1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the MemorySSA class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemorySSA.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/FormattedStream.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <memory> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "memoryssa" 61 62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 63 true) 64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 67 true) 68 69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 70 "Memory SSA Printer", false, false) 71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 73 "Memory SSA Printer", false, false) 74 75 static cl::opt<unsigned> MaxCheckLimit( 76 "memssa-check-limit", cl::Hidden, cl::init(100), 77 cl::desc("The maximum number of stores/phis MemorySSA" 78 "will consider trying to walk past (default = 100)")); 79 80 // Always verify MemorySSA if expensive checking is enabled. 81 #ifdef EXPENSIVE_CHECKS 82 bool llvm::VerifyMemorySSA = true; 83 #else 84 bool llvm::VerifyMemorySSA = false; 85 #endif 86 static cl::opt<bool, true> 87 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 88 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 89 90 namespace llvm { 91 92 /// An assembly annotator class to print Memory SSA information in 93 /// comments. 94 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 95 friend class MemorySSA; 96 97 const MemorySSA *MSSA; 98 99 public: 100 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 101 102 void emitBasicBlockStartAnnot(const BasicBlock *BB, 103 formatted_raw_ostream &OS) override { 104 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 105 OS << "; " << *MA << "\n"; 106 } 107 108 void emitInstructionAnnot(const Instruction *I, 109 formatted_raw_ostream &OS) override { 110 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 111 OS << "; " << *MA << "\n"; 112 } 113 }; 114 115 } // end namespace llvm 116 117 namespace { 118 119 /// Our current alias analysis API differentiates heavily between calls and 120 /// non-calls, and functions called on one usually assert on the other. 121 /// This class encapsulates the distinction to simplify other code that wants 122 /// "Memory affecting instructions and related data" to use as a key. 123 /// For example, this class is used as a densemap key in the use optimizer. 124 class MemoryLocOrCall { 125 public: 126 bool IsCall = false; 127 128 MemoryLocOrCall(MemoryUseOrDef *MUD) 129 : MemoryLocOrCall(MUD->getMemoryInst()) {} 130 MemoryLocOrCall(const MemoryUseOrDef *MUD) 131 : MemoryLocOrCall(MUD->getMemoryInst()) {} 132 133 MemoryLocOrCall(Instruction *Inst) { 134 if (ImmutableCallSite(Inst)) { 135 IsCall = true; 136 CS = ImmutableCallSite(Inst); 137 } else { 138 IsCall = false; 139 // There is no such thing as a memorylocation for a fence inst, and it is 140 // unique in that regard. 141 if (!isa<FenceInst>(Inst)) 142 Loc = MemoryLocation::get(Inst); 143 } 144 } 145 146 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 147 148 ImmutableCallSite getCS() const { 149 assert(IsCall); 150 return CS; 151 } 152 153 MemoryLocation getLoc() const { 154 assert(!IsCall); 155 return Loc; 156 } 157 158 bool operator==(const MemoryLocOrCall &Other) const { 159 if (IsCall != Other.IsCall) 160 return false; 161 162 if (!IsCall) 163 return Loc == Other.Loc; 164 165 if (CS.getCalledValue() != Other.CS.getCalledValue()) 166 return false; 167 168 return CS.arg_size() == Other.CS.arg_size() && 169 std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin()); 170 } 171 172 private: 173 union { 174 ImmutableCallSite CS; 175 MemoryLocation Loc; 176 }; 177 }; 178 179 } // end anonymous namespace 180 181 namespace llvm { 182 183 template <> struct DenseMapInfo<MemoryLocOrCall> { 184 static inline MemoryLocOrCall getEmptyKey() { 185 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 186 } 187 188 static inline MemoryLocOrCall getTombstoneKey() { 189 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 190 } 191 192 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 193 if (!MLOC.IsCall) 194 return hash_combine( 195 MLOC.IsCall, 196 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 197 198 hash_code hash = 199 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 200 MLOC.getCS().getCalledValue())); 201 202 for (const Value *Arg : MLOC.getCS().args()) 203 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 204 return hash; 205 } 206 207 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 208 return LHS == RHS; 209 } 210 }; 211 212 } // end namespace llvm 213 214 /// This does one-way checks to see if Use could theoretically be hoisted above 215 /// MayClobber. This will not check the other way around. 216 /// 217 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 218 /// MayClobber, with no potentially clobbering operations in between them. 219 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 220 static bool areLoadsReorderable(const LoadInst *Use, 221 const LoadInst *MayClobber) { 222 bool VolatileUse = Use->isVolatile(); 223 bool VolatileClobber = MayClobber->isVolatile(); 224 // Volatile operations may never be reordered with other volatile operations. 225 if (VolatileUse && VolatileClobber) 226 return false; 227 // Otherwise, volatile doesn't matter here. From the language reference: 228 // 'optimizers may change the order of volatile operations relative to 229 // non-volatile operations.'" 230 231 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 232 // is weaker, it can be moved above other loads. We just need to be sure that 233 // MayClobber isn't an acquire load, because loads can't be moved above 234 // acquire loads. 235 // 236 // Note that this explicitly *does* allow the free reordering of monotonic (or 237 // weaker) loads of the same address. 238 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 239 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 240 AtomicOrdering::Acquire); 241 return !(SeqCstUse || MayClobberIsAcquire); 242 } 243 244 namespace { 245 246 struct ClobberAlias { 247 bool IsClobber; 248 Optional<AliasResult> AR; 249 }; 250 251 } // end anonymous namespace 252 253 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 254 // ignored if IsClobber = false. 255 static ClobberAlias instructionClobbersQuery(const MemoryDef *MD, 256 const MemoryLocation &UseLoc, 257 const Instruction *UseInst, 258 AliasAnalysis &AA) { 259 Instruction *DefInst = MD->getMemoryInst(); 260 assert(DefInst && "Defining instruction not actually an instruction"); 261 ImmutableCallSite UseCS(UseInst); 262 Optional<AliasResult> AR; 263 264 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 265 // These intrinsics will show up as affecting memory, but they are just 266 // markers, mostly. 267 // 268 // FIXME: We probably don't actually want MemorySSA to model these at all 269 // (including creating MemoryAccesses for them): we just end up inventing 270 // clobbers where they don't really exist at all. Please see D43269 for 271 // context. 272 switch (II->getIntrinsicID()) { 273 case Intrinsic::lifetime_start: 274 if (UseCS) 275 return {false, NoAlias}; 276 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 277 return {AR != NoAlias, AR}; 278 case Intrinsic::lifetime_end: 279 case Intrinsic::invariant_start: 280 case Intrinsic::invariant_end: 281 case Intrinsic::assume: 282 return {false, NoAlias}; 283 default: 284 break; 285 } 286 } 287 288 if (UseCS) { 289 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); 290 AR = isMustSet(I) ? MustAlias : MayAlias; 291 return {isModOrRefSet(I), AR}; 292 } 293 294 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 295 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 296 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 297 298 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 299 AR = isMustSet(I) ? MustAlias : MayAlias; 300 return {isModSet(I), AR}; 301 } 302 303 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 304 const MemoryUseOrDef *MU, 305 const MemoryLocOrCall &UseMLOC, 306 AliasAnalysis &AA) { 307 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 308 // to exist while MemoryLocOrCall is pushed through places. 309 if (UseMLOC.IsCall) 310 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 311 AA); 312 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 313 AA); 314 } 315 316 // Return true when MD may alias MU, return false otherwise. 317 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 318 AliasAnalysis &AA) { 319 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 320 } 321 322 namespace { 323 324 struct UpwardsMemoryQuery { 325 // True if our original query started off as a call 326 bool IsCall = false; 327 // The pointer location we started the query with. This will be empty if 328 // IsCall is true. 329 MemoryLocation StartingLoc; 330 // This is the instruction we were querying about. 331 const Instruction *Inst = nullptr; 332 // The MemoryAccess we actually got called with, used to test local domination 333 const MemoryAccess *OriginalAccess = nullptr; 334 Optional<AliasResult> AR = MayAlias; 335 336 UpwardsMemoryQuery() = default; 337 338 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 339 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { 340 if (!IsCall) 341 StartingLoc = MemoryLocation::get(Inst); 342 } 343 }; 344 345 } // end anonymous namespace 346 347 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 348 AliasAnalysis &AA) { 349 Instruction *Inst = MD->getMemoryInst(); 350 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 351 switch (II->getIntrinsicID()) { 352 case Intrinsic::lifetime_end: 353 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); 354 default: 355 return false; 356 } 357 } 358 return false; 359 } 360 361 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, 362 const Instruction *I) { 363 // If the memory can't be changed, then loads of the memory can't be 364 // clobbered. 365 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 366 AA.pointsToConstantMemory(cast<LoadInst>(I)-> 367 getPointerOperand())); 368 } 369 370 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 371 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 372 /// 373 /// This is meant to be as simple and self-contained as possible. Because it 374 /// uses no cache, etc., it can be relatively expensive. 375 /// 376 /// \param Start The MemoryAccess that we want to walk from. 377 /// \param ClobberAt A clobber for Start. 378 /// \param StartLoc The MemoryLocation for Start. 379 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 380 /// \param Query The UpwardsMemoryQuery we used for our search. 381 /// \param AA The AliasAnalysis we used for our search. 382 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 383 static void 384 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 385 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 386 const UpwardsMemoryQuery &Query, AliasAnalysis &AA, 387 bool AllowImpreciseClobber = false) { 388 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 389 390 if (MSSA.isLiveOnEntryDef(Start)) { 391 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 392 "liveOnEntry must clobber itself"); 393 return; 394 } 395 396 bool FoundClobber = false; 397 DenseSet<ConstMemoryAccessPair> VisitedPhis; 398 SmallVector<ConstMemoryAccessPair, 8> Worklist; 399 Worklist.emplace_back(Start, StartLoc); 400 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 401 // is found, complain. 402 while (!Worklist.empty()) { 403 auto MAP = Worklist.pop_back_val(); 404 // All we care about is that nothing from Start to ClobberAt clobbers Start. 405 // We learn nothing from revisiting nodes. 406 if (!VisitedPhis.insert(MAP).second) 407 continue; 408 409 for (const auto *MA : def_chain(MAP.first)) { 410 if (MA == ClobberAt) { 411 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 412 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 413 // since it won't let us short-circuit. 414 // 415 // Also, note that this can't be hoisted out of the `Worklist` loop, 416 // since MD may only act as a clobber for 1 of N MemoryLocations. 417 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 418 if (!FoundClobber) { 419 ClobberAlias CA = 420 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 421 if (CA.IsClobber) { 422 FoundClobber = true; 423 // Not used: CA.AR; 424 } 425 } 426 } 427 break; 428 } 429 430 // We should never hit liveOnEntry, unless it's the clobber. 431 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 432 433 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 434 // If Start is a Def, skip self. 435 if (MD == Start) 436 continue; 437 438 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 439 .IsClobber && 440 "Found clobber before reaching ClobberAt!"); 441 continue; 442 } 443 444 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 445 (void)MU; 446 assert (MU == Start && 447 "Can only find use in def chain if Start is a use"); 448 continue; 449 } 450 451 assert(isa<MemoryPhi>(MA)); 452 Worklist.append( 453 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 454 upward_defs_end()); 455 } 456 } 457 458 // If the verify is done following an optimization, it's possible that 459 // ClobberAt was a conservative clobbering, that we can now infer is not a 460 // true clobbering access. Don't fail the verify if that's the case. 461 // We do have accesses that claim they're optimized, but could be optimized 462 // further. Updating all these can be expensive, so allow it for now (FIXME). 463 if (AllowImpreciseClobber) 464 return; 465 466 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 467 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 468 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 469 "ClobberAt never acted as a clobber"); 470 } 471 472 namespace { 473 474 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 475 /// in one class. 476 class ClobberWalker { 477 /// Save a few bytes by using unsigned instead of size_t. 478 using ListIndex = unsigned; 479 480 /// Represents a span of contiguous MemoryDefs, potentially ending in a 481 /// MemoryPhi. 482 struct DefPath { 483 MemoryLocation Loc; 484 // Note that, because we always walk in reverse, Last will always dominate 485 // First. Also note that First and Last are inclusive. 486 MemoryAccess *First; 487 MemoryAccess *Last; 488 Optional<ListIndex> Previous; 489 490 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 491 Optional<ListIndex> Previous) 492 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 493 494 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 495 Optional<ListIndex> Previous) 496 : DefPath(Loc, Init, Init, Previous) {} 497 }; 498 499 const MemorySSA &MSSA; 500 AliasAnalysis &AA; 501 DominatorTree &DT; 502 UpwardsMemoryQuery *Query; 503 504 // Phi optimization bookkeeping 505 SmallVector<DefPath, 32> Paths; 506 DenseSet<ConstMemoryAccessPair> VisitedPhis; 507 508 /// Find the nearest def or phi that `From` can legally be optimized to. 509 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 510 assert(From->getNumOperands() && "Phi with no operands?"); 511 512 BasicBlock *BB = From->getBlock(); 513 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 514 DomTreeNode *Node = DT.getNode(BB); 515 while ((Node = Node->getIDom())) { 516 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 517 if (Defs) 518 return &*Defs->rbegin(); 519 } 520 return Result; 521 } 522 523 /// Result of calling walkToPhiOrClobber. 524 struct UpwardsWalkResult { 525 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 526 /// both. Include alias info when clobber found. 527 MemoryAccess *Result; 528 bool IsKnownClobber; 529 Optional<AliasResult> AR; 530 }; 531 532 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 533 /// This will update Desc.Last as it walks. It will (optionally) also stop at 534 /// StopAt. 535 /// 536 /// This does not test for whether StopAt is a clobber 537 UpwardsWalkResult 538 walkToPhiOrClobber(DefPath &Desc, 539 const MemoryAccess *StopAt = nullptr) const { 540 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 541 542 for (MemoryAccess *Current : def_chain(Desc.Last)) { 543 Desc.Last = Current; 544 if (Current == StopAt) 545 return {Current, false, MayAlias}; 546 547 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 548 if (MSSA.isLiveOnEntryDef(MD)) 549 return {MD, true, MustAlias}; 550 ClobberAlias CA = 551 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 552 if (CA.IsClobber) 553 return {MD, true, CA.AR}; 554 } 555 } 556 557 assert(isa<MemoryPhi>(Desc.Last) && 558 "Ended at a non-clobber that's not a phi?"); 559 return {Desc.Last, false, MayAlias}; 560 } 561 562 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 563 ListIndex PriorNode) { 564 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 565 upward_defs_end()); 566 for (const MemoryAccessPair &P : UpwardDefs) { 567 PausedSearches.push_back(Paths.size()); 568 Paths.emplace_back(P.second, P.first, PriorNode); 569 } 570 } 571 572 /// Represents a search that terminated after finding a clobber. This clobber 573 /// may or may not be present in the path of defs from LastNode..SearchStart, 574 /// since it may have been retrieved from cache. 575 struct TerminatedPath { 576 MemoryAccess *Clobber; 577 ListIndex LastNode; 578 }; 579 580 /// Get an access that keeps us from optimizing to the given phi. 581 /// 582 /// PausedSearches is an array of indices into the Paths array. Its incoming 583 /// value is the indices of searches that stopped at the last phi optimization 584 /// target. It's left in an unspecified state. 585 /// 586 /// If this returns None, NewPaused is a vector of searches that terminated 587 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 588 Optional<TerminatedPath> 589 getBlockingAccess(const MemoryAccess *StopWhere, 590 SmallVectorImpl<ListIndex> &PausedSearches, 591 SmallVectorImpl<ListIndex> &NewPaused, 592 SmallVectorImpl<TerminatedPath> &Terminated) { 593 assert(!PausedSearches.empty() && "No searches to continue?"); 594 595 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 596 // PausedSearches as our stack. 597 while (!PausedSearches.empty()) { 598 ListIndex PathIndex = PausedSearches.pop_back_val(); 599 DefPath &Node = Paths[PathIndex]; 600 601 // If we've already visited this path with this MemoryLocation, we don't 602 // need to do so again. 603 // 604 // NOTE: That we just drop these paths on the ground makes caching 605 // behavior sporadic. e.g. given a diamond: 606 // A 607 // B C 608 // D 609 // 610 // ...If we walk D, B, A, C, we'll only cache the result of phi 611 // optimization for A, B, and D; C will be skipped because it dies here. 612 // This arguably isn't the worst thing ever, since: 613 // - We generally query things in a top-down order, so if we got below D 614 // without needing cache entries for {C, MemLoc}, then chances are 615 // that those cache entries would end up ultimately unused. 616 // - We still cache things for A, so C only needs to walk up a bit. 617 // If this behavior becomes problematic, we can fix without a ton of extra 618 // work. 619 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 620 continue; 621 622 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); 623 if (Res.IsKnownClobber) { 624 assert(Res.Result != StopWhere); 625 // If this wasn't a cache hit, we hit a clobber when walking. That's a 626 // failure. 627 TerminatedPath Term{Res.Result, PathIndex}; 628 if (!MSSA.dominates(Res.Result, StopWhere)) 629 return Term; 630 631 // Otherwise, it's a valid thing to potentially optimize to. 632 Terminated.push_back(Term); 633 continue; 634 } 635 636 if (Res.Result == StopWhere) { 637 // We've hit our target. Save this path off for if we want to continue 638 // walking. 639 NewPaused.push_back(PathIndex); 640 continue; 641 } 642 643 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 644 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 645 } 646 647 return None; 648 } 649 650 template <typename T, typename Walker> 651 struct generic_def_path_iterator 652 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 653 std::forward_iterator_tag, T *> { 654 generic_def_path_iterator() = default; 655 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 656 657 T &operator*() const { return curNode(); } 658 659 generic_def_path_iterator &operator++() { 660 N = curNode().Previous; 661 return *this; 662 } 663 664 bool operator==(const generic_def_path_iterator &O) const { 665 if (N.hasValue() != O.N.hasValue()) 666 return false; 667 return !N.hasValue() || *N == *O.N; 668 } 669 670 private: 671 T &curNode() const { return W->Paths[*N]; } 672 673 Walker *W = nullptr; 674 Optional<ListIndex> N = None; 675 }; 676 677 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 678 using const_def_path_iterator = 679 generic_def_path_iterator<const DefPath, const ClobberWalker>; 680 681 iterator_range<def_path_iterator> def_path(ListIndex From) { 682 return make_range(def_path_iterator(this, From), def_path_iterator()); 683 } 684 685 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 686 return make_range(const_def_path_iterator(this, From), 687 const_def_path_iterator()); 688 } 689 690 struct OptznResult { 691 /// The path that contains our result. 692 TerminatedPath PrimaryClobber; 693 /// The paths that we can legally cache back from, but that aren't 694 /// necessarily the result of the Phi optimization. 695 SmallVector<TerminatedPath, 4> OtherClobbers; 696 }; 697 698 ListIndex defPathIndex(const DefPath &N) const { 699 // The assert looks nicer if we don't need to do &N 700 const DefPath *NP = &N; 701 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 702 "Out of bounds DefPath!"); 703 return NP - &Paths.front(); 704 } 705 706 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 707 /// that act as legal clobbers. Note that this won't return *all* clobbers. 708 /// 709 /// Phi optimization algorithm tl;dr: 710 /// - Find the earliest def/phi, A, we can optimize to 711 /// - Find if all paths from the starting memory access ultimately reach A 712 /// - If not, optimization isn't possible. 713 /// - Otherwise, walk from A to another clobber or phi, A'. 714 /// - If A' is a def, we're done. 715 /// - If A' is a phi, try to optimize it. 716 /// 717 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 718 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 719 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 720 const MemoryLocation &Loc) { 721 assert(Paths.empty() && VisitedPhis.empty() && 722 "Reset the optimization state."); 723 724 Paths.emplace_back(Loc, Start, Phi, None); 725 // Stores how many "valid" optimization nodes we had prior to calling 726 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 727 auto PriorPathsSize = Paths.size(); 728 729 SmallVector<ListIndex, 16> PausedSearches; 730 SmallVector<ListIndex, 8> NewPaused; 731 SmallVector<TerminatedPath, 4> TerminatedPaths; 732 733 addSearches(Phi, PausedSearches, 0); 734 735 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 736 // Paths. 737 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 738 assert(!Paths.empty() && "Need a path to move"); 739 auto Dom = Paths.begin(); 740 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 741 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 742 Dom = I; 743 auto Last = Paths.end() - 1; 744 if (Last != Dom) 745 std::iter_swap(Last, Dom); 746 }; 747 748 MemoryPhi *Current = Phi; 749 while (true) { 750 assert(!MSSA.isLiveOnEntryDef(Current) && 751 "liveOnEntry wasn't treated as a clobber?"); 752 753 const auto *Target = getWalkTarget(Current); 754 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 755 // optimization for the prior phi. 756 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 757 return MSSA.dominates(P.Clobber, Target); 758 })); 759 760 // FIXME: This is broken, because the Blocker may be reported to be 761 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 762 // For the moment, this is fine, since we do nothing with blocker info. 763 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 764 Target, PausedSearches, NewPaused, TerminatedPaths)) { 765 766 // Find the node we started at. We can't search based on N->Last, since 767 // we may have gone around a loop with a different MemoryLocation. 768 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 769 return defPathIndex(N) < PriorPathsSize; 770 }); 771 assert(Iter != def_path_iterator()); 772 773 DefPath &CurNode = *Iter; 774 assert(CurNode.Last == Current); 775 776 // Two things: 777 // A. We can't reliably cache all of NewPaused back. Consider a case 778 // where we have two paths in NewPaused; one of which can't optimize 779 // above this phi, whereas the other can. If we cache the second path 780 // back, we'll end up with suboptimal cache entries. We can handle 781 // cases like this a bit better when we either try to find all 782 // clobbers that block phi optimization, or when our cache starts 783 // supporting unfinished searches. 784 // B. We can't reliably cache TerminatedPaths back here without doing 785 // extra checks; consider a case like: 786 // T 787 // / \ 788 // D C 789 // \ / 790 // S 791 // Where T is our target, C is a node with a clobber on it, D is a 792 // diamond (with a clobber *only* on the left or right node, N), and 793 // S is our start. Say we walk to D, through the node opposite N 794 // (read: ignoring the clobber), and see a cache entry in the top 795 // node of D. That cache entry gets put into TerminatedPaths. We then 796 // walk up to C (N is later in our worklist), find the clobber, and 797 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 798 // the bottom part of D to the cached clobber, ignoring the clobber 799 // in N. Again, this problem goes away if we start tracking all 800 // blockers for a given phi optimization. 801 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 802 return {Result, {}}; 803 } 804 805 // If there's nothing left to search, then all paths led to valid clobbers 806 // that we got from our cache; pick the nearest to the start, and allow 807 // the rest to be cached back. 808 if (NewPaused.empty()) { 809 MoveDominatedPathToEnd(TerminatedPaths); 810 TerminatedPath Result = TerminatedPaths.pop_back_val(); 811 return {Result, std::move(TerminatedPaths)}; 812 } 813 814 MemoryAccess *DefChainEnd = nullptr; 815 SmallVector<TerminatedPath, 4> Clobbers; 816 for (ListIndex Paused : NewPaused) { 817 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 818 if (WR.IsKnownClobber) 819 Clobbers.push_back({WR.Result, Paused}); 820 else 821 // Micro-opt: If we hit the end of the chain, save it. 822 DefChainEnd = WR.Result; 823 } 824 825 if (!TerminatedPaths.empty()) { 826 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 827 // do it now. 828 if (!DefChainEnd) 829 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 830 DefChainEnd = MA; 831 832 // If any of the terminated paths don't dominate the phi we'll try to 833 // optimize, we need to figure out what they are and quit. 834 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 835 for (const TerminatedPath &TP : TerminatedPaths) { 836 // Because we know that DefChainEnd is as "high" as we can go, we 837 // don't need local dominance checks; BB dominance is sufficient. 838 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 839 Clobbers.push_back(TP); 840 } 841 } 842 843 // If we have clobbers in the def chain, find the one closest to Current 844 // and quit. 845 if (!Clobbers.empty()) { 846 MoveDominatedPathToEnd(Clobbers); 847 TerminatedPath Result = Clobbers.pop_back_val(); 848 return {Result, std::move(Clobbers)}; 849 } 850 851 assert(all_of(NewPaused, 852 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 853 854 // Because liveOnEntry is a clobber, this must be a phi. 855 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 856 857 PriorPathsSize = Paths.size(); 858 PausedSearches.clear(); 859 for (ListIndex I : NewPaused) 860 addSearches(DefChainPhi, PausedSearches, I); 861 NewPaused.clear(); 862 863 Current = DefChainPhi; 864 } 865 } 866 867 void verifyOptResult(const OptznResult &R) const { 868 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 869 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 870 })); 871 } 872 873 void resetPhiOptznState() { 874 Paths.clear(); 875 VisitedPhis.clear(); 876 } 877 878 public: 879 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) 880 : MSSA(MSSA), AA(AA), DT(DT) {} 881 882 /// Finds the nearest clobber for the given query, optimizing phis if 883 /// possible. 884 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { 885 Query = &Q; 886 887 MemoryAccess *Current = Start; 888 // This walker pretends uses don't exist. If we're handed one, silently grab 889 // its def. (This has the nice side-effect of ensuring we never cache uses) 890 if (auto *MU = dyn_cast<MemoryUse>(Start)) 891 Current = MU->getDefiningAccess(); 892 893 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 894 // Fast path for the overly-common case (no crazy phi optimization 895 // necessary) 896 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 897 MemoryAccess *Result; 898 if (WalkResult.IsKnownClobber) { 899 Result = WalkResult.Result; 900 Q.AR = WalkResult.AR; 901 } else { 902 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 903 Current, Q.StartingLoc); 904 verifyOptResult(OptRes); 905 resetPhiOptznState(); 906 Result = OptRes.PrimaryClobber.Clobber; 907 } 908 909 #ifdef EXPENSIVE_CHECKS 910 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 911 #endif 912 return Result; 913 } 914 915 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } 916 }; 917 918 struct RenamePassData { 919 DomTreeNode *DTN; 920 DomTreeNode::const_iterator ChildIt; 921 MemoryAccess *IncomingVal; 922 923 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 924 MemoryAccess *M) 925 : DTN(D), ChildIt(It), IncomingVal(M) {} 926 927 void swap(RenamePassData &RHS) { 928 std::swap(DTN, RHS.DTN); 929 std::swap(ChildIt, RHS.ChildIt); 930 std::swap(IncomingVal, RHS.IncomingVal); 931 } 932 }; 933 934 } // end anonymous namespace 935 936 namespace llvm { 937 938 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 939 /// longer does caching on its own, but the name has been retained for the 940 /// moment. 941 class MemorySSA::CachingWalker final : public MemorySSAWalker { 942 ClobberWalker Walker; 943 944 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); 945 946 public: 947 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); 948 ~CachingWalker() override = default; 949 950 using MemorySSAWalker::getClobberingMemoryAccess; 951 952 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; 953 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 954 const MemoryLocation &) override; 955 void invalidateInfo(MemoryAccess *) override; 956 957 void verify(const MemorySSA *MSSA) override { 958 MemorySSAWalker::verify(MSSA); 959 Walker.verify(MSSA); 960 } 961 }; 962 963 } // end namespace llvm 964 965 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 966 bool RenameAllUses) { 967 // Pass through values to our successors 968 for (const BasicBlock *S : successors(BB)) { 969 auto It = PerBlockAccesses.find(S); 970 // Rename the phi nodes in our successor block 971 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 972 continue; 973 AccessList *Accesses = It->second.get(); 974 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 975 if (RenameAllUses) { 976 int PhiIndex = Phi->getBasicBlockIndex(BB); 977 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 978 Phi->setIncomingValue(PhiIndex, IncomingVal); 979 } else 980 Phi->addIncoming(IncomingVal, BB); 981 } 982 } 983 984 /// Rename a single basic block into MemorySSA form. 985 /// Uses the standard SSA renaming algorithm. 986 /// \returns The new incoming value. 987 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 988 bool RenameAllUses) { 989 auto It = PerBlockAccesses.find(BB); 990 // Skip most processing if the list is empty. 991 if (It != PerBlockAccesses.end()) { 992 AccessList *Accesses = It->second.get(); 993 for (MemoryAccess &L : *Accesses) { 994 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 995 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 996 MUD->setDefiningAccess(IncomingVal); 997 if (isa<MemoryDef>(&L)) 998 IncomingVal = &L; 999 } else { 1000 IncomingVal = &L; 1001 } 1002 } 1003 } 1004 return IncomingVal; 1005 } 1006 1007 /// This is the standard SSA renaming algorithm. 1008 /// 1009 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1010 /// in phi nodes in our successors. 1011 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1012 SmallPtrSetImpl<BasicBlock *> &Visited, 1013 bool SkipVisited, bool RenameAllUses) { 1014 SmallVector<RenamePassData, 32> WorkStack; 1015 // Skip everything if we already renamed this block and we are skipping. 1016 // Note: You can't sink this into the if, because we need it to occur 1017 // regardless of whether we skip blocks or not. 1018 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1019 if (SkipVisited && AlreadyVisited) 1020 return; 1021 1022 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1023 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1024 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1025 1026 while (!WorkStack.empty()) { 1027 DomTreeNode *Node = WorkStack.back().DTN; 1028 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1029 IncomingVal = WorkStack.back().IncomingVal; 1030 1031 if (ChildIt == Node->end()) { 1032 WorkStack.pop_back(); 1033 } else { 1034 DomTreeNode *Child = *ChildIt; 1035 ++WorkStack.back().ChildIt; 1036 BasicBlock *BB = Child->getBlock(); 1037 // Note: You can't sink this into the if, because we need it to occur 1038 // regardless of whether we skip blocks or not. 1039 AlreadyVisited = !Visited.insert(BB).second; 1040 if (SkipVisited && AlreadyVisited) { 1041 // We already visited this during our renaming, which can happen when 1042 // being asked to rename multiple blocks. Figure out the incoming val, 1043 // which is the last def. 1044 // Incoming value can only change if there is a block def, and in that 1045 // case, it's the last block def in the list. 1046 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1047 IncomingVal = &*BlockDefs->rbegin(); 1048 } else 1049 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1050 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1051 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1052 } 1053 } 1054 } 1055 1056 /// This handles unreachable block accesses by deleting phi nodes in 1057 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1058 /// being uses of the live on entry definition. 1059 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1060 assert(!DT->isReachableFromEntry(BB) && 1061 "Reachable block found while handling unreachable blocks"); 1062 1063 // Make sure phi nodes in our reachable successors end up with a 1064 // LiveOnEntryDef for our incoming edge, even though our block is forward 1065 // unreachable. We could just disconnect these blocks from the CFG fully, 1066 // but we do not right now. 1067 for (const BasicBlock *S : successors(BB)) { 1068 if (!DT->isReachableFromEntry(S)) 1069 continue; 1070 auto It = PerBlockAccesses.find(S); 1071 // Rename the phi nodes in our successor block 1072 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1073 continue; 1074 AccessList *Accesses = It->second.get(); 1075 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1076 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1077 } 1078 1079 auto It = PerBlockAccesses.find(BB); 1080 if (It == PerBlockAccesses.end()) 1081 return; 1082 1083 auto &Accesses = It->second; 1084 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1085 auto Next = std::next(AI); 1086 // If we have a phi, just remove it. We are going to replace all 1087 // users with live on entry. 1088 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1089 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1090 else 1091 Accesses->erase(AI); 1092 AI = Next; 1093 } 1094 } 1095 1096 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1097 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1098 NextID(0) { 1099 buildMemorySSA(); 1100 } 1101 1102 MemorySSA::~MemorySSA() { 1103 // Drop all our references 1104 for (const auto &Pair : PerBlockAccesses) 1105 for (MemoryAccess &MA : *Pair.second) 1106 MA.dropAllReferences(); 1107 } 1108 1109 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1110 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1111 1112 if (Res.second) 1113 Res.first->second = llvm::make_unique<AccessList>(); 1114 return Res.first->second.get(); 1115 } 1116 1117 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1118 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1119 1120 if (Res.second) 1121 Res.first->second = llvm::make_unique<DefsList>(); 1122 return Res.first->second.get(); 1123 } 1124 1125 namespace llvm { 1126 1127 /// This class is a batch walker of all MemoryUse's in the program, and points 1128 /// their defining access at the thing that actually clobbers them. Because it 1129 /// is a batch walker that touches everything, it does not operate like the 1130 /// other walkers. This walker is basically performing a top-down SSA renaming 1131 /// pass, where the version stack is used as the cache. This enables it to be 1132 /// significantly more time and memory efficient than using the regular walker, 1133 /// which is walking bottom-up. 1134 class MemorySSA::OptimizeUses { 1135 public: 1136 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, 1137 DominatorTree *DT) 1138 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { 1139 Walker = MSSA->getWalker(); 1140 } 1141 1142 void optimizeUses(); 1143 1144 private: 1145 /// This represents where a given memorylocation is in the stack. 1146 struct MemlocStackInfo { 1147 // This essentially is keeping track of versions of the stack. Whenever 1148 // the stack changes due to pushes or pops, these versions increase. 1149 unsigned long StackEpoch; 1150 unsigned long PopEpoch; 1151 // This is the lower bound of places on the stack to check. It is equal to 1152 // the place the last stack walk ended. 1153 // Note: Correctness depends on this being initialized to 0, which densemap 1154 // does 1155 unsigned long LowerBound; 1156 const BasicBlock *LowerBoundBlock; 1157 // This is where the last walk for this memory location ended. 1158 unsigned long LastKill; 1159 bool LastKillValid; 1160 Optional<AliasResult> AR; 1161 }; 1162 1163 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1164 SmallVectorImpl<MemoryAccess *> &, 1165 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1166 1167 MemorySSA *MSSA; 1168 MemorySSAWalker *Walker; 1169 AliasAnalysis *AA; 1170 DominatorTree *DT; 1171 }; 1172 1173 } // end namespace llvm 1174 1175 /// Optimize the uses in a given block This is basically the SSA renaming 1176 /// algorithm, with one caveat: We are able to use a single stack for all 1177 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1178 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1179 /// going to be some position in that stack of possible ones. 1180 /// 1181 /// We track the stack positions that each MemoryLocation needs 1182 /// to check, and last ended at. This is because we only want to check the 1183 /// things that changed since last time. The same MemoryLocation should 1184 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1185 /// things like this, and if they start, we can modify MemoryLocOrCall to 1186 /// include relevant data) 1187 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1188 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1189 SmallVectorImpl<MemoryAccess *> &VersionStack, 1190 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1191 1192 /// If no accesses, nothing to do. 1193 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1194 if (Accesses == nullptr) 1195 return; 1196 1197 // Pop everything that doesn't dominate the current block off the stack, 1198 // increment the PopEpoch to account for this. 1199 while (true) { 1200 assert( 1201 !VersionStack.empty() && 1202 "Version stack should have liveOnEntry sentinel dominating everything"); 1203 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1204 if (DT->dominates(BackBlock, BB)) 1205 break; 1206 while (VersionStack.back()->getBlock() == BackBlock) 1207 VersionStack.pop_back(); 1208 ++PopEpoch; 1209 } 1210 1211 for (MemoryAccess &MA : *Accesses) { 1212 auto *MU = dyn_cast<MemoryUse>(&MA); 1213 if (!MU) { 1214 VersionStack.push_back(&MA); 1215 ++StackEpoch; 1216 continue; 1217 } 1218 1219 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1220 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1221 continue; 1222 } 1223 1224 MemoryLocOrCall UseMLOC(MU); 1225 auto &LocInfo = LocStackInfo[UseMLOC]; 1226 // If the pop epoch changed, it means we've removed stuff from top of 1227 // stack due to changing blocks. We may have to reset the lower bound or 1228 // last kill info. 1229 if (LocInfo.PopEpoch != PopEpoch) { 1230 LocInfo.PopEpoch = PopEpoch; 1231 LocInfo.StackEpoch = StackEpoch; 1232 // If the lower bound was in something that no longer dominates us, we 1233 // have to reset it. 1234 // We can't simply track stack size, because the stack may have had 1235 // pushes/pops in the meantime. 1236 // XXX: This is non-optimal, but only is slower cases with heavily 1237 // branching dominator trees. To get the optimal number of queries would 1238 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1239 // the top of that stack dominates us. This does not seem worth it ATM. 1240 // A much cheaper optimization would be to always explore the deepest 1241 // branch of the dominator tree first. This will guarantee this resets on 1242 // the smallest set of blocks. 1243 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1244 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1245 // Reset the lower bound of things to check. 1246 // TODO: Some day we should be able to reset to last kill, rather than 1247 // 0. 1248 LocInfo.LowerBound = 0; 1249 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1250 LocInfo.LastKillValid = false; 1251 } 1252 } else if (LocInfo.StackEpoch != StackEpoch) { 1253 // If all that has changed is the StackEpoch, we only have to check the 1254 // new things on the stack, because we've checked everything before. In 1255 // this case, the lower bound of things to check remains the same. 1256 LocInfo.PopEpoch = PopEpoch; 1257 LocInfo.StackEpoch = StackEpoch; 1258 } 1259 if (!LocInfo.LastKillValid) { 1260 LocInfo.LastKill = VersionStack.size() - 1; 1261 LocInfo.LastKillValid = true; 1262 LocInfo.AR = MayAlias; 1263 } 1264 1265 // At this point, we should have corrected last kill and LowerBound to be 1266 // in bounds. 1267 assert(LocInfo.LowerBound < VersionStack.size() && 1268 "Lower bound out of range"); 1269 assert(LocInfo.LastKill < VersionStack.size() && 1270 "Last kill info out of range"); 1271 // In any case, the new upper bound is the top of the stack. 1272 unsigned long UpperBound = VersionStack.size() - 1; 1273 1274 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1275 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1276 << *(MU->getMemoryInst()) << ")" 1277 << " because there are " 1278 << UpperBound - LocInfo.LowerBound 1279 << " stores to disambiguate\n"); 1280 // Because we did not walk, LastKill is no longer valid, as this may 1281 // have been a kill. 1282 LocInfo.LastKillValid = false; 1283 continue; 1284 } 1285 bool FoundClobberResult = false; 1286 while (UpperBound > LocInfo.LowerBound) { 1287 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1288 // For phis, use the walker, see where we ended up, go there 1289 Instruction *UseInst = MU->getMemoryInst(); 1290 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); 1291 // We are guaranteed to find it or something is wrong 1292 while (VersionStack[UpperBound] != Result) { 1293 assert(UpperBound != 0); 1294 --UpperBound; 1295 } 1296 FoundClobberResult = true; 1297 break; 1298 } 1299 1300 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1301 // If the lifetime of the pointer ends at this instruction, it's live on 1302 // entry. 1303 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1304 // Reset UpperBound to liveOnEntryDef's place in the stack 1305 UpperBound = 0; 1306 FoundClobberResult = true; 1307 LocInfo.AR = MustAlias; 1308 break; 1309 } 1310 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1311 if (CA.IsClobber) { 1312 FoundClobberResult = true; 1313 LocInfo.AR = CA.AR; 1314 break; 1315 } 1316 --UpperBound; 1317 } 1318 1319 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1320 1321 // At the end of this loop, UpperBound is either a clobber, or lower bound 1322 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1323 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1324 // We were last killed now by where we got to 1325 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1326 LocInfo.AR = None; 1327 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1328 LocInfo.LastKill = UpperBound; 1329 } else { 1330 // Otherwise, we checked all the new ones, and now we know we can get to 1331 // LastKill. 1332 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1333 } 1334 LocInfo.LowerBound = VersionStack.size() - 1; 1335 LocInfo.LowerBoundBlock = BB; 1336 } 1337 } 1338 1339 /// Optimize uses to point to their actual clobbering definitions. 1340 void MemorySSA::OptimizeUses::optimizeUses() { 1341 SmallVector<MemoryAccess *, 16> VersionStack; 1342 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1343 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1344 1345 unsigned long StackEpoch = 1; 1346 unsigned long PopEpoch = 1; 1347 // We perform a non-recursive top-down dominator tree walk. 1348 for (const auto *DomNode : depth_first(DT->getRootNode())) 1349 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1350 LocStackInfo); 1351 } 1352 1353 void MemorySSA::placePHINodes( 1354 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1355 // Determine where our MemoryPhi's should go 1356 ForwardIDFCalculator IDFs(*DT); 1357 IDFs.setDefiningBlocks(DefiningBlocks); 1358 SmallVector<BasicBlock *, 32> IDFBlocks; 1359 IDFs.calculate(IDFBlocks); 1360 1361 // Now place MemoryPhi nodes. 1362 for (auto &BB : IDFBlocks) 1363 createMemoryPhi(BB); 1364 } 1365 1366 void MemorySSA::buildMemorySSA() { 1367 // We create an access to represent "live on entry", for things like 1368 // arguments or users of globals, where the memory they use is defined before 1369 // the beginning of the function. We do not actually insert it into the IR. 1370 // We do not define a live on exit for the immediate uses, and thus our 1371 // semantics do *not* imply that something with no immediate uses can simply 1372 // be removed. 1373 BasicBlock &StartingPoint = F.getEntryBlock(); 1374 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1375 &StartingPoint, NextID++)); 1376 1377 // We maintain lists of memory accesses per-block, trading memory for time. We 1378 // could just look up the memory access for every possible instruction in the 1379 // stream. 1380 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1381 // Go through each block, figure out where defs occur, and chain together all 1382 // the accesses. 1383 for (BasicBlock &B : F) { 1384 bool InsertIntoDef = false; 1385 AccessList *Accesses = nullptr; 1386 DefsList *Defs = nullptr; 1387 for (Instruction &I : B) { 1388 MemoryUseOrDef *MUD = createNewAccess(&I); 1389 if (!MUD) 1390 continue; 1391 1392 if (!Accesses) 1393 Accesses = getOrCreateAccessList(&B); 1394 Accesses->push_back(MUD); 1395 if (isa<MemoryDef>(MUD)) { 1396 InsertIntoDef = true; 1397 if (!Defs) 1398 Defs = getOrCreateDefsList(&B); 1399 Defs->push_back(*MUD); 1400 } 1401 } 1402 if (InsertIntoDef) 1403 DefiningBlocks.insert(&B); 1404 } 1405 placePHINodes(DefiningBlocks); 1406 1407 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1408 // filled in with all blocks. 1409 SmallPtrSet<BasicBlock *, 16> Visited; 1410 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1411 1412 CachingWalker *Walker = getWalkerImpl(); 1413 1414 OptimizeUses(this, Walker, AA, DT).optimizeUses(); 1415 1416 // Mark the uses in unreachable blocks as live on entry, so that they go 1417 // somewhere. 1418 for (auto &BB : F) 1419 if (!Visited.count(&BB)) 1420 markUnreachableAsLiveOnEntry(&BB); 1421 } 1422 1423 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1424 1425 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1426 if (Walker) 1427 return Walker.get(); 1428 1429 Walker = llvm::make_unique<CachingWalker>(this, AA, DT); 1430 return Walker.get(); 1431 } 1432 1433 // This is a helper function used by the creation routines. It places NewAccess 1434 // into the access and defs lists for a given basic block, at the given 1435 // insertion point. 1436 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1437 const BasicBlock *BB, 1438 InsertionPlace Point) { 1439 auto *Accesses = getOrCreateAccessList(BB); 1440 if (Point == Beginning) { 1441 // If it's a phi node, it goes first, otherwise, it goes after any phi 1442 // nodes. 1443 if (isa<MemoryPhi>(NewAccess)) { 1444 Accesses->push_front(NewAccess); 1445 auto *Defs = getOrCreateDefsList(BB); 1446 Defs->push_front(*NewAccess); 1447 } else { 1448 auto AI = find_if_not( 1449 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1450 Accesses->insert(AI, NewAccess); 1451 if (!isa<MemoryUse>(NewAccess)) { 1452 auto *Defs = getOrCreateDefsList(BB); 1453 auto DI = find_if_not( 1454 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1455 Defs->insert(DI, *NewAccess); 1456 } 1457 } 1458 } else { 1459 Accesses->push_back(NewAccess); 1460 if (!isa<MemoryUse>(NewAccess)) { 1461 auto *Defs = getOrCreateDefsList(BB); 1462 Defs->push_back(*NewAccess); 1463 } 1464 } 1465 BlockNumberingValid.erase(BB); 1466 } 1467 1468 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1469 AccessList::iterator InsertPt) { 1470 auto *Accesses = getWritableBlockAccesses(BB); 1471 bool WasEnd = InsertPt == Accesses->end(); 1472 Accesses->insert(AccessList::iterator(InsertPt), What); 1473 if (!isa<MemoryUse>(What)) { 1474 auto *Defs = getOrCreateDefsList(BB); 1475 // If we got asked to insert at the end, we have an easy job, just shove it 1476 // at the end. If we got asked to insert before an existing def, we also get 1477 // an iterator. If we got asked to insert before a use, we have to hunt for 1478 // the next def. 1479 if (WasEnd) { 1480 Defs->push_back(*What); 1481 } else if (isa<MemoryDef>(InsertPt)) { 1482 Defs->insert(InsertPt->getDefsIterator(), *What); 1483 } else { 1484 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1485 ++InsertPt; 1486 // Either we found a def, or we are inserting at the end 1487 if (InsertPt == Accesses->end()) 1488 Defs->push_back(*What); 1489 else 1490 Defs->insert(InsertPt->getDefsIterator(), *What); 1491 } 1492 } 1493 BlockNumberingValid.erase(BB); 1494 } 1495 1496 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1497 // Keep it in the lookup tables, remove from the lists 1498 removeFromLists(What, false); 1499 1500 // Note that moving should implicitly invalidate the optimized state of a 1501 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1502 // MemoryDef. 1503 if (auto *MD = dyn_cast<MemoryDef>(What)) 1504 MD->resetOptimized(); 1505 What->setBlock(BB); 1506 } 1507 1508 // Move What before Where in the IR. The end result is that What will belong to 1509 // the right lists and have the right Block set, but will not otherwise be 1510 // correct. It will not have the right defining access, and if it is a def, 1511 // things below it will not properly be updated. 1512 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1513 AccessList::iterator Where) { 1514 prepareForMoveTo(What, BB); 1515 insertIntoListsBefore(What, BB, Where); 1516 } 1517 1518 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1519 InsertionPlace Point) { 1520 if (isa<MemoryPhi>(What)) { 1521 assert(Point == Beginning && 1522 "Can only move a Phi at the beginning of the block"); 1523 // Update lookup table entry 1524 ValueToMemoryAccess.erase(What->getBlock()); 1525 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1526 (void)Inserted; 1527 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1528 } 1529 1530 prepareForMoveTo(What, BB); 1531 insertIntoListsForBlock(What, BB, Point); 1532 } 1533 1534 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1535 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1536 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1537 // Phi's always are placed at the front of the block. 1538 insertIntoListsForBlock(Phi, BB, Beginning); 1539 ValueToMemoryAccess[BB] = Phi; 1540 return Phi; 1541 } 1542 1543 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1544 MemoryAccess *Definition, 1545 const MemoryUseOrDef *Template) { 1546 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1547 MemoryUseOrDef *NewAccess = createNewAccess(I, Template); 1548 assert( 1549 NewAccess != nullptr && 1550 "Tried to create a memory access for a non-memory touching instruction"); 1551 NewAccess->setDefiningAccess(Definition); 1552 return NewAccess; 1553 } 1554 1555 // Return true if the instruction has ordering constraints. 1556 // Note specifically that this only considers stores and loads 1557 // because others are still considered ModRef by getModRefInfo. 1558 static inline bool isOrdered(const Instruction *I) { 1559 if (auto *SI = dyn_cast<StoreInst>(I)) { 1560 if (!SI->isUnordered()) 1561 return true; 1562 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1563 if (!LI->isUnordered()) 1564 return true; 1565 } 1566 return false; 1567 } 1568 1569 /// Helper function to create new memory accesses 1570 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1571 const MemoryUseOrDef *Template) { 1572 // The assume intrinsic has a control dependency which we model by claiming 1573 // that it writes arbitrarily. Ignore that fake memory dependency here. 1574 // FIXME: Replace this special casing with a more accurate modelling of 1575 // assume's control dependency. 1576 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1577 if (II->getIntrinsicID() == Intrinsic::assume) 1578 return nullptr; 1579 1580 bool Def, Use; 1581 if (Template) { 1582 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1583 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1584 #if !defined(NDEBUG) 1585 ModRefInfo ModRef = AA->getModRefInfo(I, None); 1586 bool DefCheck, UseCheck; 1587 DefCheck = isModSet(ModRef) || isOrdered(I); 1588 UseCheck = isRefSet(ModRef); 1589 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1590 #endif 1591 } else { 1592 // Find out what affect this instruction has on memory. 1593 ModRefInfo ModRef = AA->getModRefInfo(I, None); 1594 // The isOrdered check is used to ensure that volatiles end up as defs 1595 // (atomics end up as ModRef right now anyway). Until we separate the 1596 // ordering chain from the memory chain, this enables people to see at least 1597 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1598 // will still give an answer that bypasses other volatile loads. TODO: 1599 // Separate memory aliasing and ordering into two different chains so that 1600 // we can precisely represent both "what memory will this read/write/is 1601 // clobbered by" and "what instructions can I move this past". 1602 Def = isModSet(ModRef) || isOrdered(I); 1603 Use = isRefSet(ModRef); 1604 } 1605 1606 // It's possible for an instruction to not modify memory at all. During 1607 // construction, we ignore them. 1608 if (!Def && !Use) 1609 return nullptr; 1610 1611 MemoryUseOrDef *MUD; 1612 if (Def) 1613 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1614 else 1615 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1616 ValueToMemoryAccess[I] = MUD; 1617 return MUD; 1618 } 1619 1620 /// Returns true if \p Replacer dominates \p Replacee . 1621 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1622 const MemoryAccess *Replacee) const { 1623 if (isa<MemoryUseOrDef>(Replacee)) 1624 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1625 const auto *MP = cast<MemoryPhi>(Replacee); 1626 // For a phi node, the use occurs in the predecessor block of the phi node. 1627 // Since we may occur multiple times in the phi node, we have to check each 1628 // operand to ensure Replacer dominates each operand where Replacee occurs. 1629 for (const Use &Arg : MP->operands()) { 1630 if (Arg.get() != Replacee && 1631 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1632 return false; 1633 } 1634 return true; 1635 } 1636 1637 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1638 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1639 assert(MA->use_empty() && 1640 "Trying to remove memory access that still has uses"); 1641 BlockNumbering.erase(MA); 1642 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1643 MUD->setDefiningAccess(nullptr); 1644 // Invalidate our walker's cache if necessary 1645 if (!isa<MemoryUse>(MA)) 1646 Walker->invalidateInfo(MA); 1647 1648 Value *MemoryInst; 1649 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1650 MemoryInst = MUD->getMemoryInst(); 1651 else 1652 MemoryInst = MA->getBlock(); 1653 1654 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1655 if (VMA->second == MA) 1656 ValueToMemoryAccess.erase(VMA); 1657 } 1658 1659 /// Properly remove \p MA from all of MemorySSA's lists. 1660 /// 1661 /// Because of the way the intrusive list and use lists work, it is important to 1662 /// do removal in the right order. 1663 /// ShouldDelete defaults to true, and will cause the memory access to also be 1664 /// deleted, not just removed. 1665 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1666 BasicBlock *BB = MA->getBlock(); 1667 // The access list owns the reference, so we erase it from the non-owning list 1668 // first. 1669 if (!isa<MemoryUse>(MA)) { 1670 auto DefsIt = PerBlockDefs.find(BB); 1671 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1672 Defs->remove(*MA); 1673 if (Defs->empty()) 1674 PerBlockDefs.erase(DefsIt); 1675 } 1676 1677 // The erase call here will delete it. If we don't want it deleted, we call 1678 // remove instead. 1679 auto AccessIt = PerBlockAccesses.find(BB); 1680 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1681 if (ShouldDelete) 1682 Accesses->erase(MA); 1683 else 1684 Accesses->remove(MA); 1685 1686 if (Accesses->empty()) { 1687 PerBlockAccesses.erase(AccessIt); 1688 BlockNumberingValid.erase(BB); 1689 } 1690 } 1691 1692 void MemorySSA::print(raw_ostream &OS) const { 1693 MemorySSAAnnotatedWriter Writer(this); 1694 F.print(OS, &Writer); 1695 } 1696 1697 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1698 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1699 #endif 1700 1701 void MemorySSA::verifyMemorySSA() const { 1702 verifyDefUses(F); 1703 verifyDomination(F); 1704 verifyOrdering(F); 1705 verifyDominationNumbers(F); 1706 Walker->verify(this); 1707 verifyClobberSanity(F); 1708 } 1709 1710 /// Check sanity of the clobbering instruction for access MA. 1711 void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const { 1712 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) { 1713 if (!MUD->isOptimized()) 1714 return; 1715 auto *I = MUD->getMemoryInst(); 1716 auto Loc = MemoryLocation::getOrNone(I); 1717 if (Loc == None) 1718 return; 1719 auto *Clobber = MUD->getOptimized(); 1720 UpwardsMemoryQuery Q(I, MUD); 1721 checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA, true); 1722 } 1723 } 1724 1725 void MemorySSA::verifyClobberSanity(const Function &F) const { 1726 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1727 for (const BasicBlock &BB : F) { 1728 const AccessList *Accesses = getBlockAccesses(&BB); 1729 if (!Accesses) 1730 continue; 1731 for (const MemoryAccess &MA : *Accesses) 1732 checkClobberSanityAccess(&MA); 1733 } 1734 #endif 1735 } 1736 1737 /// Verify that all of the blocks we believe to have valid domination numbers 1738 /// actually have valid domination numbers. 1739 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1740 #ifndef NDEBUG 1741 if (BlockNumberingValid.empty()) 1742 return; 1743 1744 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1745 for (const BasicBlock &BB : F) { 1746 if (!ValidBlocks.count(&BB)) 1747 continue; 1748 1749 ValidBlocks.erase(&BB); 1750 1751 const AccessList *Accesses = getBlockAccesses(&BB); 1752 // It's correct to say an empty block has valid numbering. 1753 if (!Accesses) 1754 continue; 1755 1756 // Block numbering starts at 1. 1757 unsigned long LastNumber = 0; 1758 for (const MemoryAccess &MA : *Accesses) { 1759 auto ThisNumberIter = BlockNumbering.find(&MA); 1760 assert(ThisNumberIter != BlockNumbering.end() && 1761 "MemoryAccess has no domination number in a valid block!"); 1762 1763 unsigned long ThisNumber = ThisNumberIter->second; 1764 assert(ThisNumber > LastNumber && 1765 "Domination numbers should be strictly increasing!"); 1766 LastNumber = ThisNumber; 1767 } 1768 } 1769 1770 assert(ValidBlocks.empty() && 1771 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1772 #endif 1773 } 1774 1775 /// Verify that the order and existence of MemoryAccesses matches the 1776 /// order and existence of memory affecting instructions. 1777 void MemorySSA::verifyOrdering(Function &F) const { 1778 #ifndef NDEBUG 1779 // Walk all the blocks, comparing what the lookups think and what the access 1780 // lists think, as well as the order in the blocks vs the order in the access 1781 // lists. 1782 SmallVector<MemoryAccess *, 32> ActualAccesses; 1783 SmallVector<MemoryAccess *, 32> ActualDefs; 1784 for (BasicBlock &B : F) { 1785 const AccessList *AL = getBlockAccesses(&B); 1786 const auto *DL = getBlockDefs(&B); 1787 MemoryAccess *Phi = getMemoryAccess(&B); 1788 if (Phi) { 1789 ActualAccesses.push_back(Phi); 1790 ActualDefs.push_back(Phi); 1791 } 1792 1793 for (Instruction &I : B) { 1794 MemoryAccess *MA = getMemoryAccess(&I); 1795 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1796 "We have memory affecting instructions " 1797 "in this block but they are not in the " 1798 "access list or defs list"); 1799 if (MA) { 1800 ActualAccesses.push_back(MA); 1801 if (isa<MemoryDef>(MA)) 1802 ActualDefs.push_back(MA); 1803 } 1804 } 1805 // Either we hit the assert, really have no accesses, or we have both 1806 // accesses and an access list. 1807 // Same with defs. 1808 if (!AL && !DL) 1809 continue; 1810 assert(AL->size() == ActualAccesses.size() && 1811 "We don't have the same number of accesses in the block as on the " 1812 "access list"); 1813 assert((DL || ActualDefs.size() == 0) && 1814 "Either we should have a defs list, or we should have no defs"); 1815 assert((!DL || DL->size() == ActualDefs.size()) && 1816 "We don't have the same number of defs in the block as on the " 1817 "def list"); 1818 auto ALI = AL->begin(); 1819 auto AAI = ActualAccesses.begin(); 1820 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1821 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1822 ++ALI; 1823 ++AAI; 1824 } 1825 ActualAccesses.clear(); 1826 if (DL) { 1827 auto DLI = DL->begin(); 1828 auto ADI = ActualDefs.begin(); 1829 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1830 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1831 ++DLI; 1832 ++ADI; 1833 } 1834 } 1835 ActualDefs.clear(); 1836 } 1837 #endif 1838 } 1839 1840 /// Verify the domination properties of MemorySSA by checking that each 1841 /// definition dominates all of its uses. 1842 void MemorySSA::verifyDomination(Function &F) const { 1843 #ifndef NDEBUG 1844 for (BasicBlock &B : F) { 1845 // Phi nodes are attached to basic blocks 1846 if (MemoryPhi *MP = getMemoryAccess(&B)) 1847 for (const Use &U : MP->uses()) 1848 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1849 1850 for (Instruction &I : B) { 1851 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1852 if (!MD) 1853 continue; 1854 1855 for (const Use &U : MD->uses()) 1856 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1857 } 1858 } 1859 #endif 1860 } 1861 1862 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 1863 /// appears in the use list of \p Def. 1864 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1865 #ifndef NDEBUG 1866 // The live on entry use may cause us to get a NULL def here 1867 if (!Def) 1868 assert(isLiveOnEntryDef(Use) && 1869 "Null def but use not point to live on entry def"); 1870 else 1871 assert(is_contained(Def->users(), Use) && 1872 "Did not find use in def's use list"); 1873 #endif 1874 } 1875 1876 /// Verify the immediate use information, by walking all the memory 1877 /// accesses and verifying that, for each use, it appears in the 1878 /// appropriate def's use list 1879 void MemorySSA::verifyDefUses(Function &F) const { 1880 #ifndef NDEBUG 1881 for (BasicBlock &B : F) { 1882 // Phi nodes are attached to basic blocks 1883 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 1884 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1885 pred_begin(&B), pred_end(&B))) && 1886 "Incomplete MemoryPhi Node"); 1887 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1888 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1889 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 1890 pred_end(&B) && 1891 "Incoming phi block not a block predecessor"); 1892 } 1893 } 1894 1895 for (Instruction &I : B) { 1896 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 1897 verifyUseInDefs(MA->getDefiningAccess(), MA); 1898 } 1899 } 1900 } 1901 #endif 1902 } 1903 1904 /// Perform a local numbering on blocks so that instruction ordering can be 1905 /// determined in constant time. 1906 /// TODO: We currently just number in order. If we numbered by N, we could 1907 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 1908 /// log2(N) sequences of mixed before and after) without needing to invalidate 1909 /// the numbering. 1910 void MemorySSA::renumberBlock(const BasicBlock *B) const { 1911 // The pre-increment ensures the numbers really start at 1. 1912 unsigned long CurrentNumber = 0; 1913 const AccessList *AL = getBlockAccesses(B); 1914 assert(AL != nullptr && "Asking to renumber an empty block"); 1915 for (const auto &I : *AL) 1916 BlockNumbering[&I] = ++CurrentNumber; 1917 BlockNumberingValid.insert(B); 1918 } 1919 1920 /// Determine, for two memory accesses in the same block, 1921 /// whether \p Dominator dominates \p Dominatee. 1922 /// \returns True if \p Dominator dominates \p Dominatee. 1923 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 1924 const MemoryAccess *Dominatee) const { 1925 const BasicBlock *DominatorBlock = Dominator->getBlock(); 1926 1927 assert((DominatorBlock == Dominatee->getBlock()) && 1928 "Asking for local domination when accesses are in different blocks!"); 1929 // A node dominates itself. 1930 if (Dominatee == Dominator) 1931 return true; 1932 1933 // When Dominatee is defined on function entry, it is not dominated by another 1934 // memory access. 1935 if (isLiveOnEntryDef(Dominatee)) 1936 return false; 1937 1938 // When Dominator is defined on function entry, it dominates the other memory 1939 // access. 1940 if (isLiveOnEntryDef(Dominator)) 1941 return true; 1942 1943 if (!BlockNumberingValid.count(DominatorBlock)) 1944 renumberBlock(DominatorBlock); 1945 1946 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 1947 // All numbers start with 1 1948 assert(DominatorNum != 0 && "Block was not numbered properly"); 1949 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 1950 assert(DominateeNum != 0 && "Block was not numbered properly"); 1951 return DominatorNum < DominateeNum; 1952 } 1953 1954 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1955 const MemoryAccess *Dominatee) const { 1956 if (Dominator == Dominatee) 1957 return true; 1958 1959 if (isLiveOnEntryDef(Dominatee)) 1960 return false; 1961 1962 if (Dominator->getBlock() != Dominatee->getBlock()) 1963 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 1964 return locallyDominates(Dominator, Dominatee); 1965 } 1966 1967 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1968 const Use &Dominatee) const { 1969 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 1970 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 1971 // The def must dominate the incoming block of the phi. 1972 if (UseBB != Dominator->getBlock()) 1973 return DT->dominates(Dominator->getBlock(), UseBB); 1974 // If the UseBB and the DefBB are the same, compare locally. 1975 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 1976 } 1977 // If it's not a PHI node use, the normal dominates can already handle it. 1978 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 1979 } 1980 1981 const static char LiveOnEntryStr[] = "liveOnEntry"; 1982 1983 void MemoryAccess::print(raw_ostream &OS) const { 1984 switch (getValueID()) { 1985 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 1986 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 1987 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 1988 } 1989 llvm_unreachable("invalid value id"); 1990 } 1991 1992 void MemoryDef::print(raw_ostream &OS) const { 1993 MemoryAccess *UO = getDefiningAccess(); 1994 1995 auto printID = [&OS](MemoryAccess *A) { 1996 if (A && A->getID()) 1997 OS << A->getID(); 1998 else 1999 OS << LiveOnEntryStr; 2000 }; 2001 2002 OS << getID() << " = MemoryDef("; 2003 printID(UO); 2004 OS << ")"; 2005 2006 if (isOptimized()) { 2007 OS << "->"; 2008 printID(getOptimized()); 2009 2010 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2011 OS << " " << *AR; 2012 } 2013 } 2014 2015 void MemoryPhi::print(raw_ostream &OS) const { 2016 bool First = true; 2017 OS << getID() << " = MemoryPhi("; 2018 for (const auto &Op : operands()) { 2019 BasicBlock *BB = getIncomingBlock(Op); 2020 MemoryAccess *MA = cast<MemoryAccess>(Op); 2021 if (!First) 2022 OS << ','; 2023 else 2024 First = false; 2025 2026 OS << '{'; 2027 if (BB->hasName()) 2028 OS << BB->getName(); 2029 else 2030 BB->printAsOperand(OS, false); 2031 OS << ','; 2032 if (unsigned ID = MA->getID()) 2033 OS << ID; 2034 else 2035 OS << LiveOnEntryStr; 2036 OS << '}'; 2037 } 2038 OS << ')'; 2039 } 2040 2041 void MemoryUse::print(raw_ostream &OS) const { 2042 MemoryAccess *UO = getDefiningAccess(); 2043 OS << "MemoryUse("; 2044 if (UO && UO->getID()) 2045 OS << UO->getID(); 2046 else 2047 OS << LiveOnEntryStr; 2048 OS << ')'; 2049 2050 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2051 OS << " " << *AR; 2052 } 2053 2054 void MemoryAccess::dump() const { 2055 // Cannot completely remove virtual function even in release mode. 2056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2057 print(dbgs()); 2058 dbgs() << "\n"; 2059 #endif 2060 } 2061 2062 char MemorySSAPrinterLegacyPass::ID = 0; 2063 2064 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2065 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2066 } 2067 2068 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2069 AU.setPreservesAll(); 2070 AU.addRequired<MemorySSAWrapperPass>(); 2071 } 2072 2073 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2074 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2075 MSSA.print(dbgs()); 2076 if (VerifyMemorySSA) 2077 MSSA.verifyMemorySSA(); 2078 return false; 2079 } 2080 2081 AnalysisKey MemorySSAAnalysis::Key; 2082 2083 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2084 FunctionAnalysisManager &AM) { 2085 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2086 auto &AA = AM.getResult<AAManager>(F); 2087 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 2088 } 2089 2090 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2091 FunctionAnalysisManager &AM) { 2092 OS << "MemorySSA for function: " << F.getName() << "\n"; 2093 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2094 2095 return PreservedAnalyses::all(); 2096 } 2097 2098 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2099 FunctionAnalysisManager &AM) { 2100 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2101 2102 return PreservedAnalyses::all(); 2103 } 2104 2105 char MemorySSAWrapperPass::ID = 0; 2106 2107 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2108 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2109 } 2110 2111 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2112 2113 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2114 AU.setPreservesAll(); 2115 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2116 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2117 } 2118 2119 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2120 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2121 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2122 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2123 return false; 2124 } 2125 2126 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2127 2128 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2129 MSSA->print(OS); 2130 } 2131 2132 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2133 2134 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, 2135 DominatorTree *D) 2136 : MemorySSAWalker(M), Walker(*M, *A, *D) {} 2137 2138 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { 2139 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 2140 MUD->resetOptimized(); 2141 } 2142 2143 /// Walk the use-def chains starting at \p MA and find 2144 /// the MemoryAccess that actually clobbers Loc. 2145 /// 2146 /// \returns our clobbering memory access 2147 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 2148 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { 2149 return Walker.findClobber(StartingAccess, Q); 2150 } 2151 2152 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 2153 MemoryAccess *StartingAccess, const MemoryLocation &Loc) { 2154 if (isa<MemoryPhi>(StartingAccess)) 2155 return StartingAccess; 2156 2157 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2158 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2159 return StartingUseOrDef; 2160 2161 Instruction *I = StartingUseOrDef->getMemoryInst(); 2162 2163 // Conservatively, fences are always clobbers, so don't perform the walk if we 2164 // hit a fence. 2165 if (!ImmutableCallSite(I) && I->isFenceLike()) 2166 return StartingUseOrDef; 2167 2168 UpwardsMemoryQuery Q; 2169 Q.OriginalAccess = StartingUseOrDef; 2170 Q.StartingLoc = Loc; 2171 Q.Inst = I; 2172 Q.IsCall = false; 2173 2174 // Unlike the other function, do not walk to the def of a def, because we are 2175 // handed something we already believe is the clobbering access. 2176 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2177 ? StartingUseOrDef->getDefiningAccess() 2178 : StartingUseOrDef; 2179 2180 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); 2181 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2182 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2183 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2184 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2185 return Clobber; 2186 } 2187 2188 MemoryAccess * 2189 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2190 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2191 // If this is a MemoryPhi, we can't do anything. 2192 if (!StartingAccess) 2193 return MA; 2194 2195 // If this is an already optimized use or def, return the optimized result. 2196 // Note: Currently, we store the optimized def result in a separate field, 2197 // since we can't use the defining access. 2198 if (StartingAccess->isOptimized()) 2199 return StartingAccess->getOptimized(); 2200 2201 const Instruction *I = StartingAccess->getMemoryInst(); 2202 UpwardsMemoryQuery Q(I, StartingAccess); 2203 // We can't sanely do anything with a fence, since they conservatively clobber 2204 // all memory, and have no locations to get pointers from to try to 2205 // disambiguate. 2206 if (!Q.IsCall && I->isFenceLike()) 2207 return StartingAccess; 2208 2209 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { 2210 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2211 StartingAccess->setOptimized(LiveOnEntry); 2212 StartingAccess->setOptimizedAccessType(None); 2213 return LiveOnEntry; 2214 } 2215 2216 // Start with the thing we already think clobbers this location 2217 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2218 2219 // At this point, DefiningAccess may be the live on entry def. 2220 // If it is, we will not get a better result. 2221 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2222 StartingAccess->setOptimized(DefiningAccess); 2223 StartingAccess->setOptimizedAccessType(None); 2224 return DefiningAccess; 2225 } 2226 2227 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); 2228 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2229 LLVM_DEBUG(dbgs() << *DefiningAccess << "\n"); 2230 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2231 LLVM_DEBUG(dbgs() << *Result << "\n"); 2232 2233 StartingAccess->setOptimized(Result); 2234 if (MSSA->isLiveOnEntryDef(Result)) 2235 StartingAccess->setOptimizedAccessType(None); 2236 else if (Q.AR == MustAlias) 2237 StartingAccess->setOptimizedAccessType(MustAlias); 2238 2239 return Result; 2240 } 2241 2242 MemoryAccess * 2243 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2244 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2245 return Use->getDefiningAccess(); 2246 return MA; 2247 } 2248 2249 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2250 MemoryAccess *StartingAccess, const MemoryLocation &) { 2251 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2252 return Use->getDefiningAccess(); 2253 return StartingAccess; 2254 } 2255 2256 void MemoryPhi::deleteMe(DerivedUser *Self) { 2257 delete static_cast<MemoryPhi *>(Self); 2258 } 2259 2260 void MemoryDef::deleteMe(DerivedUser *Self) { 2261 delete static_cast<MemoryDef *>(Self); 2262 } 2263 2264 void MemoryUse::deleteMe(DerivedUser *Self) { 2265 delete static_cast<MemoryUse *>(Self); 2266 } 2267