1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFGPrinter.h" 29 #include "llvm/Analysis/IteratedDominanceFrontier.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PassManager.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/FormattedStream.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdlib> 57 #include <iterator> 58 #include <memory> 59 #include <utility> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "memoryssa" 64 65 static cl::opt<std::string> 66 DotCFGMSSA("dot-cfg-mssa", 67 cl::value_desc("file name for generated dot file"), 68 cl::desc("file name for generated dot file"), cl::init("")); 69 70 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 71 true) 72 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 73 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 74 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 75 true) 76 77 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 78 "Memory SSA Printer", false, false) 79 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 80 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 81 "Memory SSA Printer", false, false) 82 83 static cl::opt<unsigned> MaxCheckLimit( 84 "memssa-check-limit", cl::Hidden, cl::init(100), 85 cl::desc("The maximum number of stores/phis MemorySSA" 86 "will consider trying to walk past (default = 100)")); 87 88 // Always verify MemorySSA if expensive checking is enabled. 89 #ifdef EXPENSIVE_CHECKS 90 bool llvm::VerifyMemorySSA = true; 91 #else 92 bool llvm::VerifyMemorySSA = false; 93 #endif 94 95 static cl::opt<bool, true> 96 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 97 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 98 99 const static char LiveOnEntryStr[] = "liveOnEntry"; 100 101 namespace { 102 103 /// An assembly annotator class to print Memory SSA information in 104 /// comments. 105 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 106 const MemorySSA *MSSA; 107 108 public: 109 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 110 111 void emitBasicBlockStartAnnot(const BasicBlock *BB, 112 formatted_raw_ostream &OS) override { 113 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 114 OS << "; " << *MA << "\n"; 115 } 116 117 void emitInstructionAnnot(const Instruction *I, 118 formatted_raw_ostream &OS) override { 119 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 120 OS << "; " << *MA << "\n"; 121 } 122 }; 123 124 /// An assembly annotator class to print Memory SSA information in 125 /// comments. 126 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter { 127 MemorySSA *MSSA; 128 MemorySSAWalker *Walker; 129 130 public: 131 MemorySSAWalkerAnnotatedWriter(MemorySSA *M) 132 : MSSA(M), Walker(M->getWalker()) {} 133 134 void emitInstructionAnnot(const Instruction *I, 135 formatted_raw_ostream &OS) override { 136 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) { 137 MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA); 138 OS << "; " << *MA; 139 if (Clobber) { 140 OS << " - clobbered by "; 141 if (MSSA->isLiveOnEntryDef(Clobber)) 142 OS << LiveOnEntryStr; 143 else 144 OS << *Clobber; 145 } 146 OS << "\n"; 147 } 148 } 149 }; 150 151 } // namespace 152 153 namespace { 154 155 /// Our current alias analysis API differentiates heavily between calls and 156 /// non-calls, and functions called on one usually assert on the other. 157 /// This class encapsulates the distinction to simplify other code that wants 158 /// "Memory affecting instructions and related data" to use as a key. 159 /// For example, this class is used as a densemap key in the use optimizer. 160 class MemoryLocOrCall { 161 public: 162 bool IsCall = false; 163 164 MemoryLocOrCall(MemoryUseOrDef *MUD) 165 : MemoryLocOrCall(MUD->getMemoryInst()) {} 166 MemoryLocOrCall(const MemoryUseOrDef *MUD) 167 : MemoryLocOrCall(MUD->getMemoryInst()) {} 168 169 MemoryLocOrCall(Instruction *Inst) { 170 if (auto *C = dyn_cast<CallBase>(Inst)) { 171 IsCall = true; 172 Call = C; 173 } else { 174 IsCall = false; 175 // There is no such thing as a memorylocation for a fence inst, and it is 176 // unique in that regard. 177 if (!isa<FenceInst>(Inst)) 178 Loc = MemoryLocation::get(Inst); 179 } 180 } 181 182 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 183 184 const CallBase *getCall() const { 185 assert(IsCall); 186 return Call; 187 } 188 189 MemoryLocation getLoc() const { 190 assert(!IsCall); 191 return Loc; 192 } 193 194 bool operator==(const MemoryLocOrCall &Other) const { 195 if (IsCall != Other.IsCall) 196 return false; 197 198 if (!IsCall) 199 return Loc == Other.Loc; 200 201 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 202 return false; 203 204 return Call->arg_size() == Other.Call->arg_size() && 205 std::equal(Call->arg_begin(), Call->arg_end(), 206 Other.Call->arg_begin()); 207 } 208 209 private: 210 union { 211 const CallBase *Call; 212 MemoryLocation Loc; 213 }; 214 }; 215 216 } // end anonymous namespace 217 218 namespace llvm { 219 220 template <> struct DenseMapInfo<MemoryLocOrCall> { 221 static inline MemoryLocOrCall getEmptyKey() { 222 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 223 } 224 225 static inline MemoryLocOrCall getTombstoneKey() { 226 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 227 } 228 229 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 230 if (!MLOC.IsCall) 231 return hash_combine( 232 MLOC.IsCall, 233 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 234 235 hash_code hash = 236 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 237 MLOC.getCall()->getCalledOperand())); 238 239 for (const Value *Arg : MLOC.getCall()->args()) 240 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 241 return hash; 242 } 243 244 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 245 return LHS == RHS; 246 } 247 }; 248 249 } // end namespace llvm 250 251 /// This does one-way checks to see if Use could theoretically be hoisted above 252 /// MayClobber. This will not check the other way around. 253 /// 254 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 255 /// MayClobber, with no potentially clobbering operations in between them. 256 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 257 static bool areLoadsReorderable(const LoadInst *Use, 258 const LoadInst *MayClobber) { 259 bool VolatileUse = Use->isVolatile(); 260 bool VolatileClobber = MayClobber->isVolatile(); 261 // Volatile operations may never be reordered with other volatile operations. 262 if (VolatileUse && VolatileClobber) 263 return false; 264 // Otherwise, volatile doesn't matter here. From the language reference: 265 // 'optimizers may change the order of volatile operations relative to 266 // non-volatile operations.'" 267 268 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 269 // is weaker, it can be moved above other loads. We just need to be sure that 270 // MayClobber isn't an acquire load, because loads can't be moved above 271 // acquire loads. 272 // 273 // Note that this explicitly *does* allow the free reordering of monotonic (or 274 // weaker) loads of the same address. 275 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 276 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 277 AtomicOrdering::Acquire); 278 return !(SeqCstUse || MayClobberIsAcquire); 279 } 280 281 namespace { 282 283 struct ClobberAlias { 284 bool IsClobber; 285 Optional<AliasResult> AR; 286 }; 287 288 } // end anonymous namespace 289 290 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 291 // ignored if IsClobber = false. 292 template <typename AliasAnalysisType> 293 static ClobberAlias 294 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 295 const Instruction *UseInst, AliasAnalysisType &AA) { 296 Instruction *DefInst = MD->getMemoryInst(); 297 assert(DefInst && "Defining instruction not actually an instruction"); 298 Optional<AliasResult> AR; 299 300 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 301 // These intrinsics will show up as affecting memory, but they are just 302 // markers, mostly. 303 // 304 // FIXME: We probably don't actually want MemorySSA to model these at all 305 // (including creating MemoryAccesses for them): we just end up inventing 306 // clobbers where they don't really exist at all. Please see D43269 for 307 // context. 308 switch (II->getIntrinsicID()) { 309 case Intrinsic::invariant_start: 310 case Intrinsic::invariant_end: 311 case Intrinsic::assume: 312 case Intrinsic::experimental_noalias_scope_decl: 313 case Intrinsic::pseudoprobe: 314 return {false, AliasResult(AliasResult::NoAlias)}; 315 case Intrinsic::dbg_addr: 316 case Intrinsic::dbg_declare: 317 case Intrinsic::dbg_label: 318 case Intrinsic::dbg_value: 319 llvm_unreachable("debuginfo shouldn't have associated defs!"); 320 default: 321 break; 322 } 323 } 324 325 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 326 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 327 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 328 return {isModOrRefSet(I), AR}; 329 } 330 331 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 332 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 333 return {!areLoadsReorderable(UseLoad, DefLoad), 334 AliasResult(AliasResult::MayAlias)}; 335 336 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 337 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 338 return {isModSet(I), AR}; 339 } 340 341 template <typename AliasAnalysisType> 342 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 343 const MemoryUseOrDef *MU, 344 const MemoryLocOrCall &UseMLOC, 345 AliasAnalysisType &AA) { 346 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 347 // to exist while MemoryLocOrCall is pushed through places. 348 if (UseMLOC.IsCall) 349 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 350 AA); 351 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 352 AA); 353 } 354 355 // Return true when MD may alias MU, return false otherwise. 356 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 357 AliasAnalysis &AA) { 358 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 359 } 360 361 namespace { 362 363 struct UpwardsMemoryQuery { 364 // True if our original query started off as a call 365 bool IsCall = false; 366 // The pointer location we started the query with. This will be empty if 367 // IsCall is true. 368 MemoryLocation StartingLoc; 369 // This is the instruction we were querying about. 370 const Instruction *Inst = nullptr; 371 // The MemoryAccess we actually got called with, used to test local domination 372 const MemoryAccess *OriginalAccess = nullptr; 373 Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias); 374 bool SkipSelfAccess = false; 375 376 UpwardsMemoryQuery() = default; 377 378 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 379 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 380 if (!IsCall) 381 StartingLoc = MemoryLocation::get(Inst); 382 } 383 }; 384 385 } // end anonymous namespace 386 387 template <typename AliasAnalysisType> 388 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 389 const Instruction *I) { 390 // If the memory can't be changed, then loads of the memory can't be 391 // clobbered. 392 if (auto *LI = dyn_cast<LoadInst>(I)) 393 return I->hasMetadata(LLVMContext::MD_invariant_load) || 394 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 395 return false; 396 } 397 398 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 399 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 400 /// 401 /// This is meant to be as simple and self-contained as possible. Because it 402 /// uses no cache, etc., it can be relatively expensive. 403 /// 404 /// \param Start The MemoryAccess that we want to walk from. 405 /// \param ClobberAt A clobber for Start. 406 /// \param StartLoc The MemoryLocation for Start. 407 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 408 /// \param Query The UpwardsMemoryQuery we used for our search. 409 /// \param AA The AliasAnalysis we used for our search. 410 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 411 412 template <typename AliasAnalysisType> 413 LLVM_ATTRIBUTE_UNUSED static void 414 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 415 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 416 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 417 bool AllowImpreciseClobber = false) { 418 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 419 420 if (MSSA.isLiveOnEntryDef(Start)) { 421 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 422 "liveOnEntry must clobber itself"); 423 return; 424 } 425 426 bool FoundClobber = false; 427 DenseSet<ConstMemoryAccessPair> VisitedPhis; 428 SmallVector<ConstMemoryAccessPair, 8> Worklist; 429 Worklist.emplace_back(Start, StartLoc); 430 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 431 // is found, complain. 432 while (!Worklist.empty()) { 433 auto MAP = Worklist.pop_back_val(); 434 // All we care about is that nothing from Start to ClobberAt clobbers Start. 435 // We learn nothing from revisiting nodes. 436 if (!VisitedPhis.insert(MAP).second) 437 continue; 438 439 for (const auto *MA : def_chain(MAP.first)) { 440 if (MA == ClobberAt) { 441 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 442 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 443 // since it won't let us short-circuit. 444 // 445 // Also, note that this can't be hoisted out of the `Worklist` loop, 446 // since MD may only act as a clobber for 1 of N MemoryLocations. 447 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 448 if (!FoundClobber) { 449 ClobberAlias CA = 450 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 451 if (CA.IsClobber) { 452 FoundClobber = true; 453 // Not used: CA.AR; 454 } 455 } 456 } 457 break; 458 } 459 460 // We should never hit liveOnEntry, unless it's the clobber. 461 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 462 463 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 464 // If Start is a Def, skip self. 465 if (MD == Start) 466 continue; 467 468 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 469 .IsClobber && 470 "Found clobber before reaching ClobberAt!"); 471 continue; 472 } 473 474 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 475 (void)MU; 476 assert (MU == Start && 477 "Can only find use in def chain if Start is a use"); 478 continue; 479 } 480 481 assert(isa<MemoryPhi>(MA)); 482 483 // Add reachable phi predecessors 484 for (auto ItB = upward_defs_begin( 485 {const_cast<MemoryAccess *>(MA), MAP.second}, 486 MSSA.getDomTree()), 487 ItE = upward_defs_end(); 488 ItB != ItE; ++ItB) 489 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 490 Worklist.emplace_back(*ItB); 491 } 492 } 493 494 // If the verify is done following an optimization, it's possible that 495 // ClobberAt was a conservative clobbering, that we can now infer is not a 496 // true clobbering access. Don't fail the verify if that's the case. 497 // We do have accesses that claim they're optimized, but could be optimized 498 // further. Updating all these can be expensive, so allow it for now (FIXME). 499 if (AllowImpreciseClobber) 500 return; 501 502 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 503 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 504 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 505 "ClobberAt never acted as a clobber"); 506 } 507 508 namespace { 509 510 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 511 /// in one class. 512 template <class AliasAnalysisType> class ClobberWalker { 513 /// Save a few bytes by using unsigned instead of size_t. 514 using ListIndex = unsigned; 515 516 /// Represents a span of contiguous MemoryDefs, potentially ending in a 517 /// MemoryPhi. 518 struct DefPath { 519 MemoryLocation Loc; 520 // Note that, because we always walk in reverse, Last will always dominate 521 // First. Also note that First and Last are inclusive. 522 MemoryAccess *First; 523 MemoryAccess *Last; 524 Optional<ListIndex> Previous; 525 526 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 527 Optional<ListIndex> Previous) 528 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 529 530 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 531 Optional<ListIndex> Previous) 532 : DefPath(Loc, Init, Init, Previous) {} 533 }; 534 535 const MemorySSA &MSSA; 536 AliasAnalysisType &AA; 537 DominatorTree &DT; 538 UpwardsMemoryQuery *Query; 539 unsigned *UpwardWalkLimit; 540 541 // Phi optimization bookkeeping: 542 // List of DefPath to process during the current phi optimization walk. 543 SmallVector<DefPath, 32> Paths; 544 // List of visited <Access, Location> pairs; we can skip paths already 545 // visited with the same memory location. 546 DenseSet<ConstMemoryAccessPair> VisitedPhis; 547 // Record if phi translation has been performed during the current phi 548 // optimization walk, as merging alias results after phi translation can 549 // yield incorrect results. Context in PR46156. 550 bool PerformedPhiTranslation = false; 551 552 /// Find the nearest def or phi that `From` can legally be optimized to. 553 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 554 assert(From->getNumOperands() && "Phi with no operands?"); 555 556 BasicBlock *BB = From->getBlock(); 557 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 558 DomTreeNode *Node = DT.getNode(BB); 559 while ((Node = Node->getIDom())) { 560 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 561 if (Defs) 562 return &*Defs->rbegin(); 563 } 564 return Result; 565 } 566 567 /// Result of calling walkToPhiOrClobber. 568 struct UpwardsWalkResult { 569 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 570 /// both. Include alias info when clobber found. 571 MemoryAccess *Result; 572 bool IsKnownClobber; 573 Optional<AliasResult> AR; 574 }; 575 576 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 577 /// This will update Desc.Last as it walks. It will (optionally) also stop at 578 /// StopAt. 579 /// 580 /// This does not test for whether StopAt is a clobber 581 UpwardsWalkResult 582 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 583 const MemoryAccess *SkipStopAt = nullptr) const { 584 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 585 assert(UpwardWalkLimit && "Need a valid walk limit"); 586 bool LimitAlreadyReached = false; 587 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 588 // it to 1. This will not do any alias() calls. It either returns in the 589 // first iteration in the loop below, or is set back to 0 if all def chains 590 // are free of MemoryDefs. 591 if (!*UpwardWalkLimit) { 592 *UpwardWalkLimit = 1; 593 LimitAlreadyReached = true; 594 } 595 596 for (MemoryAccess *Current : def_chain(Desc.Last)) { 597 Desc.Last = Current; 598 if (Current == StopAt || Current == SkipStopAt) 599 return {Current, false, AliasResult(AliasResult::MayAlias)}; 600 601 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 602 if (MSSA.isLiveOnEntryDef(MD)) 603 return {MD, true, AliasResult(AliasResult::MustAlias)}; 604 605 if (!--*UpwardWalkLimit) 606 return {Current, true, AliasResult(AliasResult::MayAlias)}; 607 608 ClobberAlias CA = 609 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 610 if (CA.IsClobber) 611 return {MD, true, CA.AR}; 612 } 613 } 614 615 if (LimitAlreadyReached) 616 *UpwardWalkLimit = 0; 617 618 assert(isa<MemoryPhi>(Desc.Last) && 619 "Ended at a non-clobber that's not a phi?"); 620 return {Desc.Last, false, AliasResult(AliasResult::MayAlias)}; 621 } 622 623 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 624 ListIndex PriorNode) { 625 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 626 &PerformedPhiTranslation); 627 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 628 for (const MemoryAccessPair &P : UpwardDefs) { 629 PausedSearches.push_back(Paths.size()); 630 Paths.emplace_back(P.second, P.first, PriorNode); 631 } 632 } 633 634 /// Represents a search that terminated after finding a clobber. This clobber 635 /// may or may not be present in the path of defs from LastNode..SearchStart, 636 /// since it may have been retrieved from cache. 637 struct TerminatedPath { 638 MemoryAccess *Clobber; 639 ListIndex LastNode; 640 }; 641 642 /// Get an access that keeps us from optimizing to the given phi. 643 /// 644 /// PausedSearches is an array of indices into the Paths array. Its incoming 645 /// value is the indices of searches that stopped at the last phi optimization 646 /// target. It's left in an unspecified state. 647 /// 648 /// If this returns None, NewPaused is a vector of searches that terminated 649 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 650 Optional<TerminatedPath> 651 getBlockingAccess(const MemoryAccess *StopWhere, 652 SmallVectorImpl<ListIndex> &PausedSearches, 653 SmallVectorImpl<ListIndex> &NewPaused, 654 SmallVectorImpl<TerminatedPath> &Terminated) { 655 assert(!PausedSearches.empty() && "No searches to continue?"); 656 657 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 658 // PausedSearches as our stack. 659 while (!PausedSearches.empty()) { 660 ListIndex PathIndex = PausedSearches.pop_back_val(); 661 DefPath &Node = Paths[PathIndex]; 662 663 // If we've already visited this path with this MemoryLocation, we don't 664 // need to do so again. 665 // 666 // NOTE: That we just drop these paths on the ground makes caching 667 // behavior sporadic. e.g. given a diamond: 668 // A 669 // B C 670 // D 671 // 672 // ...If we walk D, B, A, C, we'll only cache the result of phi 673 // optimization for A, B, and D; C will be skipped because it dies here. 674 // This arguably isn't the worst thing ever, since: 675 // - We generally query things in a top-down order, so if we got below D 676 // without needing cache entries for {C, MemLoc}, then chances are 677 // that those cache entries would end up ultimately unused. 678 // - We still cache things for A, so C only needs to walk up a bit. 679 // If this behavior becomes problematic, we can fix without a ton of extra 680 // work. 681 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 682 if (PerformedPhiTranslation) { 683 // If visiting this path performed Phi translation, don't continue, 684 // since it may not be correct to merge results from two paths if one 685 // relies on the phi translation. 686 TerminatedPath Term{Node.Last, PathIndex}; 687 return Term; 688 } 689 continue; 690 } 691 692 const MemoryAccess *SkipStopWhere = nullptr; 693 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 694 assert(isa<MemoryDef>(Query->OriginalAccess)); 695 SkipStopWhere = Query->OriginalAccess; 696 } 697 698 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 699 /*StopAt=*/StopWhere, 700 /*SkipStopAt=*/SkipStopWhere); 701 if (Res.IsKnownClobber) { 702 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 703 704 // If this wasn't a cache hit, we hit a clobber when walking. That's a 705 // failure. 706 TerminatedPath Term{Res.Result, PathIndex}; 707 if (!MSSA.dominates(Res.Result, StopWhere)) 708 return Term; 709 710 // Otherwise, it's a valid thing to potentially optimize to. 711 Terminated.push_back(Term); 712 continue; 713 } 714 715 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 716 // We've hit our target. Save this path off for if we want to continue 717 // walking. If we are in the mode of skipping the OriginalAccess, and 718 // we've reached back to the OriginalAccess, do not save path, we've 719 // just looped back to self. 720 if (Res.Result != SkipStopWhere) 721 NewPaused.push_back(PathIndex); 722 continue; 723 } 724 725 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 726 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 727 } 728 729 return None; 730 } 731 732 template <typename T, typename Walker> 733 struct generic_def_path_iterator 734 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 735 std::forward_iterator_tag, T *> { 736 generic_def_path_iterator() = default; 737 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 738 739 T &operator*() const { return curNode(); } 740 741 generic_def_path_iterator &operator++() { 742 N = curNode().Previous; 743 return *this; 744 } 745 746 bool operator==(const generic_def_path_iterator &O) const { 747 if (N.hasValue() != O.N.hasValue()) 748 return false; 749 return !N.hasValue() || *N == *O.N; 750 } 751 752 private: 753 T &curNode() const { return W->Paths[*N]; } 754 755 Walker *W = nullptr; 756 Optional<ListIndex> N = None; 757 }; 758 759 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 760 using const_def_path_iterator = 761 generic_def_path_iterator<const DefPath, const ClobberWalker>; 762 763 iterator_range<def_path_iterator> def_path(ListIndex From) { 764 return make_range(def_path_iterator(this, From), def_path_iterator()); 765 } 766 767 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 768 return make_range(const_def_path_iterator(this, From), 769 const_def_path_iterator()); 770 } 771 772 struct OptznResult { 773 /// The path that contains our result. 774 TerminatedPath PrimaryClobber; 775 /// The paths that we can legally cache back from, but that aren't 776 /// necessarily the result of the Phi optimization. 777 SmallVector<TerminatedPath, 4> OtherClobbers; 778 }; 779 780 ListIndex defPathIndex(const DefPath &N) const { 781 // The assert looks nicer if we don't need to do &N 782 const DefPath *NP = &N; 783 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 784 "Out of bounds DefPath!"); 785 return NP - &Paths.front(); 786 } 787 788 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 789 /// that act as legal clobbers. Note that this won't return *all* clobbers. 790 /// 791 /// Phi optimization algorithm tl;dr: 792 /// - Find the earliest def/phi, A, we can optimize to 793 /// - Find if all paths from the starting memory access ultimately reach A 794 /// - If not, optimization isn't possible. 795 /// - Otherwise, walk from A to another clobber or phi, A'. 796 /// - If A' is a def, we're done. 797 /// - If A' is a phi, try to optimize it. 798 /// 799 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 800 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 801 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 802 const MemoryLocation &Loc) { 803 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 804 "Reset the optimization state."); 805 806 Paths.emplace_back(Loc, Start, Phi, None); 807 // Stores how many "valid" optimization nodes we had prior to calling 808 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 809 auto PriorPathsSize = Paths.size(); 810 811 SmallVector<ListIndex, 16> PausedSearches; 812 SmallVector<ListIndex, 8> NewPaused; 813 SmallVector<TerminatedPath, 4> TerminatedPaths; 814 815 addSearches(Phi, PausedSearches, 0); 816 817 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 818 // Paths. 819 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 820 assert(!Paths.empty() && "Need a path to move"); 821 auto Dom = Paths.begin(); 822 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 823 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 824 Dom = I; 825 auto Last = Paths.end() - 1; 826 if (Last != Dom) 827 std::iter_swap(Last, Dom); 828 }; 829 830 MemoryPhi *Current = Phi; 831 while (true) { 832 assert(!MSSA.isLiveOnEntryDef(Current) && 833 "liveOnEntry wasn't treated as a clobber?"); 834 835 const auto *Target = getWalkTarget(Current); 836 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 837 // optimization for the prior phi. 838 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 839 return MSSA.dominates(P.Clobber, Target); 840 })); 841 842 // FIXME: This is broken, because the Blocker may be reported to be 843 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 844 // For the moment, this is fine, since we do nothing with blocker info. 845 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 846 Target, PausedSearches, NewPaused, TerminatedPaths)) { 847 848 // Find the node we started at. We can't search based on N->Last, since 849 // we may have gone around a loop with a different MemoryLocation. 850 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 851 return defPathIndex(N) < PriorPathsSize; 852 }); 853 assert(Iter != def_path_iterator()); 854 855 DefPath &CurNode = *Iter; 856 assert(CurNode.Last == Current); 857 858 // Two things: 859 // A. We can't reliably cache all of NewPaused back. Consider a case 860 // where we have two paths in NewPaused; one of which can't optimize 861 // above this phi, whereas the other can. If we cache the second path 862 // back, we'll end up with suboptimal cache entries. We can handle 863 // cases like this a bit better when we either try to find all 864 // clobbers that block phi optimization, or when our cache starts 865 // supporting unfinished searches. 866 // B. We can't reliably cache TerminatedPaths back here without doing 867 // extra checks; consider a case like: 868 // T 869 // / \ 870 // D C 871 // \ / 872 // S 873 // Where T is our target, C is a node with a clobber on it, D is a 874 // diamond (with a clobber *only* on the left or right node, N), and 875 // S is our start. Say we walk to D, through the node opposite N 876 // (read: ignoring the clobber), and see a cache entry in the top 877 // node of D. That cache entry gets put into TerminatedPaths. We then 878 // walk up to C (N is later in our worklist), find the clobber, and 879 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 880 // the bottom part of D to the cached clobber, ignoring the clobber 881 // in N. Again, this problem goes away if we start tracking all 882 // blockers for a given phi optimization. 883 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 884 return {Result, {}}; 885 } 886 887 // If there's nothing left to search, then all paths led to valid clobbers 888 // that we got from our cache; pick the nearest to the start, and allow 889 // the rest to be cached back. 890 if (NewPaused.empty()) { 891 MoveDominatedPathToEnd(TerminatedPaths); 892 TerminatedPath Result = TerminatedPaths.pop_back_val(); 893 return {Result, std::move(TerminatedPaths)}; 894 } 895 896 MemoryAccess *DefChainEnd = nullptr; 897 SmallVector<TerminatedPath, 4> Clobbers; 898 for (ListIndex Paused : NewPaused) { 899 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 900 if (WR.IsKnownClobber) 901 Clobbers.push_back({WR.Result, Paused}); 902 else 903 // Micro-opt: If we hit the end of the chain, save it. 904 DefChainEnd = WR.Result; 905 } 906 907 if (!TerminatedPaths.empty()) { 908 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 909 // do it now. 910 if (!DefChainEnd) 911 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 912 DefChainEnd = MA; 913 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 914 915 // If any of the terminated paths don't dominate the phi we'll try to 916 // optimize, we need to figure out what they are and quit. 917 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 918 for (const TerminatedPath &TP : TerminatedPaths) { 919 // Because we know that DefChainEnd is as "high" as we can go, we 920 // don't need local dominance checks; BB dominance is sufficient. 921 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 922 Clobbers.push_back(TP); 923 } 924 } 925 926 // If we have clobbers in the def chain, find the one closest to Current 927 // and quit. 928 if (!Clobbers.empty()) { 929 MoveDominatedPathToEnd(Clobbers); 930 TerminatedPath Result = Clobbers.pop_back_val(); 931 return {Result, std::move(Clobbers)}; 932 } 933 934 assert(all_of(NewPaused, 935 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 936 937 // Because liveOnEntry is a clobber, this must be a phi. 938 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 939 940 PriorPathsSize = Paths.size(); 941 PausedSearches.clear(); 942 for (ListIndex I : NewPaused) 943 addSearches(DefChainPhi, PausedSearches, I); 944 NewPaused.clear(); 945 946 Current = DefChainPhi; 947 } 948 } 949 950 void verifyOptResult(const OptznResult &R) const { 951 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 952 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 953 })); 954 } 955 956 void resetPhiOptznState() { 957 Paths.clear(); 958 VisitedPhis.clear(); 959 PerformedPhiTranslation = false; 960 } 961 962 public: 963 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 964 : MSSA(MSSA), AA(AA), DT(DT) {} 965 966 AliasAnalysisType *getAA() { return &AA; } 967 /// Finds the nearest clobber for the given query, optimizing phis if 968 /// possible. 969 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 970 unsigned &UpWalkLimit) { 971 Query = &Q; 972 UpwardWalkLimit = &UpWalkLimit; 973 // Starting limit must be > 0. 974 if (!UpWalkLimit) 975 UpWalkLimit++; 976 977 MemoryAccess *Current = Start; 978 // This walker pretends uses don't exist. If we're handed one, silently grab 979 // its def. (This has the nice side-effect of ensuring we never cache uses) 980 if (auto *MU = dyn_cast<MemoryUse>(Start)) 981 Current = MU->getDefiningAccess(); 982 983 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 984 // Fast path for the overly-common case (no crazy phi optimization 985 // necessary) 986 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 987 MemoryAccess *Result; 988 if (WalkResult.IsKnownClobber) { 989 Result = WalkResult.Result; 990 Q.AR = WalkResult.AR; 991 } else { 992 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 993 Current, Q.StartingLoc); 994 verifyOptResult(OptRes); 995 resetPhiOptznState(); 996 Result = OptRes.PrimaryClobber.Clobber; 997 } 998 999 #ifdef EXPENSIVE_CHECKS 1000 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 1001 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 1002 #endif 1003 return Result; 1004 } 1005 }; 1006 1007 struct RenamePassData { 1008 DomTreeNode *DTN; 1009 DomTreeNode::const_iterator ChildIt; 1010 MemoryAccess *IncomingVal; 1011 1012 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 1013 MemoryAccess *M) 1014 : DTN(D), ChildIt(It), IncomingVal(M) {} 1015 1016 void swap(RenamePassData &RHS) { 1017 std::swap(DTN, RHS.DTN); 1018 std::swap(ChildIt, RHS.ChildIt); 1019 std::swap(IncomingVal, RHS.IncomingVal); 1020 } 1021 }; 1022 1023 } // end anonymous namespace 1024 1025 namespace llvm { 1026 1027 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1028 ClobberWalker<AliasAnalysisType> Walker; 1029 MemorySSA *MSSA; 1030 1031 public: 1032 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1033 : Walker(*M, *A, *D), MSSA(M) {} 1034 1035 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1036 const MemoryLocation &, 1037 unsigned &); 1038 // Third argument (bool), defines whether the clobber search should skip the 1039 // original queried access. If true, there will be a follow-up query searching 1040 // for a clobber access past "self". Note that the Optimized access is not 1041 // updated if a new clobber is found by this SkipSelf search. If this 1042 // additional query becomes heavily used we may decide to cache the result. 1043 // Walker instantiations will decide how to set the SkipSelf bool. 1044 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool, 1045 bool UseInvariantGroup = true); 1046 }; 1047 1048 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1049 /// longer does caching on its own, but the name has been retained for the 1050 /// moment. 1051 template <class AliasAnalysisType> 1052 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1053 ClobberWalkerBase<AliasAnalysisType> *Walker; 1054 1055 public: 1056 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1057 : MemorySSAWalker(M), Walker(W) {} 1058 ~CachingWalker() override = default; 1059 1060 using MemorySSAWalker::getClobberingMemoryAccess; 1061 1062 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1063 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1064 } 1065 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1066 const MemoryLocation &Loc, 1067 unsigned &UWL) { 1068 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1069 } 1070 // This method is not accessible outside of this file. 1071 MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(MemoryAccess *MA, 1072 unsigned &UWL) { 1073 return Walker->getClobberingMemoryAccessBase(MA, UWL, false, false); 1074 } 1075 1076 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1077 unsigned UpwardWalkLimit = MaxCheckLimit; 1078 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1079 } 1080 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1081 const MemoryLocation &Loc) override { 1082 unsigned UpwardWalkLimit = MaxCheckLimit; 1083 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1084 } 1085 1086 void invalidateInfo(MemoryAccess *MA) override { 1087 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1088 MUD->resetOptimized(); 1089 } 1090 }; 1091 1092 template <class AliasAnalysisType> 1093 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1094 ClobberWalkerBase<AliasAnalysisType> *Walker; 1095 1096 public: 1097 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1098 : MemorySSAWalker(M), Walker(W) {} 1099 ~SkipSelfWalker() override = default; 1100 1101 using MemorySSAWalker::getClobberingMemoryAccess; 1102 1103 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1104 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1105 } 1106 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1107 const MemoryLocation &Loc, 1108 unsigned &UWL) { 1109 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1110 } 1111 1112 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1113 unsigned UpwardWalkLimit = MaxCheckLimit; 1114 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1115 } 1116 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1117 const MemoryLocation &Loc) override { 1118 unsigned UpwardWalkLimit = MaxCheckLimit; 1119 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1120 } 1121 1122 void invalidateInfo(MemoryAccess *MA) override { 1123 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1124 MUD->resetOptimized(); 1125 } 1126 }; 1127 1128 } // end namespace llvm 1129 1130 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1131 bool RenameAllUses) { 1132 // Pass through values to our successors 1133 for (const BasicBlock *S : successors(BB)) { 1134 auto It = PerBlockAccesses.find(S); 1135 // Rename the phi nodes in our successor block 1136 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1137 continue; 1138 AccessList *Accesses = It->second.get(); 1139 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1140 if (RenameAllUses) { 1141 bool ReplacementDone = false; 1142 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1143 if (Phi->getIncomingBlock(I) == BB) { 1144 Phi->setIncomingValue(I, IncomingVal); 1145 ReplacementDone = true; 1146 } 1147 (void) ReplacementDone; 1148 assert(ReplacementDone && "Incomplete phi during partial rename"); 1149 } else 1150 Phi->addIncoming(IncomingVal, BB); 1151 } 1152 } 1153 1154 /// Rename a single basic block into MemorySSA form. 1155 /// Uses the standard SSA renaming algorithm. 1156 /// \returns The new incoming value. 1157 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1158 bool RenameAllUses) { 1159 auto It = PerBlockAccesses.find(BB); 1160 // Skip most processing if the list is empty. 1161 if (It != PerBlockAccesses.end()) { 1162 AccessList *Accesses = It->second.get(); 1163 for (MemoryAccess &L : *Accesses) { 1164 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1165 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1166 MUD->setDefiningAccess(IncomingVal); 1167 if (isa<MemoryDef>(&L)) 1168 IncomingVal = &L; 1169 } else { 1170 IncomingVal = &L; 1171 } 1172 } 1173 } 1174 return IncomingVal; 1175 } 1176 1177 /// This is the standard SSA renaming algorithm. 1178 /// 1179 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1180 /// in phi nodes in our successors. 1181 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1182 SmallPtrSetImpl<BasicBlock *> &Visited, 1183 bool SkipVisited, bool RenameAllUses) { 1184 assert(Root && "Trying to rename accesses in an unreachable block"); 1185 1186 SmallVector<RenamePassData, 32> WorkStack; 1187 // Skip everything if we already renamed this block and we are skipping. 1188 // Note: You can't sink this into the if, because we need it to occur 1189 // regardless of whether we skip blocks or not. 1190 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1191 if (SkipVisited && AlreadyVisited) 1192 return; 1193 1194 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1195 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1196 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1197 1198 while (!WorkStack.empty()) { 1199 DomTreeNode *Node = WorkStack.back().DTN; 1200 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1201 IncomingVal = WorkStack.back().IncomingVal; 1202 1203 if (ChildIt == Node->end()) { 1204 WorkStack.pop_back(); 1205 } else { 1206 DomTreeNode *Child = *ChildIt; 1207 ++WorkStack.back().ChildIt; 1208 BasicBlock *BB = Child->getBlock(); 1209 // Note: You can't sink this into the if, because we need it to occur 1210 // regardless of whether we skip blocks or not. 1211 AlreadyVisited = !Visited.insert(BB).second; 1212 if (SkipVisited && AlreadyVisited) { 1213 // We already visited this during our renaming, which can happen when 1214 // being asked to rename multiple blocks. Figure out the incoming val, 1215 // which is the last def. 1216 // Incoming value can only change if there is a block def, and in that 1217 // case, it's the last block def in the list. 1218 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1219 IncomingVal = &*BlockDefs->rbegin(); 1220 } else 1221 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1222 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1223 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1224 } 1225 } 1226 } 1227 1228 /// This handles unreachable block accesses by deleting phi nodes in 1229 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1230 /// being uses of the live on entry definition. 1231 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1232 assert(!DT->isReachableFromEntry(BB) && 1233 "Reachable block found while handling unreachable blocks"); 1234 1235 // Make sure phi nodes in our reachable successors end up with a 1236 // LiveOnEntryDef for our incoming edge, even though our block is forward 1237 // unreachable. We could just disconnect these blocks from the CFG fully, 1238 // but we do not right now. 1239 for (const BasicBlock *S : successors(BB)) { 1240 if (!DT->isReachableFromEntry(S)) 1241 continue; 1242 auto It = PerBlockAccesses.find(S); 1243 // Rename the phi nodes in our successor block 1244 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1245 continue; 1246 AccessList *Accesses = It->second.get(); 1247 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1248 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1249 } 1250 1251 auto It = PerBlockAccesses.find(BB); 1252 if (It == PerBlockAccesses.end()) 1253 return; 1254 1255 auto &Accesses = It->second; 1256 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1257 auto Next = std::next(AI); 1258 // If we have a phi, just remove it. We are going to replace all 1259 // users with live on entry. 1260 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1261 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1262 else 1263 Accesses->erase(AI); 1264 AI = Next; 1265 } 1266 } 1267 1268 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1269 : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1270 SkipWalker(nullptr) { 1271 // Build MemorySSA using a batch alias analysis. This reuses the internal 1272 // state that AA collects during an alias()/getModRefInfo() call. This is 1273 // safe because there are no CFG changes while building MemorySSA and can 1274 // significantly reduce the time spent by the compiler in AA, because we will 1275 // make queries about all the instructions in the Function. 1276 assert(AA && "No alias analysis?"); 1277 BatchAAResults BatchAA(*AA); 1278 buildMemorySSA(BatchAA); 1279 // Intentionally leave AA to nullptr while building so we don't accidently 1280 // use non-batch AliasAnalysis. 1281 this->AA = AA; 1282 // Also create the walker here. 1283 getWalker(); 1284 } 1285 1286 MemorySSA::~MemorySSA() { 1287 // Drop all our references 1288 for (const auto &Pair : PerBlockAccesses) 1289 for (MemoryAccess &MA : *Pair.second) 1290 MA.dropAllReferences(); 1291 } 1292 1293 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1294 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1295 1296 if (Res.second) 1297 Res.first->second = std::make_unique<AccessList>(); 1298 return Res.first->second.get(); 1299 } 1300 1301 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1302 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1303 1304 if (Res.second) 1305 Res.first->second = std::make_unique<DefsList>(); 1306 return Res.first->second.get(); 1307 } 1308 1309 namespace llvm { 1310 1311 /// This class is a batch walker of all MemoryUse's in the program, and points 1312 /// their defining access at the thing that actually clobbers them. Because it 1313 /// is a batch walker that touches everything, it does not operate like the 1314 /// other walkers. This walker is basically performing a top-down SSA renaming 1315 /// pass, where the version stack is used as the cache. This enables it to be 1316 /// significantly more time and memory efficient than using the regular walker, 1317 /// which is walking bottom-up. 1318 class MemorySSA::OptimizeUses { 1319 public: 1320 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1321 BatchAAResults *BAA, DominatorTree *DT) 1322 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1323 1324 void optimizeUses(); 1325 1326 private: 1327 /// This represents where a given memorylocation is in the stack. 1328 struct MemlocStackInfo { 1329 // This essentially is keeping track of versions of the stack. Whenever 1330 // the stack changes due to pushes or pops, these versions increase. 1331 unsigned long StackEpoch; 1332 unsigned long PopEpoch; 1333 // This is the lower bound of places on the stack to check. It is equal to 1334 // the place the last stack walk ended. 1335 // Note: Correctness depends on this being initialized to 0, which densemap 1336 // does 1337 unsigned long LowerBound; 1338 const BasicBlock *LowerBoundBlock; 1339 // This is where the last walk for this memory location ended. 1340 unsigned long LastKill; 1341 bool LastKillValid; 1342 Optional<AliasResult> AR; 1343 }; 1344 1345 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1346 SmallVectorImpl<MemoryAccess *> &, 1347 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1348 1349 MemorySSA *MSSA; 1350 CachingWalker<BatchAAResults> *Walker; 1351 BatchAAResults *AA; 1352 DominatorTree *DT; 1353 }; 1354 1355 } // end namespace llvm 1356 1357 /// Optimize the uses in a given block This is basically the SSA renaming 1358 /// algorithm, with one caveat: We are able to use a single stack for all 1359 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1360 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1361 /// going to be some position in that stack of possible ones. 1362 /// 1363 /// We track the stack positions that each MemoryLocation needs 1364 /// to check, and last ended at. This is because we only want to check the 1365 /// things that changed since last time. The same MemoryLocation should 1366 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1367 /// things like this, and if they start, we can modify MemoryLocOrCall to 1368 /// include relevant data) 1369 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1370 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1371 SmallVectorImpl<MemoryAccess *> &VersionStack, 1372 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1373 1374 /// If no accesses, nothing to do. 1375 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1376 if (Accesses == nullptr) 1377 return; 1378 1379 // Pop everything that doesn't dominate the current block off the stack, 1380 // increment the PopEpoch to account for this. 1381 while (true) { 1382 assert( 1383 !VersionStack.empty() && 1384 "Version stack should have liveOnEntry sentinel dominating everything"); 1385 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1386 if (DT->dominates(BackBlock, BB)) 1387 break; 1388 while (VersionStack.back()->getBlock() == BackBlock) 1389 VersionStack.pop_back(); 1390 ++PopEpoch; 1391 } 1392 1393 for (MemoryAccess &MA : *Accesses) { 1394 auto *MU = dyn_cast<MemoryUse>(&MA); 1395 if (!MU) { 1396 VersionStack.push_back(&MA); 1397 ++StackEpoch; 1398 continue; 1399 } 1400 1401 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1402 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1403 continue; 1404 } 1405 1406 MemoryLocOrCall UseMLOC(MU); 1407 auto &LocInfo = LocStackInfo[UseMLOC]; 1408 // If the pop epoch changed, it means we've removed stuff from top of 1409 // stack due to changing blocks. We may have to reset the lower bound or 1410 // last kill info. 1411 if (LocInfo.PopEpoch != PopEpoch) { 1412 LocInfo.PopEpoch = PopEpoch; 1413 LocInfo.StackEpoch = StackEpoch; 1414 // If the lower bound was in something that no longer dominates us, we 1415 // have to reset it. 1416 // We can't simply track stack size, because the stack may have had 1417 // pushes/pops in the meantime. 1418 // XXX: This is non-optimal, but only is slower cases with heavily 1419 // branching dominator trees. To get the optimal number of queries would 1420 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1421 // the top of that stack dominates us. This does not seem worth it ATM. 1422 // A much cheaper optimization would be to always explore the deepest 1423 // branch of the dominator tree first. This will guarantee this resets on 1424 // the smallest set of blocks. 1425 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1426 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1427 // Reset the lower bound of things to check. 1428 // TODO: Some day we should be able to reset to last kill, rather than 1429 // 0. 1430 LocInfo.LowerBound = 0; 1431 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1432 LocInfo.LastKillValid = false; 1433 } 1434 } else if (LocInfo.StackEpoch != StackEpoch) { 1435 // If all that has changed is the StackEpoch, we only have to check the 1436 // new things on the stack, because we've checked everything before. In 1437 // this case, the lower bound of things to check remains the same. 1438 LocInfo.PopEpoch = PopEpoch; 1439 LocInfo.StackEpoch = StackEpoch; 1440 } 1441 if (!LocInfo.LastKillValid) { 1442 LocInfo.LastKill = VersionStack.size() - 1; 1443 LocInfo.LastKillValid = true; 1444 LocInfo.AR = AliasResult::MayAlias; 1445 } 1446 1447 // At this point, we should have corrected last kill and LowerBound to be 1448 // in bounds. 1449 assert(LocInfo.LowerBound < VersionStack.size() && 1450 "Lower bound out of range"); 1451 assert(LocInfo.LastKill < VersionStack.size() && 1452 "Last kill info out of range"); 1453 // In any case, the new upper bound is the top of the stack. 1454 unsigned long UpperBound = VersionStack.size() - 1; 1455 1456 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1457 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1458 << *(MU->getMemoryInst()) << ")" 1459 << " because there are " 1460 << UpperBound - LocInfo.LowerBound 1461 << " stores to disambiguate\n"); 1462 // Because we did not walk, LastKill is no longer valid, as this may 1463 // have been a kill. 1464 LocInfo.LastKillValid = false; 1465 continue; 1466 } 1467 bool FoundClobberResult = false; 1468 unsigned UpwardWalkLimit = MaxCheckLimit; 1469 while (UpperBound > LocInfo.LowerBound) { 1470 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1471 // For phis, use the walker, see where we ended up, go there. 1472 // The invariant.group handling in MemorySSA is ad-hoc and doesn't 1473 // support updates, so don't use it to optimize uses. 1474 MemoryAccess *Result = 1475 Walker->getClobberingMemoryAccessWithoutInvariantGroup( 1476 MU, UpwardWalkLimit); 1477 // We are guaranteed to find it or something is wrong. 1478 while (VersionStack[UpperBound] != Result) { 1479 assert(UpperBound != 0); 1480 --UpperBound; 1481 } 1482 FoundClobberResult = true; 1483 break; 1484 } 1485 1486 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1487 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1488 if (CA.IsClobber) { 1489 FoundClobberResult = true; 1490 LocInfo.AR = CA.AR; 1491 break; 1492 } 1493 --UpperBound; 1494 } 1495 1496 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1497 1498 // At the end of this loop, UpperBound is either a clobber, or lower bound 1499 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1500 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1501 // We were last killed now by where we got to 1502 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1503 LocInfo.AR = None; 1504 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1505 LocInfo.LastKill = UpperBound; 1506 } else { 1507 // Otherwise, we checked all the new ones, and now we know we can get to 1508 // LastKill. 1509 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1510 } 1511 LocInfo.LowerBound = VersionStack.size() - 1; 1512 LocInfo.LowerBoundBlock = BB; 1513 } 1514 } 1515 1516 /// Optimize uses to point to their actual clobbering definitions. 1517 void MemorySSA::OptimizeUses::optimizeUses() { 1518 SmallVector<MemoryAccess *, 16> VersionStack; 1519 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1520 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1521 1522 unsigned long StackEpoch = 1; 1523 unsigned long PopEpoch = 1; 1524 // We perform a non-recursive top-down dominator tree walk. 1525 for (const auto *DomNode : depth_first(DT->getRootNode())) 1526 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1527 LocStackInfo); 1528 } 1529 1530 void MemorySSA::placePHINodes( 1531 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1532 // Determine where our MemoryPhi's should go 1533 ForwardIDFCalculator IDFs(*DT); 1534 IDFs.setDefiningBlocks(DefiningBlocks); 1535 SmallVector<BasicBlock *, 32> IDFBlocks; 1536 IDFs.calculate(IDFBlocks); 1537 1538 // Now place MemoryPhi nodes. 1539 for (auto &BB : IDFBlocks) 1540 createMemoryPhi(BB); 1541 } 1542 1543 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1544 // We create an access to represent "live on entry", for things like 1545 // arguments or users of globals, where the memory they use is defined before 1546 // the beginning of the function. We do not actually insert it into the IR. 1547 // We do not define a live on exit for the immediate uses, and thus our 1548 // semantics do *not* imply that something with no immediate uses can simply 1549 // be removed. 1550 BasicBlock &StartingPoint = F.getEntryBlock(); 1551 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1552 &StartingPoint, NextID++)); 1553 1554 // We maintain lists of memory accesses per-block, trading memory for time. We 1555 // could just look up the memory access for every possible instruction in the 1556 // stream. 1557 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1558 // Go through each block, figure out where defs occur, and chain together all 1559 // the accesses. 1560 for (BasicBlock &B : F) { 1561 bool InsertIntoDef = false; 1562 AccessList *Accesses = nullptr; 1563 DefsList *Defs = nullptr; 1564 for (Instruction &I : B) { 1565 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1566 if (!MUD) 1567 continue; 1568 1569 if (!Accesses) 1570 Accesses = getOrCreateAccessList(&B); 1571 Accesses->push_back(MUD); 1572 if (isa<MemoryDef>(MUD)) { 1573 InsertIntoDef = true; 1574 if (!Defs) 1575 Defs = getOrCreateDefsList(&B); 1576 Defs->push_back(*MUD); 1577 } 1578 } 1579 if (InsertIntoDef) 1580 DefiningBlocks.insert(&B); 1581 } 1582 placePHINodes(DefiningBlocks); 1583 1584 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1585 // filled in with all blocks. 1586 SmallPtrSet<BasicBlock *, 16> Visited; 1587 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1588 1589 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1590 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1591 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1592 1593 // Mark the uses in unreachable blocks as live on entry, so that they go 1594 // somewhere. 1595 for (auto &BB : F) 1596 if (!Visited.count(&BB)) 1597 markUnreachableAsLiveOnEntry(&BB); 1598 } 1599 1600 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1601 1602 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1603 if (Walker) 1604 return Walker.get(); 1605 1606 if (!WalkerBase) 1607 WalkerBase = 1608 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1609 1610 Walker = 1611 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1612 return Walker.get(); 1613 } 1614 1615 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1616 if (SkipWalker) 1617 return SkipWalker.get(); 1618 1619 if (!WalkerBase) 1620 WalkerBase = 1621 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1622 1623 SkipWalker = 1624 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1625 return SkipWalker.get(); 1626 } 1627 1628 1629 // This is a helper function used by the creation routines. It places NewAccess 1630 // into the access and defs lists for a given basic block, at the given 1631 // insertion point. 1632 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1633 const BasicBlock *BB, 1634 InsertionPlace Point) { 1635 auto *Accesses = getOrCreateAccessList(BB); 1636 if (Point == Beginning) { 1637 // If it's a phi node, it goes first, otherwise, it goes after any phi 1638 // nodes. 1639 if (isa<MemoryPhi>(NewAccess)) { 1640 Accesses->push_front(NewAccess); 1641 auto *Defs = getOrCreateDefsList(BB); 1642 Defs->push_front(*NewAccess); 1643 } else { 1644 auto AI = find_if_not( 1645 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1646 Accesses->insert(AI, NewAccess); 1647 if (!isa<MemoryUse>(NewAccess)) { 1648 auto *Defs = getOrCreateDefsList(BB); 1649 auto DI = find_if_not( 1650 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1651 Defs->insert(DI, *NewAccess); 1652 } 1653 } 1654 } else { 1655 Accesses->push_back(NewAccess); 1656 if (!isa<MemoryUse>(NewAccess)) { 1657 auto *Defs = getOrCreateDefsList(BB); 1658 Defs->push_back(*NewAccess); 1659 } 1660 } 1661 BlockNumberingValid.erase(BB); 1662 } 1663 1664 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1665 AccessList::iterator InsertPt) { 1666 auto *Accesses = getWritableBlockAccesses(BB); 1667 bool WasEnd = InsertPt == Accesses->end(); 1668 Accesses->insert(AccessList::iterator(InsertPt), What); 1669 if (!isa<MemoryUse>(What)) { 1670 auto *Defs = getOrCreateDefsList(BB); 1671 // If we got asked to insert at the end, we have an easy job, just shove it 1672 // at the end. If we got asked to insert before an existing def, we also get 1673 // an iterator. If we got asked to insert before a use, we have to hunt for 1674 // the next def. 1675 if (WasEnd) { 1676 Defs->push_back(*What); 1677 } else if (isa<MemoryDef>(InsertPt)) { 1678 Defs->insert(InsertPt->getDefsIterator(), *What); 1679 } else { 1680 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1681 ++InsertPt; 1682 // Either we found a def, or we are inserting at the end 1683 if (InsertPt == Accesses->end()) 1684 Defs->push_back(*What); 1685 else 1686 Defs->insert(InsertPt->getDefsIterator(), *What); 1687 } 1688 } 1689 BlockNumberingValid.erase(BB); 1690 } 1691 1692 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1693 // Keep it in the lookup tables, remove from the lists 1694 removeFromLists(What, false); 1695 1696 // Note that moving should implicitly invalidate the optimized state of a 1697 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1698 // MemoryDef. 1699 if (auto *MD = dyn_cast<MemoryDef>(What)) 1700 MD->resetOptimized(); 1701 What->setBlock(BB); 1702 } 1703 1704 // Move What before Where in the IR. The end result is that What will belong to 1705 // the right lists and have the right Block set, but will not otherwise be 1706 // correct. It will not have the right defining access, and if it is a def, 1707 // things below it will not properly be updated. 1708 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1709 AccessList::iterator Where) { 1710 prepareForMoveTo(What, BB); 1711 insertIntoListsBefore(What, BB, Where); 1712 } 1713 1714 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1715 InsertionPlace Point) { 1716 if (isa<MemoryPhi>(What)) { 1717 assert(Point == Beginning && 1718 "Can only move a Phi at the beginning of the block"); 1719 // Update lookup table entry 1720 ValueToMemoryAccess.erase(What->getBlock()); 1721 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1722 (void)Inserted; 1723 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1724 } 1725 1726 prepareForMoveTo(What, BB); 1727 insertIntoListsForBlock(What, BB, Point); 1728 } 1729 1730 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1731 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1732 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1733 // Phi's always are placed at the front of the block. 1734 insertIntoListsForBlock(Phi, BB, Beginning); 1735 ValueToMemoryAccess[BB] = Phi; 1736 return Phi; 1737 } 1738 1739 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1740 MemoryAccess *Definition, 1741 const MemoryUseOrDef *Template, 1742 bool CreationMustSucceed) { 1743 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1744 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1745 if (CreationMustSucceed) 1746 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1747 "non-memory touching instruction"); 1748 if (NewAccess) { 1749 assert((!Definition || !isa<MemoryUse>(Definition)) && 1750 "A use cannot be a defining access"); 1751 NewAccess->setDefiningAccess(Definition); 1752 } 1753 return NewAccess; 1754 } 1755 1756 // Return true if the instruction has ordering constraints. 1757 // Note specifically that this only considers stores and loads 1758 // because others are still considered ModRef by getModRefInfo. 1759 static inline bool isOrdered(const Instruction *I) { 1760 if (auto *SI = dyn_cast<StoreInst>(I)) { 1761 if (!SI->isUnordered()) 1762 return true; 1763 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1764 if (!LI->isUnordered()) 1765 return true; 1766 } 1767 return false; 1768 } 1769 1770 /// Helper function to create new memory accesses 1771 template <typename AliasAnalysisType> 1772 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1773 AliasAnalysisType *AAP, 1774 const MemoryUseOrDef *Template) { 1775 // The assume intrinsic has a control dependency which we model by claiming 1776 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1777 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1778 // dependencies here. 1779 // FIXME: Replace this special casing with a more accurate modelling of 1780 // assume's control dependency. 1781 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1782 switch (II->getIntrinsicID()) { 1783 default: 1784 break; 1785 case Intrinsic::assume: 1786 case Intrinsic::experimental_noalias_scope_decl: 1787 case Intrinsic::pseudoprobe: 1788 return nullptr; 1789 } 1790 } 1791 1792 // Using a nonstandard AA pipelines might leave us with unexpected modref 1793 // results for I, so add a check to not model instructions that may not read 1794 // from or write to memory. This is necessary for correctness. 1795 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1796 return nullptr; 1797 1798 bool Def, Use; 1799 if (Template) { 1800 Def = isa<MemoryDef>(Template); 1801 Use = isa<MemoryUse>(Template); 1802 #if !defined(NDEBUG) 1803 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1804 bool DefCheck, UseCheck; 1805 DefCheck = isModSet(ModRef) || isOrdered(I); 1806 UseCheck = isRefSet(ModRef); 1807 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1808 #endif 1809 } else { 1810 // Find out what affect this instruction has on memory. 1811 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1812 // The isOrdered check is used to ensure that volatiles end up as defs 1813 // (atomics end up as ModRef right now anyway). Until we separate the 1814 // ordering chain from the memory chain, this enables people to see at least 1815 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1816 // will still give an answer that bypasses other volatile loads. TODO: 1817 // Separate memory aliasing and ordering into two different chains so that 1818 // we can precisely represent both "what memory will this read/write/is 1819 // clobbered by" and "what instructions can I move this past". 1820 Def = isModSet(ModRef) || isOrdered(I); 1821 Use = isRefSet(ModRef); 1822 } 1823 1824 // It's possible for an instruction to not modify memory at all. During 1825 // construction, we ignore them. 1826 if (!Def && !Use) 1827 return nullptr; 1828 1829 MemoryUseOrDef *MUD; 1830 if (Def) 1831 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1832 else 1833 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1834 ValueToMemoryAccess[I] = MUD; 1835 return MUD; 1836 } 1837 1838 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1839 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1840 assert(MA->use_empty() && 1841 "Trying to remove memory access that still has uses"); 1842 BlockNumbering.erase(MA); 1843 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1844 MUD->setDefiningAccess(nullptr); 1845 // Invalidate our walker's cache if necessary 1846 if (!isa<MemoryUse>(MA)) 1847 getWalker()->invalidateInfo(MA); 1848 1849 Value *MemoryInst; 1850 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1851 MemoryInst = MUD->getMemoryInst(); 1852 else 1853 MemoryInst = MA->getBlock(); 1854 1855 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1856 if (VMA->second == MA) 1857 ValueToMemoryAccess.erase(VMA); 1858 } 1859 1860 /// Properly remove \p MA from all of MemorySSA's lists. 1861 /// 1862 /// Because of the way the intrusive list and use lists work, it is important to 1863 /// do removal in the right order. 1864 /// ShouldDelete defaults to true, and will cause the memory access to also be 1865 /// deleted, not just removed. 1866 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1867 BasicBlock *BB = MA->getBlock(); 1868 // The access list owns the reference, so we erase it from the non-owning list 1869 // first. 1870 if (!isa<MemoryUse>(MA)) { 1871 auto DefsIt = PerBlockDefs.find(BB); 1872 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1873 Defs->remove(*MA); 1874 if (Defs->empty()) 1875 PerBlockDefs.erase(DefsIt); 1876 } 1877 1878 // The erase call here will delete it. If we don't want it deleted, we call 1879 // remove instead. 1880 auto AccessIt = PerBlockAccesses.find(BB); 1881 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1882 if (ShouldDelete) 1883 Accesses->erase(MA); 1884 else 1885 Accesses->remove(MA); 1886 1887 if (Accesses->empty()) { 1888 PerBlockAccesses.erase(AccessIt); 1889 BlockNumberingValid.erase(BB); 1890 } 1891 } 1892 1893 void MemorySSA::print(raw_ostream &OS) const { 1894 MemorySSAAnnotatedWriter Writer(this); 1895 F.print(OS, &Writer); 1896 } 1897 1898 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1899 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1900 #endif 1901 1902 void MemorySSA::verifyMemorySSA(VerificationLevel VL) const { 1903 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1904 VL = VerificationLevel::Full; 1905 #endif 1906 1907 #ifndef NDEBUG 1908 verifyOrderingDominationAndDefUses(F, VL); 1909 verifyDominationNumbers(F); 1910 if (VL == VerificationLevel::Full) 1911 verifyPrevDefInPhis(F); 1912 #endif 1913 // Previously, the verification used to also verify that the clobberingAccess 1914 // cached by MemorySSA is the same as the clobberingAccess found at a later 1915 // query to AA. This does not hold true in general due to the current fragility 1916 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1917 // up. As a result, transformations that are correct, will lead to BasicAA 1918 // returning different Alias answers before and after that transformation. 1919 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1920 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1921 // every transformation, which defeats the purpose of using it. For such an 1922 // example, see test4 added in D51960. 1923 } 1924 1925 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1926 for (const BasicBlock &BB : F) { 1927 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1928 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1929 auto *Pred = Phi->getIncomingBlock(I); 1930 auto *IncAcc = Phi->getIncomingValue(I); 1931 // If Pred has no unreachable predecessors, get last def looking at 1932 // IDoms. If, while walkings IDoms, any of these has an unreachable 1933 // predecessor, then the incoming def can be any access. 1934 if (auto *DTNode = DT->getNode(Pred)) { 1935 while (DTNode) { 1936 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1937 auto *LastAcc = &*(--DefList->end()); 1938 assert(LastAcc == IncAcc && 1939 "Incorrect incoming access into phi."); 1940 (void)IncAcc; 1941 (void)LastAcc; 1942 break; 1943 } 1944 DTNode = DTNode->getIDom(); 1945 } 1946 } else { 1947 // If Pred has unreachable predecessors, but has at least a Def, the 1948 // incoming access can be the last Def in Pred, or it could have been 1949 // optimized to LoE. After an update, though, the LoE may have been 1950 // replaced by another access, so IncAcc may be any access. 1951 // If Pred has unreachable predecessors and no Defs, incoming access 1952 // should be LoE; However, after an update, it may be any access. 1953 } 1954 } 1955 } 1956 } 1957 } 1958 1959 /// Verify that all of the blocks we believe to have valid domination numbers 1960 /// actually have valid domination numbers. 1961 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1962 if (BlockNumberingValid.empty()) 1963 return; 1964 1965 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1966 for (const BasicBlock &BB : F) { 1967 if (!ValidBlocks.count(&BB)) 1968 continue; 1969 1970 ValidBlocks.erase(&BB); 1971 1972 const AccessList *Accesses = getBlockAccesses(&BB); 1973 // It's correct to say an empty block has valid numbering. 1974 if (!Accesses) 1975 continue; 1976 1977 // Block numbering starts at 1. 1978 unsigned long LastNumber = 0; 1979 for (const MemoryAccess &MA : *Accesses) { 1980 auto ThisNumberIter = BlockNumbering.find(&MA); 1981 assert(ThisNumberIter != BlockNumbering.end() && 1982 "MemoryAccess has no domination number in a valid block!"); 1983 1984 unsigned long ThisNumber = ThisNumberIter->second; 1985 assert(ThisNumber > LastNumber && 1986 "Domination numbers should be strictly increasing!"); 1987 (void)LastNumber; 1988 LastNumber = ThisNumber; 1989 } 1990 } 1991 1992 assert(ValidBlocks.empty() && 1993 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1994 } 1995 1996 /// Verify ordering: the order and existence of MemoryAccesses matches the 1997 /// order and existence of memory affecting instructions. 1998 /// Verify domination: each definition dominates all of its uses. 1999 /// Verify def-uses: the immediate use information - walk all the memory 2000 /// accesses and verifying that, for each use, it appears in the appropriate 2001 /// def's use list 2002 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F, 2003 VerificationLevel VL) const { 2004 // Walk all the blocks, comparing what the lookups think and what the access 2005 // lists think, as well as the order in the blocks vs the order in the access 2006 // lists. 2007 SmallVector<MemoryAccess *, 32> ActualAccesses; 2008 SmallVector<MemoryAccess *, 32> ActualDefs; 2009 for (BasicBlock &B : F) { 2010 const AccessList *AL = getBlockAccesses(&B); 2011 const auto *DL = getBlockDefs(&B); 2012 MemoryPhi *Phi = getMemoryAccess(&B); 2013 if (Phi) { 2014 // Verify ordering. 2015 ActualAccesses.push_back(Phi); 2016 ActualDefs.push_back(Phi); 2017 // Verify domination 2018 for (const Use &U : Phi->uses()) { 2019 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2020 (void)U; 2021 } 2022 // Verify def-uses for full verify. 2023 if (VL == VerificationLevel::Full) { 2024 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2025 pred_begin(&B), pred_end(&B))) && 2026 "Incomplete MemoryPhi Node"); 2027 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2028 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2029 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 2030 "Incoming phi block not a block predecessor"); 2031 } 2032 } 2033 } 2034 2035 for (Instruction &I : B) { 2036 MemoryUseOrDef *MA = getMemoryAccess(&I); 2037 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2038 "We have memory affecting instructions " 2039 "in this block but they are not in the " 2040 "access list or defs list"); 2041 if (MA) { 2042 // Verify ordering. 2043 ActualAccesses.push_back(MA); 2044 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2045 // Verify ordering. 2046 ActualDefs.push_back(MA); 2047 // Verify domination. 2048 for (const Use &U : MD->uses()) { 2049 assert(dominates(MD, U) && 2050 "Memory Def does not dominate it's uses"); 2051 (void)U; 2052 } 2053 } 2054 // Verify def-uses for full verify. 2055 if (VL == VerificationLevel::Full) 2056 verifyUseInDefs(MA->getDefiningAccess(), MA); 2057 } 2058 } 2059 // Either we hit the assert, really have no accesses, or we have both 2060 // accesses and an access list. Same with defs. 2061 if (!AL && !DL) 2062 continue; 2063 // Verify ordering. 2064 assert(AL->size() == ActualAccesses.size() && 2065 "We don't have the same number of accesses in the block as on the " 2066 "access list"); 2067 assert((DL || ActualDefs.size() == 0) && 2068 "Either we should have a defs list, or we should have no defs"); 2069 assert((!DL || DL->size() == ActualDefs.size()) && 2070 "We don't have the same number of defs in the block as on the " 2071 "def list"); 2072 auto ALI = AL->begin(); 2073 auto AAI = ActualAccesses.begin(); 2074 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2075 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2076 ++ALI; 2077 ++AAI; 2078 } 2079 ActualAccesses.clear(); 2080 if (DL) { 2081 auto DLI = DL->begin(); 2082 auto ADI = ActualDefs.begin(); 2083 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2084 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2085 ++DLI; 2086 ++ADI; 2087 } 2088 } 2089 ActualDefs.clear(); 2090 } 2091 } 2092 2093 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2094 /// appears in the use list of \p Def. 2095 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2096 // The live on entry use may cause us to get a NULL def here 2097 if (!Def) 2098 assert(isLiveOnEntryDef(Use) && 2099 "Null def but use not point to live on entry def"); 2100 else 2101 assert(is_contained(Def->users(), Use) && 2102 "Did not find use in def's use list"); 2103 } 2104 2105 /// Perform a local numbering on blocks so that instruction ordering can be 2106 /// determined in constant time. 2107 /// TODO: We currently just number in order. If we numbered by N, we could 2108 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2109 /// log2(N) sequences of mixed before and after) without needing to invalidate 2110 /// the numbering. 2111 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2112 // The pre-increment ensures the numbers really start at 1. 2113 unsigned long CurrentNumber = 0; 2114 const AccessList *AL = getBlockAccesses(B); 2115 assert(AL != nullptr && "Asking to renumber an empty block"); 2116 for (const auto &I : *AL) 2117 BlockNumbering[&I] = ++CurrentNumber; 2118 BlockNumberingValid.insert(B); 2119 } 2120 2121 /// Determine, for two memory accesses in the same block, 2122 /// whether \p Dominator dominates \p Dominatee. 2123 /// \returns True if \p Dominator dominates \p Dominatee. 2124 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2125 const MemoryAccess *Dominatee) const { 2126 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2127 2128 assert((DominatorBlock == Dominatee->getBlock()) && 2129 "Asking for local domination when accesses are in different blocks!"); 2130 // A node dominates itself. 2131 if (Dominatee == Dominator) 2132 return true; 2133 2134 // When Dominatee is defined on function entry, it is not dominated by another 2135 // memory access. 2136 if (isLiveOnEntryDef(Dominatee)) 2137 return false; 2138 2139 // When Dominator is defined on function entry, it dominates the other memory 2140 // access. 2141 if (isLiveOnEntryDef(Dominator)) 2142 return true; 2143 2144 if (!BlockNumberingValid.count(DominatorBlock)) 2145 renumberBlock(DominatorBlock); 2146 2147 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2148 // All numbers start with 1 2149 assert(DominatorNum != 0 && "Block was not numbered properly"); 2150 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2151 assert(DominateeNum != 0 && "Block was not numbered properly"); 2152 return DominatorNum < DominateeNum; 2153 } 2154 2155 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2156 const MemoryAccess *Dominatee) const { 2157 if (Dominator == Dominatee) 2158 return true; 2159 2160 if (isLiveOnEntryDef(Dominatee)) 2161 return false; 2162 2163 if (Dominator->getBlock() != Dominatee->getBlock()) 2164 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2165 return locallyDominates(Dominator, Dominatee); 2166 } 2167 2168 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2169 const Use &Dominatee) const { 2170 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2171 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2172 // The def must dominate the incoming block of the phi. 2173 if (UseBB != Dominator->getBlock()) 2174 return DT->dominates(Dominator->getBlock(), UseBB); 2175 // If the UseBB and the DefBB are the same, compare locally. 2176 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2177 } 2178 // If it's not a PHI node use, the normal dominates can already handle it. 2179 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2180 } 2181 2182 void MemoryAccess::print(raw_ostream &OS) const { 2183 switch (getValueID()) { 2184 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2185 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2186 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2187 } 2188 llvm_unreachable("invalid value id"); 2189 } 2190 2191 void MemoryDef::print(raw_ostream &OS) const { 2192 MemoryAccess *UO = getDefiningAccess(); 2193 2194 auto printID = [&OS](MemoryAccess *A) { 2195 if (A && A->getID()) 2196 OS << A->getID(); 2197 else 2198 OS << LiveOnEntryStr; 2199 }; 2200 2201 OS << getID() << " = MemoryDef("; 2202 printID(UO); 2203 OS << ")"; 2204 2205 if (isOptimized()) { 2206 OS << "->"; 2207 printID(getOptimized()); 2208 2209 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2210 OS << " " << *AR; 2211 } 2212 } 2213 2214 void MemoryPhi::print(raw_ostream &OS) const { 2215 ListSeparator LS(","); 2216 OS << getID() << " = MemoryPhi("; 2217 for (const auto &Op : operands()) { 2218 BasicBlock *BB = getIncomingBlock(Op); 2219 MemoryAccess *MA = cast<MemoryAccess>(Op); 2220 2221 OS << LS << '{'; 2222 if (BB->hasName()) 2223 OS << BB->getName(); 2224 else 2225 BB->printAsOperand(OS, false); 2226 OS << ','; 2227 if (unsigned ID = MA->getID()) 2228 OS << ID; 2229 else 2230 OS << LiveOnEntryStr; 2231 OS << '}'; 2232 } 2233 OS << ')'; 2234 } 2235 2236 void MemoryUse::print(raw_ostream &OS) const { 2237 MemoryAccess *UO = getDefiningAccess(); 2238 OS << "MemoryUse("; 2239 if (UO && UO->getID()) 2240 OS << UO->getID(); 2241 else 2242 OS << LiveOnEntryStr; 2243 OS << ')'; 2244 2245 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2246 OS << " " << *AR; 2247 } 2248 2249 void MemoryAccess::dump() const { 2250 // Cannot completely remove virtual function even in release mode. 2251 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2252 print(dbgs()); 2253 dbgs() << "\n"; 2254 #endif 2255 } 2256 2257 char MemorySSAPrinterLegacyPass::ID = 0; 2258 2259 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2260 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2261 } 2262 2263 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2264 AU.setPreservesAll(); 2265 AU.addRequired<MemorySSAWrapperPass>(); 2266 } 2267 2268 class DOTFuncMSSAInfo { 2269 private: 2270 const Function &F; 2271 MemorySSAAnnotatedWriter MSSAWriter; 2272 2273 public: 2274 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2275 : F(F), MSSAWriter(&MSSA) {} 2276 2277 const Function *getFunction() { return &F; } 2278 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2279 }; 2280 2281 namespace llvm { 2282 2283 template <> 2284 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2285 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2286 return &(CFGInfo->getFunction()->getEntryBlock()); 2287 } 2288 2289 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2290 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2291 2292 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2293 return nodes_iterator(CFGInfo->getFunction()->begin()); 2294 } 2295 2296 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2297 return nodes_iterator(CFGInfo->getFunction()->end()); 2298 } 2299 2300 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2301 return CFGInfo->getFunction()->size(); 2302 } 2303 }; 2304 2305 template <> 2306 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2307 2308 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2309 2310 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2311 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2312 "' function"; 2313 } 2314 2315 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2316 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2317 Node, nullptr, 2318 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2319 BB.print(OS, &CFGInfo->getWriter(), true, true); 2320 }, 2321 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2322 std::string Str = S.substr(I, Idx - I); 2323 StringRef SR = Str; 2324 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2325 SR.count("MemoryUse(")) 2326 return; 2327 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2328 }); 2329 } 2330 2331 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2332 const_succ_iterator I) { 2333 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2334 } 2335 2336 /// Display the raw branch weights from PGO. 2337 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2338 DOTFuncMSSAInfo *CFGInfo) { 2339 return ""; 2340 } 2341 2342 std::string getNodeAttributes(const BasicBlock *Node, 2343 DOTFuncMSSAInfo *CFGInfo) { 2344 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2345 ? "style=filled, fillcolor=lightpink" 2346 : ""; 2347 } 2348 }; 2349 2350 } // namespace llvm 2351 2352 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2353 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2354 if (DotCFGMSSA != "") { 2355 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2356 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2357 } else 2358 MSSA.print(dbgs()); 2359 2360 if (VerifyMemorySSA) 2361 MSSA.verifyMemorySSA(); 2362 return false; 2363 } 2364 2365 AnalysisKey MemorySSAAnalysis::Key; 2366 2367 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2368 FunctionAnalysisManager &AM) { 2369 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2370 auto &AA = AM.getResult<AAManager>(F); 2371 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2372 } 2373 2374 bool MemorySSAAnalysis::Result::invalidate( 2375 Function &F, const PreservedAnalyses &PA, 2376 FunctionAnalysisManager::Invalidator &Inv) { 2377 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2378 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2379 Inv.invalidate<AAManager>(F, PA) || 2380 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2381 } 2382 2383 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2384 FunctionAnalysisManager &AM) { 2385 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2386 if (DotCFGMSSA != "") { 2387 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2388 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2389 } else { 2390 OS << "MemorySSA for function: " << F.getName() << "\n"; 2391 MSSA.print(OS); 2392 } 2393 2394 return PreservedAnalyses::all(); 2395 } 2396 2397 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F, 2398 FunctionAnalysisManager &AM) { 2399 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2400 OS << "MemorySSA (walker) for function: " << F.getName() << "\n"; 2401 MemorySSAWalkerAnnotatedWriter Writer(&MSSA); 2402 F.print(OS, &Writer); 2403 2404 return PreservedAnalyses::all(); 2405 } 2406 2407 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2408 FunctionAnalysisManager &AM) { 2409 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2410 2411 return PreservedAnalyses::all(); 2412 } 2413 2414 char MemorySSAWrapperPass::ID = 0; 2415 2416 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2417 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2418 } 2419 2420 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2421 2422 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2423 AU.setPreservesAll(); 2424 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2425 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2426 } 2427 2428 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2429 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2430 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2431 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2432 return false; 2433 } 2434 2435 void MemorySSAWrapperPass::verifyAnalysis() const { 2436 if (VerifyMemorySSA) 2437 MSSA->verifyMemorySSA(); 2438 } 2439 2440 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2441 MSSA->print(OS); 2442 } 2443 2444 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2445 2446 /// Walk the use-def chains starting at \p StartingAccess and find 2447 /// the MemoryAccess that actually clobbers Loc. 2448 /// 2449 /// \returns our clobbering memory access 2450 template <typename AliasAnalysisType> 2451 MemoryAccess * 2452 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2453 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2454 unsigned &UpwardWalkLimit) { 2455 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access"); 2456 2457 Instruction *I = nullptr; 2458 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) { 2459 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2460 return StartingUseOrDef; 2461 2462 I = StartingUseOrDef->getMemoryInst(); 2463 2464 // Conservatively, fences are always clobbers, so don't perform the walk if 2465 // we hit a fence. 2466 if (!isa<CallBase>(I) && I->isFenceLike()) 2467 return StartingUseOrDef; 2468 } 2469 2470 UpwardsMemoryQuery Q; 2471 Q.OriginalAccess = StartingAccess; 2472 Q.StartingLoc = Loc; 2473 Q.Inst = nullptr; 2474 Q.IsCall = false; 2475 2476 // Unlike the other function, do not walk to the def of a def, because we are 2477 // handed something we already believe is the clobbering access. 2478 // We never set SkipSelf to true in Q in this method. 2479 MemoryAccess *Clobber = 2480 Walker.findClobber(StartingAccess, Q, UpwardWalkLimit); 2481 LLVM_DEBUG({ 2482 dbgs() << "Clobber starting at access " << *StartingAccess << "\n"; 2483 if (I) 2484 dbgs() << " for instruction " << *I << "\n"; 2485 dbgs() << " is " << *Clobber << "\n"; 2486 }); 2487 return Clobber; 2488 } 2489 2490 static const Instruction * 2491 getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) { 2492 if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile()) 2493 return nullptr; 2494 2495 // We consider bitcasts and zero GEPs to be the same pointer value. Start by 2496 // stripping bitcasts and zero GEPs, then we will recursively look at loads 2497 // and stores through bitcasts and zero GEPs. 2498 Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts(); 2499 2500 // It's not safe to walk the use list of a global value because function 2501 // passes aren't allowed to look outside their functions. 2502 // FIXME: this could be fixed by filtering instructions from outside of 2503 // current function. 2504 if (isa<Constant>(PointerOperand)) 2505 return nullptr; 2506 2507 // Queue to process all pointers that are equivalent to load operand. 2508 SmallVector<const Value *, 8> PointerUsesQueue; 2509 PointerUsesQueue.push_back(PointerOperand); 2510 2511 const Instruction *MostDominatingInstruction = &I; 2512 2513 // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case 2514 // we will see all the instructions. It may not matter in practice. If it 2515 // does, we will have to support MemorySSA construction and updates. 2516 while (!PointerUsesQueue.empty()) { 2517 const Value *Ptr = PointerUsesQueue.pop_back_val(); 2518 assert(Ptr && !isa<GlobalValue>(Ptr) && 2519 "Null or GlobalValue should not be inserted"); 2520 2521 for (const User *Us : Ptr->users()) { 2522 auto *U = dyn_cast<Instruction>(Us); 2523 if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction)) 2524 continue; 2525 2526 // Add bitcasts and zero GEPs to queue. 2527 if (isa<BitCastInst>(U)) { 2528 PointerUsesQueue.push_back(U); 2529 continue; 2530 } 2531 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 2532 if (GEP->hasAllZeroIndices()) 2533 PointerUsesQueue.push_back(U); 2534 continue; 2535 } 2536 2537 // If we hit a load/store with an invariant.group metadata and the same 2538 // pointer operand, we can assume that value pointed to by the pointer 2539 // operand didn't change. 2540 if (U->hasMetadata(LLVMContext::MD_invariant_group) && 2541 getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) { 2542 MostDominatingInstruction = U; 2543 } 2544 } 2545 } 2546 return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction; 2547 } 2548 2549 template <typename AliasAnalysisType> 2550 MemoryAccess * 2551 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2552 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf, 2553 bool UseInvariantGroup) { 2554 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2555 // If this is a MemoryPhi, we can't do anything. 2556 if (!StartingAccess) 2557 return MA; 2558 2559 if (UseInvariantGroup) { 2560 if (auto *I = getInvariantGroupClobberingInstruction( 2561 *StartingAccess->getMemoryInst(), MSSA->getDomTree())) { 2562 assert(isa<LoadInst>(I) || isa<StoreInst>(I)); 2563 2564 auto *ClobberMA = MSSA->getMemoryAccess(I); 2565 assert(ClobberMA); 2566 if (isa<MemoryUse>(ClobberMA)) 2567 return ClobberMA->getDefiningAccess(); 2568 return ClobberMA; 2569 } 2570 } 2571 2572 bool IsOptimized = false; 2573 2574 // If this is an already optimized use or def, return the optimized result. 2575 // Note: Currently, we store the optimized def result in a separate field, 2576 // since we can't use the defining access. 2577 if (StartingAccess->isOptimized()) { 2578 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2579 return StartingAccess->getOptimized(); 2580 IsOptimized = true; 2581 } 2582 2583 const Instruction *I = StartingAccess->getMemoryInst(); 2584 // We can't sanely do anything with a fence, since they conservatively clobber 2585 // all memory, and have no locations to get pointers from to try to 2586 // disambiguate. 2587 if (!isa<CallBase>(I) && I->isFenceLike()) 2588 return StartingAccess; 2589 2590 UpwardsMemoryQuery Q(I, StartingAccess); 2591 2592 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2593 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2594 StartingAccess->setOptimized(LiveOnEntry); 2595 StartingAccess->setOptimizedAccessType(None); 2596 return LiveOnEntry; 2597 } 2598 2599 MemoryAccess *OptimizedAccess; 2600 if (!IsOptimized) { 2601 // Start with the thing we already think clobbers this location 2602 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2603 2604 // At this point, DefiningAccess may be the live on entry def. 2605 // If it is, we will not get a better result. 2606 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2607 StartingAccess->setOptimized(DefiningAccess); 2608 StartingAccess->setOptimizedAccessType(None); 2609 return DefiningAccess; 2610 } 2611 2612 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2613 StartingAccess->setOptimized(OptimizedAccess); 2614 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2615 StartingAccess->setOptimizedAccessType(None); 2616 else if (Q.AR && *Q.AR == AliasResult::MustAlias) 2617 StartingAccess->setOptimizedAccessType( 2618 AliasResult(AliasResult::MustAlias)); 2619 } else 2620 OptimizedAccess = StartingAccess->getOptimized(); 2621 2622 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2623 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2624 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2625 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2626 2627 MemoryAccess *Result; 2628 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2629 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2630 assert(isa<MemoryDef>(Q.OriginalAccess)); 2631 Q.SkipSelfAccess = true; 2632 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2633 } else 2634 Result = OptimizedAccess; 2635 2636 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2637 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2638 2639 return Result; 2640 } 2641 2642 MemoryAccess * 2643 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2644 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2645 return Use->getDefiningAccess(); 2646 return MA; 2647 } 2648 2649 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2650 MemoryAccess *StartingAccess, const MemoryLocation &) { 2651 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2652 return Use->getDefiningAccess(); 2653 return StartingAccess; 2654 } 2655 2656 void MemoryPhi::deleteMe(DerivedUser *Self) { 2657 delete static_cast<MemoryPhi *>(Self); 2658 } 2659 2660 void MemoryDef::deleteMe(DerivedUser *Self) { 2661 delete static_cast<MemoryDef *>(Self); 2662 } 2663 2664 void MemoryUse::deleteMe(DerivedUser *Self) { 2665 delete static_cast<MemoryUse *>(Self); 2666 } 2667 2668 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { 2669 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { 2670 Ptr = Ptr->stripPointerCasts(); 2671 if (!isa<Instruction>(Ptr)) 2672 return true; 2673 return isa<AllocaInst>(Ptr); 2674 }; 2675 2676 Ptr = Ptr->stripPointerCasts(); 2677 if (auto *I = dyn_cast<Instruction>(Ptr)) { 2678 if (I->getParent()->isEntryBlock()) 2679 return true; 2680 } 2681 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2682 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2683 GEP->hasAllConstantIndices(); 2684 } 2685 return IsGuaranteedLoopInvariantBase(Ptr); 2686 } 2687