
702       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
703       // optimization for the prior phi.
704       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
705         return MSSA.dominates(P.Clobber, Target);
706       }));
707 
708       // FIXME: This is broken, because the Blocker may be reported to be
709       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
710       // For the moment, this is fine, since we do nothing with blocker info.
711       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
712               Target, PausedSearches, NewPaused, TerminatedPaths)) {
713 
714         // Find the node we started at. We can't search based on N->Last, since
715         // we may have gone around a loop with a different MemoryLocation.
716         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
717           return defPathIndex(N) < PriorPathsSize;
718         });
719         assert(Iter != def_path_iterator());
720 
721         DefPath &CurNode = *Iter;
722         assert(CurNode.Last == Current);
723 
724         // Two things:
725         // A. We can't reliably cache all of NewPaused back. Consider a case
726         //    where we have two paths in NewPaused; one of which can't optimize
727         //    above this phi, whereas the other can. If we cache the second path
728         //    back, we'll end up with suboptimal cache entries. We can handle
729         //    cases like this a bit better when we either try to find all
730         //    clobbers that block phi optimization, or when our cache starts
731         //    supporting unfinished searches.
732         // B. We can't reliably cache TerminatedPaths back here without doing
733         //    extra checks; consider a case like:
734         //       T
735         //      / \
736         //     D   C
737         //      \ /
738         //       S
739         //    Where T is our target, C is a node with a clobber on it, D is a
740         //    diamond (with a clobber *only* on the left or right node, N), and
741         //    S is our start. Say we walk to D, through the node opposite N
742         //    (read: ignoring the clobber), and see a cache entry in the top
743         //    node of D. That cache entry gets put into TerminatedPaths. We then
744         //    walk up to C (N is later in our worklist), find the clobber, and
745         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
746         //    the bottom part of D to the cached clobber, ignoring the clobber
747         //    in N. Again, this problem goes away if we start tracking all
748         //    blockers for a given phi optimization.
749         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
750         return {Result, {}};
751       }
752 
753       // If there's nothing left to search, then all paths led to valid clobbers
754       // that we got from our cache; pick the nearest to the start, and allow
755       // the rest to be cached back.
756       if (NewPaused.empty()) {
757         MoveDominatedPathToEnd(TerminatedPaths);
758         TerminatedPath Result = TerminatedPaths.pop_back_val();
759         return {Result, std::move(TerminatedPaths)};
760       }
761 
762       MemoryAccess *DefChainEnd = nullptr;
763       SmallVector<TerminatedPath, 4> Clobbers;
764       for (ListIndex Paused : NewPaused) {
765         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
766         if (WR.IsKnownClobber)
767           Clobbers.push_back({WR.Result, Paused});
768         else
769           // Micro-opt: If we hit the end of the chain, save it.
770           DefChainEnd = WR.Result;
771       }
772 
773       if (!TerminatedPaths.empty()) {
774         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
775         // do it now.
776         if (!DefChainEnd)
777           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
778             DefChainEnd = MA;
779 
780         // If any of the terminated paths don't dominate the phi we'll try to
781         // optimize, we need to figure out what they are and quit.
782         const BasicBlock *ChainBB = DefChainEnd->getBlock();
783         for (const TerminatedPath &TP : TerminatedPaths) {
784           // Because we know that DefChainEnd is as "high" as we can go, we
785           // don't need local dominance checks; BB dominance is sufficient.
786           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
787             Clobbers.push_back(TP);
788         }
789       }
790 
791       // If we have clobbers in the def chain, find the one closest to Current
792       // and quit.
793       if (!Clobbers.empty()) {
794         MoveDominatedPathToEnd(Clobbers);
795         TerminatedPath Result = Clobbers.pop_back_val();
796         return {Result, std::move(Clobbers)};
797       }
798 
799       assert(all_of(NewPaused,
800                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
801 
802       // Because liveOnEntry is a clobber, this must be a phi.
803       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
804 
805       PriorPathsSize = Paths.size();
806       PausedSearches.clear();
807       for (ListIndex I : NewPaused)
808         addSearches(DefChainPhi, PausedSearches, I);
809       NewPaused.clear();
810 
811       Current = DefChainPhi;
812     }
813   }
814 
815   void verifyOptResult(const OptznResult &R) const {
816     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
817       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
818     }));
819   }
820 
821   void resetPhiOptznState() {
822     Paths.clear();
823     VisitedPhis.clear();
824   }
825 
826 public:
827   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
828       : MSSA(MSSA), AA(AA), DT(DT) {}
829 
830   void reset() {}
831 
832   /// Finds the nearest clobber for the given query, optimizing phis if
833   /// possible.
834   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
835     Query = &Q;
836 
837     MemoryAccess *Current = Start;
838     // This walker pretends uses don't exist. If we're handed one, silently grab
839     // its def. (This has the nice side-effect of ensuring we never cache uses)
840     if (auto *MU = dyn_cast<MemoryUse>(Start))
841       Current = MU->getDefiningAccess();
842 
843     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
844     // Fast path for the overly-common case (no crazy phi optimization
845     // necessary)
846     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
847     MemoryAccess *Result;
848     if (WalkResult.IsKnownClobber) {
849       Result = WalkResult.Result;
850     } else {
851       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
852                                           Current, Q.StartingLoc);
853       verifyOptResult(OptRes);
854       resetPhiOptznState();
855       Result = OptRes.PrimaryClobber.Clobber;
856     }
857 
858 #ifdef EXPENSIVE_CHECKS
859     checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
860 #endif
861     return Result;
862   }
863 
864   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
865 };
866 
867 struct RenamePassData {
868   DomTreeNode *DTN;
869   DomTreeNode::const_iterator ChildIt;
870   MemoryAccess *IncomingVal;
871 
872   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
873                  MemoryAccess *M)
874       : DTN(D), ChildIt(It), IncomingVal(M) {}
875 
876   void swap(RenamePassData &RHS) {
877     std::swap(DTN, RHS.DTN);
878     std::swap(ChildIt, RHS.ChildIt);
879     std::swap(IncomingVal, RHS.IncomingVal);
880   }
881 };
882 
883 } // end anonymous namespace
884 
885 namespace llvm {
886 
887 /// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
888 /// longer does caching on its own,
889 /// but the name has been retained for the moment.
890 class MemorySSA::CachingWalker final : public MemorySSAWalker {
891   ClobberWalker Walker;
892   bool AutoResetWalker = true;
893 
894   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
895   void verifyRemoved(MemoryAccess *);
896 
897 public:
898   CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
899   ~CachingWalker() override = default;
900 
901   using MemorySSAWalker::getClobberingMemoryAccess;
902 
903   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
904   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
905                                           const MemoryLocation &) override;
906   void invalidateInfo(MemoryAccess *) override;
907 
908   /// Whether we call resetClobberWalker() after each time we *actually* walk to
909   /// answer a clobber query.
910   void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
911 
912   /// Drop the walker's persistent data structures.
913   void resetClobberWalker() { Walker.reset(); }
914 
915   void verify(const MemorySSA *MSSA) override {
916     MemorySSAWalker::verify(MSSA);
917     Walker.verify(MSSA);
918   }
919 };
920 
921 } // end namespace llvm
922 
923 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
924                                     bool RenameAllUses) {
925   // Pass through values to our successors
926   for (const BasicBlock *S : successors(BB)) {
927     auto It = PerBlockAccesses.find(S);
928     // Rename the phi nodes in our successor block
929     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
930       continue;
931     AccessList *Accesses = It->second.get();
932     auto *Phi = cast<MemoryPhi>(&Accesses->front());
933     if (RenameAllUses) {
934       int PhiIndex = Phi->getBasicBlockIndex(BB);
935       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
936       Phi->setIncomingValue(PhiIndex, IncomingVal);
937     } else
938       Phi->addIncoming(IncomingVal, BB);
939   }
940 }
941 
942 /// \brief Rename a single basic block into MemorySSA form.
943 /// Uses the standard SSA renaming algorithm.
944 /// \returns The new incoming value.
945 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
946                                      bool RenameAllUses) {
947   auto It = PerBlockAccesses.find(BB);
948   // Skip most processing if the list is empty.
949   if (It != PerBlockAccesses.end()) {
950     AccessList *Accesses = It->second.get();
951     for (MemoryAccess &L : *Accesses) {
952       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
953         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
954           MUD->setDefiningAccess(IncomingVal);
955         if (isa<MemoryDef>(&L))
956           IncomingVal = &L;
957       } else {
958         IncomingVal = &L;
959       }
960     }
961   }
962   return IncomingVal;
963 }
964 
965 /// \brief This is the standard SSA renaming algorithm.
966 ///
967 /// We walk the dominator tree in preorder, renaming accesses, and then filling
968 /// in phi nodes in our successors.
969 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
970                            SmallPtrSetImpl<BasicBlock *> &Visited,
971                            bool SkipVisited, bool RenameAllUses) {
972   SmallVector<RenamePassData, 32> WorkStack;
973   // Skip everything if we already renamed this block and we are skipping.
974   // Note: You can't sink this into the if, because we need it to occur
975   // regardless of whether we skip blocks or not.
976   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
977   if (SkipVisited && AlreadyVisited)
978     return;
979 
980   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
981   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
982   WorkStack.push_back({Root, Root->begin(), IncomingVal});
983 
984   while (!WorkStack.empty()) {
985     DomTreeNode *Node = WorkStack.back().DTN;
986     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
987     IncomingVal = WorkStack.back().IncomingVal;
988 
989     if (ChildIt == Node->end()) {
990       WorkStack.pop_back();
991     } else {
992       DomTreeNode *Child = *ChildIt;
993       ++WorkStack.back().ChildIt;
994       BasicBlock *BB = Child->getBlock();
995       // Note: You can't sink this into the if, because we need it to occur
996       // regardless of whether we skip blocks or not.
997       AlreadyVisited = !Visited.insert(BB).second;
998       if (SkipVisited && AlreadyVisited) {
999         // We already visited this during our renaming, which can happen when
1000         // being asked to rename multiple blocks. Figure out the incoming val,
1001         // which is the last def.
1002         // Incoming value can only change if there is a block def, and in that
1003         // case, it's the last block def in the list.
1004         if (auto *BlockDefs = getWritableBlockDefs(BB))
1005           IncomingVal = &*BlockDefs->rbegin();
1006       } else
1007         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1008       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1009       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1010     }
1011   }
1012 }
1013 
1014 /// \brief This handles unreachable block accesses by deleting phi nodes in
1015 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1016 /// being uses of the live on entry definition.
1017 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1018   assert(!DT->isReachableFromEntry(BB) &&
1019          "Reachable block found while handling unreachable blocks");
1020 
1021   // Make sure phi nodes in our reachable successors end up with a
1022   // LiveOnEntryDef for our incoming edge, even though our block is forward
1023   // unreachable.  We could just disconnect these blocks from the CFG fully,
1024   // but we do not right now.
1025   for (const BasicBlock *S : successors(BB)) {
1026     if (!DT->isReachableFromEntry(S))
1027       continue;
1028     auto It = PerBlockAccesses.find(S);
1029     // Rename the phi nodes in our successor block
1030     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1031       continue;
1032     AccessList *Accesses = It->second.get();
1033     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1034     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1035   }
1036 
1037   auto It = PerBlockAccesses.find(BB);
1038   if (It == PerBlockAccesses.end())
1039     return;
1040 
1041   auto &Accesses = It->second;
1042   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1043     auto Next = std::next(AI);
1044     // If we have a phi, just remove it. We are going to replace all
1045     // users with live on entry.
1046     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1047       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1048     else
1049       Accesses->erase(AI);
1050     AI = Next;
1051   }
1052 }
1053 
1054 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1055     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1056       NextID(INVALID_MEMORYACCESS_ID) {
1057   buildMemorySSA();
1058 }
1059 
1060 MemorySSA::~MemorySSA() {
1061   // Drop all our references
1062   for (const auto &Pair : PerBlockAccesses)
1063     for (MemoryAccess &MA : *Pair.second)
1064       MA.dropAllReferences();
1065 }
1066 
1067 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1068   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1069 
1070   if (Res.second)
1071     Res.first->second = llvm::make_unique<AccessList>();
1072   return Res.first->second.get();
1073 }
1074 
1075 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1076   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1077 
1078   if (Res.second)
1079     Res.first->second = llvm::make_unique<DefsList>();
1080   return Res.first->second.get();
1081 }
1082 
1083 namespace llvm {
1084 
1085 /// This class is a batch walker of all MemoryUse's in the program, and points
1086 /// their defining access at the thing that actually clobbers them.  Because it
1087 /// is a batch walker that touches everything, it does not operate like the
1088 /// other walkers.  This walker is basically performing a top-down SSA renaming
1089 /// pass, where the version stack is used as the cache.  This enables it to be
1090 /// significantly more time and memory efficient than using the regular walker,
1091 /// which is walking bottom-up.
1092 class MemorySSA::OptimizeUses {
1093 public:
1094   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1095                DominatorTree *DT)
1096       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1097     Walker = MSSA->getWalker();
1098   }
1099 
1100   void optimizeUses();
1101 
1102 private:
1103   /// This represents where a given memorylocation is in the stack.
1104   struct MemlocStackInfo {
1105     // This essentially is keeping track of versions of the stack. Whenever
1106     // the stack changes due to pushes or pops, these versions increase.
1107     unsigned long StackEpoch;
1108     unsigned long PopEpoch;
1109     // This is the lower bound of places on the stack to check. It is equal to
1110     // the place the last stack walk ended.
1111     // Note: Correctness depends on this being initialized to 0, which densemap
1112     // does
1113     unsigned long LowerBound;
1114     const BasicBlock *LowerBoundBlock;
1115     // This is where the last walk for this memory location ended.
1116     unsigned long LastKill;
1117     bool LastKillValid;
1118   };
1119 
1120   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1121                            SmallVectorImpl<MemoryAccess *> &,
1122                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1123 
1124   MemorySSA *MSSA;
1125   MemorySSAWalker *Walker;
1126   AliasAnalysis *AA;
1127   DominatorTree *DT;
1128 };
1129 
1130 } // end namespace llvm
1131 
1132 /// Optimize the uses in a given block This is basically the SSA renaming
1133 /// algorithm, with one caveat: We are able to use a single stack for all
1134 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1135 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1136 /// going to be some position in that stack of possible ones.
1137 ///
1138 /// We track the stack positions that each MemoryLocation needs
1139 /// to check, and last ended at.  This is because we only want to check the
1140 /// things that changed since last time.  The same MemoryLocation should
1141 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1142 /// things like this, and if they start, we can modify MemoryLocOrCall to
1143 /// include relevant data)
1144 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1145     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1146     SmallVectorImpl<MemoryAccess *> &VersionStack,
1147     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1148 
1149   /// If no accesses, nothing to do.
1150   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1151   if (Accesses == nullptr)
1152     return;
1153 
1154   // Pop everything that doesn't dominate the current block off the stack,
1155   // increment the PopEpoch to account for this.
1156   while (true) {
1157     assert(
1158         !VersionStack.empty() &&
1159         "Version stack should have liveOnEntry sentinel dominating everything");
1160     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1161     if (DT->dominates(BackBlock, BB))
1162       break;
1163     while (VersionStack.back()->getBlock() == BackBlock)
1164       VersionStack.pop_back();
1165     ++PopEpoch;
1166   }
1167 
1168   for (MemoryAccess &MA : *Accesses) {
1169     auto *MU = dyn_cast<MemoryUse>(&MA);
1170     if (!MU) {
1171       VersionStack.push_back(&MA);
1172       ++StackEpoch;
1173       continue;
1174     }
1175 
1176     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1177       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true);
1178       continue;
1179     }
1180 
1181     MemoryLocOrCall UseMLOC(MU);
1182     auto &LocInfo = LocStackInfo[UseMLOC];
1183     // If the pop epoch changed, it means we've removed stuff from top of
1184     // stack due to changing blocks. We may have to reset the lower bound or
1185     // last kill info.
1186     if (LocInfo.PopEpoch != PopEpoch) {
1187       LocInfo.PopEpoch = PopEpoch;
1188       LocInfo.StackEpoch = StackEpoch;
1189       // If the lower bound was in something that no longer dominates us, we
1190       // have to reset it.
1191       // We can't simply track stack size, because the stack may have had
1192       // pushes/pops in the meantime.
1193       // XXX: This is non-optimal, but only is slower cases with heavily
1194       // branching dominator trees.  To get the optimal number of queries would
1195       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1196       // the top of that stack dominates us.  This does not seem worth it ATM.
1197       // A much cheaper optimization would be to always explore the deepest
1198       // branch of the dominator tree first. This will guarantee this resets on
1199       // the smallest set of blocks.
1200       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1201           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1202         // Reset the lower bound of things to check.
1203         // TODO: Some day we should be able to reset to last kill, rather than
1204         // 0.
1205         LocInfo.LowerBound = 0;
1206         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1207         LocInfo.LastKillValid = false;
1208       }
1209     } else if (LocInfo.StackEpoch != StackEpoch) {
1210       // If all that has changed is the StackEpoch, we only have to check the
1211       // new things on the stack, because we've checked everything before.  In
1212       // this case, the lower bound of things to check remains the same.
1213       LocInfo.PopEpoch = PopEpoch;
1214       LocInfo.StackEpoch = StackEpoch;
1215     }
1216     if (!LocInfo.LastKillValid) {
1217       LocInfo.LastKill = VersionStack.size() - 1;
1218       LocInfo.LastKillValid = true;
1219     }
1220 
1221     // At this point, we should have corrected last kill and LowerBound to be
1222     // in bounds.
1223     assert(LocInfo.LowerBound < VersionStack.size() &&
1224            "Lower bound out of range");
1225     assert(LocInfo.LastKill < VersionStack.size() &&
1226            "Last kill info out of range");
1227     // In any case, the new upper bound is the top of the stack.
1228     unsigned long UpperBound = VersionStack.size() - 1;
1229 
1230     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1231       DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1232                    << *(MU->getMemoryInst()) << ")"
1233                    << " because there are " << UpperBound - LocInfo.LowerBound
1234                    << " stores to disambiguate\n");
1235       // Because we did not walk, LastKill is no longer valid, as this may
1236       // have been a kill.
1237       LocInfo.LastKillValid = false;
1238       continue;
1239     }
1240     bool FoundClobberResult = false;
1241     while (UpperBound > LocInfo.LowerBound) {
1242       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1243         // For phis, use the walker, see where we ended up, go there
1244         Instruction *UseInst = MU->getMemoryInst();
1245         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1246         // We are guaranteed to find it or something is wrong
1247         while (VersionStack[UpperBound] != Result) {
1248           assert(UpperBound != 0);
1249           --UpperBound;
1250         }
1251         FoundClobberResult = true;
1252         break;
1253       }
1254 
1255       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1256       // If the lifetime of the pointer ends at this instruction, it's live on
1257       // entry.
1258       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1259         // Reset UpperBound to liveOnEntryDef's place in the stack
1260         UpperBound = 0;
1261         FoundClobberResult = true;
1262         break;
1263       }
1264       if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
1265         FoundClobberResult = true;
1266         break;
1267       }
1268       --UpperBound;
1269     }
1270     // At the end of this loop, UpperBound is either a clobber, or lower bound
1271     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1272     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1273       MU->setDefiningAccess(VersionStack[UpperBound], true);
1274       // We were last killed now by where we got to
1275       LocInfo.LastKill = UpperBound;
1276     } else {
1277       // Otherwise, we checked all the new ones, and now we know we can get to
1278       // LastKill.
1279       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
1280     }
1281     LocInfo.LowerBound = VersionStack.size() - 1;
1282     LocInfo.LowerBoundBlock = BB;
1283   }
1284 }
1285 
1286 /// Optimize uses to point to their actual clobbering definitions.
1287 void MemorySSA::OptimizeUses::optimizeUses() {
1288   SmallVector<MemoryAccess *, 16> VersionStack;
1289   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1290   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1291 
1292   unsigned long StackEpoch = 1;
1293   unsigned long PopEpoch = 1;
1294   // We perform a non-recursive top-down dominator tree walk.
1295   for (const auto *DomNode : depth_first(DT->getRootNode()))
1296     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1297                         LocStackInfo);
1298 }
1299 
1300 void MemorySSA::placePHINodes(
1301     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
1302     const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
1303   // Determine where our MemoryPhi's should go
1304   ForwardIDFCalculator IDFs(*DT);
1305   IDFs.setDefiningBlocks(DefiningBlocks);
1306   SmallVector<BasicBlock *, 32> IDFBlocks;
1307   IDFs.calculate(IDFBlocks);
1308 
1309   std::sort(IDFBlocks.begin(), IDFBlocks.end(),
1310             [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
1311               return BBNumbers.lookup(A) < BBNumbers.lookup(B);
1312             });
1313 
1314   // Now place MemoryPhi nodes.
1315   for (auto &BB : IDFBlocks)
1316     createMemoryPhi(BB);
1317 }
1318 
1319 void MemorySSA::buildMemorySSA() {
1320   // We create an access to represent "live on entry", for things like
1321   // arguments or users of globals, where the memory they use is defined before
1322   // the beginning of the function. We do not actually insert it into the IR.
1323   // We do not define a live on exit for the immediate uses, and thus our
1324   // semantics do *not* imply that something with no immediate uses can simply
1325   // be removed.
1326   BasicBlock &StartingPoint = F.getEntryBlock();
1327   LiveOnEntryDef =
1328       llvm::make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
1329                                    &StartingPoint, NextID++);
1330   DenseMap<const BasicBlock *, unsigned int> BBNumbers;
1331   unsigned NextBBNum = 0;
1332 
1333   // We maintain lists of memory accesses per-block, trading memory for time. We
1334   // could just look up the memory access for every possible instruction in the
1335   // stream.
1336   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1337   // Go through each block, figure out where defs occur, and chain together all
1338   // the accesses.
1339   for (BasicBlock &B : F) {
1340     BBNumbers[&B] = NextBBNum++;
1341     bool InsertIntoDef = false;
1342     AccessList *Accesses = nullptr;
1343     DefsList *Defs = nullptr;
1344     for (Instruction &I : B) {
1345       MemoryUseOrDef *MUD = createNewAccess(&I);
1346       if (!MUD)
1347         continue;
1348 
1349       if (!Accesses)
1350         Accesses = getOrCreateAccessList(&B);
1351       Accesses->push_back(MUD);
1352       if (isa<MemoryDef>(MUD)) {
1353         InsertIntoDef = true;
1354         if (!Defs)
1355           Defs = getOrCreateDefsList(&B);
1356         Defs->push_back(*MUD);
1357       }
1358     }
1359     if (InsertIntoDef)
1360       DefiningBlocks.insert(&B);
1361   }
1362   placePHINodes(DefiningBlocks, BBNumbers);
1363 
1364   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1365   // filled in with all blocks.
1366   SmallPtrSet<BasicBlock *, 16> Visited;
1367   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1368 
1369   CachingWalker *Walker = getWalkerImpl();
1370 
1371   // We're doing a batch of updates; don't drop useful caches between them.
1372   Walker->setAutoResetWalker(false);
1373   OptimizeUses(this, Walker, AA, DT).optimizeUses();
1374   Walker->setAutoResetWalker(true);
1375   Walker->resetClobberWalker();
1376 
1377   // Mark the uses in unreachable blocks as live on entry, so that they go
1378   // somewhere.
1379   for (auto &BB : F)
1380     if (!Visited.count(&BB))
1381       markUnreachableAsLiveOnEntry(&BB);
1382 }
1383 
1384 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1385 
1386 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1387   if (Walker)
1388     return Walker.get();
1389 
1390   Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
1391   return Walker.get();
1392 }
1393 
1394 // This is a helper function used by the creation routines. It places NewAccess
1395 // into the access and defs lists for a given basic block, at the given
1396 // insertion point.
1397 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1398                                         const BasicBlock *BB,
1399                                         InsertionPlace Point) {
1400   auto *Accesses = getOrCreateAccessList(BB);
1401   if (Point == Beginning) {
1402     // If it's a phi node, it goes first, otherwise, it goes after any phi
1403     // nodes.
1404     if (isa<MemoryPhi>(NewAccess)) {
1405       Accesses->push_front(NewAccess);
1406       auto *Defs = getOrCreateDefsList(BB);
1407       Defs->push_front(*NewAccess);
1408     } else {
1409       auto AI = find_if_not(
1410           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1411       Accesses->insert(AI, NewAccess);
1412       if (!isa<MemoryUse>(NewAccess)) {
1413         auto *Defs = getOrCreateDefsList(BB);
1414         auto DI = find_if_not(
1415             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1416         Defs->insert(DI, *NewAccess);
1417       }
1418     }
1419   } else {
1420     Accesses->push_back(NewAccess);
1421     if (!isa<MemoryUse>(NewAccess)) {
1422       auto *Defs = getOrCreateDefsList(BB);
1423       Defs->push_back(*NewAccess);
1424     }
1425   }
1426   BlockNumberingValid.erase(BB);
1427 }
1428 
1429 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1430                                       AccessList::iterator InsertPt) {
1431   auto *Accesses = getWritableBlockAccesses(BB);
1432   bool WasEnd = InsertPt == Accesses->end();
1433   Accesses->insert(AccessList::iterator(InsertPt), What);
1434   if (!isa<MemoryUse>(What)) {
1435     auto *Defs = getOrCreateDefsList(BB);
1436     // If we got asked to insert at the end, we have an easy job, just shove it
1437     // at the end. If we got asked to insert before an existing def, we also get
1438     // an terator. If we got asked to insert before a use, we have to hunt for
1439     // the next def.
1440     if (WasEnd) {
1441       Defs->push_back(*What);
1442     } else if (isa<MemoryDef>(InsertPt)) {
1443       Defs->insert(InsertPt->getDefsIterator(), *What);
1444     } else {
1445       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1446         ++InsertPt;
1447       // Either we found a def, or we are inserting at the end
1448       if (InsertPt == Accesses->end())
1449         Defs->push_back(*What);
1450       else
1451         Defs->insert(InsertPt->getDefsIterator(), *What);
1452     }
1453   }
1454   BlockNumberingValid.erase(BB);
1455 }
1456 
1457 // Move What before Where in the IR.  The end result is taht What will belong to
1458 // the right lists and have the right Block set, but will not otherwise be
1459 // correct. It will not have the right defining access, and if it is a def,
1460 // things below it will not properly be updated.
1461 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1462                        AccessList::iterator Where) {
1463   // Keep it in the lookup tables, remove from the lists
1464   removeFromLists(What, false);
1465   What->setBlock(BB);
1466   insertIntoListsBefore(What, BB, Where);
1467 }
1468 
1469 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1470                        InsertionPlace Point) {
1471   removeFromLists(What, false);
1472   What->setBlock(BB);
1473   insertIntoListsForBlock(What, BB, Point);
1474 }
1475 
1476 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1477   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1478   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1479   // Phi's always are placed at the front of the block.
1480   insertIntoListsForBlock(Phi, BB, Beginning);
1481   ValueToMemoryAccess[BB] = Phi;
1482   return Phi;
1483 }
1484 
1485 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1486                                                MemoryAccess *Definition) {
1487   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1488   MemoryUseOrDef *NewAccess = createNewAccess(I);
1489   assert(
1490       NewAccess != nullptr &&
1491       "Tried to create a memory access for a non-memory touching instruction");
1492   NewAccess->setDefiningAccess(Definition);
1493   return NewAccess;
1494 }
1495 
1496 // Return true if the instruction has ordering constraints.
1497 // Note specifically that this only considers stores and loads
1498 // because others are still considered ModRef by getModRefInfo.
1499 static inline bool isOrdered(const Instruction *I) {
1500   if (auto *SI = dyn_cast<StoreInst>(I)) {
1501     if (!SI->isUnordered())
1502       return true;
1503   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1504     if (!LI->isUnordered())
1505       return true;
1506   }
1507   return false;
1508 }
1509 
1510 /// \brief Helper function to create new memory accesses
1511 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
1512   // The assume intrinsic has a control dependency which we model by claiming
1513   // that it writes arbitrarily. Ignore that fake memory dependency here.
1514   // FIXME: Replace this special casing with a more accurate modelling of
1515   // assume's control dependency.
1516   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1517     if (II->getIntrinsicID() == Intrinsic::assume)
1518       return nullptr;
1519 
1520   // Find out what affect this instruction has on memory.
1521   ModRefInfo ModRef = AA->getModRefInfo(I, None);
1522   // The isOrdered check is used to ensure that volatiles end up as defs
1523   // (atomics end up as ModRef right now anyway).  Until we separate the
1524   // ordering chain from the memory chain, this enables people to see at least
1525   // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1526   // will still give an answer that bypasses other volatile loads.  TODO:
1527   // Separate memory aliasing and ordering into two different chains so that we
1528   // can precisely represent both "what memory will this read/write/is clobbered
1529   // by" and "what instructions can I move this past".
1530   bool Def = bool(ModRef & MRI_Mod) || isOrdered(I);
1531   bool Use = bool(ModRef & MRI_Ref);
1532 
1533   // It's possible for an instruction to not modify memory at all. During
1534   // construction, we ignore them.
1535   if (!Def && !Use)
1536     return nullptr;
1537 
1538   assert((Def || Use) &&
1539          "Trying to create a memory access with a non-memory instruction");
1540 
1541   MemoryUseOrDef *MUD;
1542   if (Def)
1543     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1544   else
1545     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1546   ValueToMemoryAccess[I] = MUD;
1547   return MUD;
1548 }
1549 
1550 /// \brief Returns true if \p Replacer dominates \p Replacee .
1551 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1552                              const MemoryAccess *Replacee) const {
1553   if (isa<MemoryUseOrDef>(Replacee))
1554     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1555   const auto *MP = cast<MemoryPhi>(Replacee);
1556   // For a phi node, the use occurs in the predecessor block of the phi node.
1557   // Since we may occur multiple times in the phi node, we have to check each
1558   // operand to ensure Replacer dominates each operand where Replacee occurs.
1559   for (const Use &Arg : MP->operands()) {
1560     if (Arg.get() != Replacee &&
1561         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1562       return false;
1563   }
1564   return true;
1565 }
1566 
1567 /// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
1568 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1569   assert(MA->use_empty() &&
1570          "Trying to remove memory access that still has uses");
1571   BlockNumbering.erase(MA);
1572   if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
1573     MUD->setDefiningAccess(nullptr);
1574   // Invalidate our walker's cache if necessary
1575   if (!isa<MemoryUse>(MA))
1576     Walker->invalidateInfo(MA);
1577   // The call below to erase will destroy MA, so we can't change the order we
1578   // are doing things here
1579   Value *MemoryInst;
1580   if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1581     MemoryInst = MUD->getMemoryInst();
1582   } else {
1583     MemoryInst = MA->getBlock();
1584   }
1585   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1586   if (VMA->second == MA)
1587     ValueToMemoryAccess.erase(VMA);
1588 }
1589 
1590 /// \brief Properly remove \p MA from all of MemorySSA's lists.
1591 ///
1592 /// Because of the way the intrusive list and use lists work, it is important to
1593 /// do removal in the right order.
1594 /// ShouldDelete defaults to true, and will cause the memory access to also be
1595 /// deleted, not just removed.
1596 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1597   // The access list owns the reference, so we erase it from the non-owning list
1598   // first.
1599   if (!isa<MemoryUse>(MA)) {
1600     auto DefsIt = PerBlockDefs.find(MA->getBlock());
1601     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1602     Defs->remove(*MA);
1603     if (Defs->empty())
1604       PerBlockDefs.erase(DefsIt);
1605   }
1606 
1607   // The erase call here will delete it. If we don't want it deleted, we call
1608   // remove instead.
1609   auto AccessIt = PerBlockAccesses.find(MA->getBlock());
1610   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1611   if (ShouldDelete)
1612     Accesses->erase(MA);
1613   else
1614     Accesses->remove(MA);
1615 
1616   if (Accesses->empty())
1617     PerBlockAccesses.erase(AccessIt);
1618 }
1619 
1620 void MemorySSA::print(raw_ostream &OS) const {
1621   MemorySSAAnnotatedWriter Writer(this);
1622   F.print(OS, &Writer);
1623 }
1624 
1625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1626 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1627 #endif
1628 
1629 void MemorySSA::verifyMemorySSA() const {
1630   verifyDefUses(F);
1631   verifyDomination(F);
1632   verifyOrdering(F);
1633   Walker->verify(this);
1634 }
1635 
1636 /// \brief Verify that the order and existence of MemoryAccesses matches the
1637 /// order and existence of memory affecting instructions.
1638 void MemorySSA::verifyOrdering(Function &F) const {
1639   // Walk all the blocks, comparing what the lookups think and what the access
1640   // lists think, as well as the order in the blocks vs the order in the access
1641   // lists.
1642   SmallVector<MemoryAccess *, 32> ActualAccesses;
1643   SmallVector<MemoryAccess *, 32> ActualDefs;
1644   for (BasicBlock &B : F) {
1645     const AccessList *AL = getBlockAccesses(&B);
1646     const auto *DL = getBlockDefs(&B);
1647     MemoryAccess *Phi = getMemoryAccess(&B);
1648     if (Phi) {
1649       ActualAccesses.push_back(Phi);
1650       ActualDefs.push_back(Phi);
1651     }
1652 
1653     for (Instruction &I : B) {
1654       MemoryAccess *MA = getMemoryAccess(&I);
1655       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1656              "We have memory affecting instructions "
1657              "in this block but they are not in the "
1658              "access list or defs list");
1659       if (MA) {
1660         ActualAccesses.push_back(MA);
1661         if (isa<MemoryDef>(MA))
1662           ActualDefs.push_back(MA);
1663       }
1664     }
1665     // Either we hit the assert, really have no accesses, or we have both
1666     // accesses and an access list.
1667     // Same with defs.
1668     if (!AL && !DL)
1669       continue;
1670     assert(AL->size() == ActualAccesses.size() &&
1671            "We don't have the same number of accesses in the block as on the "
1672            "access list");
1673     assert((DL || ActualDefs.size() == 0) &&
1674            "Either we should have a defs list, or we should have no defs");
1675     assert((!DL || DL->size() == ActualDefs.size()) &&
1676            "We don't have the same number of defs in the block as on the "
1677            "def list");
1678     auto ALI = AL->begin();
1679     auto AAI = ActualAccesses.begin();
1680     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1681       assert(&*ALI == *AAI && "Not the same accesses in the same order");
1682       ++ALI;
1683       ++AAI;
1684     }
1685     ActualAccesses.clear();
1686     if (DL) {
1687       auto DLI = DL->begin();
1688       auto ADI = ActualDefs.begin();
1689       while (DLI != DL->end() && ADI != ActualDefs.end()) {
1690         assert(&*DLI == *ADI && "Not the same defs in the same order");
1691         ++DLI;
1692         ++ADI;
1693       }
1694     }
1695     ActualDefs.clear();
1696   }
1697 }
1698 
1699 /// \brief Verify the domination properties of MemorySSA by checking that each
1700 /// definition dominates all of its uses.
1701 void MemorySSA::verifyDomination(Function &F) const {
1702 #ifndef NDEBUG
1703   for (BasicBlock &B : F) {
1704     // Phi nodes are attached to basic blocks
1705     if (MemoryPhi *MP = getMemoryAccess(&B))
1706       for (const Use &U : MP->uses())
1707         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1708 
1709     for (Instruction &I : B) {
1710       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1711       if (!MD)
1712         continue;
1713 
1714       for (const Use &U : MD->uses())
1715         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1716     }
1717   }
1718 #endif
1719 }
1720 
1721 /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
1722 /// appears in the use list of \p Def.
1723 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1724 #ifndef NDEBUG
1725   // The live on entry use may cause us to get a NULL def here
1726   if (!Def)
1727     assert(isLiveOnEntryDef(Use) &&
1728            "Null def but use not point to live on entry def");
1729   else
1730     assert(is_contained(Def->users(), Use) &&
1731            "Did not find use in def's use list");
1732 #endif
1733 }
1734 
1735 /// \brief Verify the immediate use information, by walking all the memory
1736 /// accesses and verifying that, for each use, it appears in the
1737 /// appropriate def's use list
1738 void MemorySSA::verifyDefUses(Function &F) const {
1739   for (BasicBlock &B : F) {
1740     // Phi nodes are attached to basic blocks
1741     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1742       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1743                                           pred_begin(&B), pred_end(&B))) &&
1744              "Incomplete MemoryPhi Node");
1745       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1746         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1747     }
1748 
1749     for (Instruction &I : B) {
1750       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1751         verifyUseInDefs(MA->getDefiningAccess(), MA);
1752       }
1753     }
1754   }
1755 }
1756 
1757 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1758   return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
1759 }
1760 
1761 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
1762   return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
1763 }
1764 
1765 /// Perform a local numbering on blocks so that instruction ordering can be
1766 /// determined in constant time.
1767 /// TODO: We currently just number in order.  If we numbered by N, we could
1768 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1769 /// log2(N) sequences of mixed before and after) without needing to invalidate
1770 /// the numbering.
1771 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1772   // The pre-increment ensures the numbers really start at 1.
1773   unsigned long CurrentNumber = 0;
1774   const AccessList *AL = getBlockAccesses(B);
1775   assert(AL != nullptr && "Asking to renumber an empty block");
1776   for (const auto &I : *AL)
1777     BlockNumbering[&I] = ++CurrentNumber;
1778   BlockNumberingValid.insert(B);
1779 }
1780 
1781 /// \brief Determine, for two memory accesses in the same block,
1782 /// whether \p Dominator dominates \p Dominatee.
1783 /// \returns True if \p Dominator dominates \p Dominatee.
1784 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1785                                  const MemoryAccess *Dominatee) const {
1786   const BasicBlock *DominatorBlock = Dominator->getBlock();
1787 
1788   assert((DominatorBlock == Dominatee->getBlock()) &&
1789          "Asking for local domination when accesses are in different blocks!");
1790   // A node dominates itself.
1791   if (Dominatee == Dominator)
1792     return true;
1793 
1794   // When Dominatee is defined on function entry, it is not dominated by another
1795   // memory access.
1796   if (isLiveOnEntryDef(Dominatee))
1797     return false;
1798 
1799   // When Dominator is defined on function entry, it dominates the other memory
1800   // access.
1801   if (isLiveOnEntryDef(Dominator))
1802     return true;
1803 
1804   if (!BlockNumberingValid.count(DominatorBlock))
1805     renumberBlock(DominatorBlock);
1806 
1807   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1808   // All numbers start with 1
1809   assert(DominatorNum != 0 && "Block was not numbered properly");
1810   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1811   assert(DominateeNum != 0 && "Block was not numbered properly");
1812   return DominatorNum < DominateeNum;
1813 }
1814 
1815 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1816                           const MemoryAccess *Dominatee) const {
1817   if (Dominator == Dominatee)
1818     return true;
1819 
1820   if (isLiveOnEntryDef(Dominatee))
1821     return false;
1822 
1823   if (Dominator->getBlock() != Dominatee->getBlock())
1824     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1825   return locallyDominates(Dominator, Dominatee);
1826 }
1827 
1828 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1829                           const Use &Dominatee) const {
1830   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1831     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1832     // The def must dominate the incoming block of the phi.
1833     if (UseBB != Dominator->getBlock())
1834       return DT->dominates(Dominator->getBlock(), UseBB);
1835     // If the UseBB and the DefBB are the same, compare locally.
1836     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1837   }
1838   // If it's not a PHI node use, the normal dominates can already handle it.
1839   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1840 }
1841 
1842 const static char LiveOnEntryStr[] = "liveOnEntry";
1843 
1844 void MemoryAccess::print(raw_ostream &OS) const {
1845   switch (getValueID()) {
1846   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1847   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1848   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1849   }
1850   llvm_unreachable("invalid value id");
1851 }
1852 
1853 void MemoryDef::print(raw_ostream &OS) const {
1854   MemoryAccess *UO = getDefiningAccess();
1855 
1856   OS << getID() << " = MemoryDef(";
1857   if (UO && UO->getID())
1858     OS << UO->getID();
1859   else
1860     OS << LiveOnEntryStr;
1861   OS << ')';
1862 }
1863 
1864 void MemoryPhi::print(raw_ostream &OS) const {
1865   bool First = true;
1866   OS << getID() << " = MemoryPhi(";
1867   for (const auto &Op : operands()) {
1868     BasicBlock *BB = getIncomingBlock(Op);
1869     MemoryAccess *MA = cast<MemoryAccess>(Op);
1870     if (!First)
1871       OS << ',';
1872     else
1873       First = false;
1874 
1875     OS << '{';
1876     if (BB->hasName())
1877       OS << BB->getName();
1878     else
1879       BB->printAsOperand(OS, false);
1880     OS << ',';
1881     if (unsigned ID = MA->getID())
1882       OS << ID;
1883     else
1884       OS << LiveOnEntryStr;
1885     OS << '}';
1886   }
1887   OS << ')';
1888 }
1889 
1890 void MemoryUse::print(raw_ostream &OS) const {
1891   MemoryAccess *UO = getDefiningAccess();
1892   OS << "MemoryUse(";
1893   if (UO && UO->getID())
1894     OS << UO->getID();
1895   else
1896     OS << LiveOnEntryStr;
1897   OS << ')';
1898 }
1899 
1900 void MemoryAccess::dump() const {
1901 // Cannot completely remove virtual function even in release mode.
1902 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1903   print(dbgs());
1904   dbgs() << "\n";
1905 #endif
1906 }
1907 
1908 char MemorySSAPrinterLegacyPass::ID = 0;
1909 
1910 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1911   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1912 }
1913 
1914 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1915   AU.setPreservesAll();
1916   AU.addRequired<MemorySSAWrapperPass>();
1917 }
1918 
1919 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1920   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1921   MSSA.print(dbgs());
1922   if (VerifyMemorySSA)
1923     MSSA.verifyMemorySSA();
1924   return false;
1925 }
1926 
1927 AnalysisKey MemorySSAAnalysis::Key;
1928 
1929 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
1930                                                  FunctionAnalysisManager &AM) {
1931   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1932   auto &AA = AM.getResult<AAManager>(F);
1933   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
1934 }
1935 
1936 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
1937                                             FunctionAnalysisManager &AM) {
1938   OS << "MemorySSA for function: " << F.getName() << "\n";
1939   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
1940 
1941   return PreservedAnalyses::all();
1942 }
1943 
1944 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
1945                                              FunctionAnalysisManager &AM) {
1946   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
1947 
1948   return PreservedAnalyses::all();
1949 }
1950 
1951 char MemorySSAWrapperPass::ID = 0;
1952 
1953 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
1954   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
1955 }
1956 
1957 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
1958 
1959 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1960   AU.setPreservesAll();
1961   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1962   AU.addRequiredTransitive<AAResultsWrapperPass>();
1963 }
1964 
1965 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
1966   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1967   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1968   MSSA.reset(new MemorySSA(F, &AA, &DT));
1969   return false;
1970 }
1971 
1972 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
1973 
1974 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
1975   MSSA->print(OS);
1976 }
1977 
1978 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
1979 
1980 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
1981                                         DominatorTree *D)
1982     : MemorySSAWalker(M), Walker(*M, *A, *D) {}
1983 
1984 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
1985   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1986     MUD->resetOptimized();
1987 }
1988 
1989 /// \brief Walk the use-def chains starting at \p MA and find
1990 /// the MemoryAccess that actually clobbers Loc.
1991 ///
1992 /// \returns our clobbering memory access
1993 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
1994     MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
1995   MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
1996 #ifdef EXPENSIVE_CHECKS
1997   MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q);
1998   assert(NewNoCache == New && "Cache made us hand back a different result?");
1999   (void)NewNoCache;
2000 #endif
2001   if (AutoResetWalker)
2002     resetClobberWalker();
2003   return New;
2004 }
2005 
2006 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2007     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2008   if (isa<MemoryPhi>(StartingAccess))
2009     return StartingAccess;
2010 
2011   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2012   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2013     return StartingUseOrDef;
2014 
2015   Instruction *I = StartingUseOrDef->getMemoryInst();
2016 
2017   // Conservatively, fences are always clobbers, so don't perform the walk if we
2018   // hit a fence.
2019   if (!ImmutableCallSite(I) && I->isFenceLike())
2020     return StartingUseOrDef;
2021 
2022   UpwardsMemoryQuery Q;
2023   Q.OriginalAccess = StartingUseOrDef;
2024   Q.StartingLoc = Loc;
2025   Q.Inst = I;
2026   Q.IsCall = false;
2027 
2028   // Unlike the other function, do not walk to the def of a def, because we are
2029   // handed something we already believe is the clobbering access.
2030   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2031                                      ? StartingUseOrDef->getDefiningAccess()
2032                                      : StartingUseOrDef;
2033 
2034   MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
2035   DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2036   DEBUG(dbgs() << *StartingUseOrDef << "\n");
2037   DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2038   DEBUG(dbgs() << *Clobber << "\n");
2039   return Clobber;
2040 }
2041 
2042 MemoryAccess *
2043 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2044   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2045   // If this is a MemoryPhi, we can't do anything.
2046   if (!StartingAccess)
2047     return MA;
2048 
2049   // If this is an already optimized use or def, return the optimized result.
2050   // Note: Currently, we do not store the optimized def result because we'd need
2051   // a separate field, since we can't use it as the defining access.
2052   if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
2053     if (MUD->isOptimized())
2054       return MUD->getOptimized();
2055 
2056   const Instruction *I = StartingAccess->getMemoryInst();
2057   UpwardsMemoryQuery Q(I, StartingAccess);
2058   // We can't sanely do anything with a fences, they conservatively
2059   // clobber all memory, and have no locations to get pointers from to
2060   // try to disambiguate.
2061   if (!Q.IsCall && I->isFenceLike())
2062     return StartingAccess;
2063 
2064   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2065     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2066     if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
2067       MUD->setOptimized(LiveOnEntry);
2068     return LiveOnEntry;
2069   }
2070 
2071   // Start with the thing we already think clobbers this location
2072   MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2073 
2074   // At this point, DefiningAccess may be the live on entry def.
2075   // If it is, we will not get a better result.
2076   if (MSSA->isLiveOnEntryDef(DefiningAccess))
2077     return DefiningAccess;
2078 
2079   MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
2080   DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2081   DEBUG(dbgs() << *DefiningAccess << "\n");
2082   DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2083   DEBUG(dbgs() << *Result << "\n");
2084   if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
2085     MUD->setOptimized(Result);
2086 
2087   return Result;
2088 }
2089 
2090 MemoryAccess *
2091 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2092   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2093     return Use->getDefiningAccess();
2094   return MA;
2095 }
2096 
2097 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2098     MemoryAccess *StartingAccess, const MemoryLocation &) {
2099   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2100     return Use->getDefiningAccess();
2101   return StartingAccess;
2102 }
2103 
2104 void MemoryPhi::deleteMe(DerivedUser *Self) {
2105   delete static_cast<MemoryPhi *>(Self);
2106 }
2107 
2108 void MemoryDef::deleteMe(DerivedUser *Self) {
2109   delete static_cast<MemoryDef *>(Self);
2110 }
2111 
2112 void MemoryUse::deleteMe(DerivedUser *Self) {
2113   delete static_cast<MemoryUse *>(Self);
2114 }
2115