1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <memory>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "memoryssa"
59 
60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
61                       true)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
64 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
65                     true)
66 
67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
68                       "Memory SSA Printer", false, false)
69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
71                     "Memory SSA Printer", false, false)
72 
73 static cl::opt<unsigned> MaxCheckLimit(
74     "memssa-check-limit", cl::Hidden, cl::init(100),
75     cl::desc("The maximum number of stores/phis MemorySSA"
76              "will consider trying to walk past (default = 100)"));
77 
78 // Always verify MemorySSA if expensive checking is enabled.
79 #ifdef EXPENSIVE_CHECKS
80 bool llvm::VerifyMemorySSA = true;
81 #else
82 bool llvm::VerifyMemorySSA = false;
83 #endif
84 static cl::opt<bool, true>
85     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
86                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
87 
88 namespace llvm {
89 
90 /// An assembly annotator class to print Memory SSA information in
91 /// comments.
92 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
93   friend class MemorySSA;
94 
95   const MemorySSA *MSSA;
96 
97 public:
98   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
99 
100   void emitBasicBlockStartAnnot(const BasicBlock *BB,
101                                 formatted_raw_ostream &OS) override {
102     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
103       OS << "; " << *MA << "\n";
104   }
105 
106   void emitInstructionAnnot(const Instruction *I,
107                             formatted_raw_ostream &OS) override {
108     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
109       OS << "; " << *MA << "\n";
110   }
111 };
112 
113 } // end namespace llvm
114 
115 namespace {
116 
117 /// Our current alias analysis API differentiates heavily between calls and
118 /// non-calls, and functions called on one usually assert on the other.
119 /// This class encapsulates the distinction to simplify other code that wants
120 /// "Memory affecting instructions and related data" to use as a key.
121 /// For example, this class is used as a densemap key in the use optimizer.
122 class MemoryLocOrCall {
123 public:
124   bool IsCall = false;
125 
126   MemoryLocOrCall(MemoryUseOrDef *MUD)
127       : MemoryLocOrCall(MUD->getMemoryInst()) {}
128   MemoryLocOrCall(const MemoryUseOrDef *MUD)
129       : MemoryLocOrCall(MUD->getMemoryInst()) {}
130 
131   MemoryLocOrCall(Instruction *Inst) {
132     if (auto *C = dyn_cast<CallBase>(Inst)) {
133       IsCall = true;
134       Call = C;
135     } else {
136       IsCall = false;
137       // There is no such thing as a memorylocation for a fence inst, and it is
138       // unique in that regard.
139       if (!isa<FenceInst>(Inst))
140         Loc = MemoryLocation::get(Inst);
141     }
142   }
143 
144   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
145 
146   const CallBase *getCall() const {
147     assert(IsCall);
148     return Call;
149   }
150 
151   MemoryLocation getLoc() const {
152     assert(!IsCall);
153     return Loc;
154   }
155 
156   bool operator==(const MemoryLocOrCall &Other) const {
157     if (IsCall != Other.IsCall)
158       return false;
159 
160     if (!IsCall)
161       return Loc == Other.Loc;
162 
163     if (Call->getCalledValue() != Other.Call->getCalledValue())
164       return false;
165 
166     return Call->arg_size() == Other.Call->arg_size() &&
167            std::equal(Call->arg_begin(), Call->arg_end(),
168                       Other.Call->arg_begin());
169   }
170 
171 private:
172   union {
173     const CallBase *Call;
174     MemoryLocation Loc;
175   };
176 };
177 
178 } // end anonymous namespace
179 
180 namespace llvm {
181 
182 template <> struct DenseMapInfo<MemoryLocOrCall> {
183   static inline MemoryLocOrCall getEmptyKey() {
184     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
185   }
186 
187   static inline MemoryLocOrCall getTombstoneKey() {
188     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
189   }
190 
191   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
192     if (!MLOC.IsCall)
193       return hash_combine(
194           MLOC.IsCall,
195           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
196 
197     hash_code hash =
198         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
199                                       MLOC.getCall()->getCalledValue()));
200 
201     for (const Value *Arg : MLOC.getCall()->args())
202       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
203     return hash;
204   }
205 
206   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
207     return LHS == RHS;
208   }
209 };
210 
211 } // end namespace llvm
212 
213 /// This does one-way checks to see if Use could theoretically be hoisted above
214 /// MayClobber. This will not check the other way around.
215 ///
216 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
217 /// MayClobber, with no potentially clobbering operations in between them.
218 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
219 static bool areLoadsReorderable(const LoadInst *Use,
220                                 const LoadInst *MayClobber) {
221   bool VolatileUse = Use->isVolatile();
222   bool VolatileClobber = MayClobber->isVolatile();
223   // Volatile operations may never be reordered with other volatile operations.
224   if (VolatileUse && VolatileClobber)
225     return false;
226   // Otherwise, volatile doesn't matter here. From the language reference:
227   // 'optimizers may change the order of volatile operations relative to
228   // non-volatile operations.'"
229 
230   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
231   // is weaker, it can be moved above other loads. We just need to be sure that
232   // MayClobber isn't an acquire load, because loads can't be moved above
233   // acquire loads.
234   //
235   // Note that this explicitly *does* allow the free reordering of monotonic (or
236   // weaker) loads of the same address.
237   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
238   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
239                                                      AtomicOrdering::Acquire);
240   return !(SeqCstUse || MayClobberIsAcquire);
241 }
242 
243 namespace {
244 
245 struct ClobberAlias {
246   bool IsClobber;
247   Optional<AliasResult> AR;
248 };
249 
250 } // end anonymous namespace
251 
252 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
253 // ignored if IsClobber = false.
254 template <typename AliasAnalysisType>
255 static ClobberAlias
256 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
257                          const Instruction *UseInst, AliasAnalysisType &AA) {
258   Instruction *DefInst = MD->getMemoryInst();
259   assert(DefInst && "Defining instruction not actually an instruction");
260   const auto *UseCall = dyn_cast<CallBase>(UseInst);
261   Optional<AliasResult> AR;
262 
263   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
264     // These intrinsics will show up as affecting memory, but they are just
265     // markers, mostly.
266     //
267     // FIXME: We probably don't actually want MemorySSA to model these at all
268     // (including creating MemoryAccesses for them): we just end up inventing
269     // clobbers where they don't really exist at all. Please see D43269 for
270     // context.
271     switch (II->getIntrinsicID()) {
272     case Intrinsic::lifetime_start:
273       if (UseCall)
274         return {false, NoAlias};
275       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
276       return {AR != NoAlias, AR};
277     case Intrinsic::lifetime_end:
278     case Intrinsic::invariant_start:
279     case Intrinsic::invariant_end:
280     case Intrinsic::assume:
281       return {false, NoAlias};
282     default:
283       break;
284     }
285   }
286 
287   if (UseCall) {
288     ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
289     AR = isMustSet(I) ? MustAlias : MayAlias;
290     return {isModOrRefSet(I), AR};
291   }
292 
293   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
294     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
295       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
296 
297   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
298   AR = isMustSet(I) ? MustAlias : MayAlias;
299   return {isModSet(I), AR};
300 }
301 
302 template <typename AliasAnalysisType>
303 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
304                                              const MemoryUseOrDef *MU,
305                                              const MemoryLocOrCall &UseMLOC,
306                                              AliasAnalysisType &AA) {
307   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
308   // to exist while MemoryLocOrCall is pushed through places.
309   if (UseMLOC.IsCall)
310     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
311                                     AA);
312   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
313                                   AA);
314 }
315 
316 // Return true when MD may alias MU, return false otherwise.
317 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
318                                         AliasAnalysis &AA) {
319   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
320 }
321 
322 namespace {
323 
324 struct UpwardsMemoryQuery {
325   // True if our original query started off as a call
326   bool IsCall = false;
327   // The pointer location we started the query with. This will be empty if
328   // IsCall is true.
329   MemoryLocation StartingLoc;
330   // This is the instruction we were querying about.
331   const Instruction *Inst = nullptr;
332   // The MemoryAccess we actually got called with, used to test local domination
333   const MemoryAccess *OriginalAccess = nullptr;
334   Optional<AliasResult> AR = MayAlias;
335   bool SkipSelfAccess = false;
336 
337   UpwardsMemoryQuery() = default;
338 
339   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
340       : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
341     if (!IsCall)
342       StartingLoc = MemoryLocation::get(Inst);
343   }
344 };
345 
346 } // end anonymous namespace
347 
348 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349                            BatchAAResults &AA) {
350   Instruction *Inst = MD->getMemoryInst();
351   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352     switch (II->getIntrinsicID()) {
353     case Intrinsic::lifetime_end:
354       return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
355     default:
356       return false;
357     }
358   }
359   return false;
360 }
361 
362 template <typename AliasAnalysisType>
363 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
364                                                    const Instruction *I) {
365   // If the memory can't be changed, then loads of the memory can't be
366   // clobbered.
367   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
368                               AA.pointsToConstantMemory(MemoryLocation(
369                                   cast<LoadInst>(I)->getPointerOperand())));
370 }
371 
372 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
373 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
374 ///
375 /// This is meant to be as simple and self-contained as possible. Because it
376 /// uses no cache, etc., it can be relatively expensive.
377 ///
378 /// \param Start     The MemoryAccess that we want to walk from.
379 /// \param ClobberAt A clobber for Start.
380 /// \param StartLoc  The MemoryLocation for Start.
381 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
382 /// \param Query     The UpwardsMemoryQuery we used for our search.
383 /// \param AA        The AliasAnalysis we used for our search.
384 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
385 
386 template <typename AliasAnalysisType>
387 LLVM_ATTRIBUTE_UNUSED static void
388 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
389                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
390                    const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
391                    bool AllowImpreciseClobber = false) {
392   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
393 
394   if (MSSA.isLiveOnEntryDef(Start)) {
395     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
396            "liveOnEntry must clobber itself");
397     return;
398   }
399 
400   bool FoundClobber = false;
401   DenseSet<ConstMemoryAccessPair> VisitedPhis;
402   SmallVector<ConstMemoryAccessPair, 8> Worklist;
403   Worklist.emplace_back(Start, StartLoc);
404   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
405   // is found, complain.
406   while (!Worklist.empty()) {
407     auto MAP = Worklist.pop_back_val();
408     // All we care about is that nothing from Start to ClobberAt clobbers Start.
409     // We learn nothing from revisiting nodes.
410     if (!VisitedPhis.insert(MAP).second)
411       continue;
412 
413     for (const auto *MA : def_chain(MAP.first)) {
414       if (MA == ClobberAt) {
415         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
416           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
417           // since it won't let us short-circuit.
418           //
419           // Also, note that this can't be hoisted out of the `Worklist` loop,
420           // since MD may only act as a clobber for 1 of N MemoryLocations.
421           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
422           if (!FoundClobber) {
423             ClobberAlias CA =
424                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
425             if (CA.IsClobber) {
426               FoundClobber = true;
427               // Not used: CA.AR;
428             }
429           }
430         }
431         break;
432       }
433 
434       // We should never hit liveOnEntry, unless it's the clobber.
435       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
436 
437       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
438         // If Start is a Def, skip self.
439         if (MD == Start)
440           continue;
441 
442         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
443                     .IsClobber &&
444                "Found clobber before reaching ClobberAt!");
445         continue;
446       }
447 
448       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
449         (void)MU;
450         assert (MU == Start &&
451                 "Can only find use in def chain if Start is a use");
452         continue;
453       }
454 
455       assert(isa<MemoryPhi>(MA));
456       Worklist.append(
457           upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
458           upward_defs_end());
459     }
460   }
461 
462   // If the verify is done following an optimization, it's possible that
463   // ClobberAt was a conservative clobbering, that we can now infer is not a
464   // true clobbering access. Don't fail the verify if that's the case.
465   // We do have accesses that claim they're optimized, but could be optimized
466   // further. Updating all these can be expensive, so allow it for now (FIXME).
467   if (AllowImpreciseClobber)
468     return;
469 
470   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
471   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
472   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
473          "ClobberAt never acted as a clobber");
474 }
475 
476 namespace {
477 
478 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
479 /// in one class.
480 template <class AliasAnalysisType> class ClobberWalker {
481   /// Save a few bytes by using unsigned instead of size_t.
482   using ListIndex = unsigned;
483 
484   /// Represents a span of contiguous MemoryDefs, potentially ending in a
485   /// MemoryPhi.
486   struct DefPath {
487     MemoryLocation Loc;
488     // Note that, because we always walk in reverse, Last will always dominate
489     // First. Also note that First and Last are inclusive.
490     MemoryAccess *First;
491     MemoryAccess *Last;
492     Optional<ListIndex> Previous;
493 
494     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
495             Optional<ListIndex> Previous)
496         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
497 
498     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
499             Optional<ListIndex> Previous)
500         : DefPath(Loc, Init, Init, Previous) {}
501   };
502 
503   const MemorySSA &MSSA;
504   AliasAnalysisType &AA;
505   DominatorTree &DT;
506   UpwardsMemoryQuery *Query;
507 
508   // Phi optimization bookkeeping
509   SmallVector<DefPath, 32> Paths;
510   DenseSet<ConstMemoryAccessPair> VisitedPhis;
511 
512   /// Find the nearest def or phi that `From` can legally be optimized to.
513   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
514     assert(From->getNumOperands() && "Phi with no operands?");
515 
516     BasicBlock *BB = From->getBlock();
517     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
518     DomTreeNode *Node = DT.getNode(BB);
519     while ((Node = Node->getIDom())) {
520       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
521       if (Defs)
522         return &*Defs->rbegin();
523     }
524     return Result;
525   }
526 
527   /// Result of calling walkToPhiOrClobber.
528   struct UpwardsWalkResult {
529     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
530     /// both. Include alias info when clobber found.
531     MemoryAccess *Result;
532     bool IsKnownClobber;
533     Optional<AliasResult> AR;
534   };
535 
536   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
537   /// This will update Desc.Last as it walks. It will (optionally) also stop at
538   /// StopAt.
539   ///
540   /// This does not test for whether StopAt is a clobber
541   UpwardsWalkResult
542   walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
543                      const MemoryAccess *SkipStopAt = nullptr) const {
544     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
545 
546     for (MemoryAccess *Current : def_chain(Desc.Last)) {
547       Desc.Last = Current;
548       if (Current == StopAt || Current == SkipStopAt)
549         return {Current, false, MayAlias};
550 
551       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
552         if (MSSA.isLiveOnEntryDef(MD))
553           return {MD, true, MustAlias};
554         ClobberAlias CA =
555             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
556         if (CA.IsClobber)
557           return {MD, true, CA.AR};
558       }
559     }
560 
561     assert(isa<MemoryPhi>(Desc.Last) &&
562            "Ended at a non-clobber that's not a phi?");
563     return {Desc.Last, false, MayAlias};
564   }
565 
566   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
567                    ListIndex PriorNode) {
568     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
569                                  upward_defs_end());
570     for (const MemoryAccessPair &P : UpwardDefs) {
571       PausedSearches.push_back(Paths.size());
572       Paths.emplace_back(P.second, P.first, PriorNode);
573     }
574   }
575 
576   /// Represents a search that terminated after finding a clobber. This clobber
577   /// may or may not be present in the path of defs from LastNode..SearchStart,
578   /// since it may have been retrieved from cache.
579   struct TerminatedPath {
580     MemoryAccess *Clobber;
581     ListIndex LastNode;
582   };
583 
584   /// Get an access that keeps us from optimizing to the given phi.
585   ///
586   /// PausedSearches is an array of indices into the Paths array. Its incoming
587   /// value is the indices of searches that stopped at the last phi optimization
588   /// target. It's left in an unspecified state.
589   ///
590   /// If this returns None, NewPaused is a vector of searches that terminated
591   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
592   Optional<TerminatedPath>
593   getBlockingAccess(const MemoryAccess *StopWhere,
594                     SmallVectorImpl<ListIndex> &PausedSearches,
595                     SmallVectorImpl<ListIndex> &NewPaused,
596                     SmallVectorImpl<TerminatedPath> &Terminated) {
597     assert(!PausedSearches.empty() && "No searches to continue?");
598 
599     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
600     // PausedSearches as our stack.
601     while (!PausedSearches.empty()) {
602       ListIndex PathIndex = PausedSearches.pop_back_val();
603       DefPath &Node = Paths[PathIndex];
604 
605       // If we've already visited this path with this MemoryLocation, we don't
606       // need to do so again.
607       //
608       // NOTE: That we just drop these paths on the ground makes caching
609       // behavior sporadic. e.g. given a diamond:
610       //  A
611       // B C
612       //  D
613       //
614       // ...If we walk D, B, A, C, we'll only cache the result of phi
615       // optimization for A, B, and D; C will be skipped because it dies here.
616       // This arguably isn't the worst thing ever, since:
617       //   - We generally query things in a top-down order, so if we got below D
618       //     without needing cache entries for {C, MemLoc}, then chances are
619       //     that those cache entries would end up ultimately unused.
620       //   - We still cache things for A, so C only needs to walk up a bit.
621       // If this behavior becomes problematic, we can fix without a ton of extra
622       // work.
623       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
624         continue;
625 
626       const MemoryAccess *SkipStopWhere = nullptr;
627       if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
628         assert(isa<MemoryDef>(Query->OriginalAccess));
629         SkipStopWhere = Query->OriginalAccess;
630       }
631 
632       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere,
633                                                  /*SkipStopAt=*/SkipStopWhere);
634       if (Res.IsKnownClobber) {
635         assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
636         // If this wasn't a cache hit, we hit a clobber when walking. That's a
637         // failure.
638         TerminatedPath Term{Res.Result, PathIndex};
639         if (!MSSA.dominates(Res.Result, StopWhere))
640           return Term;
641 
642         // Otherwise, it's a valid thing to potentially optimize to.
643         Terminated.push_back(Term);
644         continue;
645       }
646 
647       if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
648         // We've hit our target. Save this path off for if we want to continue
649         // walking. If we are in the mode of skipping the OriginalAccess, and
650         // we've reached back to the OriginalAccess, do not save path, we've
651         // just looped back to self.
652         if (Res.Result != SkipStopWhere)
653           NewPaused.push_back(PathIndex);
654         continue;
655       }
656 
657       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
658       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
659     }
660 
661     return None;
662   }
663 
664   template <typename T, typename Walker>
665   struct generic_def_path_iterator
666       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
667                                     std::forward_iterator_tag, T *> {
668     generic_def_path_iterator() {}
669     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
670 
671     T &operator*() const { return curNode(); }
672 
673     generic_def_path_iterator &operator++() {
674       N = curNode().Previous;
675       return *this;
676     }
677 
678     bool operator==(const generic_def_path_iterator &O) const {
679       if (N.hasValue() != O.N.hasValue())
680         return false;
681       return !N.hasValue() || *N == *O.N;
682     }
683 
684   private:
685     T &curNode() const { return W->Paths[*N]; }
686 
687     Walker *W = nullptr;
688     Optional<ListIndex> N = None;
689   };
690 
691   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
692   using const_def_path_iterator =
693       generic_def_path_iterator<const DefPath, const ClobberWalker>;
694 
695   iterator_range<def_path_iterator> def_path(ListIndex From) {
696     return make_range(def_path_iterator(this, From), def_path_iterator());
697   }
698 
699   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
700     return make_range(const_def_path_iterator(this, From),
701                       const_def_path_iterator());
702   }
703 
704   struct OptznResult {
705     /// The path that contains our result.
706     TerminatedPath PrimaryClobber;
707     /// The paths that we can legally cache back from, but that aren't
708     /// necessarily the result of the Phi optimization.
709     SmallVector<TerminatedPath, 4> OtherClobbers;
710   };
711 
712   ListIndex defPathIndex(const DefPath &N) const {
713     // The assert looks nicer if we don't need to do &N
714     const DefPath *NP = &N;
715     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
716            "Out of bounds DefPath!");
717     return NP - &Paths.front();
718   }
719 
720   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
721   /// that act as legal clobbers. Note that this won't return *all* clobbers.
722   ///
723   /// Phi optimization algorithm tl;dr:
724   ///   - Find the earliest def/phi, A, we can optimize to
725   ///   - Find if all paths from the starting memory access ultimately reach A
726   ///     - If not, optimization isn't possible.
727   ///     - Otherwise, walk from A to another clobber or phi, A'.
728   ///       - If A' is a def, we're done.
729   ///       - If A' is a phi, try to optimize it.
730   ///
731   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
732   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
733   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
734                              const MemoryLocation &Loc) {
735     assert(Paths.empty() && VisitedPhis.empty() &&
736            "Reset the optimization state.");
737 
738     Paths.emplace_back(Loc, Start, Phi, None);
739     // Stores how many "valid" optimization nodes we had prior to calling
740     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
741     auto PriorPathsSize = Paths.size();
742 
743     SmallVector<ListIndex, 16> PausedSearches;
744     SmallVector<ListIndex, 8> NewPaused;
745     SmallVector<TerminatedPath, 4> TerminatedPaths;
746 
747     addSearches(Phi, PausedSearches, 0);
748 
749     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
750     // Paths.
751     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
752       assert(!Paths.empty() && "Need a path to move");
753       auto Dom = Paths.begin();
754       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
755         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
756           Dom = I;
757       auto Last = Paths.end() - 1;
758       if (Last != Dom)
759         std::iter_swap(Last, Dom);
760     };
761 
762     MemoryPhi *Current = Phi;
763     while (true) {
764       assert(!MSSA.isLiveOnEntryDef(Current) &&
765              "liveOnEntry wasn't treated as a clobber?");
766 
767       const auto *Target = getWalkTarget(Current);
768       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
769       // optimization for the prior phi.
770       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
771         return MSSA.dominates(P.Clobber, Target);
772       }));
773 
774       // FIXME: This is broken, because the Blocker may be reported to be
775       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
776       // For the moment, this is fine, since we do nothing with blocker info.
777       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
778               Target, PausedSearches, NewPaused, TerminatedPaths)) {
779 
780         // Find the node we started at. We can't search based on N->Last, since
781         // we may have gone around a loop with a different MemoryLocation.
782         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
783           return defPathIndex(N) < PriorPathsSize;
784         });
785         assert(Iter != def_path_iterator());
786 
787         DefPath &CurNode = *Iter;
788         assert(CurNode.Last == Current);
789 
790         // Two things:
791         // A. We can't reliably cache all of NewPaused back. Consider a case
792         //    where we have two paths in NewPaused; one of which can't optimize
793         //    above this phi, whereas the other can. If we cache the second path
794         //    back, we'll end up with suboptimal cache entries. We can handle
795         //    cases like this a bit better when we either try to find all
796         //    clobbers that block phi optimization, or when our cache starts
797         //    supporting unfinished searches.
798         // B. We can't reliably cache TerminatedPaths back here without doing
799         //    extra checks; consider a case like:
800         //       T
801         //      / \
802         //     D   C
803         //      \ /
804         //       S
805         //    Where T is our target, C is a node with a clobber on it, D is a
806         //    diamond (with a clobber *only* on the left or right node, N), and
807         //    S is our start. Say we walk to D, through the node opposite N
808         //    (read: ignoring the clobber), and see a cache entry in the top
809         //    node of D. That cache entry gets put into TerminatedPaths. We then
810         //    walk up to C (N is later in our worklist), find the clobber, and
811         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
812         //    the bottom part of D to the cached clobber, ignoring the clobber
813         //    in N. Again, this problem goes away if we start tracking all
814         //    blockers for a given phi optimization.
815         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
816         return {Result, {}};
817       }
818 
819       // If there's nothing left to search, then all paths led to valid clobbers
820       // that we got from our cache; pick the nearest to the start, and allow
821       // the rest to be cached back.
822       if (NewPaused.empty()) {
823         MoveDominatedPathToEnd(TerminatedPaths);
824         TerminatedPath Result = TerminatedPaths.pop_back_val();
825         return {Result, std::move(TerminatedPaths)};
826       }
827 
828       MemoryAccess *DefChainEnd = nullptr;
829       SmallVector<TerminatedPath, 4> Clobbers;
830       for (ListIndex Paused : NewPaused) {
831         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
832         if (WR.IsKnownClobber)
833           Clobbers.push_back({WR.Result, Paused});
834         else
835           // Micro-opt: If we hit the end of the chain, save it.
836           DefChainEnd = WR.Result;
837       }
838 
839       if (!TerminatedPaths.empty()) {
840         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
841         // do it now.
842         if (!DefChainEnd)
843           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
844             DefChainEnd = MA;
845 
846         // If any of the terminated paths don't dominate the phi we'll try to
847         // optimize, we need to figure out what they are and quit.
848         const BasicBlock *ChainBB = DefChainEnd->getBlock();
849         for (const TerminatedPath &TP : TerminatedPaths) {
850           // Because we know that DefChainEnd is as "high" as we can go, we
851           // don't need local dominance checks; BB dominance is sufficient.
852           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
853             Clobbers.push_back(TP);
854         }
855       }
856 
857       // If we have clobbers in the def chain, find the one closest to Current
858       // and quit.
859       if (!Clobbers.empty()) {
860         MoveDominatedPathToEnd(Clobbers);
861         TerminatedPath Result = Clobbers.pop_back_val();
862         return {Result, std::move(Clobbers)};
863       }
864 
865       assert(all_of(NewPaused,
866                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
867 
868       // Because liveOnEntry is a clobber, this must be a phi.
869       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
870 
871       PriorPathsSize = Paths.size();
872       PausedSearches.clear();
873       for (ListIndex I : NewPaused)
874         addSearches(DefChainPhi, PausedSearches, I);
875       NewPaused.clear();
876 
877       Current = DefChainPhi;
878     }
879   }
880 
881   void verifyOptResult(const OptznResult &R) const {
882     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
883       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
884     }));
885   }
886 
887   void resetPhiOptznState() {
888     Paths.clear();
889     VisitedPhis.clear();
890   }
891 
892 public:
893   ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
894       : MSSA(MSSA), AA(AA), DT(DT) {}
895 
896   AliasAnalysisType *getAA() { return &AA; }
897   /// Finds the nearest clobber for the given query, optimizing phis if
898   /// possible.
899   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
900     Query = &Q;
901 
902     MemoryAccess *Current = Start;
903     // This walker pretends uses don't exist. If we're handed one, silently grab
904     // its def. (This has the nice side-effect of ensuring we never cache uses)
905     if (auto *MU = dyn_cast<MemoryUse>(Start))
906       Current = MU->getDefiningAccess();
907 
908     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
909     // Fast path for the overly-common case (no crazy phi optimization
910     // necessary)
911     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
912     MemoryAccess *Result;
913     if (WalkResult.IsKnownClobber) {
914       Result = WalkResult.Result;
915       Q.AR = WalkResult.AR;
916     } else {
917       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
918                                           Current, Q.StartingLoc);
919       verifyOptResult(OptRes);
920       resetPhiOptznState();
921       Result = OptRes.PrimaryClobber.Clobber;
922     }
923 
924 #ifdef EXPENSIVE_CHECKS
925     if (!Q.SkipSelfAccess)
926       checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
927 #endif
928     return Result;
929   }
930 };
931 
932 struct RenamePassData {
933   DomTreeNode *DTN;
934   DomTreeNode::const_iterator ChildIt;
935   MemoryAccess *IncomingVal;
936 
937   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
938                  MemoryAccess *M)
939       : DTN(D), ChildIt(It), IncomingVal(M) {}
940 
941   void swap(RenamePassData &RHS) {
942     std::swap(DTN, RHS.DTN);
943     std::swap(ChildIt, RHS.ChildIt);
944     std::swap(IncomingVal, RHS.IncomingVal);
945   }
946 };
947 
948 } // end anonymous namespace
949 
950 namespace llvm {
951 
952 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
953   ClobberWalker<AliasAnalysisType> Walker;
954   MemorySSA *MSSA;
955 
956 public:
957   ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
958       : Walker(*M, *A, *D), MSSA(M) {}
959 
960   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
961                                               const MemoryLocation &);
962   // Second argument (bool), defines whether the clobber search should skip the
963   // original queried access. If true, there will be a follow-up query searching
964   // for a clobber access past "self". Note that the Optimized access is not
965   // updated if a new clobber is found by this SkipSelf search. If this
966   // additional query becomes heavily used we may decide to cache the result.
967   // Walker instantiations will decide how to set the SkipSelf bool.
968   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, bool);
969 };
970 
971 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
972 /// longer does caching on its own, but the name has been retained for the
973 /// moment.
974 template <class AliasAnalysisType>
975 class MemorySSA::CachingWalker final : public MemorySSAWalker {
976   ClobberWalkerBase<AliasAnalysisType> *Walker;
977 
978 public:
979   CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
980       : MemorySSAWalker(M), Walker(W) {}
981   ~CachingWalker() override = default;
982 
983   using MemorySSAWalker::getClobberingMemoryAccess;
984 
985   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
986     return Walker->getClobberingMemoryAccessBase(MA, false);
987   }
988   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
989                                           const MemoryLocation &Loc) override {
990     return Walker->getClobberingMemoryAccessBase(MA, Loc);
991   }
992 
993   void invalidateInfo(MemoryAccess *MA) override {
994     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
995       MUD->resetOptimized();
996   }
997 };
998 
999 template <class AliasAnalysisType>
1000 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1001   ClobberWalkerBase<AliasAnalysisType> *Walker;
1002 
1003 public:
1004   SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1005       : MemorySSAWalker(M), Walker(W) {}
1006   ~SkipSelfWalker() override = default;
1007 
1008   using MemorySSAWalker::getClobberingMemoryAccess;
1009 
1010   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1011     return Walker->getClobberingMemoryAccessBase(MA, true);
1012   }
1013   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1014                                           const MemoryLocation &Loc) override {
1015     return Walker->getClobberingMemoryAccessBase(MA, Loc);
1016   }
1017 
1018   void invalidateInfo(MemoryAccess *MA) override {
1019     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1020       MUD->resetOptimized();
1021   }
1022 };
1023 
1024 } // end namespace llvm
1025 
1026 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1027                                     bool RenameAllUses) {
1028   // Pass through values to our successors
1029   for (const BasicBlock *S : successors(BB)) {
1030     auto It = PerBlockAccesses.find(S);
1031     // Rename the phi nodes in our successor block
1032     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1033       continue;
1034     AccessList *Accesses = It->second.get();
1035     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1036     if (RenameAllUses) {
1037       int PhiIndex = Phi->getBasicBlockIndex(BB);
1038       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
1039       Phi->setIncomingValue(PhiIndex, IncomingVal);
1040     } else
1041       Phi->addIncoming(IncomingVal, BB);
1042   }
1043 }
1044 
1045 /// Rename a single basic block into MemorySSA form.
1046 /// Uses the standard SSA renaming algorithm.
1047 /// \returns The new incoming value.
1048 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1049                                      bool RenameAllUses) {
1050   auto It = PerBlockAccesses.find(BB);
1051   // Skip most processing if the list is empty.
1052   if (It != PerBlockAccesses.end()) {
1053     AccessList *Accesses = It->second.get();
1054     for (MemoryAccess &L : *Accesses) {
1055       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1056         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1057           MUD->setDefiningAccess(IncomingVal);
1058         if (isa<MemoryDef>(&L))
1059           IncomingVal = &L;
1060       } else {
1061         IncomingVal = &L;
1062       }
1063     }
1064   }
1065   return IncomingVal;
1066 }
1067 
1068 /// This is the standard SSA renaming algorithm.
1069 ///
1070 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1071 /// in phi nodes in our successors.
1072 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1073                            SmallPtrSetImpl<BasicBlock *> &Visited,
1074                            bool SkipVisited, bool RenameAllUses) {
1075   SmallVector<RenamePassData, 32> WorkStack;
1076   // Skip everything if we already renamed this block and we are skipping.
1077   // Note: You can't sink this into the if, because we need it to occur
1078   // regardless of whether we skip blocks or not.
1079   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1080   if (SkipVisited && AlreadyVisited)
1081     return;
1082 
1083   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1084   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1085   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1086 
1087   while (!WorkStack.empty()) {
1088     DomTreeNode *Node = WorkStack.back().DTN;
1089     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1090     IncomingVal = WorkStack.back().IncomingVal;
1091 
1092     if (ChildIt == Node->end()) {
1093       WorkStack.pop_back();
1094     } else {
1095       DomTreeNode *Child = *ChildIt;
1096       ++WorkStack.back().ChildIt;
1097       BasicBlock *BB = Child->getBlock();
1098       // Note: You can't sink this into the if, because we need it to occur
1099       // regardless of whether we skip blocks or not.
1100       AlreadyVisited = !Visited.insert(BB).second;
1101       if (SkipVisited && AlreadyVisited) {
1102         // We already visited this during our renaming, which can happen when
1103         // being asked to rename multiple blocks. Figure out the incoming val,
1104         // which is the last def.
1105         // Incoming value can only change if there is a block def, and in that
1106         // case, it's the last block def in the list.
1107         if (auto *BlockDefs = getWritableBlockDefs(BB))
1108           IncomingVal = &*BlockDefs->rbegin();
1109       } else
1110         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1111       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1112       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1113     }
1114   }
1115 }
1116 
1117 /// This handles unreachable block accesses by deleting phi nodes in
1118 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1119 /// being uses of the live on entry definition.
1120 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1121   assert(!DT->isReachableFromEntry(BB) &&
1122          "Reachable block found while handling unreachable blocks");
1123 
1124   // Make sure phi nodes in our reachable successors end up with a
1125   // LiveOnEntryDef for our incoming edge, even though our block is forward
1126   // unreachable.  We could just disconnect these blocks from the CFG fully,
1127   // but we do not right now.
1128   for (const BasicBlock *S : successors(BB)) {
1129     if (!DT->isReachableFromEntry(S))
1130       continue;
1131     auto It = PerBlockAccesses.find(S);
1132     // Rename the phi nodes in our successor block
1133     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1134       continue;
1135     AccessList *Accesses = It->second.get();
1136     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1137     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1138   }
1139 
1140   auto It = PerBlockAccesses.find(BB);
1141   if (It == PerBlockAccesses.end())
1142     return;
1143 
1144   auto &Accesses = It->second;
1145   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1146     auto Next = std::next(AI);
1147     // If we have a phi, just remove it. We are going to replace all
1148     // users with live on entry.
1149     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1150       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1151     else
1152       Accesses->erase(AI);
1153     AI = Next;
1154   }
1155 }
1156 
1157 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1158     : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1159       SkipWalker(nullptr), NextID(0) {
1160   // Build MemorySSA using a batch alias analysis. This reuses the internal
1161   // state that AA collects during an alias()/getModRefInfo() call. This is
1162   // safe because there are no CFG changes while building MemorySSA and can
1163   // significantly reduce the time spent by the compiler in AA, because we will
1164   // make queries about all the instructions in the Function.
1165   BatchAAResults BatchAA(*AA);
1166   buildMemorySSA(BatchAA);
1167   // Intentionally leave AA to nullptr while building so we don't accidently
1168   // use non-batch AliasAnalysis.
1169   this->AA = AA;
1170   // Also create the walker here.
1171   getWalker();
1172 }
1173 
1174 MemorySSA::~MemorySSA() {
1175   // Drop all our references
1176   for (const auto &Pair : PerBlockAccesses)
1177     for (MemoryAccess &MA : *Pair.second)
1178       MA.dropAllReferences();
1179 }
1180 
1181 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1182   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1183 
1184   if (Res.second)
1185     Res.first->second = llvm::make_unique<AccessList>();
1186   return Res.first->second.get();
1187 }
1188 
1189 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1190   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1191 
1192   if (Res.second)
1193     Res.first->second = llvm::make_unique<DefsList>();
1194   return Res.first->second.get();
1195 }
1196 
1197 namespace llvm {
1198 
1199 /// This class is a batch walker of all MemoryUse's in the program, and points
1200 /// their defining access at the thing that actually clobbers them.  Because it
1201 /// is a batch walker that touches everything, it does not operate like the
1202 /// other walkers.  This walker is basically performing a top-down SSA renaming
1203 /// pass, where the version stack is used as the cache.  This enables it to be
1204 /// significantly more time and memory efficient than using the regular walker,
1205 /// which is walking bottom-up.
1206 class MemorySSA::OptimizeUses {
1207 public:
1208   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, BatchAAResults *BAA,
1209                DominatorTree *DT)
1210       : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1211 
1212   void optimizeUses();
1213 
1214 private:
1215   /// This represents where a given memorylocation is in the stack.
1216   struct MemlocStackInfo {
1217     // This essentially is keeping track of versions of the stack. Whenever
1218     // the stack changes due to pushes or pops, these versions increase.
1219     unsigned long StackEpoch;
1220     unsigned long PopEpoch;
1221     // This is the lower bound of places on the stack to check. It is equal to
1222     // the place the last stack walk ended.
1223     // Note: Correctness depends on this being initialized to 0, which densemap
1224     // does
1225     unsigned long LowerBound;
1226     const BasicBlock *LowerBoundBlock;
1227     // This is where the last walk for this memory location ended.
1228     unsigned long LastKill;
1229     bool LastKillValid;
1230     Optional<AliasResult> AR;
1231   };
1232 
1233   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1234                            SmallVectorImpl<MemoryAccess *> &,
1235                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1236 
1237   MemorySSA *MSSA;
1238   MemorySSAWalker *Walker;
1239   BatchAAResults *AA;
1240   DominatorTree *DT;
1241 };
1242 
1243 } // end namespace llvm
1244 
1245 /// Optimize the uses in a given block This is basically the SSA renaming
1246 /// algorithm, with one caveat: We are able to use a single stack for all
1247 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1248 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1249 /// going to be some position in that stack of possible ones.
1250 ///
1251 /// We track the stack positions that each MemoryLocation needs
1252 /// to check, and last ended at.  This is because we only want to check the
1253 /// things that changed since last time.  The same MemoryLocation should
1254 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1255 /// things like this, and if they start, we can modify MemoryLocOrCall to
1256 /// include relevant data)
1257 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1258     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1259     SmallVectorImpl<MemoryAccess *> &VersionStack,
1260     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1261 
1262   /// If no accesses, nothing to do.
1263   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1264   if (Accesses == nullptr)
1265     return;
1266 
1267   // Pop everything that doesn't dominate the current block off the stack,
1268   // increment the PopEpoch to account for this.
1269   while (true) {
1270     assert(
1271         !VersionStack.empty() &&
1272         "Version stack should have liveOnEntry sentinel dominating everything");
1273     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1274     if (DT->dominates(BackBlock, BB))
1275       break;
1276     while (VersionStack.back()->getBlock() == BackBlock)
1277       VersionStack.pop_back();
1278     ++PopEpoch;
1279   }
1280 
1281   for (MemoryAccess &MA : *Accesses) {
1282     auto *MU = dyn_cast<MemoryUse>(&MA);
1283     if (!MU) {
1284       VersionStack.push_back(&MA);
1285       ++StackEpoch;
1286       continue;
1287     }
1288 
1289     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1290       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1291       continue;
1292     }
1293 
1294     MemoryLocOrCall UseMLOC(MU);
1295     auto &LocInfo = LocStackInfo[UseMLOC];
1296     // If the pop epoch changed, it means we've removed stuff from top of
1297     // stack due to changing blocks. We may have to reset the lower bound or
1298     // last kill info.
1299     if (LocInfo.PopEpoch != PopEpoch) {
1300       LocInfo.PopEpoch = PopEpoch;
1301       LocInfo.StackEpoch = StackEpoch;
1302       // If the lower bound was in something that no longer dominates us, we
1303       // have to reset it.
1304       // We can't simply track stack size, because the stack may have had
1305       // pushes/pops in the meantime.
1306       // XXX: This is non-optimal, but only is slower cases with heavily
1307       // branching dominator trees.  To get the optimal number of queries would
1308       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1309       // the top of that stack dominates us.  This does not seem worth it ATM.
1310       // A much cheaper optimization would be to always explore the deepest
1311       // branch of the dominator tree first. This will guarantee this resets on
1312       // the smallest set of blocks.
1313       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1314           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1315         // Reset the lower bound of things to check.
1316         // TODO: Some day we should be able to reset to last kill, rather than
1317         // 0.
1318         LocInfo.LowerBound = 0;
1319         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1320         LocInfo.LastKillValid = false;
1321       }
1322     } else if (LocInfo.StackEpoch != StackEpoch) {
1323       // If all that has changed is the StackEpoch, we only have to check the
1324       // new things on the stack, because we've checked everything before.  In
1325       // this case, the lower bound of things to check remains the same.
1326       LocInfo.PopEpoch = PopEpoch;
1327       LocInfo.StackEpoch = StackEpoch;
1328     }
1329     if (!LocInfo.LastKillValid) {
1330       LocInfo.LastKill = VersionStack.size() - 1;
1331       LocInfo.LastKillValid = true;
1332       LocInfo.AR = MayAlias;
1333     }
1334 
1335     // At this point, we should have corrected last kill and LowerBound to be
1336     // in bounds.
1337     assert(LocInfo.LowerBound < VersionStack.size() &&
1338            "Lower bound out of range");
1339     assert(LocInfo.LastKill < VersionStack.size() &&
1340            "Last kill info out of range");
1341     // In any case, the new upper bound is the top of the stack.
1342     unsigned long UpperBound = VersionStack.size() - 1;
1343 
1344     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1345       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1346                         << *(MU->getMemoryInst()) << ")"
1347                         << " because there are "
1348                         << UpperBound - LocInfo.LowerBound
1349                         << " stores to disambiguate\n");
1350       // Because we did not walk, LastKill is no longer valid, as this may
1351       // have been a kill.
1352       LocInfo.LastKillValid = false;
1353       continue;
1354     }
1355     bool FoundClobberResult = false;
1356     while (UpperBound > LocInfo.LowerBound) {
1357       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1358         // For phis, use the walker, see where we ended up, go there
1359         Instruction *UseInst = MU->getMemoryInst();
1360         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1361         // We are guaranteed to find it or something is wrong
1362         while (VersionStack[UpperBound] != Result) {
1363           assert(UpperBound != 0);
1364           --UpperBound;
1365         }
1366         FoundClobberResult = true;
1367         break;
1368       }
1369 
1370       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1371       // If the lifetime of the pointer ends at this instruction, it's live on
1372       // entry.
1373       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1374         // Reset UpperBound to liveOnEntryDef's place in the stack
1375         UpperBound = 0;
1376         FoundClobberResult = true;
1377         LocInfo.AR = MustAlias;
1378         break;
1379       }
1380       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1381       if (CA.IsClobber) {
1382         FoundClobberResult = true;
1383         LocInfo.AR = CA.AR;
1384         break;
1385       }
1386       --UpperBound;
1387     }
1388 
1389     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1390 
1391     // At the end of this loop, UpperBound is either a clobber, or lower bound
1392     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1393     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1394       // We were last killed now by where we got to
1395       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1396         LocInfo.AR = None;
1397       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1398       LocInfo.LastKill = UpperBound;
1399     } else {
1400       // Otherwise, we checked all the new ones, and now we know we can get to
1401       // LastKill.
1402       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1403     }
1404     LocInfo.LowerBound = VersionStack.size() - 1;
1405     LocInfo.LowerBoundBlock = BB;
1406   }
1407 }
1408 
1409 /// Optimize uses to point to their actual clobbering definitions.
1410 void MemorySSA::OptimizeUses::optimizeUses() {
1411   SmallVector<MemoryAccess *, 16> VersionStack;
1412   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1413   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1414 
1415   unsigned long StackEpoch = 1;
1416   unsigned long PopEpoch = 1;
1417   // We perform a non-recursive top-down dominator tree walk.
1418   for (const auto *DomNode : depth_first(DT->getRootNode()))
1419     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1420                         LocStackInfo);
1421 }
1422 
1423 void MemorySSA::placePHINodes(
1424     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1425   // Determine where our MemoryPhi's should go
1426   ForwardIDFCalculator IDFs(*DT);
1427   IDFs.setDefiningBlocks(DefiningBlocks);
1428   SmallVector<BasicBlock *, 32> IDFBlocks;
1429   IDFs.calculate(IDFBlocks);
1430 
1431   // Now place MemoryPhi nodes.
1432   for (auto &BB : IDFBlocks)
1433     createMemoryPhi(BB);
1434 }
1435 
1436 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1437   // We create an access to represent "live on entry", for things like
1438   // arguments or users of globals, where the memory they use is defined before
1439   // the beginning of the function. We do not actually insert it into the IR.
1440   // We do not define a live on exit for the immediate uses, and thus our
1441   // semantics do *not* imply that something with no immediate uses can simply
1442   // be removed.
1443   BasicBlock &StartingPoint = F.getEntryBlock();
1444   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1445                                      &StartingPoint, NextID++));
1446 
1447   // We maintain lists of memory accesses per-block, trading memory for time. We
1448   // could just look up the memory access for every possible instruction in the
1449   // stream.
1450   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1451   // Go through each block, figure out where defs occur, and chain together all
1452   // the accesses.
1453   for (BasicBlock &B : F) {
1454     bool InsertIntoDef = false;
1455     AccessList *Accesses = nullptr;
1456     DefsList *Defs = nullptr;
1457     for (Instruction &I : B) {
1458       MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1459       if (!MUD)
1460         continue;
1461 
1462       if (!Accesses)
1463         Accesses = getOrCreateAccessList(&B);
1464       Accesses->push_back(MUD);
1465       if (isa<MemoryDef>(MUD)) {
1466         InsertIntoDef = true;
1467         if (!Defs)
1468           Defs = getOrCreateDefsList(&B);
1469         Defs->push_back(*MUD);
1470       }
1471     }
1472     if (InsertIntoDef)
1473       DefiningBlocks.insert(&B);
1474   }
1475   placePHINodes(DefiningBlocks);
1476 
1477   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1478   // filled in with all blocks.
1479   SmallPtrSet<BasicBlock *, 16> Visited;
1480   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1481 
1482   ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
1483   CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
1484   OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
1485 
1486   // Mark the uses in unreachable blocks as live on entry, so that they go
1487   // somewhere.
1488   for (auto &BB : F)
1489     if (!Visited.count(&BB))
1490       markUnreachableAsLiveOnEntry(&BB);
1491 }
1492 
1493 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1494 
1495 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1496   if (Walker)
1497     return Walker.get();
1498 
1499   if (!WalkerBase)
1500     WalkerBase =
1501         llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1502 
1503   Walker =
1504       llvm::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1505   return Walker.get();
1506 }
1507 
1508 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1509   if (SkipWalker)
1510     return SkipWalker.get();
1511 
1512   if (!WalkerBase)
1513     WalkerBase =
1514         llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1515 
1516   SkipWalker =
1517       llvm::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
1518   return SkipWalker.get();
1519  }
1520 
1521 
1522 // This is a helper function used by the creation routines. It places NewAccess
1523 // into the access and defs lists for a given basic block, at the given
1524 // insertion point.
1525 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1526                                         const BasicBlock *BB,
1527                                         InsertionPlace Point) {
1528   auto *Accesses = getOrCreateAccessList(BB);
1529   if (Point == Beginning) {
1530     // If it's a phi node, it goes first, otherwise, it goes after any phi
1531     // nodes.
1532     if (isa<MemoryPhi>(NewAccess)) {
1533       Accesses->push_front(NewAccess);
1534       auto *Defs = getOrCreateDefsList(BB);
1535       Defs->push_front(*NewAccess);
1536     } else {
1537       auto AI = find_if_not(
1538           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1539       Accesses->insert(AI, NewAccess);
1540       if (!isa<MemoryUse>(NewAccess)) {
1541         auto *Defs = getOrCreateDefsList(BB);
1542         auto DI = find_if_not(
1543             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1544         Defs->insert(DI, *NewAccess);
1545       }
1546     }
1547   } else {
1548     Accesses->push_back(NewAccess);
1549     if (!isa<MemoryUse>(NewAccess)) {
1550       auto *Defs = getOrCreateDefsList(BB);
1551       Defs->push_back(*NewAccess);
1552     }
1553   }
1554   BlockNumberingValid.erase(BB);
1555 }
1556 
1557 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1558                                       AccessList::iterator InsertPt) {
1559   auto *Accesses = getWritableBlockAccesses(BB);
1560   bool WasEnd = InsertPt == Accesses->end();
1561   Accesses->insert(AccessList::iterator(InsertPt), What);
1562   if (!isa<MemoryUse>(What)) {
1563     auto *Defs = getOrCreateDefsList(BB);
1564     // If we got asked to insert at the end, we have an easy job, just shove it
1565     // at the end. If we got asked to insert before an existing def, we also get
1566     // an iterator. If we got asked to insert before a use, we have to hunt for
1567     // the next def.
1568     if (WasEnd) {
1569       Defs->push_back(*What);
1570     } else if (isa<MemoryDef>(InsertPt)) {
1571       Defs->insert(InsertPt->getDefsIterator(), *What);
1572     } else {
1573       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1574         ++InsertPt;
1575       // Either we found a def, or we are inserting at the end
1576       if (InsertPt == Accesses->end())
1577         Defs->push_back(*What);
1578       else
1579         Defs->insert(InsertPt->getDefsIterator(), *What);
1580     }
1581   }
1582   BlockNumberingValid.erase(BB);
1583 }
1584 
1585 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1586   // Keep it in the lookup tables, remove from the lists
1587   removeFromLists(What, false);
1588 
1589   // Note that moving should implicitly invalidate the optimized state of a
1590   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1591   // MemoryDef.
1592   if (auto *MD = dyn_cast<MemoryDef>(What))
1593     MD->resetOptimized();
1594   What->setBlock(BB);
1595 }
1596 
1597 // Move What before Where in the IR.  The end result is that What will belong to
1598 // the right lists and have the right Block set, but will not otherwise be
1599 // correct. It will not have the right defining access, and if it is a def,
1600 // things below it will not properly be updated.
1601 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1602                        AccessList::iterator Where) {
1603   prepareForMoveTo(What, BB);
1604   insertIntoListsBefore(What, BB, Where);
1605 }
1606 
1607 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1608                        InsertionPlace Point) {
1609   if (isa<MemoryPhi>(What)) {
1610     assert(Point == Beginning &&
1611            "Can only move a Phi at the beginning of the block");
1612     // Update lookup table entry
1613     ValueToMemoryAccess.erase(What->getBlock());
1614     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1615     (void)Inserted;
1616     assert(Inserted && "Cannot move a Phi to a block that already has one");
1617   }
1618 
1619   prepareForMoveTo(What, BB);
1620   insertIntoListsForBlock(What, BB, Point);
1621 }
1622 
1623 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1624   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1625   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1626   // Phi's always are placed at the front of the block.
1627   insertIntoListsForBlock(Phi, BB, Beginning);
1628   ValueToMemoryAccess[BB] = Phi;
1629   return Phi;
1630 }
1631 
1632 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1633                                                MemoryAccess *Definition,
1634                                                const MemoryUseOrDef *Template) {
1635   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1636   MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1637   assert(
1638       NewAccess != nullptr &&
1639       "Tried to create a memory access for a non-memory touching instruction");
1640   NewAccess->setDefiningAccess(Definition);
1641   return NewAccess;
1642 }
1643 
1644 // Return true if the instruction has ordering constraints.
1645 // Note specifically that this only considers stores and loads
1646 // because others are still considered ModRef by getModRefInfo.
1647 static inline bool isOrdered(const Instruction *I) {
1648   if (auto *SI = dyn_cast<StoreInst>(I)) {
1649     if (!SI->isUnordered())
1650       return true;
1651   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1652     if (!LI->isUnordered())
1653       return true;
1654   }
1655   return false;
1656 }
1657 
1658 /// Helper function to create new memory accesses
1659 template <typename AliasAnalysisType>
1660 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1661                                            AliasAnalysisType *AAP,
1662                                            const MemoryUseOrDef *Template) {
1663   // The assume intrinsic has a control dependency which we model by claiming
1664   // that it writes arbitrarily. Ignore that fake memory dependency here.
1665   // FIXME: Replace this special casing with a more accurate modelling of
1666   // assume's control dependency.
1667   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1668     if (II->getIntrinsicID() == Intrinsic::assume)
1669       return nullptr;
1670 
1671   bool Def, Use;
1672   if (Template) {
1673     Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1674     Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1675 #if !defined(NDEBUG)
1676     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1677     bool DefCheck, UseCheck;
1678     DefCheck = isModSet(ModRef) || isOrdered(I);
1679     UseCheck = isRefSet(ModRef);
1680     assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1681 #endif
1682   } else {
1683     // Find out what affect this instruction has on memory.
1684     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1685     // The isOrdered check is used to ensure that volatiles end up as defs
1686     // (atomics end up as ModRef right now anyway).  Until we separate the
1687     // ordering chain from the memory chain, this enables people to see at least
1688     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1689     // will still give an answer that bypasses other volatile loads.  TODO:
1690     // Separate memory aliasing and ordering into two different chains so that
1691     // we can precisely represent both "what memory will this read/write/is
1692     // clobbered by" and "what instructions can I move this past".
1693     Def = isModSet(ModRef) || isOrdered(I);
1694     Use = isRefSet(ModRef);
1695   }
1696 
1697   // It's possible for an instruction to not modify memory at all. During
1698   // construction, we ignore them.
1699   if (!Def && !Use)
1700     return nullptr;
1701 
1702   MemoryUseOrDef *MUD;
1703   if (Def)
1704     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1705   else
1706     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1707   ValueToMemoryAccess[I] = MUD;
1708   return MUD;
1709 }
1710 
1711 /// Returns true if \p Replacer dominates \p Replacee .
1712 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1713                              const MemoryAccess *Replacee) const {
1714   if (isa<MemoryUseOrDef>(Replacee))
1715     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1716   const auto *MP = cast<MemoryPhi>(Replacee);
1717   // For a phi node, the use occurs in the predecessor block of the phi node.
1718   // Since we may occur multiple times in the phi node, we have to check each
1719   // operand to ensure Replacer dominates each operand where Replacee occurs.
1720   for (const Use &Arg : MP->operands()) {
1721     if (Arg.get() != Replacee &&
1722         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1723       return false;
1724   }
1725   return true;
1726 }
1727 
1728 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1729 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1730   assert(MA->use_empty() &&
1731          "Trying to remove memory access that still has uses");
1732   BlockNumbering.erase(MA);
1733   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1734     MUD->setDefiningAccess(nullptr);
1735   // Invalidate our walker's cache if necessary
1736   if (!isa<MemoryUse>(MA))
1737     getWalker()->invalidateInfo(MA);
1738 
1739   Value *MemoryInst;
1740   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1741     MemoryInst = MUD->getMemoryInst();
1742   else
1743     MemoryInst = MA->getBlock();
1744 
1745   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1746   if (VMA->second == MA)
1747     ValueToMemoryAccess.erase(VMA);
1748 }
1749 
1750 /// Properly remove \p MA from all of MemorySSA's lists.
1751 ///
1752 /// Because of the way the intrusive list and use lists work, it is important to
1753 /// do removal in the right order.
1754 /// ShouldDelete defaults to true, and will cause the memory access to also be
1755 /// deleted, not just removed.
1756 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1757   BasicBlock *BB = MA->getBlock();
1758   // The access list owns the reference, so we erase it from the non-owning list
1759   // first.
1760   if (!isa<MemoryUse>(MA)) {
1761     auto DefsIt = PerBlockDefs.find(BB);
1762     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1763     Defs->remove(*MA);
1764     if (Defs->empty())
1765       PerBlockDefs.erase(DefsIt);
1766   }
1767 
1768   // The erase call here will delete it. If we don't want it deleted, we call
1769   // remove instead.
1770   auto AccessIt = PerBlockAccesses.find(BB);
1771   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1772   if (ShouldDelete)
1773     Accesses->erase(MA);
1774   else
1775     Accesses->remove(MA);
1776 
1777   if (Accesses->empty()) {
1778     PerBlockAccesses.erase(AccessIt);
1779     BlockNumberingValid.erase(BB);
1780   }
1781 }
1782 
1783 void MemorySSA::print(raw_ostream &OS) const {
1784   MemorySSAAnnotatedWriter Writer(this);
1785   F.print(OS, &Writer);
1786 }
1787 
1788 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1789 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1790 #endif
1791 
1792 void MemorySSA::verifyMemorySSA() const {
1793   verifyDefUses(F);
1794   verifyDomination(F);
1795   verifyOrdering(F);
1796   verifyDominationNumbers(F);
1797   // Previously, the verification used to also verify that the clobberingAccess
1798   // cached by MemorySSA is the same as the clobberingAccess found at a later
1799   // query to AA. This does not hold true in general due to the current fragility
1800   // of BasicAA which has arbitrary caps on the things it analyzes before giving
1801   // up. As a result, transformations that are correct, will lead to BasicAA
1802   // returning different Alias answers before and after that transformation.
1803   // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1804   // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1805   // every transformation, which defeats the purpose of using it. For such an
1806   // example, see test4 added in D51960.
1807 }
1808 
1809 /// Verify that all of the blocks we believe to have valid domination numbers
1810 /// actually have valid domination numbers.
1811 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1812 #ifndef NDEBUG
1813   if (BlockNumberingValid.empty())
1814     return;
1815 
1816   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1817   for (const BasicBlock &BB : F) {
1818     if (!ValidBlocks.count(&BB))
1819       continue;
1820 
1821     ValidBlocks.erase(&BB);
1822 
1823     const AccessList *Accesses = getBlockAccesses(&BB);
1824     // It's correct to say an empty block has valid numbering.
1825     if (!Accesses)
1826       continue;
1827 
1828     // Block numbering starts at 1.
1829     unsigned long LastNumber = 0;
1830     for (const MemoryAccess &MA : *Accesses) {
1831       auto ThisNumberIter = BlockNumbering.find(&MA);
1832       assert(ThisNumberIter != BlockNumbering.end() &&
1833              "MemoryAccess has no domination number in a valid block!");
1834 
1835       unsigned long ThisNumber = ThisNumberIter->second;
1836       assert(ThisNumber > LastNumber &&
1837              "Domination numbers should be strictly increasing!");
1838       LastNumber = ThisNumber;
1839     }
1840   }
1841 
1842   assert(ValidBlocks.empty() &&
1843          "All valid BasicBlocks should exist in F -- dangling pointers?");
1844 #endif
1845 }
1846 
1847 /// Verify that the order and existence of MemoryAccesses matches the
1848 /// order and existence of memory affecting instructions.
1849 void MemorySSA::verifyOrdering(Function &F) const {
1850 #ifndef NDEBUG
1851   // Walk all the blocks, comparing what the lookups think and what the access
1852   // lists think, as well as the order in the blocks vs the order in the access
1853   // lists.
1854   SmallVector<MemoryAccess *, 32> ActualAccesses;
1855   SmallVector<MemoryAccess *, 32> ActualDefs;
1856   for (BasicBlock &B : F) {
1857     const AccessList *AL = getBlockAccesses(&B);
1858     const auto *DL = getBlockDefs(&B);
1859     MemoryAccess *Phi = getMemoryAccess(&B);
1860     if (Phi) {
1861       ActualAccesses.push_back(Phi);
1862       ActualDefs.push_back(Phi);
1863     }
1864 
1865     for (Instruction &I : B) {
1866       MemoryAccess *MA = getMemoryAccess(&I);
1867       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1868              "We have memory affecting instructions "
1869              "in this block but they are not in the "
1870              "access list or defs list");
1871       if (MA) {
1872         ActualAccesses.push_back(MA);
1873         if (isa<MemoryDef>(MA))
1874           ActualDefs.push_back(MA);
1875       }
1876     }
1877     // Either we hit the assert, really have no accesses, or we have both
1878     // accesses and an access list.
1879     // Same with defs.
1880     if (!AL && !DL)
1881       continue;
1882     assert(AL->size() == ActualAccesses.size() &&
1883            "We don't have the same number of accesses in the block as on the "
1884            "access list");
1885     assert((DL || ActualDefs.size() == 0) &&
1886            "Either we should have a defs list, or we should have no defs");
1887     assert((!DL || DL->size() == ActualDefs.size()) &&
1888            "We don't have the same number of defs in the block as on the "
1889            "def list");
1890     auto ALI = AL->begin();
1891     auto AAI = ActualAccesses.begin();
1892     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1893       assert(&*ALI == *AAI && "Not the same accesses in the same order");
1894       ++ALI;
1895       ++AAI;
1896     }
1897     ActualAccesses.clear();
1898     if (DL) {
1899       auto DLI = DL->begin();
1900       auto ADI = ActualDefs.begin();
1901       while (DLI != DL->end() && ADI != ActualDefs.end()) {
1902         assert(&*DLI == *ADI && "Not the same defs in the same order");
1903         ++DLI;
1904         ++ADI;
1905       }
1906     }
1907     ActualDefs.clear();
1908   }
1909 #endif
1910 }
1911 
1912 /// Verify the domination properties of MemorySSA by checking that each
1913 /// definition dominates all of its uses.
1914 void MemorySSA::verifyDomination(Function &F) const {
1915 #ifndef NDEBUG
1916   for (BasicBlock &B : F) {
1917     // Phi nodes are attached to basic blocks
1918     if (MemoryPhi *MP = getMemoryAccess(&B))
1919       for (const Use &U : MP->uses())
1920         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1921 
1922     for (Instruction &I : B) {
1923       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1924       if (!MD)
1925         continue;
1926 
1927       for (const Use &U : MD->uses())
1928         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1929     }
1930   }
1931 #endif
1932 }
1933 
1934 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1935 /// appears in the use list of \p Def.
1936 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1937 #ifndef NDEBUG
1938   // The live on entry use may cause us to get a NULL def here
1939   if (!Def)
1940     assert(isLiveOnEntryDef(Use) &&
1941            "Null def but use not point to live on entry def");
1942   else
1943     assert(is_contained(Def->users(), Use) &&
1944            "Did not find use in def's use list");
1945 #endif
1946 }
1947 
1948 /// Verify the immediate use information, by walking all the memory
1949 /// accesses and verifying that, for each use, it appears in the
1950 /// appropriate def's use list
1951 void MemorySSA::verifyDefUses(Function &F) const {
1952 #ifndef NDEBUG
1953   for (BasicBlock &B : F) {
1954     // Phi nodes are attached to basic blocks
1955     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1956       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1957                                           pred_begin(&B), pred_end(&B))) &&
1958              "Incomplete MemoryPhi Node");
1959       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1960         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1961         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1962                    pred_end(&B) &&
1963                "Incoming phi block not a block predecessor");
1964       }
1965     }
1966 
1967     for (Instruction &I : B) {
1968       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1969         verifyUseInDefs(MA->getDefiningAccess(), MA);
1970       }
1971     }
1972   }
1973 #endif
1974 }
1975 
1976 /// Perform a local numbering on blocks so that instruction ordering can be
1977 /// determined in constant time.
1978 /// TODO: We currently just number in order.  If we numbered by N, we could
1979 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1980 /// log2(N) sequences of mixed before and after) without needing to invalidate
1981 /// the numbering.
1982 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1983   // The pre-increment ensures the numbers really start at 1.
1984   unsigned long CurrentNumber = 0;
1985   const AccessList *AL = getBlockAccesses(B);
1986   assert(AL != nullptr && "Asking to renumber an empty block");
1987   for (const auto &I : *AL)
1988     BlockNumbering[&I] = ++CurrentNumber;
1989   BlockNumberingValid.insert(B);
1990 }
1991 
1992 /// Determine, for two memory accesses in the same block,
1993 /// whether \p Dominator dominates \p Dominatee.
1994 /// \returns True if \p Dominator dominates \p Dominatee.
1995 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1996                                  const MemoryAccess *Dominatee) const {
1997   const BasicBlock *DominatorBlock = Dominator->getBlock();
1998 
1999   assert((DominatorBlock == Dominatee->getBlock()) &&
2000          "Asking for local domination when accesses are in different blocks!");
2001   // A node dominates itself.
2002   if (Dominatee == Dominator)
2003     return true;
2004 
2005   // When Dominatee is defined on function entry, it is not dominated by another
2006   // memory access.
2007   if (isLiveOnEntryDef(Dominatee))
2008     return false;
2009 
2010   // When Dominator is defined on function entry, it dominates the other memory
2011   // access.
2012   if (isLiveOnEntryDef(Dominator))
2013     return true;
2014 
2015   if (!BlockNumberingValid.count(DominatorBlock))
2016     renumberBlock(DominatorBlock);
2017 
2018   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2019   // All numbers start with 1
2020   assert(DominatorNum != 0 && "Block was not numbered properly");
2021   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2022   assert(DominateeNum != 0 && "Block was not numbered properly");
2023   return DominatorNum < DominateeNum;
2024 }
2025 
2026 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2027                           const MemoryAccess *Dominatee) const {
2028   if (Dominator == Dominatee)
2029     return true;
2030 
2031   if (isLiveOnEntryDef(Dominatee))
2032     return false;
2033 
2034   if (Dominator->getBlock() != Dominatee->getBlock())
2035     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2036   return locallyDominates(Dominator, Dominatee);
2037 }
2038 
2039 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2040                           const Use &Dominatee) const {
2041   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2042     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2043     // The def must dominate the incoming block of the phi.
2044     if (UseBB != Dominator->getBlock())
2045       return DT->dominates(Dominator->getBlock(), UseBB);
2046     // If the UseBB and the DefBB are the same, compare locally.
2047     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2048   }
2049   // If it's not a PHI node use, the normal dominates can already handle it.
2050   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2051 }
2052 
2053 const static char LiveOnEntryStr[] = "liveOnEntry";
2054 
2055 void MemoryAccess::print(raw_ostream &OS) const {
2056   switch (getValueID()) {
2057   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2058   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2059   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2060   }
2061   llvm_unreachable("invalid value id");
2062 }
2063 
2064 void MemoryDef::print(raw_ostream &OS) const {
2065   MemoryAccess *UO = getDefiningAccess();
2066 
2067   auto printID = [&OS](MemoryAccess *A) {
2068     if (A && A->getID())
2069       OS << A->getID();
2070     else
2071       OS << LiveOnEntryStr;
2072   };
2073 
2074   OS << getID() << " = MemoryDef(";
2075   printID(UO);
2076   OS << ")";
2077 
2078   if (isOptimized()) {
2079     OS << "->";
2080     printID(getOptimized());
2081 
2082     if (Optional<AliasResult> AR = getOptimizedAccessType())
2083       OS << " " << *AR;
2084   }
2085 }
2086 
2087 void MemoryPhi::print(raw_ostream &OS) const {
2088   bool First = true;
2089   OS << getID() << " = MemoryPhi(";
2090   for (const auto &Op : operands()) {
2091     BasicBlock *BB = getIncomingBlock(Op);
2092     MemoryAccess *MA = cast<MemoryAccess>(Op);
2093     if (!First)
2094       OS << ',';
2095     else
2096       First = false;
2097 
2098     OS << '{';
2099     if (BB->hasName())
2100       OS << BB->getName();
2101     else
2102       BB->printAsOperand(OS, false);
2103     OS << ',';
2104     if (unsigned ID = MA->getID())
2105       OS << ID;
2106     else
2107       OS << LiveOnEntryStr;
2108     OS << '}';
2109   }
2110   OS << ')';
2111 }
2112 
2113 void MemoryUse::print(raw_ostream &OS) const {
2114   MemoryAccess *UO = getDefiningAccess();
2115   OS << "MemoryUse(";
2116   if (UO && UO->getID())
2117     OS << UO->getID();
2118   else
2119     OS << LiveOnEntryStr;
2120   OS << ')';
2121 
2122   if (Optional<AliasResult> AR = getOptimizedAccessType())
2123     OS << " " << *AR;
2124 }
2125 
2126 void MemoryAccess::dump() const {
2127 // Cannot completely remove virtual function even in release mode.
2128 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2129   print(dbgs());
2130   dbgs() << "\n";
2131 #endif
2132 }
2133 
2134 char MemorySSAPrinterLegacyPass::ID = 0;
2135 
2136 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2137   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2138 }
2139 
2140 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2141   AU.setPreservesAll();
2142   AU.addRequired<MemorySSAWrapperPass>();
2143 }
2144 
2145 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2146   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2147   MSSA.print(dbgs());
2148   if (VerifyMemorySSA)
2149     MSSA.verifyMemorySSA();
2150   return false;
2151 }
2152 
2153 AnalysisKey MemorySSAAnalysis::Key;
2154 
2155 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2156                                                  FunctionAnalysisManager &AM) {
2157   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2158   auto &AA = AM.getResult<AAManager>(F);
2159   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2160 }
2161 
2162 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2163                                             FunctionAnalysisManager &AM) {
2164   OS << "MemorySSA for function: " << F.getName() << "\n";
2165   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2166 
2167   return PreservedAnalyses::all();
2168 }
2169 
2170 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2171                                              FunctionAnalysisManager &AM) {
2172   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2173 
2174   return PreservedAnalyses::all();
2175 }
2176 
2177 char MemorySSAWrapperPass::ID = 0;
2178 
2179 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2180   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2181 }
2182 
2183 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2184 
2185 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2186   AU.setPreservesAll();
2187   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2188   AU.addRequiredTransitive<AAResultsWrapperPass>();
2189 }
2190 
2191 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2192   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2193   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2194   MSSA.reset(new MemorySSA(F, &AA, &DT));
2195   return false;
2196 }
2197 
2198 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2199 
2200 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2201   MSSA->print(OS);
2202 }
2203 
2204 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2205 
2206 /// Walk the use-def chains starting at \p StartingAccess and find
2207 /// the MemoryAccess that actually clobbers Loc.
2208 ///
2209 /// \returns our clobbering memory access
2210 template <typename AliasAnalysisType>
2211 MemoryAccess *
2212 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2213     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2214   if (isa<MemoryPhi>(StartingAccess))
2215     return StartingAccess;
2216 
2217   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2218   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2219     return StartingUseOrDef;
2220 
2221   Instruction *I = StartingUseOrDef->getMemoryInst();
2222 
2223   // Conservatively, fences are always clobbers, so don't perform the walk if we
2224   // hit a fence.
2225   if (!isa<CallBase>(I) && I->isFenceLike())
2226     return StartingUseOrDef;
2227 
2228   UpwardsMemoryQuery Q;
2229   Q.OriginalAccess = StartingUseOrDef;
2230   Q.StartingLoc = Loc;
2231   Q.Inst = I;
2232   Q.IsCall = false;
2233 
2234   // Unlike the other function, do not walk to the def of a def, because we are
2235   // handed something we already believe is the clobbering access.
2236   // We never set SkipSelf to true in Q in this method.
2237   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2238                                      ? StartingUseOrDef->getDefiningAccess()
2239                                      : StartingUseOrDef;
2240 
2241   MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q);
2242   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2243   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2244   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2245   LLVM_DEBUG(dbgs() << *Clobber << "\n");
2246   return Clobber;
2247 }
2248 
2249 template <typename AliasAnalysisType>
2250 MemoryAccess *
2251 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2252     MemoryAccess *MA, bool SkipSelf) {
2253   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2254   // If this is a MemoryPhi, we can't do anything.
2255   if (!StartingAccess)
2256     return MA;
2257 
2258   bool IsOptimized = false;
2259 
2260   // If this is an already optimized use or def, return the optimized result.
2261   // Note: Currently, we store the optimized def result in a separate field,
2262   // since we can't use the defining access.
2263   if (StartingAccess->isOptimized()) {
2264     if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2265       return StartingAccess->getOptimized();
2266     IsOptimized = true;
2267   }
2268 
2269   const Instruction *I = StartingAccess->getMemoryInst();
2270   // We can't sanely do anything with a fence, since they conservatively clobber
2271   // all memory, and have no locations to get pointers from to try to
2272   // disambiguate.
2273   if (!isa<CallBase>(I) && I->isFenceLike())
2274     return StartingAccess;
2275 
2276   UpwardsMemoryQuery Q(I, StartingAccess);
2277 
2278   if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2279     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2280     StartingAccess->setOptimized(LiveOnEntry);
2281     StartingAccess->setOptimizedAccessType(None);
2282     return LiveOnEntry;
2283   }
2284 
2285   MemoryAccess *OptimizedAccess;
2286   if (!IsOptimized) {
2287     // Start with the thing we already think clobbers this location
2288     MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2289 
2290     // At this point, DefiningAccess may be the live on entry def.
2291     // If it is, we will not get a better result.
2292     if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2293       StartingAccess->setOptimized(DefiningAccess);
2294       StartingAccess->setOptimizedAccessType(None);
2295       return DefiningAccess;
2296     }
2297 
2298     OptimizedAccess = Walker.findClobber(DefiningAccess, Q);
2299     StartingAccess->setOptimized(OptimizedAccess);
2300     if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2301       StartingAccess->setOptimizedAccessType(None);
2302     else if (Q.AR == MustAlias)
2303       StartingAccess->setOptimizedAccessType(MustAlias);
2304   } else
2305     OptimizedAccess = StartingAccess->getOptimized();
2306 
2307   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2308   LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2309   LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2310   LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2311 
2312   MemoryAccess *Result;
2313   if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2314       isa<MemoryDef>(StartingAccess)) {
2315     assert(isa<MemoryDef>(Q.OriginalAccess));
2316     Q.SkipSelfAccess = true;
2317     Result = Walker.findClobber(OptimizedAccess, Q);
2318   } else
2319     Result = OptimizedAccess;
2320 
2321   LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2322   LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2323 
2324   return Result;
2325 }
2326 
2327 MemoryAccess *
2328 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2329   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2330     return Use->getDefiningAccess();
2331   return MA;
2332 }
2333 
2334 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2335     MemoryAccess *StartingAccess, const MemoryLocation &) {
2336   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2337     return Use->getDefiningAccess();
2338   return StartingAccess;
2339 }
2340 
2341 void MemoryPhi::deleteMe(DerivedUser *Self) {
2342   delete static_cast<MemoryPhi *>(Self);
2343 }
2344 
2345 void MemoryDef::deleteMe(DerivedUser *Self) {
2346   delete static_cast<MemoryDef *>(Self);
2347 }
2348 
2349 void MemoryUse::deleteMe(DerivedUser *Self) {
2350   delete static_cast<MemoryUse *>(Self);
2351 }
2352