1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdlib> 54 #include <iterator> 55 #include <memory> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "memoryssa" 61 62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 63 true) 64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 67 true) 68 69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 70 "Memory SSA Printer", false, false) 71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 73 "Memory SSA Printer", false, false) 74 75 static cl::opt<unsigned> MaxCheckLimit( 76 "memssa-check-limit", cl::Hidden, cl::init(100), 77 cl::desc("The maximum number of stores/phis MemorySSA" 78 "will consider trying to walk past (default = 100)")); 79 80 // Always verify MemorySSA if expensive checking is enabled. 81 #ifdef EXPENSIVE_CHECKS 82 bool llvm::VerifyMemorySSA = true; 83 #else 84 bool llvm::VerifyMemorySSA = false; 85 #endif 86 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 87 cl::opt<bool> llvm::EnableMSSALoopDependency( 88 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 89 cl::desc("Enable MemorySSA dependency for loop pass manager")); 90 91 static cl::opt<bool, true> 92 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 93 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 94 95 namespace llvm { 96 97 /// An assembly annotator class to print Memory SSA information in 98 /// comments. 99 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 100 friend class MemorySSA; 101 102 const MemorySSA *MSSA; 103 104 public: 105 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 106 107 void emitBasicBlockStartAnnot(const BasicBlock *BB, 108 formatted_raw_ostream &OS) override { 109 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 110 OS << "; " << *MA << "\n"; 111 } 112 113 void emitInstructionAnnot(const Instruction *I, 114 formatted_raw_ostream &OS) override { 115 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 116 OS << "; " << *MA << "\n"; 117 } 118 }; 119 120 } // end namespace llvm 121 122 namespace { 123 124 /// Our current alias analysis API differentiates heavily between calls and 125 /// non-calls, and functions called on one usually assert on the other. 126 /// This class encapsulates the distinction to simplify other code that wants 127 /// "Memory affecting instructions and related data" to use as a key. 128 /// For example, this class is used as a densemap key in the use optimizer. 129 class MemoryLocOrCall { 130 public: 131 bool IsCall = false; 132 133 MemoryLocOrCall(MemoryUseOrDef *MUD) 134 : MemoryLocOrCall(MUD->getMemoryInst()) {} 135 MemoryLocOrCall(const MemoryUseOrDef *MUD) 136 : MemoryLocOrCall(MUD->getMemoryInst()) {} 137 138 MemoryLocOrCall(Instruction *Inst) { 139 if (auto *C = dyn_cast<CallBase>(Inst)) { 140 IsCall = true; 141 Call = C; 142 } else { 143 IsCall = false; 144 // There is no such thing as a memorylocation for a fence inst, and it is 145 // unique in that regard. 146 if (!isa<FenceInst>(Inst)) 147 Loc = MemoryLocation::get(Inst); 148 } 149 } 150 151 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 152 153 const CallBase *getCall() const { 154 assert(IsCall); 155 return Call; 156 } 157 158 MemoryLocation getLoc() const { 159 assert(!IsCall); 160 return Loc; 161 } 162 163 bool operator==(const MemoryLocOrCall &Other) const { 164 if (IsCall != Other.IsCall) 165 return false; 166 167 if (!IsCall) 168 return Loc == Other.Loc; 169 170 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 171 return false; 172 173 return Call->arg_size() == Other.Call->arg_size() && 174 std::equal(Call->arg_begin(), Call->arg_end(), 175 Other.Call->arg_begin()); 176 } 177 178 private: 179 union { 180 const CallBase *Call; 181 MemoryLocation Loc; 182 }; 183 }; 184 185 } // end anonymous namespace 186 187 namespace llvm { 188 189 template <> struct DenseMapInfo<MemoryLocOrCall> { 190 static inline MemoryLocOrCall getEmptyKey() { 191 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 192 } 193 194 static inline MemoryLocOrCall getTombstoneKey() { 195 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 196 } 197 198 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 199 if (!MLOC.IsCall) 200 return hash_combine( 201 MLOC.IsCall, 202 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 203 204 hash_code hash = 205 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 206 MLOC.getCall()->getCalledOperand())); 207 208 for (const Value *Arg : MLOC.getCall()->args()) 209 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 210 return hash; 211 } 212 213 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 214 return LHS == RHS; 215 } 216 }; 217 218 } // end namespace llvm 219 220 /// This does one-way checks to see if Use could theoretically be hoisted above 221 /// MayClobber. This will not check the other way around. 222 /// 223 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 224 /// MayClobber, with no potentially clobbering operations in between them. 225 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 226 static bool areLoadsReorderable(const LoadInst *Use, 227 const LoadInst *MayClobber) { 228 bool VolatileUse = Use->isVolatile(); 229 bool VolatileClobber = MayClobber->isVolatile(); 230 // Volatile operations may never be reordered with other volatile operations. 231 if (VolatileUse && VolatileClobber) 232 return false; 233 // Otherwise, volatile doesn't matter here. From the language reference: 234 // 'optimizers may change the order of volatile operations relative to 235 // non-volatile operations.'" 236 237 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 238 // is weaker, it can be moved above other loads. We just need to be sure that 239 // MayClobber isn't an acquire load, because loads can't be moved above 240 // acquire loads. 241 // 242 // Note that this explicitly *does* allow the free reordering of monotonic (or 243 // weaker) loads of the same address. 244 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 245 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 246 AtomicOrdering::Acquire); 247 return !(SeqCstUse || MayClobberIsAcquire); 248 } 249 250 namespace { 251 252 struct ClobberAlias { 253 bool IsClobber; 254 Optional<AliasResult> AR; 255 }; 256 257 } // end anonymous namespace 258 259 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 260 // ignored if IsClobber = false. 261 template <typename AliasAnalysisType> 262 static ClobberAlias 263 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 264 const Instruction *UseInst, AliasAnalysisType &AA) { 265 Instruction *DefInst = MD->getMemoryInst(); 266 assert(DefInst && "Defining instruction not actually an instruction"); 267 const auto *UseCall = dyn_cast<CallBase>(UseInst); 268 Optional<AliasResult> AR; 269 270 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 271 // These intrinsics will show up as affecting memory, but they are just 272 // markers, mostly. 273 // 274 // FIXME: We probably don't actually want MemorySSA to model these at all 275 // (including creating MemoryAccesses for them): we just end up inventing 276 // clobbers where they don't really exist at all. Please see D43269 for 277 // context. 278 switch (II->getIntrinsicID()) { 279 case Intrinsic::lifetime_start: 280 if (UseCall) 281 return {false, NoAlias}; 282 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 283 return {AR != NoAlias, AR}; 284 case Intrinsic::lifetime_end: 285 case Intrinsic::invariant_start: 286 case Intrinsic::invariant_end: 287 case Intrinsic::assume: 288 return {false, NoAlias}; 289 case Intrinsic::dbg_addr: 290 case Intrinsic::dbg_declare: 291 case Intrinsic::dbg_label: 292 case Intrinsic::dbg_value: 293 llvm_unreachable("debuginfo shouldn't have associated defs!"); 294 default: 295 break; 296 } 297 } 298 299 if (UseCall) { 300 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 301 AR = isMustSet(I) ? MustAlias : MayAlias; 302 return {isModOrRefSet(I), AR}; 303 } 304 305 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 306 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 307 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 308 309 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 310 AR = isMustSet(I) ? MustAlias : MayAlias; 311 return {isModSet(I), AR}; 312 } 313 314 template <typename AliasAnalysisType> 315 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 316 const MemoryUseOrDef *MU, 317 const MemoryLocOrCall &UseMLOC, 318 AliasAnalysisType &AA) { 319 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 320 // to exist while MemoryLocOrCall is pushed through places. 321 if (UseMLOC.IsCall) 322 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 323 AA); 324 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 325 AA); 326 } 327 328 // Return true when MD may alias MU, return false otherwise. 329 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 330 AliasAnalysis &AA) { 331 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 332 } 333 334 namespace { 335 336 struct UpwardsMemoryQuery { 337 // True if our original query started off as a call 338 bool IsCall = false; 339 // The pointer location we started the query with. This will be empty if 340 // IsCall is true. 341 MemoryLocation StartingLoc; 342 // This is the instruction we were querying about. 343 const Instruction *Inst = nullptr; 344 // The MemoryAccess we actually got called with, used to test local domination 345 const MemoryAccess *OriginalAccess = nullptr; 346 Optional<AliasResult> AR = MayAlias; 347 bool SkipSelfAccess = false; 348 349 UpwardsMemoryQuery() = default; 350 351 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 352 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 353 if (!IsCall) 354 StartingLoc = MemoryLocation::get(Inst); 355 } 356 }; 357 358 } // end anonymous namespace 359 360 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 361 BatchAAResults &AA) { 362 Instruction *Inst = MD->getMemoryInst(); 363 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 364 switch (II->getIntrinsicID()) { 365 case Intrinsic::lifetime_end: 366 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 367 default: 368 return false; 369 } 370 } 371 return false; 372 } 373 374 template <typename AliasAnalysisType> 375 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 376 const Instruction *I) { 377 // If the memory can't be changed, then loads of the memory can't be 378 // clobbered. 379 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) || 380 AA.pointsToConstantMemory(MemoryLocation( 381 cast<LoadInst>(I)->getPointerOperand()))); 382 } 383 384 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 385 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 386 /// 387 /// This is meant to be as simple and self-contained as possible. Because it 388 /// uses no cache, etc., it can be relatively expensive. 389 /// 390 /// \param Start The MemoryAccess that we want to walk from. 391 /// \param ClobberAt A clobber for Start. 392 /// \param StartLoc The MemoryLocation for Start. 393 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 394 /// \param Query The UpwardsMemoryQuery we used for our search. 395 /// \param AA The AliasAnalysis we used for our search. 396 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 397 398 template <typename AliasAnalysisType> 399 LLVM_ATTRIBUTE_UNUSED static void 400 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 401 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 402 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 403 bool AllowImpreciseClobber = false) { 404 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 405 406 if (MSSA.isLiveOnEntryDef(Start)) { 407 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 408 "liveOnEntry must clobber itself"); 409 return; 410 } 411 412 bool FoundClobber = false; 413 DenseSet<ConstMemoryAccessPair> VisitedPhis; 414 SmallVector<ConstMemoryAccessPair, 8> Worklist; 415 Worklist.emplace_back(Start, StartLoc); 416 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 417 // is found, complain. 418 while (!Worklist.empty()) { 419 auto MAP = Worklist.pop_back_val(); 420 // All we care about is that nothing from Start to ClobberAt clobbers Start. 421 // We learn nothing from revisiting nodes. 422 if (!VisitedPhis.insert(MAP).second) 423 continue; 424 425 for (const auto *MA : def_chain(MAP.first)) { 426 if (MA == ClobberAt) { 427 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 428 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 429 // since it won't let us short-circuit. 430 // 431 // Also, note that this can't be hoisted out of the `Worklist` loop, 432 // since MD may only act as a clobber for 1 of N MemoryLocations. 433 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 434 if (!FoundClobber) { 435 ClobberAlias CA = 436 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 437 if (CA.IsClobber) { 438 FoundClobber = true; 439 // Not used: CA.AR; 440 } 441 } 442 } 443 break; 444 } 445 446 // We should never hit liveOnEntry, unless it's the clobber. 447 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 448 449 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 450 // If Start is a Def, skip self. 451 if (MD == Start) 452 continue; 453 454 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 455 .IsClobber && 456 "Found clobber before reaching ClobberAt!"); 457 continue; 458 } 459 460 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 461 (void)MU; 462 assert (MU == Start && 463 "Can only find use in def chain if Start is a use"); 464 continue; 465 } 466 467 assert(isa<MemoryPhi>(MA)); 468 Worklist.append( 469 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}, 470 MSSA.getDomTree()), 471 upward_defs_end()); 472 } 473 } 474 475 // If the verify is done following an optimization, it's possible that 476 // ClobberAt was a conservative clobbering, that we can now infer is not a 477 // true clobbering access. Don't fail the verify if that's the case. 478 // We do have accesses that claim they're optimized, but could be optimized 479 // further. Updating all these can be expensive, so allow it for now (FIXME). 480 if (AllowImpreciseClobber) 481 return; 482 483 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 484 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 485 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 486 "ClobberAt never acted as a clobber"); 487 } 488 489 namespace { 490 491 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 492 /// in one class. 493 template <class AliasAnalysisType> class ClobberWalker { 494 /// Save a few bytes by using unsigned instead of size_t. 495 using ListIndex = unsigned; 496 497 /// Represents a span of contiguous MemoryDefs, potentially ending in a 498 /// MemoryPhi. 499 struct DefPath { 500 MemoryLocation Loc; 501 // Note that, because we always walk in reverse, Last will always dominate 502 // First. Also note that First and Last are inclusive. 503 MemoryAccess *First; 504 MemoryAccess *Last; 505 Optional<ListIndex> Previous; 506 507 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 508 Optional<ListIndex> Previous) 509 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 510 511 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 512 Optional<ListIndex> Previous) 513 : DefPath(Loc, Init, Init, Previous) {} 514 }; 515 516 const MemorySSA &MSSA; 517 AliasAnalysisType &AA; 518 DominatorTree &DT; 519 UpwardsMemoryQuery *Query; 520 unsigned *UpwardWalkLimit; 521 522 // Phi optimization bookkeeping: 523 // List of DefPath to process during the current phi optimization walk. 524 SmallVector<DefPath, 32> Paths; 525 // List of visited <Access, Location> pairs; we can skip paths already 526 // visited with the same memory location. 527 DenseSet<ConstMemoryAccessPair> VisitedPhis; 528 // Record if phi translation has been performed during the current phi 529 // optimization walk, as merging alias results after phi translation can 530 // yield incorrect results. Context in PR46156. 531 bool PerformedPhiTranslation = false; 532 533 /// Find the nearest def or phi that `From` can legally be optimized to. 534 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 535 assert(From->getNumOperands() && "Phi with no operands?"); 536 537 BasicBlock *BB = From->getBlock(); 538 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 539 DomTreeNode *Node = DT.getNode(BB); 540 while ((Node = Node->getIDom())) { 541 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 542 if (Defs) 543 return &*Defs->rbegin(); 544 } 545 return Result; 546 } 547 548 /// Result of calling walkToPhiOrClobber. 549 struct UpwardsWalkResult { 550 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 551 /// both. Include alias info when clobber found. 552 MemoryAccess *Result; 553 bool IsKnownClobber; 554 Optional<AliasResult> AR; 555 }; 556 557 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 558 /// This will update Desc.Last as it walks. It will (optionally) also stop at 559 /// StopAt. 560 /// 561 /// This does not test for whether StopAt is a clobber 562 UpwardsWalkResult 563 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 564 const MemoryAccess *SkipStopAt = nullptr) const { 565 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 566 assert(UpwardWalkLimit && "Need a valid walk limit"); 567 bool LimitAlreadyReached = false; 568 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 569 // it to 1. This will not do any alias() calls. It either returns in the 570 // first iteration in the loop below, or is set back to 0 if all def chains 571 // are free of MemoryDefs. 572 if (!*UpwardWalkLimit) { 573 *UpwardWalkLimit = 1; 574 LimitAlreadyReached = true; 575 } 576 577 for (MemoryAccess *Current : def_chain(Desc.Last)) { 578 Desc.Last = Current; 579 if (Current == StopAt || Current == SkipStopAt) 580 return {Current, false, MayAlias}; 581 582 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 583 if (MSSA.isLiveOnEntryDef(MD)) 584 return {MD, true, MustAlias}; 585 586 if (!--*UpwardWalkLimit) 587 return {Current, true, MayAlias}; 588 589 ClobberAlias CA = 590 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 591 if (CA.IsClobber) 592 return {MD, true, CA.AR}; 593 } 594 } 595 596 if (LimitAlreadyReached) 597 *UpwardWalkLimit = 0; 598 599 assert(isa<MemoryPhi>(Desc.Last) && 600 "Ended at a non-clobber that's not a phi?"); 601 return {Desc.Last, false, MayAlias}; 602 } 603 604 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 605 ListIndex PriorNode) { 606 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 607 &PerformedPhiTranslation); 608 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 609 for (const MemoryAccessPair &P : UpwardDefs) { 610 PausedSearches.push_back(Paths.size()); 611 Paths.emplace_back(P.second, P.first, PriorNode); 612 } 613 } 614 615 /// Represents a search that terminated after finding a clobber. This clobber 616 /// may or may not be present in the path of defs from LastNode..SearchStart, 617 /// since it may have been retrieved from cache. 618 struct TerminatedPath { 619 MemoryAccess *Clobber; 620 ListIndex LastNode; 621 }; 622 623 /// Get an access that keeps us from optimizing to the given phi. 624 /// 625 /// PausedSearches is an array of indices into the Paths array. Its incoming 626 /// value is the indices of searches that stopped at the last phi optimization 627 /// target. It's left in an unspecified state. 628 /// 629 /// If this returns None, NewPaused is a vector of searches that terminated 630 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 631 Optional<TerminatedPath> 632 getBlockingAccess(const MemoryAccess *StopWhere, 633 SmallVectorImpl<ListIndex> &PausedSearches, 634 SmallVectorImpl<ListIndex> &NewPaused, 635 SmallVectorImpl<TerminatedPath> &Terminated) { 636 assert(!PausedSearches.empty() && "No searches to continue?"); 637 638 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 639 // PausedSearches as our stack. 640 while (!PausedSearches.empty()) { 641 ListIndex PathIndex = PausedSearches.pop_back_val(); 642 DefPath &Node = Paths[PathIndex]; 643 644 // If we've already visited this path with this MemoryLocation, we don't 645 // need to do so again. 646 // 647 // NOTE: That we just drop these paths on the ground makes caching 648 // behavior sporadic. e.g. given a diamond: 649 // A 650 // B C 651 // D 652 // 653 // ...If we walk D, B, A, C, we'll only cache the result of phi 654 // optimization for A, B, and D; C will be skipped because it dies here. 655 // This arguably isn't the worst thing ever, since: 656 // - We generally query things in a top-down order, so if we got below D 657 // without needing cache entries for {C, MemLoc}, then chances are 658 // that those cache entries would end up ultimately unused. 659 // - We still cache things for A, so C only needs to walk up a bit. 660 // If this behavior becomes problematic, we can fix without a ton of extra 661 // work. 662 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 663 if (PerformedPhiTranslation) { 664 // If visiting this path performed Phi translation, don't continue, 665 // since it may not be correct to merge results from two paths if one 666 // relies on the phi translation. 667 TerminatedPath Term{Node.Last, PathIndex}; 668 return Term; 669 } 670 continue; 671 } 672 673 const MemoryAccess *SkipStopWhere = nullptr; 674 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 675 assert(isa<MemoryDef>(Query->OriginalAccess)); 676 SkipStopWhere = Query->OriginalAccess; 677 } 678 679 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 680 /*StopAt=*/StopWhere, 681 /*SkipStopAt=*/SkipStopWhere); 682 if (Res.IsKnownClobber) { 683 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 684 685 // If this wasn't a cache hit, we hit a clobber when walking. That's a 686 // failure. 687 TerminatedPath Term{Res.Result, PathIndex}; 688 if (!MSSA.dominates(Res.Result, StopWhere)) 689 return Term; 690 691 // Otherwise, it's a valid thing to potentially optimize to. 692 Terminated.push_back(Term); 693 continue; 694 } 695 696 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 697 // We've hit our target. Save this path off for if we want to continue 698 // walking. If we are in the mode of skipping the OriginalAccess, and 699 // we've reached back to the OriginalAccess, do not save path, we've 700 // just looped back to self. 701 if (Res.Result != SkipStopWhere) 702 NewPaused.push_back(PathIndex); 703 continue; 704 } 705 706 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 707 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 708 } 709 710 return None; 711 } 712 713 template <typename T, typename Walker> 714 struct generic_def_path_iterator 715 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 716 std::forward_iterator_tag, T *> { 717 generic_def_path_iterator() {} 718 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 719 720 T &operator*() const { return curNode(); } 721 722 generic_def_path_iterator &operator++() { 723 N = curNode().Previous; 724 return *this; 725 } 726 727 bool operator==(const generic_def_path_iterator &O) const { 728 if (N.hasValue() != O.N.hasValue()) 729 return false; 730 return !N.hasValue() || *N == *O.N; 731 } 732 733 private: 734 T &curNode() const { return W->Paths[*N]; } 735 736 Walker *W = nullptr; 737 Optional<ListIndex> N = None; 738 }; 739 740 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 741 using const_def_path_iterator = 742 generic_def_path_iterator<const DefPath, const ClobberWalker>; 743 744 iterator_range<def_path_iterator> def_path(ListIndex From) { 745 return make_range(def_path_iterator(this, From), def_path_iterator()); 746 } 747 748 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 749 return make_range(const_def_path_iterator(this, From), 750 const_def_path_iterator()); 751 } 752 753 struct OptznResult { 754 /// The path that contains our result. 755 TerminatedPath PrimaryClobber; 756 /// The paths that we can legally cache back from, but that aren't 757 /// necessarily the result of the Phi optimization. 758 SmallVector<TerminatedPath, 4> OtherClobbers; 759 }; 760 761 ListIndex defPathIndex(const DefPath &N) const { 762 // The assert looks nicer if we don't need to do &N 763 const DefPath *NP = &N; 764 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 765 "Out of bounds DefPath!"); 766 return NP - &Paths.front(); 767 } 768 769 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 770 /// that act as legal clobbers. Note that this won't return *all* clobbers. 771 /// 772 /// Phi optimization algorithm tl;dr: 773 /// - Find the earliest def/phi, A, we can optimize to 774 /// - Find if all paths from the starting memory access ultimately reach A 775 /// - If not, optimization isn't possible. 776 /// - Otherwise, walk from A to another clobber or phi, A'. 777 /// - If A' is a def, we're done. 778 /// - If A' is a phi, try to optimize it. 779 /// 780 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 781 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 782 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 783 const MemoryLocation &Loc) { 784 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 785 "Reset the optimization state."); 786 787 Paths.emplace_back(Loc, Start, Phi, None); 788 // Stores how many "valid" optimization nodes we had prior to calling 789 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 790 auto PriorPathsSize = Paths.size(); 791 792 SmallVector<ListIndex, 16> PausedSearches; 793 SmallVector<ListIndex, 8> NewPaused; 794 SmallVector<TerminatedPath, 4> TerminatedPaths; 795 796 addSearches(Phi, PausedSearches, 0); 797 798 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 799 // Paths. 800 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 801 assert(!Paths.empty() && "Need a path to move"); 802 auto Dom = Paths.begin(); 803 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 804 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 805 Dom = I; 806 auto Last = Paths.end() - 1; 807 if (Last != Dom) 808 std::iter_swap(Last, Dom); 809 }; 810 811 MemoryPhi *Current = Phi; 812 while (true) { 813 assert(!MSSA.isLiveOnEntryDef(Current) && 814 "liveOnEntry wasn't treated as a clobber?"); 815 816 const auto *Target = getWalkTarget(Current); 817 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 818 // optimization for the prior phi. 819 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 820 return MSSA.dominates(P.Clobber, Target); 821 })); 822 823 // FIXME: This is broken, because the Blocker may be reported to be 824 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 825 // For the moment, this is fine, since we do nothing with blocker info. 826 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 827 Target, PausedSearches, NewPaused, TerminatedPaths)) { 828 829 // Find the node we started at. We can't search based on N->Last, since 830 // we may have gone around a loop with a different MemoryLocation. 831 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 832 return defPathIndex(N) < PriorPathsSize; 833 }); 834 assert(Iter != def_path_iterator()); 835 836 DefPath &CurNode = *Iter; 837 assert(CurNode.Last == Current); 838 839 // Two things: 840 // A. We can't reliably cache all of NewPaused back. Consider a case 841 // where we have two paths in NewPaused; one of which can't optimize 842 // above this phi, whereas the other can. If we cache the second path 843 // back, we'll end up with suboptimal cache entries. We can handle 844 // cases like this a bit better when we either try to find all 845 // clobbers that block phi optimization, or when our cache starts 846 // supporting unfinished searches. 847 // B. We can't reliably cache TerminatedPaths back here without doing 848 // extra checks; consider a case like: 849 // T 850 // / \ 851 // D C 852 // \ / 853 // S 854 // Where T is our target, C is a node with a clobber on it, D is a 855 // diamond (with a clobber *only* on the left or right node, N), and 856 // S is our start. Say we walk to D, through the node opposite N 857 // (read: ignoring the clobber), and see a cache entry in the top 858 // node of D. That cache entry gets put into TerminatedPaths. We then 859 // walk up to C (N is later in our worklist), find the clobber, and 860 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 861 // the bottom part of D to the cached clobber, ignoring the clobber 862 // in N. Again, this problem goes away if we start tracking all 863 // blockers for a given phi optimization. 864 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 865 return {Result, {}}; 866 } 867 868 // If there's nothing left to search, then all paths led to valid clobbers 869 // that we got from our cache; pick the nearest to the start, and allow 870 // the rest to be cached back. 871 if (NewPaused.empty()) { 872 MoveDominatedPathToEnd(TerminatedPaths); 873 TerminatedPath Result = TerminatedPaths.pop_back_val(); 874 return {Result, std::move(TerminatedPaths)}; 875 } 876 877 MemoryAccess *DefChainEnd = nullptr; 878 SmallVector<TerminatedPath, 4> Clobbers; 879 for (ListIndex Paused : NewPaused) { 880 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 881 if (WR.IsKnownClobber) 882 Clobbers.push_back({WR.Result, Paused}); 883 else 884 // Micro-opt: If we hit the end of the chain, save it. 885 DefChainEnd = WR.Result; 886 } 887 888 if (!TerminatedPaths.empty()) { 889 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 890 // do it now. 891 if (!DefChainEnd) 892 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 893 DefChainEnd = MA; 894 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 895 896 // If any of the terminated paths don't dominate the phi we'll try to 897 // optimize, we need to figure out what they are and quit. 898 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 899 for (const TerminatedPath &TP : TerminatedPaths) { 900 // Because we know that DefChainEnd is as "high" as we can go, we 901 // don't need local dominance checks; BB dominance is sufficient. 902 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 903 Clobbers.push_back(TP); 904 } 905 } 906 907 // If we have clobbers in the def chain, find the one closest to Current 908 // and quit. 909 if (!Clobbers.empty()) { 910 MoveDominatedPathToEnd(Clobbers); 911 TerminatedPath Result = Clobbers.pop_back_val(); 912 return {Result, std::move(Clobbers)}; 913 } 914 915 assert(all_of(NewPaused, 916 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 917 918 // Because liveOnEntry is a clobber, this must be a phi. 919 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 920 921 PriorPathsSize = Paths.size(); 922 PausedSearches.clear(); 923 for (ListIndex I : NewPaused) 924 addSearches(DefChainPhi, PausedSearches, I); 925 NewPaused.clear(); 926 927 Current = DefChainPhi; 928 } 929 } 930 931 void verifyOptResult(const OptznResult &R) const { 932 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 933 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 934 })); 935 } 936 937 void resetPhiOptznState() { 938 Paths.clear(); 939 VisitedPhis.clear(); 940 PerformedPhiTranslation = false; 941 } 942 943 public: 944 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 945 : MSSA(MSSA), AA(AA), DT(DT) {} 946 947 AliasAnalysisType *getAA() { return &AA; } 948 /// Finds the nearest clobber for the given query, optimizing phis if 949 /// possible. 950 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 951 unsigned &UpWalkLimit) { 952 Query = &Q; 953 UpwardWalkLimit = &UpWalkLimit; 954 // Starting limit must be > 0. 955 if (!UpWalkLimit) 956 UpWalkLimit++; 957 958 MemoryAccess *Current = Start; 959 // This walker pretends uses don't exist. If we're handed one, silently grab 960 // its def. (This has the nice side-effect of ensuring we never cache uses) 961 if (auto *MU = dyn_cast<MemoryUse>(Start)) 962 Current = MU->getDefiningAccess(); 963 964 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 965 // Fast path for the overly-common case (no crazy phi optimization 966 // necessary) 967 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 968 MemoryAccess *Result; 969 if (WalkResult.IsKnownClobber) { 970 Result = WalkResult.Result; 971 Q.AR = WalkResult.AR; 972 } else { 973 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 974 Current, Q.StartingLoc); 975 verifyOptResult(OptRes); 976 resetPhiOptznState(); 977 Result = OptRes.PrimaryClobber.Clobber; 978 } 979 980 #ifdef EXPENSIVE_CHECKS 981 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 982 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 983 #endif 984 return Result; 985 } 986 }; 987 988 struct RenamePassData { 989 DomTreeNode *DTN; 990 DomTreeNode::const_iterator ChildIt; 991 MemoryAccess *IncomingVal; 992 993 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 994 MemoryAccess *M) 995 : DTN(D), ChildIt(It), IncomingVal(M) {} 996 997 void swap(RenamePassData &RHS) { 998 std::swap(DTN, RHS.DTN); 999 std::swap(ChildIt, RHS.ChildIt); 1000 std::swap(IncomingVal, RHS.IncomingVal); 1001 } 1002 }; 1003 1004 } // end anonymous namespace 1005 1006 namespace llvm { 1007 1008 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1009 ClobberWalker<AliasAnalysisType> Walker; 1010 MemorySSA *MSSA; 1011 1012 public: 1013 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1014 : Walker(*M, *A, *D), MSSA(M) {} 1015 1016 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1017 const MemoryLocation &, 1018 unsigned &); 1019 // Third argument (bool), defines whether the clobber search should skip the 1020 // original queried access. If true, there will be a follow-up query searching 1021 // for a clobber access past "self". Note that the Optimized access is not 1022 // updated if a new clobber is found by this SkipSelf search. If this 1023 // additional query becomes heavily used we may decide to cache the result. 1024 // Walker instantiations will decide how to set the SkipSelf bool. 1025 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1026 }; 1027 1028 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1029 /// longer does caching on its own, but the name has been retained for the 1030 /// moment. 1031 template <class AliasAnalysisType> 1032 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1033 ClobberWalkerBase<AliasAnalysisType> *Walker; 1034 1035 public: 1036 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1037 : MemorySSAWalker(M), Walker(W) {} 1038 ~CachingWalker() override = default; 1039 1040 using MemorySSAWalker::getClobberingMemoryAccess; 1041 1042 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1043 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1044 } 1045 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1046 const MemoryLocation &Loc, 1047 unsigned &UWL) { 1048 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1049 } 1050 1051 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1052 unsigned UpwardWalkLimit = MaxCheckLimit; 1053 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1054 } 1055 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1056 const MemoryLocation &Loc) override { 1057 unsigned UpwardWalkLimit = MaxCheckLimit; 1058 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1059 } 1060 1061 void invalidateInfo(MemoryAccess *MA) override { 1062 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1063 MUD->resetOptimized(); 1064 } 1065 }; 1066 1067 template <class AliasAnalysisType> 1068 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1069 ClobberWalkerBase<AliasAnalysisType> *Walker; 1070 1071 public: 1072 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1073 : MemorySSAWalker(M), Walker(W) {} 1074 ~SkipSelfWalker() override = default; 1075 1076 using MemorySSAWalker::getClobberingMemoryAccess; 1077 1078 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1079 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1080 } 1081 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1082 const MemoryLocation &Loc, 1083 unsigned &UWL) { 1084 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1085 } 1086 1087 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1088 unsigned UpwardWalkLimit = MaxCheckLimit; 1089 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1090 } 1091 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1092 const MemoryLocation &Loc) override { 1093 unsigned UpwardWalkLimit = MaxCheckLimit; 1094 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1095 } 1096 1097 void invalidateInfo(MemoryAccess *MA) override { 1098 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1099 MUD->resetOptimized(); 1100 } 1101 }; 1102 1103 } // end namespace llvm 1104 1105 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1106 bool RenameAllUses) { 1107 // Pass through values to our successors 1108 for (const BasicBlock *S : successors(BB)) { 1109 auto It = PerBlockAccesses.find(S); 1110 // Rename the phi nodes in our successor block 1111 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1112 continue; 1113 AccessList *Accesses = It->second.get(); 1114 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1115 if (RenameAllUses) { 1116 bool ReplacementDone = false; 1117 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1118 if (Phi->getIncomingBlock(I) == BB) { 1119 Phi->setIncomingValue(I, IncomingVal); 1120 ReplacementDone = true; 1121 } 1122 (void) ReplacementDone; 1123 assert(ReplacementDone && "Incomplete phi during partial rename"); 1124 } else 1125 Phi->addIncoming(IncomingVal, BB); 1126 } 1127 } 1128 1129 /// Rename a single basic block into MemorySSA form. 1130 /// Uses the standard SSA renaming algorithm. 1131 /// \returns The new incoming value. 1132 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1133 bool RenameAllUses) { 1134 auto It = PerBlockAccesses.find(BB); 1135 // Skip most processing if the list is empty. 1136 if (It != PerBlockAccesses.end()) { 1137 AccessList *Accesses = It->second.get(); 1138 for (MemoryAccess &L : *Accesses) { 1139 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1140 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1141 MUD->setDefiningAccess(IncomingVal); 1142 if (isa<MemoryDef>(&L)) 1143 IncomingVal = &L; 1144 } else { 1145 IncomingVal = &L; 1146 } 1147 } 1148 } 1149 return IncomingVal; 1150 } 1151 1152 /// This is the standard SSA renaming algorithm. 1153 /// 1154 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1155 /// in phi nodes in our successors. 1156 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1157 SmallPtrSetImpl<BasicBlock *> &Visited, 1158 bool SkipVisited, bool RenameAllUses) { 1159 assert(Root && "Trying to rename accesses in an unreachable block"); 1160 1161 SmallVector<RenamePassData, 32> WorkStack; 1162 // Skip everything if we already renamed this block and we are skipping. 1163 // Note: You can't sink this into the if, because we need it to occur 1164 // regardless of whether we skip blocks or not. 1165 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1166 if (SkipVisited && AlreadyVisited) 1167 return; 1168 1169 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1170 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1171 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1172 1173 while (!WorkStack.empty()) { 1174 DomTreeNode *Node = WorkStack.back().DTN; 1175 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1176 IncomingVal = WorkStack.back().IncomingVal; 1177 1178 if (ChildIt == Node->end()) { 1179 WorkStack.pop_back(); 1180 } else { 1181 DomTreeNode *Child = *ChildIt; 1182 ++WorkStack.back().ChildIt; 1183 BasicBlock *BB = Child->getBlock(); 1184 // Note: You can't sink this into the if, because we need it to occur 1185 // regardless of whether we skip blocks or not. 1186 AlreadyVisited = !Visited.insert(BB).second; 1187 if (SkipVisited && AlreadyVisited) { 1188 // We already visited this during our renaming, which can happen when 1189 // being asked to rename multiple blocks. Figure out the incoming val, 1190 // which is the last def. 1191 // Incoming value can only change if there is a block def, and in that 1192 // case, it's the last block def in the list. 1193 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1194 IncomingVal = &*BlockDefs->rbegin(); 1195 } else 1196 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1197 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1198 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1199 } 1200 } 1201 } 1202 1203 /// This handles unreachable block accesses by deleting phi nodes in 1204 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1205 /// being uses of the live on entry definition. 1206 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1207 assert(!DT->isReachableFromEntry(BB) && 1208 "Reachable block found while handling unreachable blocks"); 1209 1210 // Make sure phi nodes in our reachable successors end up with a 1211 // LiveOnEntryDef for our incoming edge, even though our block is forward 1212 // unreachable. We could just disconnect these blocks from the CFG fully, 1213 // but we do not right now. 1214 for (const BasicBlock *S : successors(BB)) { 1215 if (!DT->isReachableFromEntry(S)) 1216 continue; 1217 auto It = PerBlockAccesses.find(S); 1218 // Rename the phi nodes in our successor block 1219 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1220 continue; 1221 AccessList *Accesses = It->second.get(); 1222 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1223 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1224 } 1225 1226 auto It = PerBlockAccesses.find(BB); 1227 if (It == PerBlockAccesses.end()) 1228 return; 1229 1230 auto &Accesses = It->second; 1231 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1232 auto Next = std::next(AI); 1233 // If we have a phi, just remove it. We are going to replace all 1234 // users with live on entry. 1235 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1236 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1237 else 1238 Accesses->erase(AI); 1239 AI = Next; 1240 } 1241 } 1242 1243 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1244 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1245 SkipWalker(nullptr), NextID(0) { 1246 // Build MemorySSA using a batch alias analysis. This reuses the internal 1247 // state that AA collects during an alias()/getModRefInfo() call. This is 1248 // safe because there are no CFG changes while building MemorySSA and can 1249 // significantly reduce the time spent by the compiler in AA, because we will 1250 // make queries about all the instructions in the Function. 1251 assert(AA && "No alias analysis?"); 1252 BatchAAResults BatchAA(*AA); 1253 buildMemorySSA(BatchAA); 1254 // Intentionally leave AA to nullptr while building so we don't accidently 1255 // use non-batch AliasAnalysis. 1256 this->AA = AA; 1257 // Also create the walker here. 1258 getWalker(); 1259 } 1260 1261 MemorySSA::~MemorySSA() { 1262 // Drop all our references 1263 for (const auto &Pair : PerBlockAccesses) 1264 for (MemoryAccess &MA : *Pair.second) 1265 MA.dropAllReferences(); 1266 } 1267 1268 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1269 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1270 1271 if (Res.second) 1272 Res.first->second = std::make_unique<AccessList>(); 1273 return Res.first->second.get(); 1274 } 1275 1276 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1277 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1278 1279 if (Res.second) 1280 Res.first->second = std::make_unique<DefsList>(); 1281 return Res.first->second.get(); 1282 } 1283 1284 namespace llvm { 1285 1286 /// This class is a batch walker of all MemoryUse's in the program, and points 1287 /// their defining access at the thing that actually clobbers them. Because it 1288 /// is a batch walker that touches everything, it does not operate like the 1289 /// other walkers. This walker is basically performing a top-down SSA renaming 1290 /// pass, where the version stack is used as the cache. This enables it to be 1291 /// significantly more time and memory efficient than using the regular walker, 1292 /// which is walking bottom-up. 1293 class MemorySSA::OptimizeUses { 1294 public: 1295 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1296 BatchAAResults *BAA, DominatorTree *DT) 1297 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1298 1299 void optimizeUses(); 1300 1301 private: 1302 /// This represents where a given memorylocation is in the stack. 1303 struct MemlocStackInfo { 1304 // This essentially is keeping track of versions of the stack. Whenever 1305 // the stack changes due to pushes or pops, these versions increase. 1306 unsigned long StackEpoch; 1307 unsigned long PopEpoch; 1308 // This is the lower bound of places on the stack to check. It is equal to 1309 // the place the last stack walk ended. 1310 // Note: Correctness depends on this being initialized to 0, which densemap 1311 // does 1312 unsigned long LowerBound; 1313 const BasicBlock *LowerBoundBlock; 1314 // This is where the last walk for this memory location ended. 1315 unsigned long LastKill; 1316 bool LastKillValid; 1317 Optional<AliasResult> AR; 1318 }; 1319 1320 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1321 SmallVectorImpl<MemoryAccess *> &, 1322 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1323 1324 MemorySSA *MSSA; 1325 CachingWalker<BatchAAResults> *Walker; 1326 BatchAAResults *AA; 1327 DominatorTree *DT; 1328 }; 1329 1330 } // end namespace llvm 1331 1332 /// Optimize the uses in a given block This is basically the SSA renaming 1333 /// algorithm, with one caveat: We are able to use a single stack for all 1334 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1335 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1336 /// going to be some position in that stack of possible ones. 1337 /// 1338 /// We track the stack positions that each MemoryLocation needs 1339 /// to check, and last ended at. This is because we only want to check the 1340 /// things that changed since last time. The same MemoryLocation should 1341 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1342 /// things like this, and if they start, we can modify MemoryLocOrCall to 1343 /// include relevant data) 1344 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1345 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1346 SmallVectorImpl<MemoryAccess *> &VersionStack, 1347 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1348 1349 /// If no accesses, nothing to do. 1350 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1351 if (Accesses == nullptr) 1352 return; 1353 1354 // Pop everything that doesn't dominate the current block off the stack, 1355 // increment the PopEpoch to account for this. 1356 while (true) { 1357 assert( 1358 !VersionStack.empty() && 1359 "Version stack should have liveOnEntry sentinel dominating everything"); 1360 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1361 if (DT->dominates(BackBlock, BB)) 1362 break; 1363 while (VersionStack.back()->getBlock() == BackBlock) 1364 VersionStack.pop_back(); 1365 ++PopEpoch; 1366 } 1367 1368 for (MemoryAccess &MA : *Accesses) { 1369 auto *MU = dyn_cast<MemoryUse>(&MA); 1370 if (!MU) { 1371 VersionStack.push_back(&MA); 1372 ++StackEpoch; 1373 continue; 1374 } 1375 1376 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1377 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1378 continue; 1379 } 1380 1381 MemoryLocOrCall UseMLOC(MU); 1382 auto &LocInfo = LocStackInfo[UseMLOC]; 1383 // If the pop epoch changed, it means we've removed stuff from top of 1384 // stack due to changing blocks. We may have to reset the lower bound or 1385 // last kill info. 1386 if (LocInfo.PopEpoch != PopEpoch) { 1387 LocInfo.PopEpoch = PopEpoch; 1388 LocInfo.StackEpoch = StackEpoch; 1389 // If the lower bound was in something that no longer dominates us, we 1390 // have to reset it. 1391 // We can't simply track stack size, because the stack may have had 1392 // pushes/pops in the meantime. 1393 // XXX: This is non-optimal, but only is slower cases with heavily 1394 // branching dominator trees. To get the optimal number of queries would 1395 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1396 // the top of that stack dominates us. This does not seem worth it ATM. 1397 // A much cheaper optimization would be to always explore the deepest 1398 // branch of the dominator tree first. This will guarantee this resets on 1399 // the smallest set of blocks. 1400 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1401 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1402 // Reset the lower bound of things to check. 1403 // TODO: Some day we should be able to reset to last kill, rather than 1404 // 0. 1405 LocInfo.LowerBound = 0; 1406 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1407 LocInfo.LastKillValid = false; 1408 } 1409 } else if (LocInfo.StackEpoch != StackEpoch) { 1410 // If all that has changed is the StackEpoch, we only have to check the 1411 // new things on the stack, because we've checked everything before. In 1412 // this case, the lower bound of things to check remains the same. 1413 LocInfo.PopEpoch = PopEpoch; 1414 LocInfo.StackEpoch = StackEpoch; 1415 } 1416 if (!LocInfo.LastKillValid) { 1417 LocInfo.LastKill = VersionStack.size() - 1; 1418 LocInfo.LastKillValid = true; 1419 LocInfo.AR = MayAlias; 1420 } 1421 1422 // At this point, we should have corrected last kill and LowerBound to be 1423 // in bounds. 1424 assert(LocInfo.LowerBound < VersionStack.size() && 1425 "Lower bound out of range"); 1426 assert(LocInfo.LastKill < VersionStack.size() && 1427 "Last kill info out of range"); 1428 // In any case, the new upper bound is the top of the stack. 1429 unsigned long UpperBound = VersionStack.size() - 1; 1430 1431 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1432 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1433 << *(MU->getMemoryInst()) << ")" 1434 << " because there are " 1435 << UpperBound - LocInfo.LowerBound 1436 << " stores to disambiguate\n"); 1437 // Because we did not walk, LastKill is no longer valid, as this may 1438 // have been a kill. 1439 LocInfo.LastKillValid = false; 1440 continue; 1441 } 1442 bool FoundClobberResult = false; 1443 unsigned UpwardWalkLimit = MaxCheckLimit; 1444 while (UpperBound > LocInfo.LowerBound) { 1445 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1446 // For phis, use the walker, see where we ended up, go there 1447 MemoryAccess *Result = 1448 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1449 // We are guaranteed to find it or something is wrong 1450 while (VersionStack[UpperBound] != Result) { 1451 assert(UpperBound != 0); 1452 --UpperBound; 1453 } 1454 FoundClobberResult = true; 1455 break; 1456 } 1457 1458 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1459 // If the lifetime of the pointer ends at this instruction, it's live on 1460 // entry. 1461 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1462 // Reset UpperBound to liveOnEntryDef's place in the stack 1463 UpperBound = 0; 1464 FoundClobberResult = true; 1465 LocInfo.AR = MustAlias; 1466 break; 1467 } 1468 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1469 if (CA.IsClobber) { 1470 FoundClobberResult = true; 1471 LocInfo.AR = CA.AR; 1472 break; 1473 } 1474 --UpperBound; 1475 } 1476 1477 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1478 1479 // At the end of this loop, UpperBound is either a clobber, or lower bound 1480 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1481 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1482 // We were last killed now by where we got to 1483 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1484 LocInfo.AR = None; 1485 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1486 LocInfo.LastKill = UpperBound; 1487 } else { 1488 // Otherwise, we checked all the new ones, and now we know we can get to 1489 // LastKill. 1490 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1491 } 1492 LocInfo.LowerBound = VersionStack.size() - 1; 1493 LocInfo.LowerBoundBlock = BB; 1494 } 1495 } 1496 1497 /// Optimize uses to point to their actual clobbering definitions. 1498 void MemorySSA::OptimizeUses::optimizeUses() { 1499 SmallVector<MemoryAccess *, 16> VersionStack; 1500 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1501 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1502 1503 unsigned long StackEpoch = 1; 1504 unsigned long PopEpoch = 1; 1505 // We perform a non-recursive top-down dominator tree walk. 1506 for (const auto *DomNode : depth_first(DT->getRootNode())) 1507 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1508 LocStackInfo); 1509 } 1510 1511 void MemorySSA::placePHINodes( 1512 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1513 // Determine where our MemoryPhi's should go 1514 ForwardIDFCalculator IDFs(*DT); 1515 IDFs.setDefiningBlocks(DefiningBlocks); 1516 SmallVector<BasicBlock *, 32> IDFBlocks; 1517 IDFs.calculate(IDFBlocks); 1518 1519 // Now place MemoryPhi nodes. 1520 for (auto &BB : IDFBlocks) 1521 createMemoryPhi(BB); 1522 } 1523 1524 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1525 // We create an access to represent "live on entry", for things like 1526 // arguments or users of globals, where the memory they use is defined before 1527 // the beginning of the function. We do not actually insert it into the IR. 1528 // We do not define a live on exit for the immediate uses, and thus our 1529 // semantics do *not* imply that something with no immediate uses can simply 1530 // be removed. 1531 BasicBlock &StartingPoint = F.getEntryBlock(); 1532 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1533 &StartingPoint, NextID++)); 1534 1535 // We maintain lists of memory accesses per-block, trading memory for time. We 1536 // could just look up the memory access for every possible instruction in the 1537 // stream. 1538 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1539 // Go through each block, figure out where defs occur, and chain together all 1540 // the accesses. 1541 for (BasicBlock &B : F) { 1542 bool InsertIntoDef = false; 1543 AccessList *Accesses = nullptr; 1544 DefsList *Defs = nullptr; 1545 for (Instruction &I : B) { 1546 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1547 if (!MUD) 1548 continue; 1549 1550 if (!Accesses) 1551 Accesses = getOrCreateAccessList(&B); 1552 Accesses->push_back(MUD); 1553 if (isa<MemoryDef>(MUD)) { 1554 InsertIntoDef = true; 1555 if (!Defs) 1556 Defs = getOrCreateDefsList(&B); 1557 Defs->push_back(*MUD); 1558 } 1559 } 1560 if (InsertIntoDef) 1561 DefiningBlocks.insert(&B); 1562 } 1563 placePHINodes(DefiningBlocks); 1564 1565 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1566 // filled in with all blocks. 1567 SmallPtrSet<BasicBlock *, 16> Visited; 1568 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1569 1570 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1571 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1572 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1573 1574 // Mark the uses in unreachable blocks as live on entry, so that they go 1575 // somewhere. 1576 for (auto &BB : F) 1577 if (!Visited.count(&BB)) 1578 markUnreachableAsLiveOnEntry(&BB); 1579 } 1580 1581 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1582 1583 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1584 if (Walker) 1585 return Walker.get(); 1586 1587 if (!WalkerBase) 1588 WalkerBase = 1589 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1590 1591 Walker = 1592 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1593 return Walker.get(); 1594 } 1595 1596 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1597 if (SkipWalker) 1598 return SkipWalker.get(); 1599 1600 if (!WalkerBase) 1601 WalkerBase = 1602 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1603 1604 SkipWalker = 1605 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1606 return SkipWalker.get(); 1607 } 1608 1609 1610 // This is a helper function used by the creation routines. It places NewAccess 1611 // into the access and defs lists for a given basic block, at the given 1612 // insertion point. 1613 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1614 const BasicBlock *BB, 1615 InsertionPlace Point) { 1616 auto *Accesses = getOrCreateAccessList(BB); 1617 if (Point == Beginning) { 1618 // If it's a phi node, it goes first, otherwise, it goes after any phi 1619 // nodes. 1620 if (isa<MemoryPhi>(NewAccess)) { 1621 Accesses->push_front(NewAccess); 1622 auto *Defs = getOrCreateDefsList(BB); 1623 Defs->push_front(*NewAccess); 1624 } else { 1625 auto AI = find_if_not( 1626 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1627 Accesses->insert(AI, NewAccess); 1628 if (!isa<MemoryUse>(NewAccess)) { 1629 auto *Defs = getOrCreateDefsList(BB); 1630 auto DI = find_if_not( 1631 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1632 Defs->insert(DI, *NewAccess); 1633 } 1634 } 1635 } else { 1636 Accesses->push_back(NewAccess); 1637 if (!isa<MemoryUse>(NewAccess)) { 1638 auto *Defs = getOrCreateDefsList(BB); 1639 Defs->push_back(*NewAccess); 1640 } 1641 } 1642 BlockNumberingValid.erase(BB); 1643 } 1644 1645 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1646 AccessList::iterator InsertPt) { 1647 auto *Accesses = getWritableBlockAccesses(BB); 1648 bool WasEnd = InsertPt == Accesses->end(); 1649 Accesses->insert(AccessList::iterator(InsertPt), What); 1650 if (!isa<MemoryUse>(What)) { 1651 auto *Defs = getOrCreateDefsList(BB); 1652 // If we got asked to insert at the end, we have an easy job, just shove it 1653 // at the end. If we got asked to insert before an existing def, we also get 1654 // an iterator. If we got asked to insert before a use, we have to hunt for 1655 // the next def. 1656 if (WasEnd) { 1657 Defs->push_back(*What); 1658 } else if (isa<MemoryDef>(InsertPt)) { 1659 Defs->insert(InsertPt->getDefsIterator(), *What); 1660 } else { 1661 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1662 ++InsertPt; 1663 // Either we found a def, or we are inserting at the end 1664 if (InsertPt == Accesses->end()) 1665 Defs->push_back(*What); 1666 else 1667 Defs->insert(InsertPt->getDefsIterator(), *What); 1668 } 1669 } 1670 BlockNumberingValid.erase(BB); 1671 } 1672 1673 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1674 // Keep it in the lookup tables, remove from the lists 1675 removeFromLists(What, false); 1676 1677 // Note that moving should implicitly invalidate the optimized state of a 1678 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1679 // MemoryDef. 1680 if (auto *MD = dyn_cast<MemoryDef>(What)) 1681 MD->resetOptimized(); 1682 What->setBlock(BB); 1683 } 1684 1685 // Move What before Where in the IR. The end result is that What will belong to 1686 // the right lists and have the right Block set, but will not otherwise be 1687 // correct. It will not have the right defining access, and if it is a def, 1688 // things below it will not properly be updated. 1689 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1690 AccessList::iterator Where) { 1691 prepareForMoveTo(What, BB); 1692 insertIntoListsBefore(What, BB, Where); 1693 } 1694 1695 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1696 InsertionPlace Point) { 1697 if (isa<MemoryPhi>(What)) { 1698 assert(Point == Beginning && 1699 "Can only move a Phi at the beginning of the block"); 1700 // Update lookup table entry 1701 ValueToMemoryAccess.erase(What->getBlock()); 1702 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1703 (void)Inserted; 1704 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1705 } 1706 1707 prepareForMoveTo(What, BB); 1708 insertIntoListsForBlock(What, BB, Point); 1709 } 1710 1711 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1712 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1713 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1714 // Phi's always are placed at the front of the block. 1715 insertIntoListsForBlock(Phi, BB, Beginning); 1716 ValueToMemoryAccess[BB] = Phi; 1717 return Phi; 1718 } 1719 1720 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1721 MemoryAccess *Definition, 1722 const MemoryUseOrDef *Template, 1723 bool CreationMustSucceed) { 1724 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1725 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1726 if (CreationMustSucceed) 1727 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1728 "non-memory touching instruction"); 1729 if (NewAccess) { 1730 assert((!Definition || !isa<MemoryUse>(Definition)) && 1731 "A use cannot be a defining access"); 1732 NewAccess->setDefiningAccess(Definition); 1733 } 1734 return NewAccess; 1735 } 1736 1737 // Return true if the instruction has ordering constraints. 1738 // Note specifically that this only considers stores and loads 1739 // because others are still considered ModRef by getModRefInfo. 1740 static inline bool isOrdered(const Instruction *I) { 1741 if (auto *SI = dyn_cast<StoreInst>(I)) { 1742 if (!SI->isUnordered()) 1743 return true; 1744 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1745 if (!LI->isUnordered()) 1746 return true; 1747 } 1748 return false; 1749 } 1750 1751 /// Helper function to create new memory accesses 1752 template <typename AliasAnalysisType> 1753 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1754 AliasAnalysisType *AAP, 1755 const MemoryUseOrDef *Template) { 1756 // The assume intrinsic has a control dependency which we model by claiming 1757 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1758 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1759 // dependencies here. 1760 // FIXME: Replace this special casing with a more accurate modelling of 1761 // assume's control dependency. 1762 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1763 if (II->getIntrinsicID() == Intrinsic::assume) 1764 return nullptr; 1765 1766 // Using a nonstandard AA pipelines might leave us with unexpected modref 1767 // results for I, so add a check to not model instructions that may not read 1768 // from or write to memory. This is necessary for correctness. 1769 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1770 return nullptr; 1771 1772 bool Def, Use; 1773 if (Template) { 1774 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1775 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1776 #if !defined(NDEBUG) 1777 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1778 bool DefCheck, UseCheck; 1779 DefCheck = isModSet(ModRef) || isOrdered(I); 1780 UseCheck = isRefSet(ModRef); 1781 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1782 #endif 1783 } else { 1784 // Find out what affect this instruction has on memory. 1785 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1786 // The isOrdered check is used to ensure that volatiles end up as defs 1787 // (atomics end up as ModRef right now anyway). Until we separate the 1788 // ordering chain from the memory chain, this enables people to see at least 1789 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1790 // will still give an answer that bypasses other volatile loads. TODO: 1791 // Separate memory aliasing and ordering into two different chains so that 1792 // we can precisely represent both "what memory will this read/write/is 1793 // clobbered by" and "what instructions can I move this past". 1794 Def = isModSet(ModRef) || isOrdered(I); 1795 Use = isRefSet(ModRef); 1796 } 1797 1798 // It's possible for an instruction to not modify memory at all. During 1799 // construction, we ignore them. 1800 if (!Def && !Use) 1801 return nullptr; 1802 1803 MemoryUseOrDef *MUD; 1804 if (Def) 1805 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1806 else 1807 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1808 ValueToMemoryAccess[I] = MUD; 1809 return MUD; 1810 } 1811 1812 /// Returns true if \p Replacer dominates \p Replacee . 1813 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1814 const MemoryAccess *Replacee) const { 1815 if (isa<MemoryUseOrDef>(Replacee)) 1816 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1817 const auto *MP = cast<MemoryPhi>(Replacee); 1818 // For a phi node, the use occurs in the predecessor block of the phi node. 1819 // Since we may occur multiple times in the phi node, we have to check each 1820 // operand to ensure Replacer dominates each operand where Replacee occurs. 1821 for (const Use &Arg : MP->operands()) { 1822 if (Arg.get() != Replacee && 1823 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1824 return false; 1825 } 1826 return true; 1827 } 1828 1829 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1830 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1831 assert(MA->use_empty() && 1832 "Trying to remove memory access that still has uses"); 1833 BlockNumbering.erase(MA); 1834 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1835 MUD->setDefiningAccess(nullptr); 1836 // Invalidate our walker's cache if necessary 1837 if (!isa<MemoryUse>(MA)) 1838 getWalker()->invalidateInfo(MA); 1839 1840 Value *MemoryInst; 1841 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1842 MemoryInst = MUD->getMemoryInst(); 1843 else 1844 MemoryInst = MA->getBlock(); 1845 1846 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1847 if (VMA->second == MA) 1848 ValueToMemoryAccess.erase(VMA); 1849 } 1850 1851 /// Properly remove \p MA from all of MemorySSA's lists. 1852 /// 1853 /// Because of the way the intrusive list and use lists work, it is important to 1854 /// do removal in the right order. 1855 /// ShouldDelete defaults to true, and will cause the memory access to also be 1856 /// deleted, not just removed. 1857 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1858 BasicBlock *BB = MA->getBlock(); 1859 // The access list owns the reference, so we erase it from the non-owning list 1860 // first. 1861 if (!isa<MemoryUse>(MA)) { 1862 auto DefsIt = PerBlockDefs.find(BB); 1863 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1864 Defs->remove(*MA); 1865 if (Defs->empty()) 1866 PerBlockDefs.erase(DefsIt); 1867 } 1868 1869 // The erase call here will delete it. If we don't want it deleted, we call 1870 // remove instead. 1871 auto AccessIt = PerBlockAccesses.find(BB); 1872 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1873 if (ShouldDelete) 1874 Accesses->erase(MA); 1875 else 1876 Accesses->remove(MA); 1877 1878 if (Accesses->empty()) { 1879 PerBlockAccesses.erase(AccessIt); 1880 BlockNumberingValid.erase(BB); 1881 } 1882 } 1883 1884 void MemorySSA::print(raw_ostream &OS) const { 1885 MemorySSAAnnotatedWriter Writer(this); 1886 F.print(OS, &Writer); 1887 } 1888 1889 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1890 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1891 #endif 1892 1893 void MemorySSA::verifyMemorySSA() const { 1894 verifyOrderingDominationAndDefUses(F); 1895 verifyDominationNumbers(F); 1896 verifyPrevDefInPhis(F); 1897 // Previously, the verification used to also verify that the clobberingAccess 1898 // cached by MemorySSA is the same as the clobberingAccess found at a later 1899 // query to AA. This does not hold true in general due to the current fragility 1900 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1901 // up. As a result, transformations that are correct, will lead to BasicAA 1902 // returning different Alias answers before and after that transformation. 1903 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1904 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1905 // every transformation, which defeats the purpose of using it. For such an 1906 // example, see test4 added in D51960. 1907 } 1908 1909 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1910 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1911 for (const BasicBlock &BB : F) { 1912 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1913 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1914 auto *Pred = Phi->getIncomingBlock(I); 1915 auto *IncAcc = Phi->getIncomingValue(I); 1916 // If Pred has no unreachable predecessors, get last def looking at 1917 // IDoms. If, while walkings IDoms, any of these has an unreachable 1918 // predecessor, then the incoming def can be any access. 1919 if (auto *DTNode = DT->getNode(Pred)) { 1920 while (DTNode) { 1921 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1922 auto *LastAcc = &*(--DefList->end()); 1923 assert(LastAcc == IncAcc && 1924 "Incorrect incoming access into phi."); 1925 break; 1926 } 1927 DTNode = DTNode->getIDom(); 1928 } 1929 } else { 1930 // If Pred has unreachable predecessors, but has at least a Def, the 1931 // incoming access can be the last Def in Pred, or it could have been 1932 // optimized to LoE. After an update, though, the LoE may have been 1933 // replaced by another access, so IncAcc may be any access. 1934 // If Pred has unreachable predecessors and no Defs, incoming access 1935 // should be LoE; However, after an update, it may be any access. 1936 } 1937 } 1938 } 1939 } 1940 #endif 1941 } 1942 1943 /// Verify that all of the blocks we believe to have valid domination numbers 1944 /// actually have valid domination numbers. 1945 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1946 #ifndef NDEBUG 1947 if (BlockNumberingValid.empty()) 1948 return; 1949 1950 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1951 for (const BasicBlock &BB : F) { 1952 if (!ValidBlocks.count(&BB)) 1953 continue; 1954 1955 ValidBlocks.erase(&BB); 1956 1957 const AccessList *Accesses = getBlockAccesses(&BB); 1958 // It's correct to say an empty block has valid numbering. 1959 if (!Accesses) 1960 continue; 1961 1962 // Block numbering starts at 1. 1963 unsigned long LastNumber = 0; 1964 for (const MemoryAccess &MA : *Accesses) { 1965 auto ThisNumberIter = BlockNumbering.find(&MA); 1966 assert(ThisNumberIter != BlockNumbering.end() && 1967 "MemoryAccess has no domination number in a valid block!"); 1968 1969 unsigned long ThisNumber = ThisNumberIter->second; 1970 assert(ThisNumber > LastNumber && 1971 "Domination numbers should be strictly increasing!"); 1972 LastNumber = ThisNumber; 1973 } 1974 } 1975 1976 assert(ValidBlocks.empty() && 1977 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1978 #endif 1979 } 1980 1981 /// Verify ordering: the order and existence of MemoryAccesses matches the 1982 /// order and existence of memory affecting instructions. 1983 /// Verify domination: each definition dominates all of its uses. 1984 /// Verify def-uses: the immediate use information - walk all the memory 1985 /// accesses and verifying that, for each use, it appears in the appropriate 1986 /// def's use list 1987 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1988 #if !defined(NDEBUG) 1989 // Walk all the blocks, comparing what the lookups think and what the access 1990 // lists think, as well as the order in the blocks vs the order in the access 1991 // lists. 1992 SmallVector<MemoryAccess *, 32> ActualAccesses; 1993 SmallVector<MemoryAccess *, 32> ActualDefs; 1994 for (BasicBlock &B : F) { 1995 const AccessList *AL = getBlockAccesses(&B); 1996 const auto *DL = getBlockDefs(&B); 1997 MemoryPhi *Phi = getMemoryAccess(&B); 1998 if (Phi) { 1999 // Verify ordering. 2000 ActualAccesses.push_back(Phi); 2001 ActualDefs.push_back(Phi); 2002 // Verify domination 2003 for (const Use &U : Phi->uses()) 2004 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2005 #if defined(EXPENSIVE_CHECKS) 2006 // Verify def-uses. 2007 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2008 pred_begin(&B), pred_end(&B))) && 2009 "Incomplete MemoryPhi Node"); 2010 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2011 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2012 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2013 pred_end(&B) && 2014 "Incoming phi block not a block predecessor"); 2015 } 2016 #endif 2017 } 2018 2019 for (Instruction &I : B) { 2020 MemoryUseOrDef *MA = getMemoryAccess(&I); 2021 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2022 "We have memory affecting instructions " 2023 "in this block but they are not in the " 2024 "access list or defs list"); 2025 if (MA) { 2026 // Verify ordering. 2027 ActualAccesses.push_back(MA); 2028 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2029 // Verify ordering. 2030 ActualDefs.push_back(MA); 2031 // Verify domination. 2032 for (const Use &U : MD->uses()) 2033 assert(dominates(MD, U) && 2034 "Memory Def does not dominate it's uses"); 2035 } 2036 #if defined(EXPENSIVE_CHECKS) 2037 // Verify def-uses. 2038 verifyUseInDefs(MA->getDefiningAccess(), MA); 2039 #endif 2040 } 2041 } 2042 // Either we hit the assert, really have no accesses, or we have both 2043 // accesses and an access list. Same with defs. 2044 if (!AL && !DL) 2045 continue; 2046 // Verify ordering. 2047 assert(AL->size() == ActualAccesses.size() && 2048 "We don't have the same number of accesses in the block as on the " 2049 "access list"); 2050 assert((DL || ActualDefs.size() == 0) && 2051 "Either we should have a defs list, or we should have no defs"); 2052 assert((!DL || DL->size() == ActualDefs.size()) && 2053 "We don't have the same number of defs in the block as on the " 2054 "def list"); 2055 auto ALI = AL->begin(); 2056 auto AAI = ActualAccesses.begin(); 2057 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2058 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2059 ++ALI; 2060 ++AAI; 2061 } 2062 ActualAccesses.clear(); 2063 if (DL) { 2064 auto DLI = DL->begin(); 2065 auto ADI = ActualDefs.begin(); 2066 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2067 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2068 ++DLI; 2069 ++ADI; 2070 } 2071 } 2072 ActualDefs.clear(); 2073 } 2074 #endif 2075 } 2076 2077 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2078 /// appears in the use list of \p Def. 2079 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2080 #ifndef NDEBUG 2081 // The live on entry use may cause us to get a NULL def here 2082 if (!Def) 2083 assert(isLiveOnEntryDef(Use) && 2084 "Null def but use not point to live on entry def"); 2085 else 2086 assert(is_contained(Def->users(), Use) && 2087 "Did not find use in def's use list"); 2088 #endif 2089 } 2090 2091 /// Perform a local numbering on blocks so that instruction ordering can be 2092 /// determined in constant time. 2093 /// TODO: We currently just number in order. If we numbered by N, we could 2094 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2095 /// log2(N) sequences of mixed before and after) without needing to invalidate 2096 /// the numbering. 2097 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2098 // The pre-increment ensures the numbers really start at 1. 2099 unsigned long CurrentNumber = 0; 2100 const AccessList *AL = getBlockAccesses(B); 2101 assert(AL != nullptr && "Asking to renumber an empty block"); 2102 for (const auto &I : *AL) 2103 BlockNumbering[&I] = ++CurrentNumber; 2104 BlockNumberingValid.insert(B); 2105 } 2106 2107 /// Determine, for two memory accesses in the same block, 2108 /// whether \p Dominator dominates \p Dominatee. 2109 /// \returns True if \p Dominator dominates \p Dominatee. 2110 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2111 const MemoryAccess *Dominatee) const { 2112 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2113 2114 assert((DominatorBlock == Dominatee->getBlock()) && 2115 "Asking for local domination when accesses are in different blocks!"); 2116 // A node dominates itself. 2117 if (Dominatee == Dominator) 2118 return true; 2119 2120 // When Dominatee is defined on function entry, it is not dominated by another 2121 // memory access. 2122 if (isLiveOnEntryDef(Dominatee)) 2123 return false; 2124 2125 // When Dominator is defined on function entry, it dominates the other memory 2126 // access. 2127 if (isLiveOnEntryDef(Dominator)) 2128 return true; 2129 2130 if (!BlockNumberingValid.count(DominatorBlock)) 2131 renumberBlock(DominatorBlock); 2132 2133 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2134 // All numbers start with 1 2135 assert(DominatorNum != 0 && "Block was not numbered properly"); 2136 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2137 assert(DominateeNum != 0 && "Block was not numbered properly"); 2138 return DominatorNum < DominateeNum; 2139 } 2140 2141 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2142 const MemoryAccess *Dominatee) const { 2143 if (Dominator == Dominatee) 2144 return true; 2145 2146 if (isLiveOnEntryDef(Dominatee)) 2147 return false; 2148 2149 if (Dominator->getBlock() != Dominatee->getBlock()) 2150 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2151 return locallyDominates(Dominator, Dominatee); 2152 } 2153 2154 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2155 const Use &Dominatee) const { 2156 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2157 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2158 // The def must dominate the incoming block of the phi. 2159 if (UseBB != Dominator->getBlock()) 2160 return DT->dominates(Dominator->getBlock(), UseBB); 2161 // If the UseBB and the DefBB are the same, compare locally. 2162 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2163 } 2164 // If it's not a PHI node use, the normal dominates can already handle it. 2165 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2166 } 2167 2168 const static char LiveOnEntryStr[] = "liveOnEntry"; 2169 2170 void MemoryAccess::print(raw_ostream &OS) const { 2171 switch (getValueID()) { 2172 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2173 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2174 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2175 } 2176 llvm_unreachable("invalid value id"); 2177 } 2178 2179 void MemoryDef::print(raw_ostream &OS) const { 2180 MemoryAccess *UO = getDefiningAccess(); 2181 2182 auto printID = [&OS](MemoryAccess *A) { 2183 if (A && A->getID()) 2184 OS << A->getID(); 2185 else 2186 OS << LiveOnEntryStr; 2187 }; 2188 2189 OS << getID() << " = MemoryDef("; 2190 printID(UO); 2191 OS << ")"; 2192 2193 if (isOptimized()) { 2194 OS << "->"; 2195 printID(getOptimized()); 2196 2197 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2198 OS << " " << *AR; 2199 } 2200 } 2201 2202 void MemoryPhi::print(raw_ostream &OS) const { 2203 bool First = true; 2204 OS << getID() << " = MemoryPhi("; 2205 for (const auto &Op : operands()) { 2206 BasicBlock *BB = getIncomingBlock(Op); 2207 MemoryAccess *MA = cast<MemoryAccess>(Op); 2208 if (!First) 2209 OS << ','; 2210 else 2211 First = false; 2212 2213 OS << '{'; 2214 if (BB->hasName()) 2215 OS << BB->getName(); 2216 else 2217 BB->printAsOperand(OS, false); 2218 OS << ','; 2219 if (unsigned ID = MA->getID()) 2220 OS << ID; 2221 else 2222 OS << LiveOnEntryStr; 2223 OS << '}'; 2224 } 2225 OS << ')'; 2226 } 2227 2228 void MemoryUse::print(raw_ostream &OS) const { 2229 MemoryAccess *UO = getDefiningAccess(); 2230 OS << "MemoryUse("; 2231 if (UO && UO->getID()) 2232 OS << UO->getID(); 2233 else 2234 OS << LiveOnEntryStr; 2235 OS << ')'; 2236 2237 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2238 OS << " " << *AR; 2239 } 2240 2241 void MemoryAccess::dump() const { 2242 // Cannot completely remove virtual function even in release mode. 2243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2244 print(dbgs()); 2245 dbgs() << "\n"; 2246 #endif 2247 } 2248 2249 char MemorySSAPrinterLegacyPass::ID = 0; 2250 2251 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2252 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2253 } 2254 2255 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2256 AU.setPreservesAll(); 2257 AU.addRequired<MemorySSAWrapperPass>(); 2258 } 2259 2260 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2261 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2262 MSSA.print(dbgs()); 2263 if (VerifyMemorySSA) 2264 MSSA.verifyMemorySSA(); 2265 return false; 2266 } 2267 2268 AnalysisKey MemorySSAAnalysis::Key; 2269 2270 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2271 FunctionAnalysisManager &AM) { 2272 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2273 auto &AA = AM.getResult<AAManager>(F); 2274 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2275 } 2276 2277 bool MemorySSAAnalysis::Result::invalidate( 2278 Function &F, const PreservedAnalyses &PA, 2279 FunctionAnalysisManager::Invalidator &Inv) { 2280 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2281 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2282 Inv.invalidate<AAManager>(F, PA) || 2283 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2284 } 2285 2286 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2287 FunctionAnalysisManager &AM) { 2288 OS << "MemorySSA for function: " << F.getName() << "\n"; 2289 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2290 2291 return PreservedAnalyses::all(); 2292 } 2293 2294 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2295 FunctionAnalysisManager &AM) { 2296 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2297 2298 return PreservedAnalyses::all(); 2299 } 2300 2301 char MemorySSAWrapperPass::ID = 0; 2302 2303 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2304 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2305 } 2306 2307 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2308 2309 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2310 AU.setPreservesAll(); 2311 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2312 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2313 } 2314 2315 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2316 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2317 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2318 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2319 return false; 2320 } 2321 2322 void MemorySSAWrapperPass::verifyAnalysis() const { 2323 if (VerifyMemorySSA) 2324 MSSA->verifyMemorySSA(); 2325 } 2326 2327 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2328 MSSA->print(OS); 2329 } 2330 2331 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2332 2333 /// Walk the use-def chains starting at \p StartingAccess and find 2334 /// the MemoryAccess that actually clobbers Loc. 2335 /// 2336 /// \returns our clobbering memory access 2337 template <typename AliasAnalysisType> 2338 MemoryAccess * 2339 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2340 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2341 unsigned &UpwardWalkLimit) { 2342 if (isa<MemoryPhi>(StartingAccess)) 2343 return StartingAccess; 2344 2345 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2346 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2347 return StartingUseOrDef; 2348 2349 Instruction *I = StartingUseOrDef->getMemoryInst(); 2350 2351 // Conservatively, fences are always clobbers, so don't perform the walk if we 2352 // hit a fence. 2353 if (!isa<CallBase>(I) && I->isFenceLike()) 2354 return StartingUseOrDef; 2355 2356 UpwardsMemoryQuery Q; 2357 Q.OriginalAccess = StartingUseOrDef; 2358 Q.StartingLoc = Loc; 2359 Q.Inst = I; 2360 Q.IsCall = false; 2361 2362 // Unlike the other function, do not walk to the def of a def, because we are 2363 // handed something we already believe is the clobbering access. 2364 // We never set SkipSelf to true in Q in this method. 2365 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2366 ? StartingUseOrDef->getDefiningAccess() 2367 : StartingUseOrDef; 2368 2369 MemoryAccess *Clobber = 2370 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2371 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2372 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2373 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2374 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2375 return Clobber; 2376 } 2377 2378 template <typename AliasAnalysisType> 2379 MemoryAccess * 2380 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2381 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2382 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2383 // If this is a MemoryPhi, we can't do anything. 2384 if (!StartingAccess) 2385 return MA; 2386 2387 bool IsOptimized = false; 2388 2389 // If this is an already optimized use or def, return the optimized result. 2390 // Note: Currently, we store the optimized def result in a separate field, 2391 // since we can't use the defining access. 2392 if (StartingAccess->isOptimized()) { 2393 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2394 return StartingAccess->getOptimized(); 2395 IsOptimized = true; 2396 } 2397 2398 const Instruction *I = StartingAccess->getMemoryInst(); 2399 // We can't sanely do anything with a fence, since they conservatively clobber 2400 // all memory, and have no locations to get pointers from to try to 2401 // disambiguate. 2402 if (!isa<CallBase>(I) && I->isFenceLike()) 2403 return StartingAccess; 2404 2405 UpwardsMemoryQuery Q(I, StartingAccess); 2406 2407 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2408 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2409 StartingAccess->setOptimized(LiveOnEntry); 2410 StartingAccess->setOptimizedAccessType(None); 2411 return LiveOnEntry; 2412 } 2413 2414 MemoryAccess *OptimizedAccess; 2415 if (!IsOptimized) { 2416 // Start with the thing we already think clobbers this location 2417 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2418 2419 // At this point, DefiningAccess may be the live on entry def. 2420 // If it is, we will not get a better result. 2421 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2422 StartingAccess->setOptimized(DefiningAccess); 2423 StartingAccess->setOptimizedAccessType(None); 2424 return DefiningAccess; 2425 } 2426 2427 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2428 StartingAccess->setOptimized(OptimizedAccess); 2429 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2430 StartingAccess->setOptimizedAccessType(None); 2431 else if (Q.AR == MustAlias) 2432 StartingAccess->setOptimizedAccessType(MustAlias); 2433 } else 2434 OptimizedAccess = StartingAccess->getOptimized(); 2435 2436 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2437 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2438 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2439 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2440 2441 MemoryAccess *Result; 2442 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2443 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2444 assert(isa<MemoryDef>(Q.OriginalAccess)); 2445 Q.SkipSelfAccess = true; 2446 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2447 } else 2448 Result = OptimizedAccess; 2449 2450 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2451 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2452 2453 return Result; 2454 } 2455 2456 MemoryAccess * 2457 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2458 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2459 return Use->getDefiningAccess(); 2460 return MA; 2461 } 2462 2463 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2464 MemoryAccess *StartingAccess, const MemoryLocation &) { 2465 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2466 return Use->getDefiningAccess(); 2467 return StartingAccess; 2468 } 2469 2470 void MemoryPhi::deleteMe(DerivedUser *Self) { 2471 delete static_cast<MemoryPhi *>(Self); 2472 } 2473 2474 void MemoryDef::deleteMe(DerivedUser *Self) { 2475 delete static_cast<MemoryDef *>(Self); 2476 } 2477 2478 void MemoryUse::deleteMe(DerivedUser *Self) { 2479 delete static_cast<MemoryUse *>(Self); 2480 } 2481