1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdlib> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "memoryssa" 60 61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 62 true) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 66 true) 67 68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 69 "Memory SSA Printer", false, false) 70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 72 "Memory SSA Printer", false, false) 73 74 static cl::opt<unsigned> MaxCheckLimit( 75 "memssa-check-limit", cl::Hidden, cl::init(100), 76 cl::desc("The maximum number of stores/phis MemorySSA" 77 "will consider trying to walk past (default = 100)")); 78 79 // Always verify MemorySSA if expensive checking is enabled. 80 #ifdef EXPENSIVE_CHECKS 81 bool llvm::VerifyMemorySSA = true; 82 #else 83 bool llvm::VerifyMemorySSA = false; 84 #endif 85 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 86 cl::opt<bool> llvm::EnableMSSALoopDependency( 87 "enable-mssa-loop-dependency", cl::Hidden, cl::init(false), 88 cl::desc("Enable MemorySSA dependency for loop pass manager")); 89 90 static cl::opt<bool, true> 91 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 92 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 93 94 namespace llvm { 95 96 /// An assembly annotator class to print Memory SSA information in 97 /// comments. 98 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 99 friend class MemorySSA; 100 101 const MemorySSA *MSSA; 102 103 public: 104 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 105 106 void emitBasicBlockStartAnnot(const BasicBlock *BB, 107 formatted_raw_ostream &OS) override { 108 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 109 OS << "; " << *MA << "\n"; 110 } 111 112 void emitInstructionAnnot(const Instruction *I, 113 formatted_raw_ostream &OS) override { 114 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 115 OS << "; " << *MA << "\n"; 116 } 117 }; 118 119 } // end namespace llvm 120 121 namespace { 122 123 /// Our current alias analysis API differentiates heavily between calls and 124 /// non-calls, and functions called on one usually assert on the other. 125 /// This class encapsulates the distinction to simplify other code that wants 126 /// "Memory affecting instructions and related data" to use as a key. 127 /// For example, this class is used as a densemap key in the use optimizer. 128 class MemoryLocOrCall { 129 public: 130 bool IsCall = false; 131 132 MemoryLocOrCall(MemoryUseOrDef *MUD) 133 : MemoryLocOrCall(MUD->getMemoryInst()) {} 134 MemoryLocOrCall(const MemoryUseOrDef *MUD) 135 : MemoryLocOrCall(MUD->getMemoryInst()) {} 136 137 MemoryLocOrCall(Instruction *Inst) { 138 if (auto *C = dyn_cast<CallBase>(Inst)) { 139 IsCall = true; 140 Call = C; 141 } else { 142 IsCall = false; 143 // There is no such thing as a memorylocation for a fence inst, and it is 144 // unique in that regard. 145 if (!isa<FenceInst>(Inst)) 146 Loc = MemoryLocation::get(Inst); 147 } 148 } 149 150 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 151 152 const CallBase *getCall() const { 153 assert(IsCall); 154 return Call; 155 } 156 157 MemoryLocation getLoc() const { 158 assert(!IsCall); 159 return Loc; 160 } 161 162 bool operator==(const MemoryLocOrCall &Other) const { 163 if (IsCall != Other.IsCall) 164 return false; 165 166 if (!IsCall) 167 return Loc == Other.Loc; 168 169 if (Call->getCalledValue() != Other.Call->getCalledValue()) 170 return false; 171 172 return Call->arg_size() == Other.Call->arg_size() && 173 std::equal(Call->arg_begin(), Call->arg_end(), 174 Other.Call->arg_begin()); 175 } 176 177 private: 178 union { 179 const CallBase *Call; 180 MemoryLocation Loc; 181 }; 182 }; 183 184 } // end anonymous namespace 185 186 namespace llvm { 187 188 template <> struct DenseMapInfo<MemoryLocOrCall> { 189 static inline MemoryLocOrCall getEmptyKey() { 190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 191 } 192 193 static inline MemoryLocOrCall getTombstoneKey() { 194 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 195 } 196 197 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 198 if (!MLOC.IsCall) 199 return hash_combine( 200 MLOC.IsCall, 201 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 202 203 hash_code hash = 204 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 205 MLOC.getCall()->getCalledValue())); 206 207 for (const Value *Arg : MLOC.getCall()->args()) 208 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 209 return hash; 210 } 211 212 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 213 return LHS == RHS; 214 } 215 }; 216 217 } // end namespace llvm 218 219 /// This does one-way checks to see if Use could theoretically be hoisted above 220 /// MayClobber. This will not check the other way around. 221 /// 222 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 223 /// MayClobber, with no potentially clobbering operations in between them. 224 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 225 static bool areLoadsReorderable(const LoadInst *Use, 226 const LoadInst *MayClobber) { 227 bool VolatileUse = Use->isVolatile(); 228 bool VolatileClobber = MayClobber->isVolatile(); 229 // Volatile operations may never be reordered with other volatile operations. 230 if (VolatileUse && VolatileClobber) 231 return false; 232 // Otherwise, volatile doesn't matter here. From the language reference: 233 // 'optimizers may change the order of volatile operations relative to 234 // non-volatile operations.'" 235 236 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 237 // is weaker, it can be moved above other loads. We just need to be sure that 238 // MayClobber isn't an acquire load, because loads can't be moved above 239 // acquire loads. 240 // 241 // Note that this explicitly *does* allow the free reordering of monotonic (or 242 // weaker) loads of the same address. 243 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 244 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 245 AtomicOrdering::Acquire); 246 return !(SeqCstUse || MayClobberIsAcquire); 247 } 248 249 namespace { 250 251 struct ClobberAlias { 252 bool IsClobber; 253 Optional<AliasResult> AR; 254 }; 255 256 } // end anonymous namespace 257 258 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 259 // ignored if IsClobber = false. 260 template <typename AliasAnalysisType> 261 static ClobberAlias 262 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 263 const Instruction *UseInst, AliasAnalysisType &AA) { 264 Instruction *DefInst = MD->getMemoryInst(); 265 assert(DefInst && "Defining instruction not actually an instruction"); 266 const auto *UseCall = dyn_cast<CallBase>(UseInst); 267 Optional<AliasResult> AR; 268 269 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 270 // These intrinsics will show up as affecting memory, but they are just 271 // markers, mostly. 272 // 273 // FIXME: We probably don't actually want MemorySSA to model these at all 274 // (including creating MemoryAccesses for them): we just end up inventing 275 // clobbers where they don't really exist at all. Please see D43269 for 276 // context. 277 switch (II->getIntrinsicID()) { 278 case Intrinsic::lifetime_start: 279 if (UseCall) 280 return {false, NoAlias}; 281 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 282 return {AR != NoAlias, AR}; 283 case Intrinsic::lifetime_end: 284 case Intrinsic::invariant_start: 285 case Intrinsic::invariant_end: 286 case Intrinsic::assume: 287 return {false, NoAlias}; 288 default: 289 break; 290 } 291 } 292 293 if (UseCall) { 294 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 295 AR = isMustSet(I) ? MustAlias : MayAlias; 296 return {isModOrRefSet(I), AR}; 297 } 298 299 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 300 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 301 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 302 303 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 304 AR = isMustSet(I) ? MustAlias : MayAlias; 305 return {isModSet(I), AR}; 306 } 307 308 template <typename AliasAnalysisType> 309 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 310 const MemoryUseOrDef *MU, 311 const MemoryLocOrCall &UseMLOC, 312 AliasAnalysisType &AA) { 313 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 314 // to exist while MemoryLocOrCall is pushed through places. 315 if (UseMLOC.IsCall) 316 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 317 AA); 318 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 319 AA); 320 } 321 322 // Return true when MD may alias MU, return false otherwise. 323 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 324 AliasAnalysis &AA) { 325 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 326 } 327 328 namespace { 329 330 struct UpwardsMemoryQuery { 331 // True if our original query started off as a call 332 bool IsCall = false; 333 // The pointer location we started the query with. This will be empty if 334 // IsCall is true. 335 MemoryLocation StartingLoc; 336 // This is the instruction we were querying about. 337 const Instruction *Inst = nullptr; 338 // The MemoryAccess we actually got called with, used to test local domination 339 const MemoryAccess *OriginalAccess = nullptr; 340 Optional<AliasResult> AR = MayAlias; 341 bool SkipSelfAccess = false; 342 343 UpwardsMemoryQuery() = default; 344 345 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 346 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 347 if (!IsCall) 348 StartingLoc = MemoryLocation::get(Inst); 349 } 350 }; 351 352 } // end anonymous namespace 353 354 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 355 BatchAAResults &AA) { 356 Instruction *Inst = MD->getMemoryInst(); 357 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 358 switch (II->getIntrinsicID()) { 359 case Intrinsic::lifetime_end: 360 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 361 default: 362 return false; 363 } 364 } 365 return false; 366 } 367 368 template <typename AliasAnalysisType> 369 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 370 const Instruction *I) { 371 // If the memory can't be changed, then loads of the memory can't be 372 // clobbered. 373 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 374 AA.pointsToConstantMemory(MemoryLocation( 375 cast<LoadInst>(I)->getPointerOperand()))); 376 } 377 378 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 379 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 380 /// 381 /// This is meant to be as simple and self-contained as possible. Because it 382 /// uses no cache, etc., it can be relatively expensive. 383 /// 384 /// \param Start The MemoryAccess that we want to walk from. 385 /// \param ClobberAt A clobber for Start. 386 /// \param StartLoc The MemoryLocation for Start. 387 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 388 /// \param Query The UpwardsMemoryQuery we used for our search. 389 /// \param AA The AliasAnalysis we used for our search. 390 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 391 392 template <typename AliasAnalysisType> 393 LLVM_ATTRIBUTE_UNUSED static void 394 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 395 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 396 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 397 bool AllowImpreciseClobber = false) { 398 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 399 400 if (MSSA.isLiveOnEntryDef(Start)) { 401 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 402 "liveOnEntry must clobber itself"); 403 return; 404 } 405 406 bool FoundClobber = false; 407 DenseSet<ConstMemoryAccessPair> VisitedPhis; 408 SmallVector<ConstMemoryAccessPair, 8> Worklist; 409 Worklist.emplace_back(Start, StartLoc); 410 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 411 // is found, complain. 412 while (!Worklist.empty()) { 413 auto MAP = Worklist.pop_back_val(); 414 // All we care about is that nothing from Start to ClobberAt clobbers Start. 415 // We learn nothing from revisiting nodes. 416 if (!VisitedPhis.insert(MAP).second) 417 continue; 418 419 for (const auto *MA : def_chain(MAP.first)) { 420 if (MA == ClobberAt) { 421 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 422 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 423 // since it won't let us short-circuit. 424 // 425 // Also, note that this can't be hoisted out of the `Worklist` loop, 426 // since MD may only act as a clobber for 1 of N MemoryLocations. 427 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 428 if (!FoundClobber) { 429 ClobberAlias CA = 430 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 431 if (CA.IsClobber) { 432 FoundClobber = true; 433 // Not used: CA.AR; 434 } 435 } 436 } 437 break; 438 } 439 440 // We should never hit liveOnEntry, unless it's the clobber. 441 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 442 443 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 444 // If Start is a Def, skip self. 445 if (MD == Start) 446 continue; 447 448 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 449 .IsClobber && 450 "Found clobber before reaching ClobberAt!"); 451 continue; 452 } 453 454 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 455 (void)MU; 456 assert (MU == Start && 457 "Can only find use in def chain if Start is a use"); 458 continue; 459 } 460 461 assert(isa<MemoryPhi>(MA)); 462 Worklist.append( 463 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 464 upward_defs_end()); 465 } 466 } 467 468 // If the verify is done following an optimization, it's possible that 469 // ClobberAt was a conservative clobbering, that we can now infer is not a 470 // true clobbering access. Don't fail the verify if that's the case. 471 // We do have accesses that claim they're optimized, but could be optimized 472 // further. Updating all these can be expensive, so allow it for now (FIXME). 473 if (AllowImpreciseClobber) 474 return; 475 476 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 477 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 478 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 479 "ClobberAt never acted as a clobber"); 480 } 481 482 namespace { 483 484 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 485 /// in one class. 486 template <class AliasAnalysisType> class ClobberWalker { 487 /// Save a few bytes by using unsigned instead of size_t. 488 using ListIndex = unsigned; 489 490 /// Represents a span of contiguous MemoryDefs, potentially ending in a 491 /// MemoryPhi. 492 struct DefPath { 493 MemoryLocation Loc; 494 // Note that, because we always walk in reverse, Last will always dominate 495 // First. Also note that First and Last are inclusive. 496 MemoryAccess *First; 497 MemoryAccess *Last; 498 Optional<ListIndex> Previous; 499 500 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 501 Optional<ListIndex> Previous) 502 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 503 504 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 505 Optional<ListIndex> Previous) 506 : DefPath(Loc, Init, Init, Previous) {} 507 }; 508 509 const MemorySSA &MSSA; 510 AliasAnalysisType &AA; 511 DominatorTree &DT; 512 UpwardsMemoryQuery *Query; 513 unsigned *UpwardWalkLimit; 514 515 // Phi optimization bookkeeping 516 SmallVector<DefPath, 32> Paths; 517 DenseSet<ConstMemoryAccessPair> VisitedPhis; 518 519 /// Find the nearest def or phi that `From` can legally be optimized to. 520 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 521 assert(From->getNumOperands() && "Phi with no operands?"); 522 523 BasicBlock *BB = From->getBlock(); 524 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 525 DomTreeNode *Node = DT.getNode(BB); 526 while ((Node = Node->getIDom())) { 527 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 528 if (Defs) 529 return &*Defs->rbegin(); 530 } 531 return Result; 532 } 533 534 /// Result of calling walkToPhiOrClobber. 535 struct UpwardsWalkResult { 536 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 537 /// both. Include alias info when clobber found. 538 MemoryAccess *Result; 539 bool IsKnownClobber; 540 Optional<AliasResult> AR; 541 }; 542 543 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 544 /// This will update Desc.Last as it walks. It will (optionally) also stop at 545 /// StopAt. 546 /// 547 /// This does not test for whether StopAt is a clobber 548 UpwardsWalkResult 549 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 550 const MemoryAccess *SkipStopAt = nullptr) const { 551 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 552 assert(UpwardWalkLimit && "Need a valid walk limit"); 553 bool LimitAlreadyReached = false; 554 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 555 // it to 1. This will not do any alias() calls. It either returns in the 556 // first iteration in the loop below, or is set back to 0 if all def chains 557 // are free of MemoryDefs. 558 if (!*UpwardWalkLimit) { 559 *UpwardWalkLimit = 1; 560 LimitAlreadyReached = true; 561 } 562 563 for (MemoryAccess *Current : def_chain(Desc.Last)) { 564 Desc.Last = Current; 565 if (Current == StopAt || Current == SkipStopAt) 566 return {Current, false, MayAlias}; 567 568 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 569 if (MSSA.isLiveOnEntryDef(MD)) 570 return {MD, true, MustAlias}; 571 572 if (!--*UpwardWalkLimit) 573 return {Current, true, MayAlias}; 574 575 ClobberAlias CA = 576 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 577 if (CA.IsClobber) 578 return {MD, true, CA.AR}; 579 } 580 } 581 582 if (LimitAlreadyReached) 583 *UpwardWalkLimit = 0; 584 585 assert(isa<MemoryPhi>(Desc.Last) && 586 "Ended at a non-clobber that's not a phi?"); 587 return {Desc.Last, false, MayAlias}; 588 } 589 590 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 591 ListIndex PriorNode) { 592 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 593 upward_defs_end()); 594 for (const MemoryAccessPair &P : UpwardDefs) { 595 PausedSearches.push_back(Paths.size()); 596 Paths.emplace_back(P.second, P.first, PriorNode); 597 } 598 } 599 600 /// Represents a search that terminated after finding a clobber. This clobber 601 /// may or may not be present in the path of defs from LastNode..SearchStart, 602 /// since it may have been retrieved from cache. 603 struct TerminatedPath { 604 MemoryAccess *Clobber; 605 ListIndex LastNode; 606 }; 607 608 /// Get an access that keeps us from optimizing to the given phi. 609 /// 610 /// PausedSearches is an array of indices into the Paths array. Its incoming 611 /// value is the indices of searches that stopped at the last phi optimization 612 /// target. It's left in an unspecified state. 613 /// 614 /// If this returns None, NewPaused is a vector of searches that terminated 615 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 616 Optional<TerminatedPath> 617 getBlockingAccess(const MemoryAccess *StopWhere, 618 SmallVectorImpl<ListIndex> &PausedSearches, 619 SmallVectorImpl<ListIndex> &NewPaused, 620 SmallVectorImpl<TerminatedPath> &Terminated) { 621 assert(!PausedSearches.empty() && "No searches to continue?"); 622 623 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 624 // PausedSearches as our stack. 625 while (!PausedSearches.empty()) { 626 ListIndex PathIndex = PausedSearches.pop_back_val(); 627 DefPath &Node = Paths[PathIndex]; 628 629 // If we've already visited this path with this MemoryLocation, we don't 630 // need to do so again. 631 // 632 // NOTE: That we just drop these paths on the ground makes caching 633 // behavior sporadic. e.g. given a diamond: 634 // A 635 // B C 636 // D 637 // 638 // ...If we walk D, B, A, C, we'll only cache the result of phi 639 // optimization for A, B, and D; C will be skipped because it dies here. 640 // This arguably isn't the worst thing ever, since: 641 // - We generally query things in a top-down order, so if we got below D 642 // without needing cache entries for {C, MemLoc}, then chances are 643 // that those cache entries would end up ultimately unused. 644 // - We still cache things for A, so C only needs to walk up a bit. 645 // If this behavior becomes problematic, we can fix without a ton of extra 646 // work. 647 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 648 continue; 649 650 const MemoryAccess *SkipStopWhere = nullptr; 651 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 652 assert(isa<MemoryDef>(Query->OriginalAccess)); 653 SkipStopWhere = Query->OriginalAccess; 654 } 655 656 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 657 /*StopAt=*/StopWhere, 658 /*SkipStopAt=*/SkipStopWhere); 659 if (Res.IsKnownClobber) { 660 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 661 662 // If this wasn't a cache hit, we hit a clobber when walking. That's a 663 // failure. 664 TerminatedPath Term{Res.Result, PathIndex}; 665 if (!MSSA.dominates(Res.Result, StopWhere)) 666 return Term; 667 668 // Otherwise, it's a valid thing to potentially optimize to. 669 Terminated.push_back(Term); 670 continue; 671 } 672 673 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 674 // We've hit our target. Save this path off for if we want to continue 675 // walking. If we are in the mode of skipping the OriginalAccess, and 676 // we've reached back to the OriginalAccess, do not save path, we've 677 // just looped back to self. 678 if (Res.Result != SkipStopWhere) 679 NewPaused.push_back(PathIndex); 680 continue; 681 } 682 683 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 684 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 685 } 686 687 return None; 688 } 689 690 template <typename T, typename Walker> 691 struct generic_def_path_iterator 692 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 693 std::forward_iterator_tag, T *> { 694 generic_def_path_iterator() {} 695 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 696 697 T &operator*() const { return curNode(); } 698 699 generic_def_path_iterator &operator++() { 700 N = curNode().Previous; 701 return *this; 702 } 703 704 bool operator==(const generic_def_path_iterator &O) const { 705 if (N.hasValue() != O.N.hasValue()) 706 return false; 707 return !N.hasValue() || *N == *O.N; 708 } 709 710 private: 711 T &curNode() const { return W->Paths[*N]; } 712 713 Walker *W = nullptr; 714 Optional<ListIndex> N = None; 715 }; 716 717 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 718 using const_def_path_iterator = 719 generic_def_path_iterator<const DefPath, const ClobberWalker>; 720 721 iterator_range<def_path_iterator> def_path(ListIndex From) { 722 return make_range(def_path_iterator(this, From), def_path_iterator()); 723 } 724 725 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 726 return make_range(const_def_path_iterator(this, From), 727 const_def_path_iterator()); 728 } 729 730 struct OptznResult { 731 /// The path that contains our result. 732 TerminatedPath PrimaryClobber; 733 /// The paths that we can legally cache back from, but that aren't 734 /// necessarily the result of the Phi optimization. 735 SmallVector<TerminatedPath, 4> OtherClobbers; 736 }; 737 738 ListIndex defPathIndex(const DefPath &N) const { 739 // The assert looks nicer if we don't need to do &N 740 const DefPath *NP = &N; 741 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 742 "Out of bounds DefPath!"); 743 return NP - &Paths.front(); 744 } 745 746 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 747 /// that act as legal clobbers. Note that this won't return *all* clobbers. 748 /// 749 /// Phi optimization algorithm tl;dr: 750 /// - Find the earliest def/phi, A, we can optimize to 751 /// - Find if all paths from the starting memory access ultimately reach A 752 /// - If not, optimization isn't possible. 753 /// - Otherwise, walk from A to another clobber or phi, A'. 754 /// - If A' is a def, we're done. 755 /// - If A' is a phi, try to optimize it. 756 /// 757 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 758 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 759 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 760 const MemoryLocation &Loc) { 761 assert(Paths.empty() && VisitedPhis.empty() && 762 "Reset the optimization state."); 763 764 Paths.emplace_back(Loc, Start, Phi, None); 765 // Stores how many "valid" optimization nodes we had prior to calling 766 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 767 auto PriorPathsSize = Paths.size(); 768 769 SmallVector<ListIndex, 16> PausedSearches; 770 SmallVector<ListIndex, 8> NewPaused; 771 SmallVector<TerminatedPath, 4> TerminatedPaths; 772 773 addSearches(Phi, PausedSearches, 0); 774 775 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 776 // Paths. 777 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 778 assert(!Paths.empty() && "Need a path to move"); 779 auto Dom = Paths.begin(); 780 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 781 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 782 Dom = I; 783 auto Last = Paths.end() - 1; 784 if (Last != Dom) 785 std::iter_swap(Last, Dom); 786 }; 787 788 MemoryPhi *Current = Phi; 789 while (true) { 790 assert(!MSSA.isLiveOnEntryDef(Current) && 791 "liveOnEntry wasn't treated as a clobber?"); 792 793 const auto *Target = getWalkTarget(Current); 794 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 795 // optimization for the prior phi. 796 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 797 return MSSA.dominates(P.Clobber, Target); 798 })); 799 800 // FIXME: This is broken, because the Blocker may be reported to be 801 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 802 // For the moment, this is fine, since we do nothing with blocker info. 803 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 804 Target, PausedSearches, NewPaused, TerminatedPaths)) { 805 806 // Find the node we started at. We can't search based on N->Last, since 807 // we may have gone around a loop with a different MemoryLocation. 808 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 809 return defPathIndex(N) < PriorPathsSize; 810 }); 811 assert(Iter != def_path_iterator()); 812 813 DefPath &CurNode = *Iter; 814 assert(CurNode.Last == Current); 815 816 // Two things: 817 // A. We can't reliably cache all of NewPaused back. Consider a case 818 // where we have two paths in NewPaused; one of which can't optimize 819 // above this phi, whereas the other can. If we cache the second path 820 // back, we'll end up with suboptimal cache entries. We can handle 821 // cases like this a bit better when we either try to find all 822 // clobbers that block phi optimization, or when our cache starts 823 // supporting unfinished searches. 824 // B. We can't reliably cache TerminatedPaths back here without doing 825 // extra checks; consider a case like: 826 // T 827 // / \ 828 // D C 829 // \ / 830 // S 831 // Where T is our target, C is a node with a clobber on it, D is a 832 // diamond (with a clobber *only* on the left or right node, N), and 833 // S is our start. Say we walk to D, through the node opposite N 834 // (read: ignoring the clobber), and see a cache entry in the top 835 // node of D. That cache entry gets put into TerminatedPaths. We then 836 // walk up to C (N is later in our worklist), find the clobber, and 837 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 838 // the bottom part of D to the cached clobber, ignoring the clobber 839 // in N. Again, this problem goes away if we start tracking all 840 // blockers for a given phi optimization. 841 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 842 return {Result, {}}; 843 } 844 845 // If there's nothing left to search, then all paths led to valid clobbers 846 // that we got from our cache; pick the nearest to the start, and allow 847 // the rest to be cached back. 848 if (NewPaused.empty()) { 849 MoveDominatedPathToEnd(TerminatedPaths); 850 TerminatedPath Result = TerminatedPaths.pop_back_val(); 851 return {Result, std::move(TerminatedPaths)}; 852 } 853 854 MemoryAccess *DefChainEnd = nullptr; 855 SmallVector<TerminatedPath, 4> Clobbers; 856 for (ListIndex Paused : NewPaused) { 857 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 858 if (WR.IsKnownClobber) 859 Clobbers.push_back({WR.Result, Paused}); 860 else 861 // Micro-opt: If we hit the end of the chain, save it. 862 DefChainEnd = WR.Result; 863 } 864 865 if (!TerminatedPaths.empty()) { 866 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 867 // do it now. 868 if (!DefChainEnd) 869 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 870 DefChainEnd = MA; 871 872 // If any of the terminated paths don't dominate the phi we'll try to 873 // optimize, we need to figure out what they are and quit. 874 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 875 for (const TerminatedPath &TP : TerminatedPaths) { 876 // Because we know that DefChainEnd is as "high" as we can go, we 877 // don't need local dominance checks; BB dominance is sufficient. 878 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 879 Clobbers.push_back(TP); 880 } 881 } 882 883 // If we have clobbers in the def chain, find the one closest to Current 884 // and quit. 885 if (!Clobbers.empty()) { 886 MoveDominatedPathToEnd(Clobbers); 887 TerminatedPath Result = Clobbers.pop_back_val(); 888 return {Result, std::move(Clobbers)}; 889 } 890 891 assert(all_of(NewPaused, 892 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 893 894 // Because liveOnEntry is a clobber, this must be a phi. 895 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 896 897 PriorPathsSize = Paths.size(); 898 PausedSearches.clear(); 899 for (ListIndex I : NewPaused) 900 addSearches(DefChainPhi, PausedSearches, I); 901 NewPaused.clear(); 902 903 Current = DefChainPhi; 904 } 905 } 906 907 void verifyOptResult(const OptznResult &R) const { 908 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 909 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 910 })); 911 } 912 913 void resetPhiOptznState() { 914 Paths.clear(); 915 VisitedPhis.clear(); 916 } 917 918 public: 919 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 920 : MSSA(MSSA), AA(AA), DT(DT) {} 921 922 AliasAnalysisType *getAA() { return &AA; } 923 /// Finds the nearest clobber for the given query, optimizing phis if 924 /// possible. 925 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 926 unsigned &UpWalkLimit) { 927 Query = &Q; 928 UpwardWalkLimit = &UpWalkLimit; 929 // Starting limit must be > 0. 930 if (!UpWalkLimit) 931 UpWalkLimit++; 932 933 MemoryAccess *Current = Start; 934 // This walker pretends uses don't exist. If we're handed one, silently grab 935 // its def. (This has the nice side-effect of ensuring we never cache uses) 936 if (auto *MU = dyn_cast<MemoryUse>(Start)) 937 Current = MU->getDefiningAccess(); 938 939 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 940 // Fast path for the overly-common case (no crazy phi optimization 941 // necessary) 942 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 943 MemoryAccess *Result; 944 if (WalkResult.IsKnownClobber) { 945 Result = WalkResult.Result; 946 Q.AR = WalkResult.AR; 947 } else { 948 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 949 Current, Q.StartingLoc); 950 verifyOptResult(OptRes); 951 resetPhiOptznState(); 952 Result = OptRes.PrimaryClobber.Clobber; 953 } 954 955 #ifdef EXPENSIVE_CHECKS 956 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 957 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 958 #endif 959 return Result; 960 } 961 }; 962 963 struct RenamePassData { 964 DomTreeNode *DTN; 965 DomTreeNode::const_iterator ChildIt; 966 MemoryAccess *IncomingVal; 967 968 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 969 MemoryAccess *M) 970 : DTN(D), ChildIt(It), IncomingVal(M) {} 971 972 void swap(RenamePassData &RHS) { 973 std::swap(DTN, RHS.DTN); 974 std::swap(ChildIt, RHS.ChildIt); 975 std::swap(IncomingVal, RHS.IncomingVal); 976 } 977 }; 978 979 } // end anonymous namespace 980 981 namespace llvm { 982 983 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 984 ClobberWalker<AliasAnalysisType> Walker; 985 MemorySSA *MSSA; 986 987 public: 988 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 989 : Walker(*M, *A, *D), MSSA(M) {} 990 991 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 992 const MemoryLocation &, 993 unsigned &); 994 // Third argument (bool), defines whether the clobber search should skip the 995 // original queried access. If true, there will be a follow-up query searching 996 // for a clobber access past "self". Note that the Optimized access is not 997 // updated if a new clobber is found by this SkipSelf search. If this 998 // additional query becomes heavily used we may decide to cache the result. 999 // Walker instantiations will decide how to set the SkipSelf bool. 1000 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1001 }; 1002 1003 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1004 /// longer does caching on its own, but the name has been retained for the 1005 /// moment. 1006 template <class AliasAnalysisType> 1007 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1008 ClobberWalkerBase<AliasAnalysisType> *Walker; 1009 1010 public: 1011 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1012 : MemorySSAWalker(M), Walker(W) {} 1013 ~CachingWalker() override = default; 1014 1015 using MemorySSAWalker::getClobberingMemoryAccess; 1016 1017 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1018 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1019 } 1020 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1021 const MemoryLocation &Loc, 1022 unsigned &UWL) { 1023 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1024 } 1025 1026 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1027 unsigned UpwardWalkLimit = MaxCheckLimit; 1028 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1029 } 1030 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1031 const MemoryLocation &Loc) override { 1032 unsigned UpwardWalkLimit = MaxCheckLimit; 1033 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1034 } 1035 1036 void invalidateInfo(MemoryAccess *MA) override { 1037 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1038 MUD->resetOptimized(); 1039 } 1040 }; 1041 1042 template <class AliasAnalysisType> 1043 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1044 ClobberWalkerBase<AliasAnalysisType> *Walker; 1045 1046 public: 1047 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1048 : MemorySSAWalker(M), Walker(W) {} 1049 ~SkipSelfWalker() override = default; 1050 1051 using MemorySSAWalker::getClobberingMemoryAccess; 1052 1053 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1054 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1055 } 1056 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1057 const MemoryLocation &Loc, 1058 unsigned &UWL) { 1059 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1060 } 1061 1062 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1063 unsigned UpwardWalkLimit = MaxCheckLimit; 1064 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1065 } 1066 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1067 const MemoryLocation &Loc) override { 1068 unsigned UpwardWalkLimit = MaxCheckLimit; 1069 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1070 } 1071 1072 void invalidateInfo(MemoryAccess *MA) override { 1073 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1074 MUD->resetOptimized(); 1075 } 1076 }; 1077 1078 } // end namespace llvm 1079 1080 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1081 bool RenameAllUses) { 1082 // Pass through values to our successors 1083 for (const BasicBlock *S : successors(BB)) { 1084 auto It = PerBlockAccesses.find(S); 1085 // Rename the phi nodes in our successor block 1086 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1087 continue; 1088 AccessList *Accesses = It->second.get(); 1089 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1090 if (RenameAllUses) { 1091 int PhiIndex = Phi->getBasicBlockIndex(BB); 1092 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 1093 Phi->setIncomingValue(PhiIndex, IncomingVal); 1094 } else 1095 Phi->addIncoming(IncomingVal, BB); 1096 } 1097 } 1098 1099 /// Rename a single basic block into MemorySSA form. 1100 /// Uses the standard SSA renaming algorithm. 1101 /// \returns The new incoming value. 1102 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1103 bool RenameAllUses) { 1104 auto It = PerBlockAccesses.find(BB); 1105 // Skip most processing if the list is empty. 1106 if (It != PerBlockAccesses.end()) { 1107 AccessList *Accesses = It->second.get(); 1108 for (MemoryAccess &L : *Accesses) { 1109 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1110 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1111 MUD->setDefiningAccess(IncomingVal); 1112 if (isa<MemoryDef>(&L)) 1113 IncomingVal = &L; 1114 } else { 1115 IncomingVal = &L; 1116 } 1117 } 1118 } 1119 return IncomingVal; 1120 } 1121 1122 /// This is the standard SSA renaming algorithm. 1123 /// 1124 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1125 /// in phi nodes in our successors. 1126 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1127 SmallPtrSetImpl<BasicBlock *> &Visited, 1128 bool SkipVisited, bool RenameAllUses) { 1129 assert(Root && "Trying to rename accesses in an unreachable block"); 1130 1131 SmallVector<RenamePassData, 32> WorkStack; 1132 // Skip everything if we already renamed this block and we are skipping. 1133 // Note: You can't sink this into the if, because we need it to occur 1134 // regardless of whether we skip blocks or not. 1135 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1136 if (SkipVisited && AlreadyVisited) 1137 return; 1138 1139 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1140 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1141 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1142 1143 while (!WorkStack.empty()) { 1144 DomTreeNode *Node = WorkStack.back().DTN; 1145 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1146 IncomingVal = WorkStack.back().IncomingVal; 1147 1148 if (ChildIt == Node->end()) { 1149 WorkStack.pop_back(); 1150 } else { 1151 DomTreeNode *Child = *ChildIt; 1152 ++WorkStack.back().ChildIt; 1153 BasicBlock *BB = Child->getBlock(); 1154 // Note: You can't sink this into the if, because we need it to occur 1155 // regardless of whether we skip blocks or not. 1156 AlreadyVisited = !Visited.insert(BB).second; 1157 if (SkipVisited && AlreadyVisited) { 1158 // We already visited this during our renaming, which can happen when 1159 // being asked to rename multiple blocks. Figure out the incoming val, 1160 // which is the last def. 1161 // Incoming value can only change if there is a block def, and in that 1162 // case, it's the last block def in the list. 1163 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1164 IncomingVal = &*BlockDefs->rbegin(); 1165 } else 1166 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1167 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1168 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1169 } 1170 } 1171 } 1172 1173 /// This handles unreachable block accesses by deleting phi nodes in 1174 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1175 /// being uses of the live on entry definition. 1176 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1177 assert(!DT->isReachableFromEntry(BB) && 1178 "Reachable block found while handling unreachable blocks"); 1179 1180 // Make sure phi nodes in our reachable successors end up with a 1181 // LiveOnEntryDef for our incoming edge, even though our block is forward 1182 // unreachable. We could just disconnect these blocks from the CFG fully, 1183 // but we do not right now. 1184 for (const BasicBlock *S : successors(BB)) { 1185 if (!DT->isReachableFromEntry(S)) 1186 continue; 1187 auto It = PerBlockAccesses.find(S); 1188 // Rename the phi nodes in our successor block 1189 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1190 continue; 1191 AccessList *Accesses = It->second.get(); 1192 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1193 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1194 } 1195 1196 auto It = PerBlockAccesses.find(BB); 1197 if (It == PerBlockAccesses.end()) 1198 return; 1199 1200 auto &Accesses = It->second; 1201 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1202 auto Next = std::next(AI); 1203 // If we have a phi, just remove it. We are going to replace all 1204 // users with live on entry. 1205 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1206 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1207 else 1208 Accesses->erase(AI); 1209 AI = Next; 1210 } 1211 } 1212 1213 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1214 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1215 SkipWalker(nullptr), NextID(0) { 1216 // Build MemorySSA using a batch alias analysis. This reuses the internal 1217 // state that AA collects during an alias()/getModRefInfo() call. This is 1218 // safe because there are no CFG changes while building MemorySSA and can 1219 // significantly reduce the time spent by the compiler in AA, because we will 1220 // make queries about all the instructions in the Function. 1221 BatchAAResults BatchAA(*AA); 1222 buildMemorySSA(BatchAA); 1223 // Intentionally leave AA to nullptr while building so we don't accidently 1224 // use non-batch AliasAnalysis. 1225 this->AA = AA; 1226 // Also create the walker here. 1227 getWalker(); 1228 } 1229 1230 MemorySSA::~MemorySSA() { 1231 // Drop all our references 1232 for (const auto &Pair : PerBlockAccesses) 1233 for (MemoryAccess &MA : *Pair.second) 1234 MA.dropAllReferences(); 1235 } 1236 1237 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1238 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1239 1240 if (Res.second) 1241 Res.first->second = llvm::make_unique<AccessList>(); 1242 return Res.first->second.get(); 1243 } 1244 1245 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1246 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1247 1248 if (Res.second) 1249 Res.first->second = llvm::make_unique<DefsList>(); 1250 return Res.first->second.get(); 1251 } 1252 1253 namespace llvm { 1254 1255 /// This class is a batch walker of all MemoryUse's in the program, and points 1256 /// their defining access at the thing that actually clobbers them. Because it 1257 /// is a batch walker that touches everything, it does not operate like the 1258 /// other walkers. This walker is basically performing a top-down SSA renaming 1259 /// pass, where the version stack is used as the cache. This enables it to be 1260 /// significantly more time and memory efficient than using the regular walker, 1261 /// which is walking bottom-up. 1262 class MemorySSA::OptimizeUses { 1263 public: 1264 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1265 BatchAAResults *BAA, DominatorTree *DT) 1266 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1267 1268 void optimizeUses(); 1269 1270 private: 1271 /// This represents where a given memorylocation is in the stack. 1272 struct MemlocStackInfo { 1273 // This essentially is keeping track of versions of the stack. Whenever 1274 // the stack changes due to pushes or pops, these versions increase. 1275 unsigned long StackEpoch; 1276 unsigned long PopEpoch; 1277 // This is the lower bound of places on the stack to check. It is equal to 1278 // the place the last stack walk ended. 1279 // Note: Correctness depends on this being initialized to 0, which densemap 1280 // does 1281 unsigned long LowerBound; 1282 const BasicBlock *LowerBoundBlock; 1283 // This is where the last walk for this memory location ended. 1284 unsigned long LastKill; 1285 bool LastKillValid; 1286 Optional<AliasResult> AR; 1287 }; 1288 1289 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1290 SmallVectorImpl<MemoryAccess *> &, 1291 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1292 1293 MemorySSA *MSSA; 1294 CachingWalker<BatchAAResults> *Walker; 1295 BatchAAResults *AA; 1296 DominatorTree *DT; 1297 }; 1298 1299 } // end namespace llvm 1300 1301 /// Optimize the uses in a given block This is basically the SSA renaming 1302 /// algorithm, with one caveat: We are able to use a single stack for all 1303 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1304 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1305 /// going to be some position in that stack of possible ones. 1306 /// 1307 /// We track the stack positions that each MemoryLocation needs 1308 /// to check, and last ended at. This is because we only want to check the 1309 /// things that changed since last time. The same MemoryLocation should 1310 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1311 /// things like this, and if they start, we can modify MemoryLocOrCall to 1312 /// include relevant data) 1313 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1314 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1315 SmallVectorImpl<MemoryAccess *> &VersionStack, 1316 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1317 1318 /// If no accesses, nothing to do. 1319 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1320 if (Accesses == nullptr) 1321 return; 1322 1323 // Pop everything that doesn't dominate the current block off the stack, 1324 // increment the PopEpoch to account for this. 1325 while (true) { 1326 assert( 1327 !VersionStack.empty() && 1328 "Version stack should have liveOnEntry sentinel dominating everything"); 1329 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1330 if (DT->dominates(BackBlock, BB)) 1331 break; 1332 while (VersionStack.back()->getBlock() == BackBlock) 1333 VersionStack.pop_back(); 1334 ++PopEpoch; 1335 } 1336 1337 for (MemoryAccess &MA : *Accesses) { 1338 auto *MU = dyn_cast<MemoryUse>(&MA); 1339 if (!MU) { 1340 VersionStack.push_back(&MA); 1341 ++StackEpoch; 1342 continue; 1343 } 1344 1345 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1346 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1347 continue; 1348 } 1349 1350 MemoryLocOrCall UseMLOC(MU); 1351 auto &LocInfo = LocStackInfo[UseMLOC]; 1352 // If the pop epoch changed, it means we've removed stuff from top of 1353 // stack due to changing blocks. We may have to reset the lower bound or 1354 // last kill info. 1355 if (LocInfo.PopEpoch != PopEpoch) { 1356 LocInfo.PopEpoch = PopEpoch; 1357 LocInfo.StackEpoch = StackEpoch; 1358 // If the lower bound was in something that no longer dominates us, we 1359 // have to reset it. 1360 // We can't simply track stack size, because the stack may have had 1361 // pushes/pops in the meantime. 1362 // XXX: This is non-optimal, but only is slower cases with heavily 1363 // branching dominator trees. To get the optimal number of queries would 1364 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1365 // the top of that stack dominates us. This does not seem worth it ATM. 1366 // A much cheaper optimization would be to always explore the deepest 1367 // branch of the dominator tree first. This will guarantee this resets on 1368 // the smallest set of blocks. 1369 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1370 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1371 // Reset the lower bound of things to check. 1372 // TODO: Some day we should be able to reset to last kill, rather than 1373 // 0. 1374 LocInfo.LowerBound = 0; 1375 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1376 LocInfo.LastKillValid = false; 1377 } 1378 } else if (LocInfo.StackEpoch != StackEpoch) { 1379 // If all that has changed is the StackEpoch, we only have to check the 1380 // new things on the stack, because we've checked everything before. In 1381 // this case, the lower bound of things to check remains the same. 1382 LocInfo.PopEpoch = PopEpoch; 1383 LocInfo.StackEpoch = StackEpoch; 1384 } 1385 if (!LocInfo.LastKillValid) { 1386 LocInfo.LastKill = VersionStack.size() - 1; 1387 LocInfo.LastKillValid = true; 1388 LocInfo.AR = MayAlias; 1389 } 1390 1391 // At this point, we should have corrected last kill and LowerBound to be 1392 // in bounds. 1393 assert(LocInfo.LowerBound < VersionStack.size() && 1394 "Lower bound out of range"); 1395 assert(LocInfo.LastKill < VersionStack.size() && 1396 "Last kill info out of range"); 1397 // In any case, the new upper bound is the top of the stack. 1398 unsigned long UpperBound = VersionStack.size() - 1; 1399 1400 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1401 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1402 << *(MU->getMemoryInst()) << ")" 1403 << " because there are " 1404 << UpperBound - LocInfo.LowerBound 1405 << " stores to disambiguate\n"); 1406 // Because we did not walk, LastKill is no longer valid, as this may 1407 // have been a kill. 1408 LocInfo.LastKillValid = false; 1409 continue; 1410 } 1411 bool FoundClobberResult = false; 1412 unsigned UpwardWalkLimit = MaxCheckLimit; 1413 while (UpperBound > LocInfo.LowerBound) { 1414 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1415 // For phis, use the walker, see where we ended up, go there 1416 MemoryAccess *Result = 1417 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1418 // We are guaranteed to find it or something is wrong 1419 while (VersionStack[UpperBound] != Result) { 1420 assert(UpperBound != 0); 1421 --UpperBound; 1422 } 1423 FoundClobberResult = true; 1424 break; 1425 } 1426 1427 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1428 // If the lifetime of the pointer ends at this instruction, it's live on 1429 // entry. 1430 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1431 // Reset UpperBound to liveOnEntryDef's place in the stack 1432 UpperBound = 0; 1433 FoundClobberResult = true; 1434 LocInfo.AR = MustAlias; 1435 break; 1436 } 1437 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1438 if (CA.IsClobber) { 1439 FoundClobberResult = true; 1440 LocInfo.AR = CA.AR; 1441 break; 1442 } 1443 --UpperBound; 1444 } 1445 1446 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1447 1448 // At the end of this loop, UpperBound is either a clobber, or lower bound 1449 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1450 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1451 // We were last killed now by where we got to 1452 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1453 LocInfo.AR = None; 1454 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1455 LocInfo.LastKill = UpperBound; 1456 } else { 1457 // Otherwise, we checked all the new ones, and now we know we can get to 1458 // LastKill. 1459 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1460 } 1461 LocInfo.LowerBound = VersionStack.size() - 1; 1462 LocInfo.LowerBoundBlock = BB; 1463 } 1464 } 1465 1466 /// Optimize uses to point to their actual clobbering definitions. 1467 void MemorySSA::OptimizeUses::optimizeUses() { 1468 SmallVector<MemoryAccess *, 16> VersionStack; 1469 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1470 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1471 1472 unsigned long StackEpoch = 1; 1473 unsigned long PopEpoch = 1; 1474 // We perform a non-recursive top-down dominator tree walk. 1475 for (const auto *DomNode : depth_first(DT->getRootNode())) 1476 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1477 LocStackInfo); 1478 } 1479 1480 void MemorySSA::placePHINodes( 1481 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1482 // Determine where our MemoryPhi's should go 1483 ForwardIDFCalculator IDFs(*DT); 1484 IDFs.setDefiningBlocks(DefiningBlocks); 1485 SmallVector<BasicBlock *, 32> IDFBlocks; 1486 IDFs.calculate(IDFBlocks); 1487 1488 // Now place MemoryPhi nodes. 1489 for (auto &BB : IDFBlocks) 1490 createMemoryPhi(BB); 1491 } 1492 1493 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1494 // We create an access to represent "live on entry", for things like 1495 // arguments or users of globals, where the memory they use is defined before 1496 // the beginning of the function. We do not actually insert it into the IR. 1497 // We do not define a live on exit for the immediate uses, and thus our 1498 // semantics do *not* imply that something with no immediate uses can simply 1499 // be removed. 1500 BasicBlock &StartingPoint = F.getEntryBlock(); 1501 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1502 &StartingPoint, NextID++)); 1503 1504 // We maintain lists of memory accesses per-block, trading memory for time. We 1505 // could just look up the memory access for every possible instruction in the 1506 // stream. 1507 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1508 // Go through each block, figure out where defs occur, and chain together all 1509 // the accesses. 1510 for (BasicBlock &B : F) { 1511 bool InsertIntoDef = false; 1512 AccessList *Accesses = nullptr; 1513 DefsList *Defs = nullptr; 1514 for (Instruction &I : B) { 1515 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1516 if (!MUD) 1517 continue; 1518 1519 if (!Accesses) 1520 Accesses = getOrCreateAccessList(&B); 1521 Accesses->push_back(MUD); 1522 if (isa<MemoryDef>(MUD)) { 1523 InsertIntoDef = true; 1524 if (!Defs) 1525 Defs = getOrCreateDefsList(&B); 1526 Defs->push_back(*MUD); 1527 } 1528 } 1529 if (InsertIntoDef) 1530 DefiningBlocks.insert(&B); 1531 } 1532 placePHINodes(DefiningBlocks); 1533 1534 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1535 // filled in with all blocks. 1536 SmallPtrSet<BasicBlock *, 16> Visited; 1537 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1538 1539 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1540 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1541 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1542 1543 // Mark the uses in unreachable blocks as live on entry, so that they go 1544 // somewhere. 1545 for (auto &BB : F) 1546 if (!Visited.count(&BB)) 1547 markUnreachableAsLiveOnEntry(&BB); 1548 } 1549 1550 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1551 1552 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1553 if (Walker) 1554 return Walker.get(); 1555 1556 if (!WalkerBase) 1557 WalkerBase = 1558 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1559 1560 Walker = 1561 llvm::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1562 return Walker.get(); 1563 } 1564 1565 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1566 if (SkipWalker) 1567 return SkipWalker.get(); 1568 1569 if (!WalkerBase) 1570 WalkerBase = 1571 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1572 1573 SkipWalker = 1574 llvm::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1575 return SkipWalker.get(); 1576 } 1577 1578 1579 // This is a helper function used by the creation routines. It places NewAccess 1580 // into the access and defs lists for a given basic block, at the given 1581 // insertion point. 1582 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1583 const BasicBlock *BB, 1584 InsertionPlace Point) { 1585 auto *Accesses = getOrCreateAccessList(BB); 1586 if (Point == Beginning) { 1587 // If it's a phi node, it goes first, otherwise, it goes after any phi 1588 // nodes. 1589 if (isa<MemoryPhi>(NewAccess)) { 1590 Accesses->push_front(NewAccess); 1591 auto *Defs = getOrCreateDefsList(BB); 1592 Defs->push_front(*NewAccess); 1593 } else { 1594 auto AI = find_if_not( 1595 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1596 Accesses->insert(AI, NewAccess); 1597 if (!isa<MemoryUse>(NewAccess)) { 1598 auto *Defs = getOrCreateDefsList(BB); 1599 auto DI = find_if_not( 1600 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1601 Defs->insert(DI, *NewAccess); 1602 } 1603 } 1604 } else { 1605 Accesses->push_back(NewAccess); 1606 if (!isa<MemoryUse>(NewAccess)) { 1607 auto *Defs = getOrCreateDefsList(BB); 1608 Defs->push_back(*NewAccess); 1609 } 1610 } 1611 BlockNumberingValid.erase(BB); 1612 } 1613 1614 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1615 AccessList::iterator InsertPt) { 1616 auto *Accesses = getWritableBlockAccesses(BB); 1617 bool WasEnd = InsertPt == Accesses->end(); 1618 Accesses->insert(AccessList::iterator(InsertPt), What); 1619 if (!isa<MemoryUse>(What)) { 1620 auto *Defs = getOrCreateDefsList(BB); 1621 // If we got asked to insert at the end, we have an easy job, just shove it 1622 // at the end. If we got asked to insert before an existing def, we also get 1623 // an iterator. If we got asked to insert before a use, we have to hunt for 1624 // the next def. 1625 if (WasEnd) { 1626 Defs->push_back(*What); 1627 } else if (isa<MemoryDef>(InsertPt)) { 1628 Defs->insert(InsertPt->getDefsIterator(), *What); 1629 } else { 1630 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1631 ++InsertPt; 1632 // Either we found a def, or we are inserting at the end 1633 if (InsertPt == Accesses->end()) 1634 Defs->push_back(*What); 1635 else 1636 Defs->insert(InsertPt->getDefsIterator(), *What); 1637 } 1638 } 1639 BlockNumberingValid.erase(BB); 1640 } 1641 1642 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1643 // Keep it in the lookup tables, remove from the lists 1644 removeFromLists(What, false); 1645 1646 // Note that moving should implicitly invalidate the optimized state of a 1647 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1648 // MemoryDef. 1649 if (auto *MD = dyn_cast<MemoryDef>(What)) 1650 MD->resetOptimized(); 1651 What->setBlock(BB); 1652 } 1653 1654 // Move What before Where in the IR. The end result is that What will belong to 1655 // the right lists and have the right Block set, but will not otherwise be 1656 // correct. It will not have the right defining access, and if it is a def, 1657 // things below it will not properly be updated. 1658 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1659 AccessList::iterator Where) { 1660 prepareForMoveTo(What, BB); 1661 insertIntoListsBefore(What, BB, Where); 1662 } 1663 1664 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1665 InsertionPlace Point) { 1666 if (isa<MemoryPhi>(What)) { 1667 assert(Point == Beginning && 1668 "Can only move a Phi at the beginning of the block"); 1669 // Update lookup table entry 1670 ValueToMemoryAccess.erase(What->getBlock()); 1671 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1672 (void)Inserted; 1673 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1674 } 1675 1676 prepareForMoveTo(What, BB); 1677 insertIntoListsForBlock(What, BB, Point); 1678 } 1679 1680 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1681 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1682 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1683 // Phi's always are placed at the front of the block. 1684 insertIntoListsForBlock(Phi, BB, Beginning); 1685 ValueToMemoryAccess[BB] = Phi; 1686 return Phi; 1687 } 1688 1689 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1690 MemoryAccess *Definition, 1691 const MemoryUseOrDef *Template, 1692 bool CreationMustSucceed) { 1693 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1694 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1695 if (CreationMustSucceed) 1696 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1697 "non-memory touching instruction"); 1698 if (NewAccess) 1699 NewAccess->setDefiningAccess(Definition); 1700 return NewAccess; 1701 } 1702 1703 // Return true if the instruction has ordering constraints. 1704 // Note specifically that this only considers stores and loads 1705 // because others are still considered ModRef by getModRefInfo. 1706 static inline bool isOrdered(const Instruction *I) { 1707 if (auto *SI = dyn_cast<StoreInst>(I)) { 1708 if (!SI->isUnordered()) 1709 return true; 1710 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1711 if (!LI->isUnordered()) 1712 return true; 1713 } 1714 return false; 1715 } 1716 1717 /// Helper function to create new memory accesses 1718 template <typename AliasAnalysisType> 1719 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1720 AliasAnalysisType *AAP, 1721 const MemoryUseOrDef *Template) { 1722 // The assume intrinsic has a control dependency which we model by claiming 1723 // that it writes arbitrarily. Ignore that fake memory dependency here. 1724 // FIXME: Replace this special casing with a more accurate modelling of 1725 // assume's control dependency. 1726 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1727 if (II->getIntrinsicID() == Intrinsic::assume) 1728 return nullptr; 1729 1730 bool Def, Use; 1731 if (Template) { 1732 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1733 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1734 #if !defined(NDEBUG) 1735 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1736 bool DefCheck, UseCheck; 1737 DefCheck = isModSet(ModRef) || isOrdered(I); 1738 UseCheck = isRefSet(ModRef); 1739 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1740 #endif 1741 } else { 1742 // Find out what affect this instruction has on memory. 1743 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1744 // The isOrdered check is used to ensure that volatiles end up as defs 1745 // (atomics end up as ModRef right now anyway). Until we separate the 1746 // ordering chain from the memory chain, this enables people to see at least 1747 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1748 // will still give an answer that bypasses other volatile loads. TODO: 1749 // Separate memory aliasing and ordering into two different chains so that 1750 // we can precisely represent both "what memory will this read/write/is 1751 // clobbered by" and "what instructions can I move this past". 1752 Def = isModSet(ModRef) || isOrdered(I); 1753 Use = isRefSet(ModRef); 1754 } 1755 1756 // It's possible for an instruction to not modify memory at all. During 1757 // construction, we ignore them. 1758 if (!Def && !Use) 1759 return nullptr; 1760 1761 MemoryUseOrDef *MUD; 1762 if (Def) 1763 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1764 else 1765 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1766 ValueToMemoryAccess[I] = MUD; 1767 return MUD; 1768 } 1769 1770 /// Returns true if \p Replacer dominates \p Replacee . 1771 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1772 const MemoryAccess *Replacee) const { 1773 if (isa<MemoryUseOrDef>(Replacee)) 1774 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1775 const auto *MP = cast<MemoryPhi>(Replacee); 1776 // For a phi node, the use occurs in the predecessor block of the phi node. 1777 // Since we may occur multiple times in the phi node, we have to check each 1778 // operand to ensure Replacer dominates each operand where Replacee occurs. 1779 for (const Use &Arg : MP->operands()) { 1780 if (Arg.get() != Replacee && 1781 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1782 return false; 1783 } 1784 return true; 1785 } 1786 1787 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1788 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1789 assert(MA->use_empty() && 1790 "Trying to remove memory access that still has uses"); 1791 BlockNumbering.erase(MA); 1792 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1793 MUD->setDefiningAccess(nullptr); 1794 // Invalidate our walker's cache if necessary 1795 if (!isa<MemoryUse>(MA)) 1796 getWalker()->invalidateInfo(MA); 1797 1798 Value *MemoryInst; 1799 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1800 MemoryInst = MUD->getMemoryInst(); 1801 else 1802 MemoryInst = MA->getBlock(); 1803 1804 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1805 if (VMA->second == MA) 1806 ValueToMemoryAccess.erase(VMA); 1807 } 1808 1809 /// Properly remove \p MA from all of MemorySSA's lists. 1810 /// 1811 /// Because of the way the intrusive list and use lists work, it is important to 1812 /// do removal in the right order. 1813 /// ShouldDelete defaults to true, and will cause the memory access to also be 1814 /// deleted, not just removed. 1815 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1816 BasicBlock *BB = MA->getBlock(); 1817 // The access list owns the reference, so we erase it from the non-owning list 1818 // first. 1819 if (!isa<MemoryUse>(MA)) { 1820 auto DefsIt = PerBlockDefs.find(BB); 1821 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1822 Defs->remove(*MA); 1823 if (Defs->empty()) 1824 PerBlockDefs.erase(DefsIt); 1825 } 1826 1827 // The erase call here will delete it. If we don't want it deleted, we call 1828 // remove instead. 1829 auto AccessIt = PerBlockAccesses.find(BB); 1830 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1831 if (ShouldDelete) 1832 Accesses->erase(MA); 1833 else 1834 Accesses->remove(MA); 1835 1836 if (Accesses->empty()) { 1837 PerBlockAccesses.erase(AccessIt); 1838 BlockNumberingValid.erase(BB); 1839 } 1840 } 1841 1842 void MemorySSA::print(raw_ostream &OS) const { 1843 MemorySSAAnnotatedWriter Writer(this); 1844 F.print(OS, &Writer); 1845 } 1846 1847 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1848 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1849 #endif 1850 1851 void MemorySSA::verifyMemorySSA() const { 1852 verifyDefUses(F); 1853 verifyDomination(F); 1854 verifyOrdering(F); 1855 verifyDominationNumbers(F); 1856 verifyPrevDefInPhis(F); 1857 // Previously, the verification used to also verify that the clobberingAccess 1858 // cached by MemorySSA is the same as the clobberingAccess found at a later 1859 // query to AA. This does not hold true in general due to the current fragility 1860 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1861 // up. As a result, transformations that are correct, will lead to BasicAA 1862 // returning different Alias answers before and after that transformation. 1863 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1864 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1865 // every transformation, which defeats the purpose of using it. For such an 1866 // example, see test4 added in D51960. 1867 } 1868 1869 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1870 #ifndef NDEBUG 1871 for (const BasicBlock &BB : F) { 1872 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1873 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1874 auto *Pred = Phi->getIncomingBlock(I); 1875 auto *IncAcc = Phi->getIncomingValue(I); 1876 // If Pred has no unreachable predecessors, get last def looking at 1877 // IDoms. If, while walkings IDoms, any of these has an unreachable 1878 // predecessor, then the expected incoming def is LoE. 1879 if (auto *DTNode = DT->getNode(Pred)) { 1880 while (DTNode) { 1881 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1882 auto *LastAcc = &*(--DefList->end()); 1883 assert(LastAcc == IncAcc && 1884 "Incorrect incoming access into phi."); 1885 break; 1886 } 1887 DTNode = DTNode->getIDom(); 1888 } 1889 assert((DTNode || IncAcc == getLiveOnEntryDef()) && 1890 "Expected LoE inc"); 1891 } else if (auto *DefList = getBlockDefs(Pred)) { 1892 // If Pred has unreachable predecessors, but has at least a Def, the 1893 // incoming access can be the last Def in Pred, or it could have been 1894 // optimized to LoE. 1895 auto *LastAcc = &*(--DefList->end()); 1896 assert((LastAcc == IncAcc || IncAcc == getLiveOnEntryDef()) && 1897 "Incorrect incoming access into phi."); 1898 } else { 1899 // If Pred has unreachable predecessors and no Defs, incoming access 1900 // should be LoE. 1901 assert(IncAcc == getLiveOnEntryDef() && "Expected LoE inc"); 1902 } 1903 } 1904 } 1905 } 1906 #endif 1907 } 1908 1909 /// Verify that all of the blocks we believe to have valid domination numbers 1910 /// actually have valid domination numbers. 1911 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1912 #ifndef NDEBUG 1913 if (BlockNumberingValid.empty()) 1914 return; 1915 1916 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1917 for (const BasicBlock &BB : F) { 1918 if (!ValidBlocks.count(&BB)) 1919 continue; 1920 1921 ValidBlocks.erase(&BB); 1922 1923 const AccessList *Accesses = getBlockAccesses(&BB); 1924 // It's correct to say an empty block has valid numbering. 1925 if (!Accesses) 1926 continue; 1927 1928 // Block numbering starts at 1. 1929 unsigned long LastNumber = 0; 1930 for (const MemoryAccess &MA : *Accesses) { 1931 auto ThisNumberIter = BlockNumbering.find(&MA); 1932 assert(ThisNumberIter != BlockNumbering.end() && 1933 "MemoryAccess has no domination number in a valid block!"); 1934 1935 unsigned long ThisNumber = ThisNumberIter->second; 1936 assert(ThisNumber > LastNumber && 1937 "Domination numbers should be strictly increasing!"); 1938 LastNumber = ThisNumber; 1939 } 1940 } 1941 1942 assert(ValidBlocks.empty() && 1943 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1944 #endif 1945 } 1946 1947 /// Verify that the order and existence of MemoryAccesses matches the 1948 /// order and existence of memory affecting instructions. 1949 void MemorySSA::verifyOrdering(Function &F) const { 1950 #ifndef NDEBUG 1951 // Walk all the blocks, comparing what the lookups think and what the access 1952 // lists think, as well as the order in the blocks vs the order in the access 1953 // lists. 1954 SmallVector<MemoryAccess *, 32> ActualAccesses; 1955 SmallVector<MemoryAccess *, 32> ActualDefs; 1956 for (BasicBlock &B : F) { 1957 const AccessList *AL = getBlockAccesses(&B); 1958 const auto *DL = getBlockDefs(&B); 1959 MemoryAccess *Phi = getMemoryAccess(&B); 1960 if (Phi) { 1961 ActualAccesses.push_back(Phi); 1962 ActualDefs.push_back(Phi); 1963 } 1964 1965 for (Instruction &I : B) { 1966 MemoryAccess *MA = getMemoryAccess(&I); 1967 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1968 "We have memory affecting instructions " 1969 "in this block but they are not in the " 1970 "access list or defs list"); 1971 if (MA) { 1972 ActualAccesses.push_back(MA); 1973 if (isa<MemoryDef>(MA)) 1974 ActualDefs.push_back(MA); 1975 } 1976 } 1977 // Either we hit the assert, really have no accesses, or we have both 1978 // accesses and an access list. 1979 // Same with defs. 1980 if (!AL && !DL) 1981 continue; 1982 assert(AL->size() == ActualAccesses.size() && 1983 "We don't have the same number of accesses in the block as on the " 1984 "access list"); 1985 assert((DL || ActualDefs.size() == 0) && 1986 "Either we should have a defs list, or we should have no defs"); 1987 assert((!DL || DL->size() == ActualDefs.size()) && 1988 "We don't have the same number of defs in the block as on the " 1989 "def list"); 1990 auto ALI = AL->begin(); 1991 auto AAI = ActualAccesses.begin(); 1992 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1993 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1994 ++ALI; 1995 ++AAI; 1996 } 1997 ActualAccesses.clear(); 1998 if (DL) { 1999 auto DLI = DL->begin(); 2000 auto ADI = ActualDefs.begin(); 2001 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2002 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2003 ++DLI; 2004 ++ADI; 2005 } 2006 } 2007 ActualDefs.clear(); 2008 } 2009 #endif 2010 } 2011 2012 /// Verify the domination properties of MemorySSA by checking that each 2013 /// definition dominates all of its uses. 2014 void MemorySSA::verifyDomination(Function &F) const { 2015 #ifndef NDEBUG 2016 for (BasicBlock &B : F) { 2017 // Phi nodes are attached to basic blocks 2018 if (MemoryPhi *MP = getMemoryAccess(&B)) 2019 for (const Use &U : MP->uses()) 2020 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 2021 2022 for (Instruction &I : B) { 2023 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 2024 if (!MD) 2025 continue; 2026 2027 for (const Use &U : MD->uses()) 2028 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 2029 } 2030 } 2031 #endif 2032 } 2033 2034 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2035 /// appears in the use list of \p Def. 2036 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2037 #ifndef NDEBUG 2038 // The live on entry use may cause us to get a NULL def here 2039 if (!Def) 2040 assert(isLiveOnEntryDef(Use) && 2041 "Null def but use not point to live on entry def"); 2042 else 2043 assert(is_contained(Def->users(), Use) && 2044 "Did not find use in def's use list"); 2045 #endif 2046 } 2047 2048 /// Verify the immediate use information, by walking all the memory 2049 /// accesses and verifying that, for each use, it appears in the 2050 /// appropriate def's use list 2051 void MemorySSA::verifyDefUses(Function &F) const { 2052 #ifndef NDEBUG 2053 for (BasicBlock &B : F) { 2054 // Phi nodes are attached to basic blocks 2055 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 2056 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2057 pred_begin(&B), pred_end(&B))) && 2058 "Incomplete MemoryPhi Node"); 2059 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2060 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2061 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2062 pred_end(&B) && 2063 "Incoming phi block not a block predecessor"); 2064 } 2065 } 2066 2067 for (Instruction &I : B) { 2068 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 2069 verifyUseInDefs(MA->getDefiningAccess(), MA); 2070 } 2071 } 2072 } 2073 #endif 2074 } 2075 2076 /// Perform a local numbering on blocks so that instruction ordering can be 2077 /// determined in constant time. 2078 /// TODO: We currently just number in order. If we numbered by N, we could 2079 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2080 /// log2(N) sequences of mixed before and after) without needing to invalidate 2081 /// the numbering. 2082 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2083 // The pre-increment ensures the numbers really start at 1. 2084 unsigned long CurrentNumber = 0; 2085 const AccessList *AL = getBlockAccesses(B); 2086 assert(AL != nullptr && "Asking to renumber an empty block"); 2087 for (const auto &I : *AL) 2088 BlockNumbering[&I] = ++CurrentNumber; 2089 BlockNumberingValid.insert(B); 2090 } 2091 2092 /// Determine, for two memory accesses in the same block, 2093 /// whether \p Dominator dominates \p Dominatee. 2094 /// \returns True if \p Dominator dominates \p Dominatee. 2095 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2096 const MemoryAccess *Dominatee) const { 2097 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2098 2099 assert((DominatorBlock == Dominatee->getBlock()) && 2100 "Asking for local domination when accesses are in different blocks!"); 2101 // A node dominates itself. 2102 if (Dominatee == Dominator) 2103 return true; 2104 2105 // When Dominatee is defined on function entry, it is not dominated by another 2106 // memory access. 2107 if (isLiveOnEntryDef(Dominatee)) 2108 return false; 2109 2110 // When Dominator is defined on function entry, it dominates the other memory 2111 // access. 2112 if (isLiveOnEntryDef(Dominator)) 2113 return true; 2114 2115 if (!BlockNumberingValid.count(DominatorBlock)) 2116 renumberBlock(DominatorBlock); 2117 2118 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2119 // All numbers start with 1 2120 assert(DominatorNum != 0 && "Block was not numbered properly"); 2121 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2122 assert(DominateeNum != 0 && "Block was not numbered properly"); 2123 return DominatorNum < DominateeNum; 2124 } 2125 2126 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2127 const MemoryAccess *Dominatee) const { 2128 if (Dominator == Dominatee) 2129 return true; 2130 2131 if (isLiveOnEntryDef(Dominatee)) 2132 return false; 2133 2134 if (Dominator->getBlock() != Dominatee->getBlock()) 2135 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2136 return locallyDominates(Dominator, Dominatee); 2137 } 2138 2139 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2140 const Use &Dominatee) const { 2141 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2142 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2143 // The def must dominate the incoming block of the phi. 2144 if (UseBB != Dominator->getBlock()) 2145 return DT->dominates(Dominator->getBlock(), UseBB); 2146 // If the UseBB and the DefBB are the same, compare locally. 2147 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2148 } 2149 // If it's not a PHI node use, the normal dominates can already handle it. 2150 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2151 } 2152 2153 const static char LiveOnEntryStr[] = "liveOnEntry"; 2154 2155 void MemoryAccess::print(raw_ostream &OS) const { 2156 switch (getValueID()) { 2157 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2158 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2159 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2160 } 2161 llvm_unreachable("invalid value id"); 2162 } 2163 2164 void MemoryDef::print(raw_ostream &OS) const { 2165 MemoryAccess *UO = getDefiningAccess(); 2166 2167 auto printID = [&OS](MemoryAccess *A) { 2168 if (A && A->getID()) 2169 OS << A->getID(); 2170 else 2171 OS << LiveOnEntryStr; 2172 }; 2173 2174 OS << getID() << " = MemoryDef("; 2175 printID(UO); 2176 OS << ")"; 2177 2178 if (isOptimized()) { 2179 OS << "->"; 2180 printID(getOptimized()); 2181 2182 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2183 OS << " " << *AR; 2184 } 2185 } 2186 2187 void MemoryPhi::print(raw_ostream &OS) const { 2188 bool First = true; 2189 OS << getID() << " = MemoryPhi("; 2190 for (const auto &Op : operands()) { 2191 BasicBlock *BB = getIncomingBlock(Op); 2192 MemoryAccess *MA = cast<MemoryAccess>(Op); 2193 if (!First) 2194 OS << ','; 2195 else 2196 First = false; 2197 2198 OS << '{'; 2199 if (BB->hasName()) 2200 OS << BB->getName(); 2201 else 2202 BB->printAsOperand(OS, false); 2203 OS << ','; 2204 if (unsigned ID = MA->getID()) 2205 OS << ID; 2206 else 2207 OS << LiveOnEntryStr; 2208 OS << '}'; 2209 } 2210 OS << ')'; 2211 } 2212 2213 void MemoryUse::print(raw_ostream &OS) const { 2214 MemoryAccess *UO = getDefiningAccess(); 2215 OS << "MemoryUse("; 2216 if (UO && UO->getID()) 2217 OS << UO->getID(); 2218 else 2219 OS << LiveOnEntryStr; 2220 OS << ')'; 2221 2222 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2223 OS << " " << *AR; 2224 } 2225 2226 void MemoryAccess::dump() const { 2227 // Cannot completely remove virtual function even in release mode. 2228 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2229 print(dbgs()); 2230 dbgs() << "\n"; 2231 #endif 2232 } 2233 2234 char MemorySSAPrinterLegacyPass::ID = 0; 2235 2236 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2237 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2238 } 2239 2240 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2241 AU.setPreservesAll(); 2242 AU.addRequired<MemorySSAWrapperPass>(); 2243 } 2244 2245 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2246 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2247 MSSA.print(dbgs()); 2248 if (VerifyMemorySSA) 2249 MSSA.verifyMemorySSA(); 2250 return false; 2251 } 2252 2253 AnalysisKey MemorySSAAnalysis::Key; 2254 2255 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2256 FunctionAnalysisManager &AM) { 2257 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2258 auto &AA = AM.getResult<AAManager>(F); 2259 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 2260 } 2261 2262 bool MemorySSAAnalysis::Result::invalidate( 2263 Function &F, const PreservedAnalyses &PA, 2264 FunctionAnalysisManager::Invalidator &Inv) { 2265 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2266 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2267 Inv.invalidate<AAManager>(F, PA) || 2268 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2269 } 2270 2271 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2272 FunctionAnalysisManager &AM) { 2273 OS << "MemorySSA for function: " << F.getName() << "\n"; 2274 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2275 2276 return PreservedAnalyses::all(); 2277 } 2278 2279 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2280 FunctionAnalysisManager &AM) { 2281 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2282 2283 return PreservedAnalyses::all(); 2284 } 2285 2286 char MemorySSAWrapperPass::ID = 0; 2287 2288 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2289 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2290 } 2291 2292 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2293 2294 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2295 AU.setPreservesAll(); 2296 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2297 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2298 } 2299 2300 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2301 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2302 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2303 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2304 return false; 2305 } 2306 2307 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2308 2309 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2310 MSSA->print(OS); 2311 } 2312 2313 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2314 2315 /// Walk the use-def chains starting at \p StartingAccess and find 2316 /// the MemoryAccess that actually clobbers Loc. 2317 /// 2318 /// \returns our clobbering memory access 2319 template <typename AliasAnalysisType> 2320 MemoryAccess * 2321 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2322 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2323 unsigned &UpwardWalkLimit) { 2324 if (isa<MemoryPhi>(StartingAccess)) 2325 return StartingAccess; 2326 2327 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2328 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2329 return StartingUseOrDef; 2330 2331 Instruction *I = StartingUseOrDef->getMemoryInst(); 2332 2333 // Conservatively, fences are always clobbers, so don't perform the walk if we 2334 // hit a fence. 2335 if (!isa<CallBase>(I) && I->isFenceLike()) 2336 return StartingUseOrDef; 2337 2338 UpwardsMemoryQuery Q; 2339 Q.OriginalAccess = StartingUseOrDef; 2340 Q.StartingLoc = Loc; 2341 Q.Inst = I; 2342 Q.IsCall = false; 2343 2344 // Unlike the other function, do not walk to the def of a def, because we are 2345 // handed something we already believe is the clobbering access. 2346 // We never set SkipSelf to true in Q in this method. 2347 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2348 ? StartingUseOrDef->getDefiningAccess() 2349 : StartingUseOrDef; 2350 2351 MemoryAccess *Clobber = 2352 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2353 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2354 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2355 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2356 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2357 return Clobber; 2358 } 2359 2360 template <typename AliasAnalysisType> 2361 MemoryAccess * 2362 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2363 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2364 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2365 // If this is a MemoryPhi, we can't do anything. 2366 if (!StartingAccess) 2367 return MA; 2368 2369 bool IsOptimized = false; 2370 2371 // If this is an already optimized use or def, return the optimized result. 2372 // Note: Currently, we store the optimized def result in a separate field, 2373 // since we can't use the defining access. 2374 if (StartingAccess->isOptimized()) { 2375 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2376 return StartingAccess->getOptimized(); 2377 IsOptimized = true; 2378 } 2379 2380 const Instruction *I = StartingAccess->getMemoryInst(); 2381 // We can't sanely do anything with a fence, since they conservatively clobber 2382 // all memory, and have no locations to get pointers from to try to 2383 // disambiguate. 2384 if (!isa<CallBase>(I) && I->isFenceLike()) 2385 return StartingAccess; 2386 2387 UpwardsMemoryQuery Q(I, StartingAccess); 2388 2389 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2390 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2391 StartingAccess->setOptimized(LiveOnEntry); 2392 StartingAccess->setOptimizedAccessType(None); 2393 return LiveOnEntry; 2394 } 2395 2396 MemoryAccess *OptimizedAccess; 2397 if (!IsOptimized) { 2398 // Start with the thing we already think clobbers this location 2399 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2400 2401 // At this point, DefiningAccess may be the live on entry def. 2402 // If it is, we will not get a better result. 2403 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2404 StartingAccess->setOptimized(DefiningAccess); 2405 StartingAccess->setOptimizedAccessType(None); 2406 return DefiningAccess; 2407 } 2408 2409 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2410 StartingAccess->setOptimized(OptimizedAccess); 2411 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2412 StartingAccess->setOptimizedAccessType(None); 2413 else if (Q.AR == MustAlias) 2414 StartingAccess->setOptimizedAccessType(MustAlias); 2415 } else 2416 OptimizedAccess = StartingAccess->getOptimized(); 2417 2418 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2419 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2420 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2421 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2422 2423 MemoryAccess *Result; 2424 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2425 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2426 assert(isa<MemoryDef>(Q.OriginalAccess)); 2427 Q.SkipSelfAccess = true; 2428 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2429 } else 2430 Result = OptimizedAccess; 2431 2432 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2433 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2434 2435 return Result; 2436 } 2437 2438 MemoryAccess * 2439 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2440 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2441 return Use->getDefiningAccess(); 2442 return MA; 2443 } 2444 2445 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2446 MemoryAccess *StartingAccess, const MemoryLocation &) { 2447 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2448 return Use->getDefiningAccess(); 2449 return StartingAccess; 2450 } 2451 2452 void MemoryPhi::deleteMe(DerivedUser *Self) { 2453 delete static_cast<MemoryPhi *>(Self); 2454 } 2455 2456 void MemoryDef::deleteMe(DerivedUser *Self) { 2457 delete static_cast<MemoryDef *>(Self); 2458 } 2459 2460 void MemoryUse::deleteMe(DerivedUser *Self) { 2461 delete static_cast<MemoryUse *>(Self); 2462 } 2463