1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSA class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/AssemblyAnnotationWriter.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/FormattedStream.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "memoryssa"
61 
62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
63                       true)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67                     true)
68 
69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70                       "Memory SSA Printer", false, false)
71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73                     "Memory SSA Printer", false, false)
74 
75 static cl::opt<unsigned> MaxCheckLimit(
76     "memssa-check-limit", cl::Hidden, cl::init(100),
77     cl::desc("The maximum number of stores/phis MemorySSA"
78              "will consider trying to walk past (default = 100)"));
79 
80 // Always verify MemorySSA if expensive checking is enabled.
81 #ifdef EXPENSIVE_CHECKS
82 bool llvm::VerifyMemorySSA = true;
83 #else
84 bool llvm::VerifyMemorySSA = false;
85 #endif
86 static cl::opt<bool, true>
87     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
89 
90 namespace llvm {
91 
92 /// An assembly annotator class to print Memory SSA information in
93 /// comments.
94 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
95   friend class MemorySSA;
96 
97   const MemorySSA *MSSA;
98 
99 public:
100   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
101 
102   void emitBasicBlockStartAnnot(const BasicBlock *BB,
103                                 formatted_raw_ostream &OS) override {
104     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105       OS << "; " << *MA << "\n";
106   }
107 
108   void emitInstructionAnnot(const Instruction *I,
109                             formatted_raw_ostream &OS) override {
110     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111       OS << "; " << *MA << "\n";
112   }
113 };
114 
115 } // end namespace llvm
116 
117 namespace {
118 
119 /// Our current alias analysis API differentiates heavily between calls and
120 /// non-calls, and functions called on one usually assert on the other.
121 /// This class encapsulates the distinction to simplify other code that wants
122 /// "Memory affecting instructions and related data" to use as a key.
123 /// For example, this class is used as a densemap key in the use optimizer.
124 class MemoryLocOrCall {
125 public:
126   bool IsCall = false;
127 
128   MemoryLocOrCall() = default;
129   MemoryLocOrCall(MemoryUseOrDef *MUD)
130       : MemoryLocOrCall(MUD->getMemoryInst()) {}
131   MemoryLocOrCall(const MemoryUseOrDef *MUD)
132       : MemoryLocOrCall(MUD->getMemoryInst()) {}
133 
134   MemoryLocOrCall(Instruction *Inst) {
135     if (ImmutableCallSite(Inst)) {
136       IsCall = true;
137       CS = ImmutableCallSite(Inst);
138     } else {
139       IsCall = false;
140       // There is no such thing as a memorylocation for a fence inst, and it is
141       // unique in that regard.
142       if (!isa<FenceInst>(Inst))
143         Loc = MemoryLocation::get(Inst);
144     }
145   }
146 
147   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
148 
149   ImmutableCallSite getCS() const {
150     assert(IsCall);
151     return CS;
152   }
153 
154   MemoryLocation getLoc() const {
155     assert(!IsCall);
156     return Loc;
157   }
158 
159   bool operator==(const MemoryLocOrCall &Other) const {
160     if (IsCall != Other.IsCall)
161       return false;
162 
163     if (!IsCall)
164       return Loc == Other.Loc;
165 
166     if (CS.getCalledValue() != Other.CS.getCalledValue())
167       return false;
168 
169     return CS.arg_size() == Other.CS.arg_size() &&
170            std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
171   }
172 
173 private:
174   union {
175     ImmutableCallSite CS;
176     MemoryLocation Loc;
177   };
178 };
179 
180 } // end anonymous namespace
181 
182 namespace llvm {
183 
184 template <> struct DenseMapInfo<MemoryLocOrCall> {
185   static inline MemoryLocOrCall getEmptyKey() {
186     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
187   }
188 
189   static inline MemoryLocOrCall getTombstoneKey() {
190     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
191   }
192 
193   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
194     if (!MLOC.IsCall)
195       return hash_combine(
196           MLOC.IsCall,
197           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
198 
199     hash_code hash =
200         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
201                                       MLOC.getCS().getCalledValue()));
202 
203     for (const Value *Arg : MLOC.getCS().args())
204       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
205     return hash;
206   }
207 
208   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
209     return LHS == RHS;
210   }
211 };
212 
213 } // end namespace llvm
214 
215 /// This does one-way checks to see if Use could theoretically be hoisted above
216 /// MayClobber. This will not check the other way around.
217 ///
218 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
219 /// MayClobber, with no potentially clobbering operations in between them.
220 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
221 static bool areLoadsReorderable(const LoadInst *Use,
222                                 const LoadInst *MayClobber) {
223   bool VolatileUse = Use->isVolatile();
224   bool VolatileClobber = MayClobber->isVolatile();
225   // Volatile operations may never be reordered with other volatile operations.
226   if (VolatileUse && VolatileClobber)
227     return false;
228   // Otherwise, volatile doesn't matter here. From the language reference:
229   // 'optimizers may change the order of volatile operations relative to
230   // non-volatile operations.'"
231 
232   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
233   // is weaker, it can be moved above other loads. We just need to be sure that
234   // MayClobber isn't an acquire load, because loads can't be moved above
235   // acquire loads.
236   //
237   // Note that this explicitly *does* allow the free reordering of monotonic (or
238   // weaker) loads of the same address.
239   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
240   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
241                                                      AtomicOrdering::Acquire);
242   return !(SeqCstUse || MayClobberIsAcquire);
243 }
244 
245 namespace {
246 
247 struct ClobberAlias {
248   bool IsClobber;
249   Optional<AliasResult> AR;
250 };
251 
252 } // end anonymous namespace
253 
254 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
255 // ignored if IsClobber = false.
256 static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
257                                              const MemoryLocation &UseLoc,
258                                              const Instruction *UseInst,
259                                              AliasAnalysis &AA) {
260   Instruction *DefInst = MD->getMemoryInst();
261   assert(DefInst && "Defining instruction not actually an instruction");
262   ImmutableCallSite UseCS(UseInst);
263   Optional<AliasResult> AR;
264 
265   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
266     // These intrinsics will show up as affecting memory, but they are just
267     // markers, mostly.
268     //
269     // FIXME: We probably don't actually want MemorySSA to model these at all
270     // (including creating MemoryAccesses for them): we just end up inventing
271     // clobbers where they don't really exist at all. Please see D43269 for
272     // context.
273     switch (II->getIntrinsicID()) {
274     case Intrinsic::lifetime_start:
275       if (UseCS)
276         return {false, NoAlias};
277       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
278       return {AR != NoAlias, AR};
279     case Intrinsic::lifetime_end:
280     case Intrinsic::invariant_start:
281     case Intrinsic::invariant_end:
282     case Intrinsic::assume:
283       return {false, NoAlias};
284     default:
285       break;
286     }
287   }
288 
289   if (UseCS) {
290     ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
291     AR = isMustSet(I) ? MustAlias : MayAlias;
292     return {isModOrRefSet(I), AR};
293   }
294 
295   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
296     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
297       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
298 
299   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
300   AR = isMustSet(I) ? MustAlias : MayAlias;
301   return {isModSet(I), AR};
302 }
303 
304 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
305                                              const MemoryUseOrDef *MU,
306                                              const MemoryLocOrCall &UseMLOC,
307                                              AliasAnalysis &AA) {
308   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
309   // to exist while MemoryLocOrCall is pushed through places.
310   if (UseMLOC.IsCall)
311     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
312                                     AA);
313   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
314                                   AA);
315 }
316 
317 // Return true when MD may alias MU, return false otherwise.
318 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
319                                         AliasAnalysis &AA) {
320   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
321 }
322 
323 namespace {
324 
325 struct UpwardsMemoryQuery {
326   // True if our original query started off as a call
327   bool IsCall = false;
328   // The pointer location we started the query with. This will be empty if
329   // IsCall is true.
330   MemoryLocation StartingLoc;
331   // This is the instruction we were querying about.
332   const Instruction *Inst = nullptr;
333   // The MemoryAccess we actually got called with, used to test local domination
334   const MemoryAccess *OriginalAccess = nullptr;
335   Optional<AliasResult> AR = MayAlias;
336 
337   UpwardsMemoryQuery() = default;
338 
339   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
340       : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
341     if (!IsCall)
342       StartingLoc = MemoryLocation::get(Inst);
343   }
344 };
345 
346 } // end anonymous namespace
347 
348 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349                            AliasAnalysis &AA) {
350   Instruction *Inst = MD->getMemoryInst();
351   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352     switch (II->getIntrinsicID()) {
353     case Intrinsic::lifetime_end:
354       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
355     default:
356       return false;
357     }
358   }
359   return false;
360 }
361 
362 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
363                                                    const Instruction *I) {
364   // If the memory can't be changed, then loads of the memory can't be
365   // clobbered.
366   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
367                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
368                                                           getPointerOperand()));
369 }
370 
371 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
372 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373 ///
374 /// This is meant to be as simple and self-contained as possible. Because it
375 /// uses no cache, etc., it can be relatively expensive.
376 ///
377 /// \param Start     The MemoryAccess that we want to walk from.
378 /// \param ClobberAt A clobber for Start.
379 /// \param StartLoc  The MemoryLocation for Start.
380 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
381 /// \param Query     The UpwardsMemoryQuery we used for our search.
382 /// \param AA        The AliasAnalysis we used for our search.
383 static void
384 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
385                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
386                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
387   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
388 
389   if (MSSA.isLiveOnEntryDef(Start)) {
390     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
391            "liveOnEntry must clobber itself");
392     return;
393   }
394 
395   bool FoundClobber = false;
396   DenseSet<ConstMemoryAccessPair> VisitedPhis;
397   SmallVector<ConstMemoryAccessPair, 8> Worklist;
398   Worklist.emplace_back(Start, StartLoc);
399   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
400   // is found, complain.
401   while (!Worklist.empty()) {
402     auto MAP = Worklist.pop_back_val();
403     // All we care about is that nothing from Start to ClobberAt clobbers Start.
404     // We learn nothing from revisiting nodes.
405     if (!VisitedPhis.insert(MAP).second)
406       continue;
407 
408     for (const auto *MA : def_chain(MAP.first)) {
409       if (MA == ClobberAt) {
410         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
411           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
412           // since it won't let us short-circuit.
413           //
414           // Also, note that this can't be hoisted out of the `Worklist` loop,
415           // since MD may only act as a clobber for 1 of N MemoryLocations.
416           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
417           if (!FoundClobber) {
418             ClobberAlias CA =
419                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
420             if (CA.IsClobber) {
421               FoundClobber = true;
422               // Not used: CA.AR;
423             }
424           }
425         }
426         break;
427       }
428 
429       // We should never hit liveOnEntry, unless it's the clobber.
430       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
431 
432       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
433         // If Start is a Def, skip self.
434         if (MD == Start)
435           continue;
436 
437         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
438                     .IsClobber &&
439                "Found clobber before reaching ClobberAt!");
440         continue;
441       }
442 
443       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
444         (void)MU;
445         assert (MU == Start &&
446                 "Can only find use in def chain if Start is a use");
447         continue;
448       }
449 
450       assert(isa<MemoryPhi>(MA));
451       Worklist.append(
452           upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
453           upward_defs_end());
454     }
455   }
456 
457   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
458   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
459   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
460          "ClobberAt never acted as a clobber");
461 }
462 
463 namespace {
464 
465 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
466 /// in one class.
467 class ClobberWalker {
468   /// Save a few bytes by using unsigned instead of size_t.
469   using ListIndex = unsigned;
470 
471   /// Represents a span of contiguous MemoryDefs, potentially ending in a
472   /// MemoryPhi.
473   struct DefPath {
474     MemoryLocation Loc;
475     // Note that, because we always walk in reverse, Last will always dominate
476     // First. Also note that First and Last are inclusive.
477     MemoryAccess *First;
478     MemoryAccess *Last;
479     Optional<ListIndex> Previous;
480 
481     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
482             Optional<ListIndex> Previous)
483         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
484 
485     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
486             Optional<ListIndex> Previous)
487         : DefPath(Loc, Init, Init, Previous) {}
488   };
489 
490   const MemorySSA &MSSA;
491   AliasAnalysis &AA;
492   DominatorTree &DT;
493   UpwardsMemoryQuery *Query;
494 
495   // Phi optimization bookkeeping
496   SmallVector<DefPath, 32> Paths;
497   DenseSet<ConstMemoryAccessPair> VisitedPhis;
498 
499   /// Find the nearest def or phi that `From` can legally be optimized to.
500   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
501     assert(From->getNumOperands() && "Phi with no operands?");
502 
503     BasicBlock *BB = From->getBlock();
504     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
505     DomTreeNode *Node = DT.getNode(BB);
506     while ((Node = Node->getIDom())) {
507       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
508       if (Defs)
509         return &*Defs->rbegin();
510     }
511     return Result;
512   }
513 
514   /// Result of calling walkToPhiOrClobber.
515   struct UpwardsWalkResult {
516     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
517     /// both. Include alias info when clobber found.
518     MemoryAccess *Result;
519     bool IsKnownClobber;
520     Optional<AliasResult> AR;
521   };
522 
523   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
524   /// This will update Desc.Last as it walks. It will (optionally) also stop at
525   /// StopAt.
526   ///
527   /// This does not test for whether StopAt is a clobber
528   UpwardsWalkResult
529   walkToPhiOrClobber(DefPath &Desc,
530                      const MemoryAccess *StopAt = nullptr) const {
531     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
532 
533     for (MemoryAccess *Current : def_chain(Desc.Last)) {
534       Desc.Last = Current;
535       if (Current == StopAt)
536         return {Current, false, MayAlias};
537 
538       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
539         if (MSSA.isLiveOnEntryDef(MD))
540           return {MD, true, MustAlias};
541         ClobberAlias CA =
542             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
543         if (CA.IsClobber)
544           return {MD, true, CA.AR};
545       }
546     }
547 
548     assert(isa<MemoryPhi>(Desc.Last) &&
549            "Ended at a non-clobber that's not a phi?");
550     return {Desc.Last, false, MayAlias};
551   }
552 
553   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
554                    ListIndex PriorNode) {
555     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
556                                  upward_defs_end());
557     for (const MemoryAccessPair &P : UpwardDefs) {
558       PausedSearches.push_back(Paths.size());
559       Paths.emplace_back(P.second, P.first, PriorNode);
560     }
561   }
562 
563   /// Represents a search that terminated after finding a clobber. This clobber
564   /// may or may not be present in the path of defs from LastNode..SearchStart,
565   /// since it may have been retrieved from cache.
566   struct TerminatedPath {
567     MemoryAccess *Clobber;
568     ListIndex LastNode;
569   };
570 
571   /// Get an access that keeps us from optimizing to the given phi.
572   ///
573   /// PausedSearches is an array of indices into the Paths array. Its incoming
574   /// value is the indices of searches that stopped at the last phi optimization
575   /// target. It's left in an unspecified state.
576   ///
577   /// If this returns None, NewPaused is a vector of searches that terminated
578   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
579   Optional<TerminatedPath>
580   getBlockingAccess(const MemoryAccess *StopWhere,
581                     SmallVectorImpl<ListIndex> &PausedSearches,
582                     SmallVectorImpl<ListIndex> &NewPaused,
583                     SmallVectorImpl<TerminatedPath> &Terminated) {
584     assert(!PausedSearches.empty() && "No searches to continue?");
585 
586     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
587     // PausedSearches as our stack.
588     while (!PausedSearches.empty()) {
589       ListIndex PathIndex = PausedSearches.pop_back_val();
590       DefPath &Node = Paths[PathIndex];
591 
592       // If we've already visited this path with this MemoryLocation, we don't
593       // need to do so again.
594       //
595       // NOTE: That we just drop these paths on the ground makes caching
596       // behavior sporadic. e.g. given a diamond:
597       //  A
598       // B C
599       //  D
600       //
601       // ...If we walk D, B, A, C, we'll only cache the result of phi
602       // optimization for A, B, and D; C will be skipped because it dies here.
603       // This arguably isn't the worst thing ever, since:
604       //   - We generally query things in a top-down order, so if we got below D
605       //     without needing cache entries for {C, MemLoc}, then chances are
606       //     that those cache entries would end up ultimately unused.
607       //   - We still cache things for A, so C only needs to walk up a bit.
608       // If this behavior becomes problematic, we can fix without a ton of extra
609       // work.
610       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
611         continue;
612 
613       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
614       if (Res.IsKnownClobber) {
615         assert(Res.Result != StopWhere);
616         // If this wasn't a cache hit, we hit a clobber when walking. That's a
617         // failure.
618         TerminatedPath Term{Res.Result, PathIndex};
619         if (!MSSA.dominates(Res.Result, StopWhere))
620           return Term;
621 
622         // Otherwise, it's a valid thing to potentially optimize to.
623         Terminated.push_back(Term);
624         continue;
625       }
626 
627       if (Res.Result == StopWhere) {
628         // We've hit our target. Save this path off for if we want to continue
629         // walking.
630         NewPaused.push_back(PathIndex);
631         continue;
632       }
633 
634       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
635       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
636     }
637 
638     return None;
639   }
640 
641   template <typename T, typename Walker>
642   struct generic_def_path_iterator
643       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
644                                     std::forward_iterator_tag, T *> {
645     generic_def_path_iterator() = default;
646     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
647 
648     T &operator*() const { return curNode(); }
649 
650     generic_def_path_iterator &operator++() {
651       N = curNode().Previous;
652       return *this;
653     }
654 
655     bool operator==(const generic_def_path_iterator &O) const {
656       if (N.hasValue() != O.N.hasValue())
657         return false;
658       return !N.hasValue() || *N == *O.N;
659     }
660 
661   private:
662     T &curNode() const { return W->Paths[*N]; }
663 
664     Walker *W = nullptr;
665     Optional<ListIndex> N = None;
666   };
667 
668   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
669   using const_def_path_iterator =
670       generic_def_path_iterator<const DefPath, const ClobberWalker>;
671 
672   iterator_range<def_path_iterator> def_path(ListIndex From) {
673     return make_range(def_path_iterator(this, From), def_path_iterator());
674   }
675 
676   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
677     return make_range(const_def_path_iterator(this, From),
678                       const_def_path_iterator());
679   }
680 
681   struct OptznResult {
682     /// The path that contains our result.
683     TerminatedPath PrimaryClobber;
684     /// The paths that we can legally cache back from, but that aren't
685     /// necessarily the result of the Phi optimization.
686     SmallVector<TerminatedPath, 4> OtherClobbers;
687   };
688 
689   ListIndex defPathIndex(const DefPath &N) const {
690     // The assert looks nicer if we don't need to do &N
691     const DefPath *NP = &N;
692     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
693            "Out of bounds DefPath!");
694     return NP - &Paths.front();
695   }
696 
697   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
698   /// that act as legal clobbers. Note that this won't return *all* clobbers.
699   ///
700   /// Phi optimization algorithm tl;dr:
701   ///   - Find the earliest def/phi, A, we can optimize to
702   ///   - Find if all paths from the starting memory access ultimately reach A
703   ///     - If not, optimization isn't possible.
704   ///     - Otherwise, walk from A to another clobber or phi, A'.
705   ///       - If A' is a def, we're done.
706   ///       - If A' is a phi, try to optimize it.
707   ///
708   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
709   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
710   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
711                              const MemoryLocation &Loc) {
712     assert(Paths.empty() && VisitedPhis.empty() &&
713            "Reset the optimization state.");
714 
715     Paths.emplace_back(Loc, Start, Phi, None);
716     // Stores how many "valid" optimization nodes we had prior to calling
717     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
718     auto PriorPathsSize = Paths.size();
719 
720     SmallVector<ListIndex, 16> PausedSearches;
721     SmallVector<ListIndex, 8> NewPaused;
722     SmallVector<TerminatedPath, 4> TerminatedPaths;
723 
724     addSearches(Phi, PausedSearches, 0);
725 
726     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
727     // Paths.
728     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
729       assert(!Paths.empty() && "Need a path to move");
730       auto Dom = Paths.begin();
731       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
732         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
733           Dom = I;
734       auto Last = Paths.end() - 1;
735       if (Last != Dom)
736         std::iter_swap(Last, Dom);
737     };
738 
739     MemoryPhi *Current = Phi;
740     while (true) {
741       assert(!MSSA.isLiveOnEntryDef(Current) &&
742              "liveOnEntry wasn't treated as a clobber?");
743 
744       const auto *Target = getWalkTarget(Current);
745       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
746       // optimization for the prior phi.
747       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
748         return MSSA.dominates(P.Clobber, Target);
749       }));
750 
751       // FIXME: This is broken, because the Blocker may be reported to be
752       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
753       // For the moment, this is fine, since we do nothing with blocker info.
754       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
755               Target, PausedSearches, NewPaused, TerminatedPaths)) {
756 
757         // Find the node we started at. We can't search based on N->Last, since
758         // we may have gone around a loop with a different MemoryLocation.
759         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
760           return defPathIndex(N) < PriorPathsSize;
761         });
762         assert(Iter != def_path_iterator());
763 
764         DefPath &CurNode = *Iter;
765         assert(CurNode.Last == Current);
766 
767         // Two things:
768         // A. We can't reliably cache all of NewPaused back. Consider a case
769         //    where we have two paths in NewPaused; one of which can't optimize
770         //    above this phi, whereas the other can. If we cache the second path
771         //    back, we'll end up with suboptimal cache entries. We can handle
772         //    cases like this a bit better when we either try to find all
773         //    clobbers that block phi optimization, or when our cache starts
774         //    supporting unfinished searches.
775         // B. We can't reliably cache TerminatedPaths back here without doing
776         //    extra checks; consider a case like:
777         //       T
778         //      / \
779         //     D   C
780         //      \ /
781         //       S
782         //    Where T is our target, C is a node with a clobber on it, D is a
783         //    diamond (with a clobber *only* on the left or right node, N), and
784         //    S is our start. Say we walk to D, through the node opposite N
785         //    (read: ignoring the clobber), and see a cache entry in the top
786         //    node of D. That cache entry gets put into TerminatedPaths. We then
787         //    walk up to C (N is later in our worklist), find the clobber, and
788         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
789         //    the bottom part of D to the cached clobber, ignoring the clobber
790         //    in N. Again, this problem goes away if we start tracking all
791         //    blockers for a given phi optimization.
792         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
793         return {Result, {}};
794       }
795 
796       // If there's nothing left to search, then all paths led to valid clobbers
797       // that we got from our cache; pick the nearest to the start, and allow
798       // the rest to be cached back.
799       if (NewPaused.empty()) {
800         MoveDominatedPathToEnd(TerminatedPaths);
801         TerminatedPath Result = TerminatedPaths.pop_back_val();
802         return {Result, std::move(TerminatedPaths)};
803       }
804 
805       MemoryAccess *DefChainEnd = nullptr;
806       SmallVector<TerminatedPath, 4> Clobbers;
807       for (ListIndex Paused : NewPaused) {
808         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
809         if (WR.IsKnownClobber)
810           Clobbers.push_back({WR.Result, Paused});
811         else
812           // Micro-opt: If we hit the end of the chain, save it.
813           DefChainEnd = WR.Result;
814       }
815 
816       if (!TerminatedPaths.empty()) {
817         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
818         // do it now.
819         if (!DefChainEnd)
820           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
821             DefChainEnd = MA;
822 
823         // If any of the terminated paths don't dominate the phi we'll try to
824         // optimize, we need to figure out what they are and quit.
825         const BasicBlock *ChainBB = DefChainEnd->getBlock();
826         for (const TerminatedPath &TP : TerminatedPaths) {
827           // Because we know that DefChainEnd is as "high" as we can go, we
828           // don't need local dominance checks; BB dominance is sufficient.
829           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
830             Clobbers.push_back(TP);
831         }
832       }
833 
834       // If we have clobbers in the def chain, find the one closest to Current
835       // and quit.
836       if (!Clobbers.empty()) {
837         MoveDominatedPathToEnd(Clobbers);
838         TerminatedPath Result = Clobbers.pop_back_val();
839         return {Result, std::move(Clobbers)};
840       }
841 
842       assert(all_of(NewPaused,
843                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
844 
845       // Because liveOnEntry is a clobber, this must be a phi.
846       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
847 
848       PriorPathsSize = Paths.size();
849       PausedSearches.clear();
850       for (ListIndex I : NewPaused)
851         addSearches(DefChainPhi, PausedSearches, I);
852       NewPaused.clear();
853 
854       Current = DefChainPhi;
855     }
856   }
857 
858   void verifyOptResult(const OptznResult &R) const {
859     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
860       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
861     }));
862   }
863 
864   void resetPhiOptznState() {
865     Paths.clear();
866     VisitedPhis.clear();
867   }
868 
869 public:
870   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
871       : MSSA(MSSA), AA(AA), DT(DT) {}
872 
873   /// Finds the nearest clobber for the given query, optimizing phis if
874   /// possible.
875   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
876     Query = &Q;
877 
878     MemoryAccess *Current = Start;
879     // This walker pretends uses don't exist. If we're handed one, silently grab
880     // its def. (This has the nice side-effect of ensuring we never cache uses)
881     if (auto *MU = dyn_cast<MemoryUse>(Start))
882       Current = MU->getDefiningAccess();
883 
884     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
885     // Fast path for the overly-common case (no crazy phi optimization
886     // necessary)
887     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
888     MemoryAccess *Result;
889     if (WalkResult.IsKnownClobber) {
890       Result = WalkResult.Result;
891       Q.AR = WalkResult.AR;
892     } else {
893       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
894                                           Current, Q.StartingLoc);
895       verifyOptResult(OptRes);
896       resetPhiOptznState();
897       Result = OptRes.PrimaryClobber.Clobber;
898     }
899 
900 #ifdef EXPENSIVE_CHECKS
901     checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
902 #endif
903     return Result;
904   }
905 
906   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
907 };
908 
909 struct RenamePassData {
910   DomTreeNode *DTN;
911   DomTreeNode::const_iterator ChildIt;
912   MemoryAccess *IncomingVal;
913 
914   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
915                  MemoryAccess *M)
916       : DTN(D), ChildIt(It), IncomingVal(M) {}
917 
918   void swap(RenamePassData &RHS) {
919     std::swap(DTN, RHS.DTN);
920     std::swap(ChildIt, RHS.ChildIt);
921     std::swap(IncomingVal, RHS.IncomingVal);
922   }
923 };
924 
925 } // end anonymous namespace
926 
927 namespace llvm {
928 
929 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
930 /// longer does caching on its own, but the name has been retained for the
931 /// moment.
932 class MemorySSA::CachingWalker final : public MemorySSAWalker {
933   ClobberWalker Walker;
934 
935   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
936 
937 public:
938   CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
939   ~CachingWalker() override = default;
940 
941   using MemorySSAWalker::getClobberingMemoryAccess;
942 
943   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
944   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
945                                           const MemoryLocation &) override;
946   void invalidateInfo(MemoryAccess *) override;
947 
948   void verify(const MemorySSA *MSSA) override {
949     MemorySSAWalker::verify(MSSA);
950     Walker.verify(MSSA);
951   }
952 };
953 
954 } // end namespace llvm
955 
956 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
957                                     bool RenameAllUses) {
958   // Pass through values to our successors
959   for (const BasicBlock *S : successors(BB)) {
960     auto It = PerBlockAccesses.find(S);
961     // Rename the phi nodes in our successor block
962     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
963       continue;
964     AccessList *Accesses = It->second.get();
965     auto *Phi = cast<MemoryPhi>(&Accesses->front());
966     if (RenameAllUses) {
967       int PhiIndex = Phi->getBasicBlockIndex(BB);
968       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
969       Phi->setIncomingValue(PhiIndex, IncomingVal);
970     } else
971       Phi->addIncoming(IncomingVal, BB);
972   }
973 }
974 
975 /// Rename a single basic block into MemorySSA form.
976 /// Uses the standard SSA renaming algorithm.
977 /// \returns The new incoming value.
978 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
979                                      bool RenameAllUses) {
980   auto It = PerBlockAccesses.find(BB);
981   // Skip most processing if the list is empty.
982   if (It != PerBlockAccesses.end()) {
983     AccessList *Accesses = It->second.get();
984     for (MemoryAccess &L : *Accesses) {
985       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
986         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
987           MUD->setDefiningAccess(IncomingVal);
988         if (isa<MemoryDef>(&L))
989           IncomingVal = &L;
990       } else {
991         IncomingVal = &L;
992       }
993     }
994   }
995   return IncomingVal;
996 }
997 
998 /// This is the standard SSA renaming algorithm.
999 ///
1000 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1001 /// in phi nodes in our successors.
1002 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1003                            SmallPtrSetImpl<BasicBlock *> &Visited,
1004                            bool SkipVisited, bool RenameAllUses) {
1005   SmallVector<RenamePassData, 32> WorkStack;
1006   // Skip everything if we already renamed this block and we are skipping.
1007   // Note: You can't sink this into the if, because we need it to occur
1008   // regardless of whether we skip blocks or not.
1009   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1010   if (SkipVisited && AlreadyVisited)
1011     return;
1012 
1013   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1014   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1015   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1016 
1017   while (!WorkStack.empty()) {
1018     DomTreeNode *Node = WorkStack.back().DTN;
1019     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1020     IncomingVal = WorkStack.back().IncomingVal;
1021 
1022     if (ChildIt == Node->end()) {
1023       WorkStack.pop_back();
1024     } else {
1025       DomTreeNode *Child = *ChildIt;
1026       ++WorkStack.back().ChildIt;
1027       BasicBlock *BB = Child->getBlock();
1028       // Note: You can't sink this into the if, because we need it to occur
1029       // regardless of whether we skip blocks or not.
1030       AlreadyVisited = !Visited.insert(BB).second;
1031       if (SkipVisited && AlreadyVisited) {
1032         // We already visited this during our renaming, which can happen when
1033         // being asked to rename multiple blocks. Figure out the incoming val,
1034         // which is the last def.
1035         // Incoming value can only change if there is a block def, and in that
1036         // case, it's the last block def in the list.
1037         if (auto *BlockDefs = getWritableBlockDefs(BB))
1038           IncomingVal = &*BlockDefs->rbegin();
1039       } else
1040         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1041       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1042       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1043     }
1044   }
1045 }
1046 
1047 /// This handles unreachable block accesses by deleting phi nodes in
1048 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1049 /// being uses of the live on entry definition.
1050 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1051   assert(!DT->isReachableFromEntry(BB) &&
1052          "Reachable block found while handling unreachable blocks");
1053 
1054   // Make sure phi nodes in our reachable successors end up with a
1055   // LiveOnEntryDef for our incoming edge, even though our block is forward
1056   // unreachable.  We could just disconnect these blocks from the CFG fully,
1057   // but we do not right now.
1058   for (const BasicBlock *S : successors(BB)) {
1059     if (!DT->isReachableFromEntry(S))
1060       continue;
1061     auto It = PerBlockAccesses.find(S);
1062     // Rename the phi nodes in our successor block
1063     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1064       continue;
1065     AccessList *Accesses = It->second.get();
1066     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1067     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1068   }
1069 
1070   auto It = PerBlockAccesses.find(BB);
1071   if (It == PerBlockAccesses.end())
1072     return;
1073 
1074   auto &Accesses = It->second;
1075   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1076     auto Next = std::next(AI);
1077     // If we have a phi, just remove it. We are going to replace all
1078     // users with live on entry.
1079     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1080       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1081     else
1082       Accesses->erase(AI);
1083     AI = Next;
1084   }
1085 }
1086 
1087 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1088     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1089       NextID(0) {
1090   buildMemorySSA();
1091 }
1092 
1093 MemorySSA::~MemorySSA() {
1094   // Drop all our references
1095   for (const auto &Pair : PerBlockAccesses)
1096     for (MemoryAccess &MA : *Pair.second)
1097       MA.dropAllReferences();
1098 }
1099 
1100 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1101   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1102 
1103   if (Res.second)
1104     Res.first->second = llvm::make_unique<AccessList>();
1105   return Res.first->second.get();
1106 }
1107 
1108 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1109   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1110 
1111   if (Res.second)
1112     Res.first->second = llvm::make_unique<DefsList>();
1113   return Res.first->second.get();
1114 }
1115 
1116 namespace llvm {
1117 
1118 /// This class is a batch walker of all MemoryUse's in the program, and points
1119 /// their defining access at the thing that actually clobbers them.  Because it
1120 /// is a batch walker that touches everything, it does not operate like the
1121 /// other walkers.  This walker is basically performing a top-down SSA renaming
1122 /// pass, where the version stack is used as the cache.  This enables it to be
1123 /// significantly more time and memory efficient than using the regular walker,
1124 /// which is walking bottom-up.
1125 class MemorySSA::OptimizeUses {
1126 public:
1127   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1128                DominatorTree *DT)
1129       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1130     Walker = MSSA->getWalker();
1131   }
1132 
1133   void optimizeUses();
1134 
1135 private:
1136   /// This represents where a given memorylocation is in the stack.
1137   struct MemlocStackInfo {
1138     // This essentially is keeping track of versions of the stack. Whenever
1139     // the stack changes due to pushes or pops, these versions increase.
1140     unsigned long StackEpoch;
1141     unsigned long PopEpoch;
1142     // This is the lower bound of places on the stack to check. It is equal to
1143     // the place the last stack walk ended.
1144     // Note: Correctness depends on this being initialized to 0, which densemap
1145     // does
1146     unsigned long LowerBound;
1147     const BasicBlock *LowerBoundBlock;
1148     // This is where the last walk for this memory location ended.
1149     unsigned long LastKill;
1150     bool LastKillValid;
1151     Optional<AliasResult> AR;
1152   };
1153 
1154   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1155                            SmallVectorImpl<MemoryAccess *> &,
1156                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1157 
1158   MemorySSA *MSSA;
1159   MemorySSAWalker *Walker;
1160   AliasAnalysis *AA;
1161   DominatorTree *DT;
1162 };
1163 
1164 } // end namespace llvm
1165 
1166 /// Optimize the uses in a given block This is basically the SSA renaming
1167 /// algorithm, with one caveat: We are able to use a single stack for all
1168 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1169 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1170 /// going to be some position in that stack of possible ones.
1171 ///
1172 /// We track the stack positions that each MemoryLocation needs
1173 /// to check, and last ended at.  This is because we only want to check the
1174 /// things that changed since last time.  The same MemoryLocation should
1175 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1176 /// things like this, and if they start, we can modify MemoryLocOrCall to
1177 /// include relevant data)
1178 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1179     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1180     SmallVectorImpl<MemoryAccess *> &VersionStack,
1181     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1182 
1183   /// If no accesses, nothing to do.
1184   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1185   if (Accesses == nullptr)
1186     return;
1187 
1188   // Pop everything that doesn't dominate the current block off the stack,
1189   // increment the PopEpoch to account for this.
1190   while (true) {
1191     assert(
1192         !VersionStack.empty() &&
1193         "Version stack should have liveOnEntry sentinel dominating everything");
1194     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1195     if (DT->dominates(BackBlock, BB))
1196       break;
1197     while (VersionStack.back()->getBlock() == BackBlock)
1198       VersionStack.pop_back();
1199     ++PopEpoch;
1200   }
1201 
1202   for (MemoryAccess &MA : *Accesses) {
1203     auto *MU = dyn_cast<MemoryUse>(&MA);
1204     if (!MU) {
1205       VersionStack.push_back(&MA);
1206       ++StackEpoch;
1207       continue;
1208     }
1209 
1210     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1211       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1212       continue;
1213     }
1214 
1215     MemoryLocOrCall UseMLOC(MU);
1216     auto &LocInfo = LocStackInfo[UseMLOC];
1217     // If the pop epoch changed, it means we've removed stuff from top of
1218     // stack due to changing blocks. We may have to reset the lower bound or
1219     // last kill info.
1220     if (LocInfo.PopEpoch != PopEpoch) {
1221       LocInfo.PopEpoch = PopEpoch;
1222       LocInfo.StackEpoch = StackEpoch;
1223       // If the lower bound was in something that no longer dominates us, we
1224       // have to reset it.
1225       // We can't simply track stack size, because the stack may have had
1226       // pushes/pops in the meantime.
1227       // XXX: This is non-optimal, but only is slower cases with heavily
1228       // branching dominator trees.  To get the optimal number of queries would
1229       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1230       // the top of that stack dominates us.  This does not seem worth it ATM.
1231       // A much cheaper optimization would be to always explore the deepest
1232       // branch of the dominator tree first. This will guarantee this resets on
1233       // the smallest set of blocks.
1234       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1235           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1236         // Reset the lower bound of things to check.
1237         // TODO: Some day we should be able to reset to last kill, rather than
1238         // 0.
1239         LocInfo.LowerBound = 0;
1240         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1241         LocInfo.LastKillValid = false;
1242       }
1243     } else if (LocInfo.StackEpoch != StackEpoch) {
1244       // If all that has changed is the StackEpoch, we only have to check the
1245       // new things on the stack, because we've checked everything before.  In
1246       // this case, the lower bound of things to check remains the same.
1247       LocInfo.PopEpoch = PopEpoch;
1248       LocInfo.StackEpoch = StackEpoch;
1249     }
1250     if (!LocInfo.LastKillValid) {
1251       LocInfo.LastKill = VersionStack.size() - 1;
1252       LocInfo.LastKillValid = true;
1253       LocInfo.AR = MayAlias;
1254     }
1255 
1256     // At this point, we should have corrected last kill and LowerBound to be
1257     // in bounds.
1258     assert(LocInfo.LowerBound < VersionStack.size() &&
1259            "Lower bound out of range");
1260     assert(LocInfo.LastKill < VersionStack.size() &&
1261            "Last kill info out of range");
1262     // In any case, the new upper bound is the top of the stack.
1263     unsigned long UpperBound = VersionStack.size() - 1;
1264 
1265     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1266       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1267                         << *(MU->getMemoryInst()) << ")"
1268                         << " because there are "
1269                         << UpperBound - LocInfo.LowerBound
1270                         << " stores to disambiguate\n");
1271       // Because we did not walk, LastKill is no longer valid, as this may
1272       // have been a kill.
1273       LocInfo.LastKillValid = false;
1274       continue;
1275     }
1276     bool FoundClobberResult = false;
1277     while (UpperBound > LocInfo.LowerBound) {
1278       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1279         // For phis, use the walker, see where we ended up, go there
1280         Instruction *UseInst = MU->getMemoryInst();
1281         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1282         // We are guaranteed to find it or something is wrong
1283         while (VersionStack[UpperBound] != Result) {
1284           assert(UpperBound != 0);
1285           --UpperBound;
1286         }
1287         FoundClobberResult = true;
1288         break;
1289       }
1290 
1291       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1292       // If the lifetime of the pointer ends at this instruction, it's live on
1293       // entry.
1294       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1295         // Reset UpperBound to liveOnEntryDef's place in the stack
1296         UpperBound = 0;
1297         FoundClobberResult = true;
1298         LocInfo.AR = MustAlias;
1299         break;
1300       }
1301       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1302       if (CA.IsClobber) {
1303         FoundClobberResult = true;
1304         LocInfo.AR = CA.AR;
1305         break;
1306       }
1307       --UpperBound;
1308     }
1309 
1310     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1311 
1312     // At the end of this loop, UpperBound is either a clobber, or lower bound
1313     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1314     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1315       // We were last killed now by where we got to
1316       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1317         LocInfo.AR = None;
1318       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1319       LocInfo.LastKill = UpperBound;
1320     } else {
1321       // Otherwise, we checked all the new ones, and now we know we can get to
1322       // LastKill.
1323       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1324     }
1325     LocInfo.LowerBound = VersionStack.size() - 1;
1326     LocInfo.LowerBoundBlock = BB;
1327   }
1328 }
1329 
1330 /// Optimize uses to point to their actual clobbering definitions.
1331 void MemorySSA::OptimizeUses::optimizeUses() {
1332   SmallVector<MemoryAccess *, 16> VersionStack;
1333   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1334   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1335 
1336   unsigned long StackEpoch = 1;
1337   unsigned long PopEpoch = 1;
1338   // We perform a non-recursive top-down dominator tree walk.
1339   for (const auto *DomNode : depth_first(DT->getRootNode()))
1340     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1341                         LocStackInfo);
1342 }
1343 
1344 void MemorySSA::placePHINodes(
1345     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1346   // Determine where our MemoryPhi's should go
1347   ForwardIDFCalculator IDFs(*DT);
1348   IDFs.setDefiningBlocks(DefiningBlocks);
1349   SmallVector<BasicBlock *, 32> IDFBlocks;
1350   IDFs.calculate(IDFBlocks);
1351 
1352   // Now place MemoryPhi nodes.
1353   for (auto &BB : IDFBlocks)
1354     createMemoryPhi(BB);
1355 }
1356 
1357 void MemorySSA::buildMemorySSA() {
1358   // We create an access to represent "live on entry", for things like
1359   // arguments or users of globals, where the memory they use is defined before
1360   // the beginning of the function. We do not actually insert it into the IR.
1361   // We do not define a live on exit for the immediate uses, and thus our
1362   // semantics do *not* imply that something with no immediate uses can simply
1363   // be removed.
1364   BasicBlock &StartingPoint = F.getEntryBlock();
1365   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1366                                      &StartingPoint, NextID++));
1367 
1368   // We maintain lists of memory accesses per-block, trading memory for time. We
1369   // could just look up the memory access for every possible instruction in the
1370   // stream.
1371   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1372   // Go through each block, figure out where defs occur, and chain together all
1373   // the accesses.
1374   for (BasicBlock &B : F) {
1375     bool InsertIntoDef = false;
1376     AccessList *Accesses = nullptr;
1377     DefsList *Defs = nullptr;
1378     for (Instruction &I : B) {
1379       MemoryUseOrDef *MUD = createNewAccess(&I);
1380       if (!MUD)
1381         continue;
1382 
1383       if (!Accesses)
1384         Accesses = getOrCreateAccessList(&B);
1385       Accesses->push_back(MUD);
1386       if (isa<MemoryDef>(MUD)) {
1387         InsertIntoDef = true;
1388         if (!Defs)
1389           Defs = getOrCreateDefsList(&B);
1390         Defs->push_back(*MUD);
1391       }
1392     }
1393     if (InsertIntoDef)
1394       DefiningBlocks.insert(&B);
1395   }
1396   placePHINodes(DefiningBlocks);
1397 
1398   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1399   // filled in with all blocks.
1400   SmallPtrSet<BasicBlock *, 16> Visited;
1401   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1402 
1403   CachingWalker *Walker = getWalkerImpl();
1404 
1405   OptimizeUses(this, Walker, AA, DT).optimizeUses();
1406 
1407   // Mark the uses in unreachable blocks as live on entry, so that they go
1408   // somewhere.
1409   for (auto &BB : F)
1410     if (!Visited.count(&BB))
1411       markUnreachableAsLiveOnEntry(&BB);
1412 }
1413 
1414 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1415 
1416 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1417   if (Walker)
1418     return Walker.get();
1419 
1420   Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
1421   return Walker.get();
1422 }
1423 
1424 // This is a helper function used by the creation routines. It places NewAccess
1425 // into the access and defs lists for a given basic block, at the given
1426 // insertion point.
1427 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1428                                         const BasicBlock *BB,
1429                                         InsertionPlace Point) {
1430   auto *Accesses = getOrCreateAccessList(BB);
1431   if (Point == Beginning) {
1432     // If it's a phi node, it goes first, otherwise, it goes after any phi
1433     // nodes.
1434     if (isa<MemoryPhi>(NewAccess)) {
1435       Accesses->push_front(NewAccess);
1436       auto *Defs = getOrCreateDefsList(BB);
1437       Defs->push_front(*NewAccess);
1438     } else {
1439       auto AI = find_if_not(
1440           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1441       Accesses->insert(AI, NewAccess);
1442       if (!isa<MemoryUse>(NewAccess)) {
1443         auto *Defs = getOrCreateDefsList(BB);
1444         auto DI = find_if_not(
1445             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1446         Defs->insert(DI, *NewAccess);
1447       }
1448     }
1449   } else {
1450     Accesses->push_back(NewAccess);
1451     if (!isa<MemoryUse>(NewAccess)) {
1452       auto *Defs = getOrCreateDefsList(BB);
1453       Defs->push_back(*NewAccess);
1454     }
1455   }
1456   BlockNumberingValid.erase(BB);
1457 }
1458 
1459 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1460                                       AccessList::iterator InsertPt) {
1461   auto *Accesses = getWritableBlockAccesses(BB);
1462   bool WasEnd = InsertPt == Accesses->end();
1463   Accesses->insert(AccessList::iterator(InsertPt), What);
1464   if (!isa<MemoryUse>(What)) {
1465     auto *Defs = getOrCreateDefsList(BB);
1466     // If we got asked to insert at the end, we have an easy job, just shove it
1467     // at the end. If we got asked to insert before an existing def, we also get
1468     // an iterator. If we got asked to insert before a use, we have to hunt for
1469     // the next def.
1470     if (WasEnd) {
1471       Defs->push_back(*What);
1472     } else if (isa<MemoryDef>(InsertPt)) {
1473       Defs->insert(InsertPt->getDefsIterator(), *What);
1474     } else {
1475       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1476         ++InsertPt;
1477       // Either we found a def, or we are inserting at the end
1478       if (InsertPt == Accesses->end())
1479         Defs->push_back(*What);
1480       else
1481         Defs->insert(InsertPt->getDefsIterator(), *What);
1482     }
1483   }
1484   BlockNumberingValid.erase(BB);
1485 }
1486 
1487 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1488   // Keep it in the lookup tables, remove from the lists
1489   removeFromLists(What, false);
1490 
1491   // Note that moving should implicitly invalidate the optimized state of a
1492   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1493   // MemoryDef.
1494   if (auto *MD = dyn_cast<MemoryDef>(What))
1495     MD->resetOptimized();
1496   What->setBlock(BB);
1497 }
1498 
1499 // Move What before Where in the IR.  The end result is that What will belong to
1500 // the right lists and have the right Block set, but will not otherwise be
1501 // correct. It will not have the right defining access, and if it is a def,
1502 // things below it will not properly be updated.
1503 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1504                        AccessList::iterator Where) {
1505   prepareForMoveTo(What, BB);
1506   insertIntoListsBefore(What, BB, Where);
1507 }
1508 
1509 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1510                        InsertionPlace Point) {
1511   if (isa<MemoryPhi>(What)) {
1512     assert(Point == Beginning &&
1513            "Can only move a Phi at the beginning of the block");
1514     // Update lookup table entry
1515     ValueToMemoryAccess.erase(What->getBlock());
1516     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1517     (void)Inserted;
1518     assert(Inserted && "Cannot move a Phi to a block that already has one");
1519   }
1520 
1521   prepareForMoveTo(What, BB);
1522   insertIntoListsForBlock(What, BB, Point);
1523 }
1524 
1525 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1526   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1527   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1528   // Phi's always are placed at the front of the block.
1529   insertIntoListsForBlock(Phi, BB, Beginning);
1530   ValueToMemoryAccess[BB] = Phi;
1531   return Phi;
1532 }
1533 
1534 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1535                                                MemoryAccess *Definition) {
1536   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1537   MemoryUseOrDef *NewAccess = createNewAccess(I);
1538   assert(
1539       NewAccess != nullptr &&
1540       "Tried to create a memory access for a non-memory touching instruction");
1541   NewAccess->setDefiningAccess(Definition);
1542   return NewAccess;
1543 }
1544 
1545 // Return true if the instruction has ordering constraints.
1546 // Note specifically that this only considers stores and loads
1547 // because others are still considered ModRef by getModRefInfo.
1548 static inline bool isOrdered(const Instruction *I) {
1549   if (auto *SI = dyn_cast<StoreInst>(I)) {
1550     if (!SI->isUnordered())
1551       return true;
1552   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1553     if (!LI->isUnordered())
1554       return true;
1555   }
1556   return false;
1557 }
1558 
1559 /// Helper function to create new memory accesses
1560 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
1561   // The assume intrinsic has a control dependency which we model by claiming
1562   // that it writes arbitrarily. Ignore that fake memory dependency here.
1563   // FIXME: Replace this special casing with a more accurate modelling of
1564   // assume's control dependency.
1565   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1566     if (II->getIntrinsicID() == Intrinsic::assume)
1567       return nullptr;
1568 
1569   // Find out what affect this instruction has on memory.
1570   ModRefInfo ModRef = AA->getModRefInfo(I, None);
1571   // The isOrdered check is used to ensure that volatiles end up as defs
1572   // (atomics end up as ModRef right now anyway).  Until we separate the
1573   // ordering chain from the memory chain, this enables people to see at least
1574   // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1575   // will still give an answer that bypasses other volatile loads.  TODO:
1576   // Separate memory aliasing and ordering into two different chains so that we
1577   // can precisely represent both "what memory will this read/write/is clobbered
1578   // by" and "what instructions can I move this past".
1579   bool Def = isModSet(ModRef) || isOrdered(I);
1580   bool Use = isRefSet(ModRef);
1581 
1582   // It's possible for an instruction to not modify memory at all. During
1583   // construction, we ignore them.
1584   if (!Def && !Use)
1585     return nullptr;
1586 
1587   MemoryUseOrDef *MUD;
1588   if (Def)
1589     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1590   else
1591     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1592   ValueToMemoryAccess[I] = MUD;
1593   return MUD;
1594 }
1595 
1596 /// Returns true if \p Replacer dominates \p Replacee .
1597 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1598                              const MemoryAccess *Replacee) const {
1599   if (isa<MemoryUseOrDef>(Replacee))
1600     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1601   const auto *MP = cast<MemoryPhi>(Replacee);
1602   // For a phi node, the use occurs in the predecessor block of the phi node.
1603   // Since we may occur multiple times in the phi node, we have to check each
1604   // operand to ensure Replacer dominates each operand where Replacee occurs.
1605   for (const Use &Arg : MP->operands()) {
1606     if (Arg.get() != Replacee &&
1607         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1608       return false;
1609   }
1610   return true;
1611 }
1612 
1613 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1614 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1615   assert(MA->use_empty() &&
1616          "Trying to remove memory access that still has uses");
1617   BlockNumbering.erase(MA);
1618   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1619     MUD->setDefiningAccess(nullptr);
1620   // Invalidate our walker's cache if necessary
1621   if (!isa<MemoryUse>(MA))
1622     Walker->invalidateInfo(MA);
1623 
1624   Value *MemoryInst;
1625   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1626     MemoryInst = MUD->getMemoryInst();
1627   else
1628     MemoryInst = MA->getBlock();
1629 
1630   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1631   if (VMA->second == MA)
1632     ValueToMemoryAccess.erase(VMA);
1633 }
1634 
1635 /// Properly remove \p MA from all of MemorySSA's lists.
1636 ///
1637 /// Because of the way the intrusive list and use lists work, it is important to
1638 /// do removal in the right order.
1639 /// ShouldDelete defaults to true, and will cause the memory access to also be
1640 /// deleted, not just removed.
1641 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1642   BasicBlock *BB = MA->getBlock();
1643   // The access list owns the reference, so we erase it from the non-owning list
1644   // first.
1645   if (!isa<MemoryUse>(MA)) {
1646     auto DefsIt = PerBlockDefs.find(BB);
1647     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1648     Defs->remove(*MA);
1649     if (Defs->empty())
1650       PerBlockDefs.erase(DefsIt);
1651   }
1652 
1653   // The erase call here will delete it. If we don't want it deleted, we call
1654   // remove instead.
1655   auto AccessIt = PerBlockAccesses.find(BB);
1656   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1657   if (ShouldDelete)
1658     Accesses->erase(MA);
1659   else
1660     Accesses->remove(MA);
1661 
1662   if (Accesses->empty()) {
1663     PerBlockAccesses.erase(AccessIt);
1664     BlockNumberingValid.erase(BB);
1665   }
1666 }
1667 
1668 void MemorySSA::print(raw_ostream &OS) const {
1669   MemorySSAAnnotatedWriter Writer(this);
1670   F.print(OS, &Writer);
1671 }
1672 
1673 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1674 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1675 #endif
1676 
1677 void MemorySSA::verifyMemorySSA() const {
1678   verifyDefUses(F);
1679   verifyDomination(F);
1680   verifyOrdering(F);
1681   verifyDominationNumbers(F);
1682   Walker->verify(this);
1683   verifyClobberSanity(F);
1684 }
1685 
1686 /// Check sanity of the clobbering instruction for access MA.
1687 void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const {
1688   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1689     if (!MUD->isOptimized())
1690       return;
1691     auto *I = MUD->getMemoryInst();
1692     auto Loc = MemoryLocation::getOrNone(I);
1693     if (Loc == None)
1694       return;
1695     auto *Clobber = MUD->getOptimized();
1696     UpwardsMemoryQuery Q(I, MUD);
1697     checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA);
1698   }
1699 }
1700 
1701 void MemorySSA::verifyClobberSanity(const Function &F) const {
1702 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1703   for (const BasicBlock &BB : F) {
1704     const AccessList *Accesses = getBlockAccesses(&BB);
1705     if (!Accesses)
1706       continue;
1707     for (const MemoryAccess &MA : *Accesses)
1708       checkClobberSanityAccess(&MA);
1709   }
1710 #endif
1711 }
1712 
1713 /// Verify that all of the blocks we believe to have valid domination numbers
1714 /// actually have valid domination numbers.
1715 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1716 #ifndef NDEBUG
1717   if (BlockNumberingValid.empty())
1718     return;
1719 
1720   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1721   for (const BasicBlock &BB : F) {
1722     if (!ValidBlocks.count(&BB))
1723       continue;
1724 
1725     ValidBlocks.erase(&BB);
1726 
1727     const AccessList *Accesses = getBlockAccesses(&BB);
1728     // It's correct to say an empty block has valid numbering.
1729     if (!Accesses)
1730       continue;
1731 
1732     // Block numbering starts at 1.
1733     unsigned long LastNumber = 0;
1734     for (const MemoryAccess &MA : *Accesses) {
1735       auto ThisNumberIter = BlockNumbering.find(&MA);
1736       assert(ThisNumberIter != BlockNumbering.end() &&
1737              "MemoryAccess has no domination number in a valid block!");
1738 
1739       unsigned long ThisNumber = ThisNumberIter->second;
1740       assert(ThisNumber > LastNumber &&
1741              "Domination numbers should be strictly increasing!");
1742       LastNumber = ThisNumber;
1743     }
1744   }
1745 
1746   assert(ValidBlocks.empty() &&
1747          "All valid BasicBlocks should exist in F -- dangling pointers?");
1748 #endif
1749 }
1750 
1751 /// Verify that the order and existence of MemoryAccesses matches the
1752 /// order and existence of memory affecting instructions.
1753 void MemorySSA::verifyOrdering(Function &F) const {
1754 #ifndef NDEBUG
1755   // Walk all the blocks, comparing what the lookups think and what the access
1756   // lists think, as well as the order in the blocks vs the order in the access
1757   // lists.
1758   SmallVector<MemoryAccess *, 32> ActualAccesses;
1759   SmallVector<MemoryAccess *, 32> ActualDefs;
1760   for (BasicBlock &B : F) {
1761     const AccessList *AL = getBlockAccesses(&B);
1762     const auto *DL = getBlockDefs(&B);
1763     MemoryAccess *Phi = getMemoryAccess(&B);
1764     if (Phi) {
1765       ActualAccesses.push_back(Phi);
1766       ActualDefs.push_back(Phi);
1767     }
1768 
1769     for (Instruction &I : B) {
1770       MemoryAccess *MA = getMemoryAccess(&I);
1771       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1772              "We have memory affecting instructions "
1773              "in this block but they are not in the "
1774              "access list or defs list");
1775       if (MA) {
1776         ActualAccesses.push_back(MA);
1777         if (isa<MemoryDef>(MA))
1778           ActualDefs.push_back(MA);
1779       }
1780     }
1781     // Either we hit the assert, really have no accesses, or we have both
1782     // accesses and an access list.
1783     // Same with defs.
1784     if (!AL && !DL)
1785       continue;
1786     assert(AL->size() == ActualAccesses.size() &&
1787            "We don't have the same number of accesses in the block as on the "
1788            "access list");
1789     assert((DL || ActualDefs.size() == 0) &&
1790            "Either we should have a defs list, or we should have no defs");
1791     assert((!DL || DL->size() == ActualDefs.size()) &&
1792            "We don't have the same number of defs in the block as on the "
1793            "def list");
1794     auto ALI = AL->begin();
1795     auto AAI = ActualAccesses.begin();
1796     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1797       assert(&*ALI == *AAI && "Not the same accesses in the same order");
1798       ++ALI;
1799       ++AAI;
1800     }
1801     ActualAccesses.clear();
1802     if (DL) {
1803       auto DLI = DL->begin();
1804       auto ADI = ActualDefs.begin();
1805       while (DLI != DL->end() && ADI != ActualDefs.end()) {
1806         assert(&*DLI == *ADI && "Not the same defs in the same order");
1807         ++DLI;
1808         ++ADI;
1809       }
1810     }
1811     ActualDefs.clear();
1812   }
1813 #endif
1814 }
1815 
1816 /// Verify the domination properties of MemorySSA by checking that each
1817 /// definition dominates all of its uses.
1818 void MemorySSA::verifyDomination(Function &F) const {
1819 #ifndef NDEBUG
1820   for (BasicBlock &B : F) {
1821     // Phi nodes are attached to basic blocks
1822     if (MemoryPhi *MP = getMemoryAccess(&B))
1823       for (const Use &U : MP->uses())
1824         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1825 
1826     for (Instruction &I : B) {
1827       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1828       if (!MD)
1829         continue;
1830 
1831       for (const Use &U : MD->uses())
1832         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1833     }
1834   }
1835 #endif
1836 }
1837 
1838 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1839 /// appears in the use list of \p Def.
1840 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1841 #ifndef NDEBUG
1842   // The live on entry use may cause us to get a NULL def here
1843   if (!Def)
1844     assert(isLiveOnEntryDef(Use) &&
1845            "Null def but use not point to live on entry def");
1846   else
1847     assert(is_contained(Def->users(), Use) &&
1848            "Did not find use in def's use list");
1849 #endif
1850 }
1851 
1852 /// Verify the immediate use information, by walking all the memory
1853 /// accesses and verifying that, for each use, it appears in the
1854 /// appropriate def's use list
1855 void MemorySSA::verifyDefUses(Function &F) const {
1856 #ifndef NDEBUG
1857   for (BasicBlock &B : F) {
1858     // Phi nodes are attached to basic blocks
1859     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1860       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1861                                           pred_begin(&B), pred_end(&B))) &&
1862              "Incomplete MemoryPhi Node");
1863       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1864         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1865         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1866                    pred_end(&B) &&
1867                "Incoming phi block not a block predecessor");
1868       }
1869     }
1870 
1871     for (Instruction &I : B) {
1872       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1873         verifyUseInDefs(MA->getDefiningAccess(), MA);
1874       }
1875     }
1876   }
1877 #endif
1878 }
1879 
1880 /// Perform a local numbering on blocks so that instruction ordering can be
1881 /// determined in constant time.
1882 /// TODO: We currently just number in order.  If we numbered by N, we could
1883 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1884 /// log2(N) sequences of mixed before and after) without needing to invalidate
1885 /// the numbering.
1886 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1887   // The pre-increment ensures the numbers really start at 1.
1888   unsigned long CurrentNumber = 0;
1889   const AccessList *AL = getBlockAccesses(B);
1890   assert(AL != nullptr && "Asking to renumber an empty block");
1891   for (const auto &I : *AL)
1892     BlockNumbering[&I] = ++CurrentNumber;
1893   BlockNumberingValid.insert(B);
1894 }
1895 
1896 /// Determine, for two memory accesses in the same block,
1897 /// whether \p Dominator dominates \p Dominatee.
1898 /// \returns True if \p Dominator dominates \p Dominatee.
1899 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1900                                  const MemoryAccess *Dominatee) const {
1901   const BasicBlock *DominatorBlock = Dominator->getBlock();
1902 
1903   assert((DominatorBlock == Dominatee->getBlock()) &&
1904          "Asking for local domination when accesses are in different blocks!");
1905   // A node dominates itself.
1906   if (Dominatee == Dominator)
1907     return true;
1908 
1909   // When Dominatee is defined on function entry, it is not dominated by another
1910   // memory access.
1911   if (isLiveOnEntryDef(Dominatee))
1912     return false;
1913 
1914   // When Dominator is defined on function entry, it dominates the other memory
1915   // access.
1916   if (isLiveOnEntryDef(Dominator))
1917     return true;
1918 
1919   if (!BlockNumberingValid.count(DominatorBlock))
1920     renumberBlock(DominatorBlock);
1921 
1922   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1923   // All numbers start with 1
1924   assert(DominatorNum != 0 && "Block was not numbered properly");
1925   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1926   assert(DominateeNum != 0 && "Block was not numbered properly");
1927   return DominatorNum < DominateeNum;
1928 }
1929 
1930 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1931                           const MemoryAccess *Dominatee) const {
1932   if (Dominator == Dominatee)
1933     return true;
1934 
1935   if (isLiveOnEntryDef(Dominatee))
1936     return false;
1937 
1938   if (Dominator->getBlock() != Dominatee->getBlock())
1939     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1940   return locallyDominates(Dominator, Dominatee);
1941 }
1942 
1943 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1944                           const Use &Dominatee) const {
1945   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1946     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1947     // The def must dominate the incoming block of the phi.
1948     if (UseBB != Dominator->getBlock())
1949       return DT->dominates(Dominator->getBlock(), UseBB);
1950     // If the UseBB and the DefBB are the same, compare locally.
1951     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1952   }
1953   // If it's not a PHI node use, the normal dominates can already handle it.
1954   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1955 }
1956 
1957 const static char LiveOnEntryStr[] = "liveOnEntry";
1958 
1959 void MemoryAccess::print(raw_ostream &OS) const {
1960   switch (getValueID()) {
1961   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1962   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1963   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1964   }
1965   llvm_unreachable("invalid value id");
1966 }
1967 
1968 void MemoryDef::print(raw_ostream &OS) const {
1969   MemoryAccess *UO = getDefiningAccess();
1970 
1971   auto printID = [&OS](MemoryAccess *A) {
1972     if (A && A->getID())
1973       OS << A->getID();
1974     else
1975       OS << LiveOnEntryStr;
1976   };
1977 
1978   OS << getID() << " = MemoryDef(";
1979   printID(UO);
1980   OS << ")";
1981 
1982   if (isOptimized()) {
1983     OS << "->";
1984     printID(getOptimized());
1985 
1986     if (Optional<AliasResult> AR = getOptimizedAccessType())
1987       OS << " " << *AR;
1988   }
1989 }
1990 
1991 void MemoryPhi::print(raw_ostream &OS) const {
1992   bool First = true;
1993   OS << getID() << " = MemoryPhi(";
1994   for (const auto &Op : operands()) {
1995     BasicBlock *BB = getIncomingBlock(Op);
1996     MemoryAccess *MA = cast<MemoryAccess>(Op);
1997     if (!First)
1998       OS << ',';
1999     else
2000       First = false;
2001 
2002     OS << '{';
2003     if (BB->hasName())
2004       OS << BB->getName();
2005     else
2006       BB->printAsOperand(OS, false);
2007     OS << ',';
2008     if (unsigned ID = MA->getID())
2009       OS << ID;
2010     else
2011       OS << LiveOnEntryStr;
2012     OS << '}';
2013   }
2014   OS << ')';
2015 }
2016 
2017 void MemoryUse::print(raw_ostream &OS) const {
2018   MemoryAccess *UO = getDefiningAccess();
2019   OS << "MemoryUse(";
2020   if (UO && UO->getID())
2021     OS << UO->getID();
2022   else
2023     OS << LiveOnEntryStr;
2024   OS << ')';
2025 
2026   if (Optional<AliasResult> AR = getOptimizedAccessType())
2027     OS << " " << *AR;
2028 }
2029 
2030 void MemoryAccess::dump() const {
2031 // Cannot completely remove virtual function even in release mode.
2032 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2033   print(dbgs());
2034   dbgs() << "\n";
2035 #endif
2036 }
2037 
2038 char MemorySSAPrinterLegacyPass::ID = 0;
2039 
2040 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2041   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2042 }
2043 
2044 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2045   AU.setPreservesAll();
2046   AU.addRequired<MemorySSAWrapperPass>();
2047 }
2048 
2049 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2050   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2051   MSSA.print(dbgs());
2052   if (VerifyMemorySSA)
2053     MSSA.verifyMemorySSA();
2054   return false;
2055 }
2056 
2057 AnalysisKey MemorySSAAnalysis::Key;
2058 
2059 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2060                                                  FunctionAnalysisManager &AM) {
2061   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2062   auto &AA = AM.getResult<AAManager>(F);
2063   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2064 }
2065 
2066 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2067                                             FunctionAnalysisManager &AM) {
2068   OS << "MemorySSA for function: " << F.getName() << "\n";
2069   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2070 
2071   return PreservedAnalyses::all();
2072 }
2073 
2074 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2075                                              FunctionAnalysisManager &AM) {
2076   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2077 
2078   return PreservedAnalyses::all();
2079 }
2080 
2081 char MemorySSAWrapperPass::ID = 0;
2082 
2083 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2084   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2085 }
2086 
2087 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2088 
2089 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2090   AU.setPreservesAll();
2091   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2092   AU.addRequiredTransitive<AAResultsWrapperPass>();
2093 }
2094 
2095 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2096   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2097   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2098   MSSA.reset(new MemorySSA(F, &AA, &DT));
2099   return false;
2100 }
2101 
2102 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2103 
2104 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2105   MSSA->print(OS);
2106 }
2107 
2108 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2109 
2110 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2111                                         DominatorTree *D)
2112     : MemorySSAWalker(M), Walker(*M, *A, *D) {}
2113 
2114 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
2115   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2116     MUD->resetOptimized();
2117 }
2118 
2119 /// Walk the use-def chains starting at \p MA and find
2120 /// the MemoryAccess that actually clobbers Loc.
2121 ///
2122 /// \returns our clobbering memory access
2123 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2124     MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
2125   return Walker.findClobber(StartingAccess, Q);
2126 }
2127 
2128 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2129     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2130   if (isa<MemoryPhi>(StartingAccess))
2131     return StartingAccess;
2132 
2133   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2134   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2135     return StartingUseOrDef;
2136 
2137   Instruction *I = StartingUseOrDef->getMemoryInst();
2138 
2139   // Conservatively, fences are always clobbers, so don't perform the walk if we
2140   // hit a fence.
2141   if (!ImmutableCallSite(I) && I->isFenceLike())
2142     return StartingUseOrDef;
2143 
2144   UpwardsMemoryQuery Q;
2145   Q.OriginalAccess = StartingUseOrDef;
2146   Q.StartingLoc = Loc;
2147   Q.Inst = I;
2148   Q.IsCall = false;
2149 
2150   // Unlike the other function, do not walk to the def of a def, because we are
2151   // handed something we already believe is the clobbering access.
2152   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2153                                      ? StartingUseOrDef->getDefiningAccess()
2154                                      : StartingUseOrDef;
2155 
2156   MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
2157   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2158   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2159   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2160   LLVM_DEBUG(dbgs() << *Clobber << "\n");
2161   return Clobber;
2162 }
2163 
2164 MemoryAccess *
2165 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2166   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2167   // If this is a MemoryPhi, we can't do anything.
2168   if (!StartingAccess)
2169     return MA;
2170 
2171   // If this is an already optimized use or def, return the optimized result.
2172   // Note: Currently, we store the optimized def result in a separate field,
2173   // since we can't use the defining access.
2174   if (StartingAccess->isOptimized())
2175     return StartingAccess->getOptimized();
2176 
2177   const Instruction *I = StartingAccess->getMemoryInst();
2178   UpwardsMemoryQuery Q(I, StartingAccess);
2179   // We can't sanely do anything with a fence, since they conservatively clobber
2180   // all memory, and have no locations to get pointers from to try to
2181   // disambiguate.
2182   if (!Q.IsCall && I->isFenceLike())
2183     return StartingAccess;
2184 
2185   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2186     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2187     StartingAccess->setOptimized(LiveOnEntry);
2188     StartingAccess->setOptimizedAccessType(None);
2189     return LiveOnEntry;
2190   }
2191 
2192   // Start with the thing we already think clobbers this location
2193   MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2194 
2195   // At this point, DefiningAccess may be the live on entry def.
2196   // If it is, we will not get a better result.
2197   if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2198     StartingAccess->setOptimized(DefiningAccess);
2199     StartingAccess->setOptimizedAccessType(None);
2200     return DefiningAccess;
2201   }
2202 
2203   MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
2204   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2205   LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2206   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2207   LLVM_DEBUG(dbgs() << *Result << "\n");
2208 
2209   StartingAccess->setOptimized(Result);
2210   if (MSSA->isLiveOnEntryDef(Result))
2211     StartingAccess->setOptimizedAccessType(None);
2212   else if (Q.AR == MustAlias)
2213     StartingAccess->setOptimizedAccessType(MustAlias);
2214 
2215   return Result;
2216 }
2217 
2218 MemoryAccess *
2219 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2220   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2221     return Use->getDefiningAccess();
2222   return MA;
2223 }
2224 
2225 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2226     MemoryAccess *StartingAccess, const MemoryLocation &) {
2227   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2228     return Use->getDefiningAccess();
2229   return StartingAccess;
2230 }
2231 
2232 void MemoryPhi::deleteMe(DerivedUser *Self) {
2233   delete static_cast<MemoryPhi *>(Self);
2234 }
2235 
2236 void MemoryDef::deleteMe(DerivedUser *Self) {
2237   delete static_cast<MemoryDef *>(Self);
2238 }
2239 
2240 void MemoryUse::deleteMe(DerivedUser *Self) {
2241   delete static_cast<MemoryUse *>(Self);
2242 }
2243