1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSA class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/AssemblyAnnotationWriter.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/FormattedStream.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "memoryssa"
61 
62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
63                       true)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67                     true)
68 
69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70                       "Memory SSA Printer", false, false)
71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73                     "Memory SSA Printer", false, false)
74 
75 static cl::opt<unsigned> MaxCheckLimit(
76     "memssa-check-limit", cl::Hidden, cl::init(100),
77     cl::desc("The maximum number of stores/phis MemorySSA"
78              "will consider trying to walk past (default = 100)"));
79 
80 // Always verify MemorySSA if expensive checking is enabled.
81 #ifdef EXPENSIVE_CHECKS
82 bool llvm::VerifyMemorySSA = true;
83 #else
84 bool llvm::VerifyMemorySSA = false;
85 #endif
86 static cl::opt<bool, true>
87     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
89 
90 namespace llvm {
91 
92 /// An assembly annotator class to print Memory SSA information in
93 /// comments.
94 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
95   friend class MemorySSA;
96 
97   const MemorySSA *MSSA;
98 
99 public:
100   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
101 
102   void emitBasicBlockStartAnnot(const BasicBlock *BB,
103                                 formatted_raw_ostream &OS) override {
104     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105       OS << "; " << *MA << "\n";
106   }
107 
108   void emitInstructionAnnot(const Instruction *I,
109                             formatted_raw_ostream &OS) override {
110     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111       OS << "; " << *MA << "\n";
112   }
113 };
114 
115 } // end namespace llvm
116 
117 namespace {
118 
119 /// Our current alias analysis API differentiates heavily between calls and
120 /// non-calls, and functions called on one usually assert on the other.
121 /// This class encapsulates the distinction to simplify other code that wants
122 /// "Memory affecting instructions and related data" to use as a key.
123 /// For example, this class is used as a densemap key in the use optimizer.
124 class MemoryLocOrCall {
125 public:
126   bool IsCall = false;
127 
128   MemoryLocOrCall(MemoryUseOrDef *MUD)
129       : MemoryLocOrCall(MUD->getMemoryInst()) {}
130   MemoryLocOrCall(const MemoryUseOrDef *MUD)
131       : MemoryLocOrCall(MUD->getMemoryInst()) {}
132 
133   MemoryLocOrCall(Instruction *Inst) {
134     if (ImmutableCallSite(Inst)) {
135       IsCall = true;
136       CS = ImmutableCallSite(Inst);
137     } else {
138       IsCall = false;
139       // There is no such thing as a memorylocation for a fence inst, and it is
140       // unique in that regard.
141       if (!isa<FenceInst>(Inst))
142         Loc = MemoryLocation::get(Inst);
143     }
144   }
145 
146   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
147 
148   ImmutableCallSite getCS() const {
149     assert(IsCall);
150     return CS;
151   }
152 
153   MemoryLocation getLoc() const {
154     assert(!IsCall);
155     return Loc;
156   }
157 
158   bool operator==(const MemoryLocOrCall &Other) const {
159     if (IsCall != Other.IsCall)
160       return false;
161 
162     if (!IsCall)
163       return Loc == Other.Loc;
164 
165     if (CS.getCalledValue() != Other.CS.getCalledValue())
166       return false;
167 
168     return CS.arg_size() == Other.CS.arg_size() &&
169            std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
170   }
171 
172 private:
173   union {
174     ImmutableCallSite CS;
175     MemoryLocation Loc;
176   };
177 };
178 
179 } // end anonymous namespace
180 
181 namespace llvm {
182 
183 template <> struct DenseMapInfo<MemoryLocOrCall> {
184   static inline MemoryLocOrCall getEmptyKey() {
185     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
186   }
187 
188   static inline MemoryLocOrCall getTombstoneKey() {
189     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
190   }
191 
192   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
193     if (!MLOC.IsCall)
194       return hash_combine(
195           MLOC.IsCall,
196           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
197 
198     hash_code hash =
199         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
200                                       MLOC.getCS().getCalledValue()));
201 
202     for (const Value *Arg : MLOC.getCS().args())
203       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
204     return hash;
205   }
206 
207   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
208     return LHS == RHS;
209   }
210 };
211 
212 } // end namespace llvm
213 
214 /// This does one-way checks to see if Use could theoretically be hoisted above
215 /// MayClobber. This will not check the other way around.
216 ///
217 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
218 /// MayClobber, with no potentially clobbering operations in between them.
219 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
220 static bool areLoadsReorderable(const LoadInst *Use,
221                                 const LoadInst *MayClobber) {
222   bool VolatileUse = Use->isVolatile();
223   bool VolatileClobber = MayClobber->isVolatile();
224   // Volatile operations may never be reordered with other volatile operations.
225   if (VolatileUse && VolatileClobber)
226     return false;
227   // Otherwise, volatile doesn't matter here. From the language reference:
228   // 'optimizers may change the order of volatile operations relative to
229   // non-volatile operations.'"
230 
231   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
232   // is weaker, it can be moved above other loads. We just need to be sure that
233   // MayClobber isn't an acquire load, because loads can't be moved above
234   // acquire loads.
235   //
236   // Note that this explicitly *does* allow the free reordering of monotonic (or
237   // weaker) loads of the same address.
238   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
239   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
240                                                      AtomicOrdering::Acquire);
241   return !(SeqCstUse || MayClobberIsAcquire);
242 }
243 
244 namespace {
245 
246 struct ClobberAlias {
247   bool IsClobber;
248   Optional<AliasResult> AR;
249 };
250 
251 } // end anonymous namespace
252 
253 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
254 // ignored if IsClobber = false.
255 static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
256                                              const MemoryLocation &UseLoc,
257                                              const Instruction *UseInst,
258                                              AliasAnalysis &AA) {
259   Instruction *DefInst = MD->getMemoryInst();
260   assert(DefInst && "Defining instruction not actually an instruction");
261   ImmutableCallSite UseCS(UseInst);
262   Optional<AliasResult> AR;
263 
264   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
265     // These intrinsics will show up as affecting memory, but they are just
266     // markers, mostly.
267     //
268     // FIXME: We probably don't actually want MemorySSA to model these at all
269     // (including creating MemoryAccesses for them): we just end up inventing
270     // clobbers where they don't really exist at all. Please see D43269 for
271     // context.
272     switch (II->getIntrinsicID()) {
273     case Intrinsic::lifetime_start:
274       if (UseCS)
275         return {false, NoAlias};
276       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
277       return {AR != NoAlias, AR};
278     case Intrinsic::lifetime_end:
279     case Intrinsic::invariant_start:
280     case Intrinsic::invariant_end:
281     case Intrinsic::assume:
282       return {false, NoAlias};
283     default:
284       break;
285     }
286   }
287 
288   if (UseCS) {
289     ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
290     AR = isMustSet(I) ? MustAlias : MayAlias;
291     return {isModOrRefSet(I), AR};
292   }
293 
294   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
295     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
296       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
297 
298   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
299   AR = isMustSet(I) ? MustAlias : MayAlias;
300   return {isModSet(I), AR};
301 }
302 
303 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
304                                              const MemoryUseOrDef *MU,
305                                              const MemoryLocOrCall &UseMLOC,
306                                              AliasAnalysis &AA) {
307   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
308   // to exist while MemoryLocOrCall is pushed through places.
309   if (UseMLOC.IsCall)
310     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
311                                     AA);
312   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
313                                   AA);
314 }
315 
316 // Return true when MD may alias MU, return false otherwise.
317 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
318                                         AliasAnalysis &AA) {
319   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
320 }
321 
322 namespace {
323 
324 struct UpwardsMemoryQuery {
325   // True if our original query started off as a call
326   bool IsCall = false;
327   // The pointer location we started the query with. This will be empty if
328   // IsCall is true.
329   MemoryLocation StartingLoc;
330   // This is the instruction we were querying about.
331   const Instruction *Inst = nullptr;
332   // The MemoryAccess we actually got called with, used to test local domination
333   const MemoryAccess *OriginalAccess = nullptr;
334   Optional<AliasResult> AR = MayAlias;
335 
336   UpwardsMemoryQuery() = default;
337 
338   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
339       : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
340     if (!IsCall)
341       StartingLoc = MemoryLocation::get(Inst);
342   }
343 };
344 
345 } // end anonymous namespace
346 
347 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
348                            AliasAnalysis &AA) {
349   Instruction *Inst = MD->getMemoryInst();
350   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
351     switch (II->getIntrinsicID()) {
352     case Intrinsic::lifetime_end:
353       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
354     default:
355       return false;
356     }
357   }
358   return false;
359 }
360 
361 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
362                                                    const Instruction *I) {
363   // If the memory can't be changed, then loads of the memory can't be
364   // clobbered.
365   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
366                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
367                                                           getPointerOperand()));
368 }
369 
370 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
371 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
372 ///
373 /// This is meant to be as simple and self-contained as possible. Because it
374 /// uses no cache, etc., it can be relatively expensive.
375 ///
376 /// \param Start     The MemoryAccess that we want to walk from.
377 /// \param ClobberAt A clobber for Start.
378 /// \param StartLoc  The MemoryLocation for Start.
379 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
380 /// \param Query     The UpwardsMemoryQuery we used for our search.
381 /// \param AA        The AliasAnalysis we used for our search.
382 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
383 static void
384 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
385                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
386                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA,
387                    bool AllowImpreciseClobber = false) {
388   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
389 
390   if (MSSA.isLiveOnEntryDef(Start)) {
391     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
392            "liveOnEntry must clobber itself");
393     return;
394   }
395 
396   bool FoundClobber = false;
397   DenseSet<ConstMemoryAccessPair> VisitedPhis;
398   SmallVector<ConstMemoryAccessPair, 8> Worklist;
399   Worklist.emplace_back(Start, StartLoc);
400   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
401   // is found, complain.
402   while (!Worklist.empty()) {
403     auto MAP = Worklist.pop_back_val();
404     // All we care about is that nothing from Start to ClobberAt clobbers Start.
405     // We learn nothing from revisiting nodes.
406     if (!VisitedPhis.insert(MAP).second)
407       continue;
408 
409     for (const auto *MA : def_chain(MAP.first)) {
410       if (MA == ClobberAt) {
411         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
412           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
413           // since it won't let us short-circuit.
414           //
415           // Also, note that this can't be hoisted out of the `Worklist` loop,
416           // since MD may only act as a clobber for 1 of N MemoryLocations.
417           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
418           if (!FoundClobber) {
419             ClobberAlias CA =
420                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
421             if (CA.IsClobber) {
422               FoundClobber = true;
423               // Not used: CA.AR;
424             }
425           }
426         }
427         break;
428       }
429 
430       // We should never hit liveOnEntry, unless it's the clobber.
431       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
432 
433       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
434         // If Start is a Def, skip self.
435         if (MD == Start)
436           continue;
437 
438         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
439                     .IsClobber &&
440                "Found clobber before reaching ClobberAt!");
441         continue;
442       }
443 
444       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
445         (void)MU;
446         assert (MU == Start &&
447                 "Can only find use in def chain if Start is a use");
448         continue;
449       }
450 
451       assert(isa<MemoryPhi>(MA));
452       Worklist.append(
453           upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
454           upward_defs_end());
455     }
456   }
457 
458   // If the verify is done following an optimization, it's possible that
459   // ClobberAt was a conservative clobbering, that we can now infer is not a
460   // true clobbering access. Don't fail the verify if that's the case.
461   // We do have accesses that claim they're optimized, but could be optimized
462   // further. Updating all these can be expensive, so allow it for now (FIXME).
463   if (AllowImpreciseClobber)
464     return;
465 
466   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
467   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
468   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
469          "ClobberAt never acted as a clobber");
470 }
471 
472 namespace {
473 
474 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
475 /// in one class.
476 class ClobberWalker {
477   /// Save a few bytes by using unsigned instead of size_t.
478   using ListIndex = unsigned;
479 
480   /// Represents a span of contiguous MemoryDefs, potentially ending in a
481   /// MemoryPhi.
482   struct DefPath {
483     MemoryLocation Loc;
484     // Note that, because we always walk in reverse, Last will always dominate
485     // First. Also note that First and Last are inclusive.
486     MemoryAccess *First;
487     MemoryAccess *Last;
488     Optional<ListIndex> Previous;
489 
490     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
491             Optional<ListIndex> Previous)
492         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
493 
494     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
495             Optional<ListIndex> Previous)
496         : DefPath(Loc, Init, Init, Previous) {}
497   };
498 
499   const MemorySSA &MSSA;
500   AliasAnalysis &AA;
501   DominatorTree &DT;
502   UpwardsMemoryQuery *Query;
503 
504   // Phi optimization bookkeeping
505   SmallVector<DefPath, 32> Paths;
506   DenseSet<ConstMemoryAccessPair> VisitedPhis;
507 
508   /// Find the nearest def or phi that `From` can legally be optimized to.
509   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
510     assert(From->getNumOperands() && "Phi with no operands?");
511 
512     BasicBlock *BB = From->getBlock();
513     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
514     DomTreeNode *Node = DT.getNode(BB);
515     while ((Node = Node->getIDom())) {
516       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
517       if (Defs)
518         return &*Defs->rbegin();
519     }
520     return Result;
521   }
522 
523   /// Result of calling walkToPhiOrClobber.
524   struct UpwardsWalkResult {
525     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
526     /// both. Include alias info when clobber found.
527     MemoryAccess *Result;
528     bool IsKnownClobber;
529     Optional<AliasResult> AR;
530   };
531 
532   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
533   /// This will update Desc.Last as it walks. It will (optionally) also stop at
534   /// StopAt.
535   ///
536   /// This does not test for whether StopAt is a clobber
537   UpwardsWalkResult
538   walkToPhiOrClobber(DefPath &Desc,
539                      const MemoryAccess *StopAt = nullptr) const {
540     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
541 
542     for (MemoryAccess *Current : def_chain(Desc.Last)) {
543       Desc.Last = Current;
544       if (Current == StopAt)
545         return {Current, false, MayAlias};
546 
547       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
548         if (MSSA.isLiveOnEntryDef(MD))
549           return {MD, true, MustAlias};
550         ClobberAlias CA =
551             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
552         if (CA.IsClobber)
553           return {MD, true, CA.AR};
554       }
555     }
556 
557     assert(isa<MemoryPhi>(Desc.Last) &&
558            "Ended at a non-clobber that's not a phi?");
559     return {Desc.Last, false, MayAlias};
560   }
561 
562   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
563                    ListIndex PriorNode) {
564     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
565                                  upward_defs_end());
566     for (const MemoryAccessPair &P : UpwardDefs) {
567       PausedSearches.push_back(Paths.size());
568       Paths.emplace_back(P.second, P.first, PriorNode);
569     }
570   }
571 
572   /// Represents a search that terminated after finding a clobber. This clobber
573   /// may or may not be present in the path of defs from LastNode..SearchStart,
574   /// since it may have been retrieved from cache.
575   struct TerminatedPath {
576     MemoryAccess *Clobber;
577     ListIndex LastNode;
578   };
579 
580   /// Get an access that keeps us from optimizing to the given phi.
581   ///
582   /// PausedSearches is an array of indices into the Paths array. Its incoming
583   /// value is the indices of searches that stopped at the last phi optimization
584   /// target. It's left in an unspecified state.
585   ///
586   /// If this returns None, NewPaused is a vector of searches that terminated
587   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
588   Optional<TerminatedPath>
589   getBlockingAccess(const MemoryAccess *StopWhere,
590                     SmallVectorImpl<ListIndex> &PausedSearches,
591                     SmallVectorImpl<ListIndex> &NewPaused,
592                     SmallVectorImpl<TerminatedPath> &Terminated) {
593     assert(!PausedSearches.empty() && "No searches to continue?");
594 
595     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
596     // PausedSearches as our stack.
597     while (!PausedSearches.empty()) {
598       ListIndex PathIndex = PausedSearches.pop_back_val();
599       DefPath &Node = Paths[PathIndex];
600 
601       // If we've already visited this path with this MemoryLocation, we don't
602       // need to do so again.
603       //
604       // NOTE: That we just drop these paths on the ground makes caching
605       // behavior sporadic. e.g. given a diamond:
606       //  A
607       // B C
608       //  D
609       //
610       // ...If we walk D, B, A, C, we'll only cache the result of phi
611       // optimization for A, B, and D; C will be skipped because it dies here.
612       // This arguably isn't the worst thing ever, since:
613       //   - We generally query things in a top-down order, so if we got below D
614       //     without needing cache entries for {C, MemLoc}, then chances are
615       //     that those cache entries would end up ultimately unused.
616       //   - We still cache things for A, so C only needs to walk up a bit.
617       // If this behavior becomes problematic, we can fix without a ton of extra
618       // work.
619       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
620         continue;
621 
622       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
623       if (Res.IsKnownClobber) {
624         assert(Res.Result != StopWhere);
625         // If this wasn't a cache hit, we hit a clobber when walking. That's a
626         // failure.
627         TerminatedPath Term{Res.Result, PathIndex};
628         if (!MSSA.dominates(Res.Result, StopWhere))
629           return Term;
630 
631         // Otherwise, it's a valid thing to potentially optimize to.
632         Terminated.push_back(Term);
633         continue;
634       }
635 
636       if (Res.Result == StopWhere) {
637         // We've hit our target. Save this path off for if we want to continue
638         // walking.
639         NewPaused.push_back(PathIndex);
640         continue;
641       }
642 
643       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
644       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
645     }
646 
647     return None;
648   }
649 
650   template <typename T, typename Walker>
651   struct generic_def_path_iterator
652       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
653                                     std::forward_iterator_tag, T *> {
654     generic_def_path_iterator() = default;
655     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
656 
657     T &operator*() const { return curNode(); }
658 
659     generic_def_path_iterator &operator++() {
660       N = curNode().Previous;
661       return *this;
662     }
663 
664     bool operator==(const generic_def_path_iterator &O) const {
665       if (N.hasValue() != O.N.hasValue())
666         return false;
667       return !N.hasValue() || *N == *O.N;
668     }
669 
670   private:
671     T &curNode() const { return W->Paths[*N]; }
672 
673     Walker *W = nullptr;
674     Optional<ListIndex> N = None;
675   };
676 
677   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
678   using const_def_path_iterator =
679       generic_def_path_iterator<const DefPath, const ClobberWalker>;
680 
681   iterator_range<def_path_iterator> def_path(ListIndex From) {
682     return make_range(def_path_iterator(this, From), def_path_iterator());
683   }
684 
685   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
686     return make_range(const_def_path_iterator(this, From),
687                       const_def_path_iterator());
688   }
689 
690   struct OptznResult {
691     /// The path that contains our result.
692     TerminatedPath PrimaryClobber;
693     /// The paths that we can legally cache back from, but that aren't
694     /// necessarily the result of the Phi optimization.
695     SmallVector<TerminatedPath, 4> OtherClobbers;
696   };
697 
698   ListIndex defPathIndex(const DefPath &N) const {
699     // The assert looks nicer if we don't need to do &N
700     const DefPath *NP = &N;
701     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
702            "Out of bounds DefPath!");
703     return NP - &Paths.front();
704   }
705 
706   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
707   /// that act as legal clobbers. Note that this won't return *all* clobbers.
708   ///
709   /// Phi optimization algorithm tl;dr:
710   ///   - Find the earliest def/phi, A, we can optimize to
711   ///   - Find if all paths from the starting memory access ultimately reach A
712   ///     - If not, optimization isn't possible.
713   ///     - Otherwise, walk from A to another clobber or phi, A'.
714   ///       - If A' is a def, we're done.
715   ///       - If A' is a phi, try to optimize it.
716   ///
717   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
718   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
719   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
720                              const MemoryLocation &Loc) {
721     assert(Paths.empty() && VisitedPhis.empty() &&
722            "Reset the optimization state.");
723 
724     Paths.emplace_back(Loc, Start, Phi, None);
725     // Stores how many "valid" optimization nodes we had prior to calling
726     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
727     auto PriorPathsSize = Paths.size();
728 
729     SmallVector<ListIndex, 16> PausedSearches;
730     SmallVector<ListIndex, 8> NewPaused;
731     SmallVector<TerminatedPath, 4> TerminatedPaths;
732 
733     addSearches(Phi, PausedSearches, 0);
734 
735     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
736     // Paths.
737     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
738       assert(!Paths.empty() && "Need a path to move");
739       auto Dom = Paths.begin();
740       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
741         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
742           Dom = I;
743       auto Last = Paths.end() - 1;
744       if (Last != Dom)
745         std::iter_swap(Last, Dom);
746     };
747 
748     MemoryPhi *Current = Phi;
749     while (true) {
750       assert(!MSSA.isLiveOnEntryDef(Current) &&
751              "liveOnEntry wasn't treated as a clobber?");
752 
753       const auto *Target = getWalkTarget(Current);
754       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
755       // optimization for the prior phi.
756       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
757         return MSSA.dominates(P.Clobber, Target);
758       }));
759 
760       // FIXME: This is broken, because the Blocker may be reported to be
761       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
762       // For the moment, this is fine, since we do nothing with blocker info.
763       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
764               Target, PausedSearches, NewPaused, TerminatedPaths)) {
765 
766         // Find the node we started at. We can't search based on N->Last, since
767         // we may have gone around a loop with a different MemoryLocation.
768         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
769           return defPathIndex(N) < PriorPathsSize;
770         });
771         assert(Iter != def_path_iterator());
772 
773         DefPath &CurNode = *Iter;
774         assert(CurNode.Last == Current);
775 
776         // Two things:
777         // A. We can't reliably cache all of NewPaused back. Consider a case
778         //    where we have two paths in NewPaused; one of which can't optimize
779         //    above this phi, whereas the other can. If we cache the second path
780         //    back, we'll end up with suboptimal cache entries. We can handle
781         //    cases like this a bit better when we either try to find all
782         //    clobbers that block phi optimization, or when our cache starts
783         //    supporting unfinished searches.
784         // B. We can't reliably cache TerminatedPaths back here without doing
785         //    extra checks; consider a case like:
786         //       T
787         //      / \
788         //     D   C
789         //      \ /
790         //       S
791         //    Where T is our target, C is a node with a clobber on it, D is a
792         //    diamond (with a clobber *only* on the left or right node, N), and
793         //    S is our start. Say we walk to D, through the node opposite N
794         //    (read: ignoring the clobber), and see a cache entry in the top
795         //    node of D. That cache entry gets put into TerminatedPaths. We then
796         //    walk up to C (N is later in our worklist), find the clobber, and
797         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
798         //    the bottom part of D to the cached clobber, ignoring the clobber
799         //    in N. Again, this problem goes away if we start tracking all
800         //    blockers for a given phi optimization.
801         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
802         return {Result, {}};
803       }
804 
805       // If there's nothing left to search, then all paths led to valid clobbers
806       // that we got from our cache; pick the nearest to the start, and allow
807       // the rest to be cached back.
808       if (NewPaused.empty()) {
809         MoveDominatedPathToEnd(TerminatedPaths);
810         TerminatedPath Result = TerminatedPaths.pop_back_val();
811         return {Result, std::move(TerminatedPaths)};
812       }
813 
814       MemoryAccess *DefChainEnd = nullptr;
815       SmallVector<TerminatedPath, 4> Clobbers;
816       for (ListIndex Paused : NewPaused) {
817         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
818         if (WR.IsKnownClobber)
819           Clobbers.push_back({WR.Result, Paused});
820         else
821           // Micro-opt: If we hit the end of the chain, save it.
822           DefChainEnd = WR.Result;
823       }
824 
825       if (!TerminatedPaths.empty()) {
826         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
827         // do it now.
828         if (!DefChainEnd)
829           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
830             DefChainEnd = MA;
831 
832         // If any of the terminated paths don't dominate the phi we'll try to
833         // optimize, we need to figure out what they are and quit.
834         const BasicBlock *ChainBB = DefChainEnd->getBlock();
835         for (const TerminatedPath &TP : TerminatedPaths) {
836           // Because we know that DefChainEnd is as "high" as we can go, we
837           // don't need local dominance checks; BB dominance is sufficient.
838           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
839             Clobbers.push_back(TP);
840         }
841       }
842 
843       // If we have clobbers in the def chain, find the one closest to Current
844       // and quit.
845       if (!Clobbers.empty()) {
846         MoveDominatedPathToEnd(Clobbers);
847         TerminatedPath Result = Clobbers.pop_back_val();
848         return {Result, std::move(Clobbers)};
849       }
850 
851       assert(all_of(NewPaused,
852                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
853 
854       // Because liveOnEntry is a clobber, this must be a phi.
855       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
856 
857       PriorPathsSize = Paths.size();
858       PausedSearches.clear();
859       for (ListIndex I : NewPaused)
860         addSearches(DefChainPhi, PausedSearches, I);
861       NewPaused.clear();
862 
863       Current = DefChainPhi;
864     }
865   }
866 
867   void verifyOptResult(const OptznResult &R) const {
868     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
869       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
870     }));
871   }
872 
873   void resetPhiOptznState() {
874     Paths.clear();
875     VisitedPhis.clear();
876   }
877 
878 public:
879   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
880       : MSSA(MSSA), AA(AA), DT(DT) {}
881 
882   /// Finds the nearest clobber for the given query, optimizing phis if
883   /// possible.
884   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
885     Query = &Q;
886 
887     MemoryAccess *Current = Start;
888     // This walker pretends uses don't exist. If we're handed one, silently grab
889     // its def. (This has the nice side-effect of ensuring we never cache uses)
890     if (auto *MU = dyn_cast<MemoryUse>(Start))
891       Current = MU->getDefiningAccess();
892 
893     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
894     // Fast path for the overly-common case (no crazy phi optimization
895     // necessary)
896     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
897     MemoryAccess *Result;
898     if (WalkResult.IsKnownClobber) {
899       Result = WalkResult.Result;
900       Q.AR = WalkResult.AR;
901     } else {
902       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
903                                           Current, Q.StartingLoc);
904       verifyOptResult(OptRes);
905       resetPhiOptznState();
906       Result = OptRes.PrimaryClobber.Clobber;
907     }
908 
909 #ifdef EXPENSIVE_CHECKS
910     checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
911 #endif
912     return Result;
913   }
914 
915   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
916 };
917 
918 struct RenamePassData {
919   DomTreeNode *DTN;
920   DomTreeNode::const_iterator ChildIt;
921   MemoryAccess *IncomingVal;
922 
923   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
924                  MemoryAccess *M)
925       : DTN(D), ChildIt(It), IncomingVal(M) {}
926 
927   void swap(RenamePassData &RHS) {
928     std::swap(DTN, RHS.DTN);
929     std::swap(ChildIt, RHS.ChildIt);
930     std::swap(IncomingVal, RHS.IncomingVal);
931   }
932 };
933 
934 } // end anonymous namespace
935 
936 namespace llvm {
937 
938 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
939 /// longer does caching on its own, but the name has been retained for the
940 /// moment.
941 class MemorySSA::CachingWalker final : public MemorySSAWalker {
942   ClobberWalker Walker;
943 
944   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
945 
946 public:
947   CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
948   ~CachingWalker() override = default;
949 
950   using MemorySSAWalker::getClobberingMemoryAccess;
951 
952   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
953   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
954                                           const MemoryLocation &) override;
955   void invalidateInfo(MemoryAccess *) override;
956 
957   void verify(const MemorySSA *MSSA) override {
958     MemorySSAWalker::verify(MSSA);
959     Walker.verify(MSSA);
960   }
961 };
962 
963 } // end namespace llvm
964 
965 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
966                                     bool RenameAllUses) {
967   // Pass through values to our successors
968   for (const BasicBlock *S : successors(BB)) {
969     auto It = PerBlockAccesses.find(S);
970     // Rename the phi nodes in our successor block
971     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
972       continue;
973     AccessList *Accesses = It->second.get();
974     auto *Phi = cast<MemoryPhi>(&Accesses->front());
975     if (RenameAllUses) {
976       int PhiIndex = Phi->getBasicBlockIndex(BB);
977       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
978       Phi->setIncomingValue(PhiIndex, IncomingVal);
979     } else
980       Phi->addIncoming(IncomingVal, BB);
981   }
982 }
983 
984 /// Rename a single basic block into MemorySSA form.
985 /// Uses the standard SSA renaming algorithm.
986 /// \returns The new incoming value.
987 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
988                                      bool RenameAllUses) {
989   auto It = PerBlockAccesses.find(BB);
990   // Skip most processing if the list is empty.
991   if (It != PerBlockAccesses.end()) {
992     AccessList *Accesses = It->second.get();
993     for (MemoryAccess &L : *Accesses) {
994       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
995         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
996           MUD->setDefiningAccess(IncomingVal);
997         if (isa<MemoryDef>(&L))
998           IncomingVal = &L;
999       } else {
1000         IncomingVal = &L;
1001       }
1002     }
1003   }
1004   return IncomingVal;
1005 }
1006 
1007 /// This is the standard SSA renaming algorithm.
1008 ///
1009 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1010 /// in phi nodes in our successors.
1011 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1012                            SmallPtrSetImpl<BasicBlock *> &Visited,
1013                            bool SkipVisited, bool RenameAllUses) {
1014   SmallVector<RenamePassData, 32> WorkStack;
1015   // Skip everything if we already renamed this block and we are skipping.
1016   // Note: You can't sink this into the if, because we need it to occur
1017   // regardless of whether we skip blocks or not.
1018   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1019   if (SkipVisited && AlreadyVisited)
1020     return;
1021 
1022   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1023   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1024   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1025 
1026   while (!WorkStack.empty()) {
1027     DomTreeNode *Node = WorkStack.back().DTN;
1028     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1029     IncomingVal = WorkStack.back().IncomingVal;
1030 
1031     if (ChildIt == Node->end()) {
1032       WorkStack.pop_back();
1033     } else {
1034       DomTreeNode *Child = *ChildIt;
1035       ++WorkStack.back().ChildIt;
1036       BasicBlock *BB = Child->getBlock();
1037       // Note: You can't sink this into the if, because we need it to occur
1038       // regardless of whether we skip blocks or not.
1039       AlreadyVisited = !Visited.insert(BB).second;
1040       if (SkipVisited && AlreadyVisited) {
1041         // We already visited this during our renaming, which can happen when
1042         // being asked to rename multiple blocks. Figure out the incoming val,
1043         // which is the last def.
1044         // Incoming value can only change if there is a block def, and in that
1045         // case, it's the last block def in the list.
1046         if (auto *BlockDefs = getWritableBlockDefs(BB))
1047           IncomingVal = &*BlockDefs->rbegin();
1048       } else
1049         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1050       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1051       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1052     }
1053   }
1054 }
1055 
1056 /// This handles unreachable block accesses by deleting phi nodes in
1057 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1058 /// being uses of the live on entry definition.
1059 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1060   assert(!DT->isReachableFromEntry(BB) &&
1061          "Reachable block found while handling unreachable blocks");
1062 
1063   // Make sure phi nodes in our reachable successors end up with a
1064   // LiveOnEntryDef for our incoming edge, even though our block is forward
1065   // unreachable.  We could just disconnect these blocks from the CFG fully,
1066   // but we do not right now.
1067   for (const BasicBlock *S : successors(BB)) {
1068     if (!DT->isReachableFromEntry(S))
1069       continue;
1070     auto It = PerBlockAccesses.find(S);
1071     // Rename the phi nodes in our successor block
1072     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1073       continue;
1074     AccessList *Accesses = It->second.get();
1075     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1076     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1077   }
1078 
1079   auto It = PerBlockAccesses.find(BB);
1080   if (It == PerBlockAccesses.end())
1081     return;
1082 
1083   auto &Accesses = It->second;
1084   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1085     auto Next = std::next(AI);
1086     // If we have a phi, just remove it. We are going to replace all
1087     // users with live on entry.
1088     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1089       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1090     else
1091       Accesses->erase(AI);
1092     AI = Next;
1093   }
1094 }
1095 
1096 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1097     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1098       NextID(0) {
1099   buildMemorySSA();
1100 }
1101 
1102 MemorySSA::~MemorySSA() {
1103   // Drop all our references
1104   for (const auto &Pair : PerBlockAccesses)
1105     for (MemoryAccess &MA : *Pair.second)
1106       MA.dropAllReferences();
1107 }
1108 
1109 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1110   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1111 
1112   if (Res.second)
1113     Res.first->second = llvm::make_unique<AccessList>();
1114   return Res.first->second.get();
1115 }
1116 
1117 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1118   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1119 
1120   if (Res.second)
1121     Res.first->second = llvm::make_unique<DefsList>();
1122   return Res.first->second.get();
1123 }
1124 
1125 namespace llvm {
1126 
1127 /// This class is a batch walker of all MemoryUse's in the program, and points
1128 /// their defining access at the thing that actually clobbers them.  Because it
1129 /// is a batch walker that touches everything, it does not operate like the
1130 /// other walkers.  This walker is basically performing a top-down SSA renaming
1131 /// pass, where the version stack is used as the cache.  This enables it to be
1132 /// significantly more time and memory efficient than using the regular walker,
1133 /// which is walking bottom-up.
1134 class MemorySSA::OptimizeUses {
1135 public:
1136   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1137                DominatorTree *DT)
1138       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1139     Walker = MSSA->getWalker();
1140   }
1141 
1142   void optimizeUses();
1143 
1144 private:
1145   /// This represents where a given memorylocation is in the stack.
1146   struct MemlocStackInfo {
1147     // This essentially is keeping track of versions of the stack. Whenever
1148     // the stack changes due to pushes or pops, these versions increase.
1149     unsigned long StackEpoch;
1150     unsigned long PopEpoch;
1151     // This is the lower bound of places on the stack to check. It is equal to
1152     // the place the last stack walk ended.
1153     // Note: Correctness depends on this being initialized to 0, which densemap
1154     // does
1155     unsigned long LowerBound;
1156     const BasicBlock *LowerBoundBlock;
1157     // This is where the last walk for this memory location ended.
1158     unsigned long LastKill;
1159     bool LastKillValid;
1160     Optional<AliasResult> AR;
1161   };
1162 
1163   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1164                            SmallVectorImpl<MemoryAccess *> &,
1165                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1166 
1167   MemorySSA *MSSA;
1168   MemorySSAWalker *Walker;
1169   AliasAnalysis *AA;
1170   DominatorTree *DT;
1171 };
1172 
1173 } // end namespace llvm
1174 
1175 /// Optimize the uses in a given block This is basically the SSA renaming
1176 /// algorithm, with one caveat: We are able to use a single stack for all
1177 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1178 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1179 /// going to be some position in that stack of possible ones.
1180 ///
1181 /// We track the stack positions that each MemoryLocation needs
1182 /// to check, and last ended at.  This is because we only want to check the
1183 /// things that changed since last time.  The same MemoryLocation should
1184 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1185 /// things like this, and if they start, we can modify MemoryLocOrCall to
1186 /// include relevant data)
1187 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1188     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1189     SmallVectorImpl<MemoryAccess *> &VersionStack,
1190     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1191 
1192   /// If no accesses, nothing to do.
1193   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1194   if (Accesses == nullptr)
1195     return;
1196 
1197   // Pop everything that doesn't dominate the current block off the stack,
1198   // increment the PopEpoch to account for this.
1199   while (true) {
1200     assert(
1201         !VersionStack.empty() &&
1202         "Version stack should have liveOnEntry sentinel dominating everything");
1203     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1204     if (DT->dominates(BackBlock, BB))
1205       break;
1206     while (VersionStack.back()->getBlock() == BackBlock)
1207       VersionStack.pop_back();
1208     ++PopEpoch;
1209   }
1210 
1211   for (MemoryAccess &MA : *Accesses) {
1212     auto *MU = dyn_cast<MemoryUse>(&MA);
1213     if (!MU) {
1214       VersionStack.push_back(&MA);
1215       ++StackEpoch;
1216       continue;
1217     }
1218 
1219     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1220       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1221       continue;
1222     }
1223 
1224     MemoryLocOrCall UseMLOC(MU);
1225     auto &LocInfo = LocStackInfo[UseMLOC];
1226     // If the pop epoch changed, it means we've removed stuff from top of
1227     // stack due to changing blocks. We may have to reset the lower bound or
1228     // last kill info.
1229     if (LocInfo.PopEpoch != PopEpoch) {
1230       LocInfo.PopEpoch = PopEpoch;
1231       LocInfo.StackEpoch = StackEpoch;
1232       // If the lower bound was in something that no longer dominates us, we
1233       // have to reset it.
1234       // We can't simply track stack size, because the stack may have had
1235       // pushes/pops in the meantime.
1236       // XXX: This is non-optimal, but only is slower cases with heavily
1237       // branching dominator trees.  To get the optimal number of queries would
1238       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1239       // the top of that stack dominates us.  This does not seem worth it ATM.
1240       // A much cheaper optimization would be to always explore the deepest
1241       // branch of the dominator tree first. This will guarantee this resets on
1242       // the smallest set of blocks.
1243       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1244           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1245         // Reset the lower bound of things to check.
1246         // TODO: Some day we should be able to reset to last kill, rather than
1247         // 0.
1248         LocInfo.LowerBound = 0;
1249         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1250         LocInfo.LastKillValid = false;
1251       }
1252     } else if (LocInfo.StackEpoch != StackEpoch) {
1253       // If all that has changed is the StackEpoch, we only have to check the
1254       // new things on the stack, because we've checked everything before.  In
1255       // this case, the lower bound of things to check remains the same.
1256       LocInfo.PopEpoch = PopEpoch;
1257       LocInfo.StackEpoch = StackEpoch;
1258     }
1259     if (!LocInfo.LastKillValid) {
1260       LocInfo.LastKill = VersionStack.size() - 1;
1261       LocInfo.LastKillValid = true;
1262       LocInfo.AR = MayAlias;
1263     }
1264 
1265     // At this point, we should have corrected last kill and LowerBound to be
1266     // in bounds.
1267     assert(LocInfo.LowerBound < VersionStack.size() &&
1268            "Lower bound out of range");
1269     assert(LocInfo.LastKill < VersionStack.size() &&
1270            "Last kill info out of range");
1271     // In any case, the new upper bound is the top of the stack.
1272     unsigned long UpperBound = VersionStack.size() - 1;
1273 
1274     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1275       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1276                         << *(MU->getMemoryInst()) << ")"
1277                         << " because there are "
1278                         << UpperBound - LocInfo.LowerBound
1279                         << " stores to disambiguate\n");
1280       // Because we did not walk, LastKill is no longer valid, as this may
1281       // have been a kill.
1282       LocInfo.LastKillValid = false;
1283       continue;
1284     }
1285     bool FoundClobberResult = false;
1286     while (UpperBound > LocInfo.LowerBound) {
1287       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1288         // For phis, use the walker, see where we ended up, go there
1289         Instruction *UseInst = MU->getMemoryInst();
1290         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1291         // We are guaranteed to find it or something is wrong
1292         while (VersionStack[UpperBound] != Result) {
1293           assert(UpperBound != 0);
1294           --UpperBound;
1295         }
1296         FoundClobberResult = true;
1297         break;
1298       }
1299 
1300       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1301       // If the lifetime of the pointer ends at this instruction, it's live on
1302       // entry.
1303       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1304         // Reset UpperBound to liveOnEntryDef's place in the stack
1305         UpperBound = 0;
1306         FoundClobberResult = true;
1307         LocInfo.AR = MustAlias;
1308         break;
1309       }
1310       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1311       if (CA.IsClobber) {
1312         FoundClobberResult = true;
1313         LocInfo.AR = CA.AR;
1314         break;
1315       }
1316       --UpperBound;
1317     }
1318 
1319     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1320 
1321     // At the end of this loop, UpperBound is either a clobber, or lower bound
1322     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1323     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1324       // We were last killed now by where we got to
1325       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1326         LocInfo.AR = None;
1327       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1328       LocInfo.LastKill = UpperBound;
1329     } else {
1330       // Otherwise, we checked all the new ones, and now we know we can get to
1331       // LastKill.
1332       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1333     }
1334     LocInfo.LowerBound = VersionStack.size() - 1;
1335     LocInfo.LowerBoundBlock = BB;
1336   }
1337 }
1338 
1339 /// Optimize uses to point to their actual clobbering definitions.
1340 void MemorySSA::OptimizeUses::optimizeUses() {
1341   SmallVector<MemoryAccess *, 16> VersionStack;
1342   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1343   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1344 
1345   unsigned long StackEpoch = 1;
1346   unsigned long PopEpoch = 1;
1347   // We perform a non-recursive top-down dominator tree walk.
1348   for (const auto *DomNode : depth_first(DT->getRootNode()))
1349     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1350                         LocStackInfo);
1351 }
1352 
1353 void MemorySSA::placePHINodes(
1354     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1355   // Determine where our MemoryPhi's should go
1356   ForwardIDFCalculator IDFs(*DT);
1357   IDFs.setDefiningBlocks(DefiningBlocks);
1358   SmallVector<BasicBlock *, 32> IDFBlocks;
1359   IDFs.calculate(IDFBlocks);
1360 
1361   // Now place MemoryPhi nodes.
1362   for (auto &BB : IDFBlocks)
1363     createMemoryPhi(BB);
1364 }
1365 
1366 void MemorySSA::buildMemorySSA() {
1367   // We create an access to represent "live on entry", for things like
1368   // arguments or users of globals, where the memory they use is defined before
1369   // the beginning of the function. We do not actually insert it into the IR.
1370   // We do not define a live on exit for the immediate uses, and thus our
1371   // semantics do *not* imply that something with no immediate uses can simply
1372   // be removed.
1373   BasicBlock &StartingPoint = F.getEntryBlock();
1374   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1375                                      &StartingPoint, NextID++));
1376 
1377   // We maintain lists of memory accesses per-block, trading memory for time. We
1378   // could just look up the memory access for every possible instruction in the
1379   // stream.
1380   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1381   // Go through each block, figure out where defs occur, and chain together all
1382   // the accesses.
1383   for (BasicBlock &B : F) {
1384     bool InsertIntoDef = false;
1385     AccessList *Accesses = nullptr;
1386     DefsList *Defs = nullptr;
1387     for (Instruction &I : B) {
1388       MemoryUseOrDef *MUD = createNewAccess(&I);
1389       if (!MUD)
1390         continue;
1391 
1392       if (!Accesses)
1393         Accesses = getOrCreateAccessList(&B);
1394       Accesses->push_back(MUD);
1395       if (isa<MemoryDef>(MUD)) {
1396         InsertIntoDef = true;
1397         if (!Defs)
1398           Defs = getOrCreateDefsList(&B);
1399         Defs->push_back(*MUD);
1400       }
1401     }
1402     if (InsertIntoDef)
1403       DefiningBlocks.insert(&B);
1404   }
1405   placePHINodes(DefiningBlocks);
1406 
1407   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1408   // filled in with all blocks.
1409   SmallPtrSet<BasicBlock *, 16> Visited;
1410   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1411 
1412   CachingWalker *Walker = getWalkerImpl();
1413 
1414   OptimizeUses(this, Walker, AA, DT).optimizeUses();
1415 
1416   // Mark the uses in unreachable blocks as live on entry, so that they go
1417   // somewhere.
1418   for (auto &BB : F)
1419     if (!Visited.count(&BB))
1420       markUnreachableAsLiveOnEntry(&BB);
1421 }
1422 
1423 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1424 
1425 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1426   if (Walker)
1427     return Walker.get();
1428 
1429   Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
1430   return Walker.get();
1431 }
1432 
1433 // This is a helper function used by the creation routines. It places NewAccess
1434 // into the access and defs lists for a given basic block, at the given
1435 // insertion point.
1436 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1437                                         const BasicBlock *BB,
1438                                         InsertionPlace Point) {
1439   auto *Accesses = getOrCreateAccessList(BB);
1440   if (Point == Beginning) {
1441     // If it's a phi node, it goes first, otherwise, it goes after any phi
1442     // nodes.
1443     if (isa<MemoryPhi>(NewAccess)) {
1444       Accesses->push_front(NewAccess);
1445       auto *Defs = getOrCreateDefsList(BB);
1446       Defs->push_front(*NewAccess);
1447     } else {
1448       auto AI = find_if_not(
1449           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1450       Accesses->insert(AI, NewAccess);
1451       if (!isa<MemoryUse>(NewAccess)) {
1452         auto *Defs = getOrCreateDefsList(BB);
1453         auto DI = find_if_not(
1454             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1455         Defs->insert(DI, *NewAccess);
1456       }
1457     }
1458   } else {
1459     Accesses->push_back(NewAccess);
1460     if (!isa<MemoryUse>(NewAccess)) {
1461       auto *Defs = getOrCreateDefsList(BB);
1462       Defs->push_back(*NewAccess);
1463     }
1464   }
1465   BlockNumberingValid.erase(BB);
1466 }
1467 
1468 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1469                                       AccessList::iterator InsertPt) {
1470   auto *Accesses = getWritableBlockAccesses(BB);
1471   bool WasEnd = InsertPt == Accesses->end();
1472   Accesses->insert(AccessList::iterator(InsertPt), What);
1473   if (!isa<MemoryUse>(What)) {
1474     auto *Defs = getOrCreateDefsList(BB);
1475     // If we got asked to insert at the end, we have an easy job, just shove it
1476     // at the end. If we got asked to insert before an existing def, we also get
1477     // an iterator. If we got asked to insert before a use, we have to hunt for
1478     // the next def.
1479     if (WasEnd) {
1480       Defs->push_back(*What);
1481     } else if (isa<MemoryDef>(InsertPt)) {
1482       Defs->insert(InsertPt->getDefsIterator(), *What);
1483     } else {
1484       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1485         ++InsertPt;
1486       // Either we found a def, or we are inserting at the end
1487       if (InsertPt == Accesses->end())
1488         Defs->push_back(*What);
1489       else
1490         Defs->insert(InsertPt->getDefsIterator(), *What);
1491     }
1492   }
1493   BlockNumberingValid.erase(BB);
1494 }
1495 
1496 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1497   // Keep it in the lookup tables, remove from the lists
1498   removeFromLists(What, false);
1499 
1500   // Note that moving should implicitly invalidate the optimized state of a
1501   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1502   // MemoryDef.
1503   if (auto *MD = dyn_cast<MemoryDef>(What))
1504     MD->resetOptimized();
1505   What->setBlock(BB);
1506 }
1507 
1508 // Move What before Where in the IR.  The end result is that What will belong to
1509 // the right lists and have the right Block set, but will not otherwise be
1510 // correct. It will not have the right defining access, and if it is a def,
1511 // things below it will not properly be updated.
1512 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1513                        AccessList::iterator Where) {
1514   prepareForMoveTo(What, BB);
1515   insertIntoListsBefore(What, BB, Where);
1516 }
1517 
1518 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1519                        InsertionPlace Point) {
1520   if (isa<MemoryPhi>(What)) {
1521     assert(Point == Beginning &&
1522            "Can only move a Phi at the beginning of the block");
1523     // Update lookup table entry
1524     ValueToMemoryAccess.erase(What->getBlock());
1525     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1526     (void)Inserted;
1527     assert(Inserted && "Cannot move a Phi to a block that already has one");
1528   }
1529 
1530   prepareForMoveTo(What, BB);
1531   insertIntoListsForBlock(What, BB, Point);
1532 }
1533 
1534 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1535   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1536   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1537   // Phi's always are placed at the front of the block.
1538   insertIntoListsForBlock(Phi, BB, Beginning);
1539   ValueToMemoryAccess[BB] = Phi;
1540   return Phi;
1541 }
1542 
1543 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1544                                                MemoryAccess *Definition,
1545                                                const MemoryUseOrDef *Template) {
1546   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1547   MemoryUseOrDef *NewAccess = createNewAccess(I, Template);
1548   assert(
1549       NewAccess != nullptr &&
1550       "Tried to create a memory access for a non-memory touching instruction");
1551   NewAccess->setDefiningAccess(Definition);
1552   return NewAccess;
1553 }
1554 
1555 // Return true if the instruction has ordering constraints.
1556 // Note specifically that this only considers stores and loads
1557 // because others are still considered ModRef by getModRefInfo.
1558 static inline bool isOrdered(const Instruction *I) {
1559   if (auto *SI = dyn_cast<StoreInst>(I)) {
1560     if (!SI->isUnordered())
1561       return true;
1562   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1563     if (!LI->isUnordered())
1564       return true;
1565   }
1566   return false;
1567 }
1568 
1569 /// Helper function to create new memory accesses
1570 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1571                                            const MemoryUseOrDef *Template) {
1572   // The assume intrinsic has a control dependency which we model by claiming
1573   // that it writes arbitrarily. Ignore that fake memory dependency here.
1574   // FIXME: Replace this special casing with a more accurate modelling of
1575   // assume's control dependency.
1576   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1577     if (II->getIntrinsicID() == Intrinsic::assume)
1578       return nullptr;
1579 
1580   bool Def, Use;
1581   if (Template) {
1582     Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1583     Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1584 #if !defined(NDEBUG)
1585     ModRefInfo ModRef = AA->getModRefInfo(I, None);
1586     bool DefCheck, UseCheck;
1587     DefCheck = isModSet(ModRef) || isOrdered(I);
1588     UseCheck = isRefSet(ModRef);
1589     assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1590 #endif
1591   } else {
1592     // Find out what affect this instruction has on memory.
1593     ModRefInfo ModRef = AA->getModRefInfo(I, None);
1594     // The isOrdered check is used to ensure that volatiles end up as defs
1595     // (atomics end up as ModRef right now anyway).  Until we separate the
1596     // ordering chain from the memory chain, this enables people to see at least
1597     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1598     // will still give an answer that bypasses other volatile loads.  TODO:
1599     // Separate memory aliasing and ordering into two different chains so that
1600     // we can precisely represent both "what memory will this read/write/is
1601     // clobbered by" and "what instructions can I move this past".
1602     Def = isModSet(ModRef) || isOrdered(I);
1603     Use = isRefSet(ModRef);
1604   }
1605 
1606   // It's possible for an instruction to not modify memory at all. During
1607   // construction, we ignore them.
1608   if (!Def && !Use)
1609     return nullptr;
1610 
1611   MemoryUseOrDef *MUD;
1612   if (Def)
1613     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1614   else
1615     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1616   ValueToMemoryAccess[I] = MUD;
1617   return MUD;
1618 }
1619 
1620 /// Returns true if \p Replacer dominates \p Replacee .
1621 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1622                              const MemoryAccess *Replacee) const {
1623   if (isa<MemoryUseOrDef>(Replacee))
1624     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1625   const auto *MP = cast<MemoryPhi>(Replacee);
1626   // For a phi node, the use occurs in the predecessor block of the phi node.
1627   // Since we may occur multiple times in the phi node, we have to check each
1628   // operand to ensure Replacer dominates each operand where Replacee occurs.
1629   for (const Use &Arg : MP->operands()) {
1630     if (Arg.get() != Replacee &&
1631         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1632       return false;
1633   }
1634   return true;
1635 }
1636 
1637 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1638 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1639   assert(MA->use_empty() &&
1640          "Trying to remove memory access that still has uses");
1641   BlockNumbering.erase(MA);
1642   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1643     MUD->setDefiningAccess(nullptr);
1644   // Invalidate our walker's cache if necessary
1645   if (!isa<MemoryUse>(MA))
1646     Walker->invalidateInfo(MA);
1647 
1648   Value *MemoryInst;
1649   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1650     MemoryInst = MUD->getMemoryInst();
1651   else
1652     MemoryInst = MA->getBlock();
1653 
1654   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1655   if (VMA->second == MA)
1656     ValueToMemoryAccess.erase(VMA);
1657 }
1658 
1659 /// Properly remove \p MA from all of MemorySSA's lists.
1660 ///
1661 /// Because of the way the intrusive list and use lists work, it is important to
1662 /// do removal in the right order.
1663 /// ShouldDelete defaults to true, and will cause the memory access to also be
1664 /// deleted, not just removed.
1665 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1666   BasicBlock *BB = MA->getBlock();
1667   // The access list owns the reference, so we erase it from the non-owning list
1668   // first.
1669   if (!isa<MemoryUse>(MA)) {
1670     auto DefsIt = PerBlockDefs.find(BB);
1671     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1672     Defs->remove(*MA);
1673     if (Defs->empty())
1674       PerBlockDefs.erase(DefsIt);
1675   }
1676 
1677   // The erase call here will delete it. If we don't want it deleted, we call
1678   // remove instead.
1679   auto AccessIt = PerBlockAccesses.find(BB);
1680   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1681   if (ShouldDelete)
1682     Accesses->erase(MA);
1683   else
1684     Accesses->remove(MA);
1685 
1686   if (Accesses->empty()) {
1687     PerBlockAccesses.erase(AccessIt);
1688     BlockNumberingValid.erase(BB);
1689   }
1690 }
1691 
1692 void MemorySSA::print(raw_ostream &OS) const {
1693   MemorySSAAnnotatedWriter Writer(this);
1694   F.print(OS, &Writer);
1695 }
1696 
1697 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1698 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1699 #endif
1700 
1701 void MemorySSA::verifyMemorySSA() const {
1702   verifyDefUses(F);
1703   verifyDomination(F);
1704   verifyOrdering(F);
1705   verifyDominationNumbers(F);
1706   Walker->verify(this);
1707   verifyClobberSanity(F);
1708 }
1709 
1710 /// Check sanity of the clobbering instruction for access MA.
1711 void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const {
1712   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1713     if (!MUD->isOptimized())
1714       return;
1715     auto *I = MUD->getMemoryInst();
1716     auto Loc = MemoryLocation::getOrNone(I);
1717     if (Loc == None)
1718       return;
1719     auto *Clobber = MUD->getOptimized();
1720     UpwardsMemoryQuery Q(I, MUD);
1721     checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA, true);
1722   }
1723 }
1724 
1725 void MemorySSA::verifyClobberSanity(const Function &F) const {
1726 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1727   for (const BasicBlock &BB : F) {
1728     const AccessList *Accesses = getBlockAccesses(&BB);
1729     if (!Accesses)
1730       continue;
1731     for (const MemoryAccess &MA : *Accesses)
1732       checkClobberSanityAccess(&MA);
1733   }
1734 #endif
1735 }
1736 
1737 /// Verify that all of the blocks we believe to have valid domination numbers
1738 /// actually have valid domination numbers.
1739 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1740 #ifndef NDEBUG
1741   if (BlockNumberingValid.empty())
1742     return;
1743 
1744   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1745   for (const BasicBlock &BB : F) {
1746     if (!ValidBlocks.count(&BB))
1747       continue;
1748 
1749     ValidBlocks.erase(&BB);
1750 
1751     const AccessList *Accesses = getBlockAccesses(&BB);
1752     // It's correct to say an empty block has valid numbering.
1753     if (!Accesses)
1754       continue;
1755 
1756     // Block numbering starts at 1.
1757     unsigned long LastNumber = 0;
1758     for (const MemoryAccess &MA : *Accesses) {
1759       auto ThisNumberIter = BlockNumbering.find(&MA);
1760       assert(ThisNumberIter != BlockNumbering.end() &&
1761              "MemoryAccess has no domination number in a valid block!");
1762 
1763       unsigned long ThisNumber = ThisNumberIter->second;
1764       assert(ThisNumber > LastNumber &&
1765              "Domination numbers should be strictly increasing!");
1766       LastNumber = ThisNumber;
1767     }
1768   }
1769 
1770   assert(ValidBlocks.empty() &&
1771          "All valid BasicBlocks should exist in F -- dangling pointers?");
1772 #endif
1773 }
1774 
1775 /// Verify that the order and existence of MemoryAccesses matches the
1776 /// order and existence of memory affecting instructions.
1777 void MemorySSA::verifyOrdering(Function &F) const {
1778 #ifndef NDEBUG
1779   // Walk all the blocks, comparing what the lookups think and what the access
1780   // lists think, as well as the order in the blocks vs the order in the access
1781   // lists.
1782   SmallVector<MemoryAccess *, 32> ActualAccesses;
1783   SmallVector<MemoryAccess *, 32> ActualDefs;
1784   for (BasicBlock &B : F) {
1785     const AccessList *AL = getBlockAccesses(&B);
1786     const auto *DL = getBlockDefs(&B);
1787     MemoryAccess *Phi = getMemoryAccess(&B);
1788     if (Phi) {
1789       ActualAccesses.push_back(Phi);
1790       ActualDefs.push_back(Phi);
1791     }
1792 
1793     for (Instruction &I : B) {
1794       MemoryAccess *MA = getMemoryAccess(&I);
1795       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1796              "We have memory affecting instructions "
1797              "in this block but they are not in the "
1798              "access list or defs list");
1799       if (MA) {
1800         ActualAccesses.push_back(MA);
1801         if (isa<MemoryDef>(MA))
1802           ActualDefs.push_back(MA);
1803       }
1804     }
1805     // Either we hit the assert, really have no accesses, or we have both
1806     // accesses and an access list.
1807     // Same with defs.
1808     if (!AL && !DL)
1809       continue;
1810     assert(AL->size() == ActualAccesses.size() &&
1811            "We don't have the same number of accesses in the block as on the "
1812            "access list");
1813     assert((DL || ActualDefs.size() == 0) &&
1814            "Either we should have a defs list, or we should have no defs");
1815     assert((!DL || DL->size() == ActualDefs.size()) &&
1816            "We don't have the same number of defs in the block as on the "
1817            "def list");
1818     auto ALI = AL->begin();
1819     auto AAI = ActualAccesses.begin();
1820     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1821       assert(&*ALI == *AAI && "Not the same accesses in the same order");
1822       ++ALI;
1823       ++AAI;
1824     }
1825     ActualAccesses.clear();
1826     if (DL) {
1827       auto DLI = DL->begin();
1828       auto ADI = ActualDefs.begin();
1829       while (DLI != DL->end() && ADI != ActualDefs.end()) {
1830         assert(&*DLI == *ADI && "Not the same defs in the same order");
1831         ++DLI;
1832         ++ADI;
1833       }
1834     }
1835     ActualDefs.clear();
1836   }
1837 #endif
1838 }
1839 
1840 /// Verify the domination properties of MemorySSA by checking that each
1841 /// definition dominates all of its uses.
1842 void MemorySSA::verifyDomination(Function &F) const {
1843 #ifndef NDEBUG
1844   for (BasicBlock &B : F) {
1845     // Phi nodes are attached to basic blocks
1846     if (MemoryPhi *MP = getMemoryAccess(&B))
1847       for (const Use &U : MP->uses())
1848         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1849 
1850     for (Instruction &I : B) {
1851       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1852       if (!MD)
1853         continue;
1854 
1855       for (const Use &U : MD->uses())
1856         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1857     }
1858   }
1859 #endif
1860 }
1861 
1862 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1863 /// appears in the use list of \p Def.
1864 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1865 #ifndef NDEBUG
1866   // The live on entry use may cause us to get a NULL def here
1867   if (!Def)
1868     assert(isLiveOnEntryDef(Use) &&
1869            "Null def but use not point to live on entry def");
1870   else
1871     assert(is_contained(Def->users(), Use) &&
1872            "Did not find use in def's use list");
1873 #endif
1874 }
1875 
1876 /// Verify the immediate use information, by walking all the memory
1877 /// accesses and verifying that, for each use, it appears in the
1878 /// appropriate def's use list
1879 void MemorySSA::verifyDefUses(Function &F) const {
1880 #ifndef NDEBUG
1881   for (BasicBlock &B : F) {
1882     // Phi nodes are attached to basic blocks
1883     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1884       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1885                                           pred_begin(&B), pred_end(&B))) &&
1886              "Incomplete MemoryPhi Node");
1887       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1888         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1889         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1890                    pred_end(&B) &&
1891                "Incoming phi block not a block predecessor");
1892       }
1893     }
1894 
1895     for (Instruction &I : B) {
1896       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1897         verifyUseInDefs(MA->getDefiningAccess(), MA);
1898       }
1899     }
1900   }
1901 #endif
1902 }
1903 
1904 /// Perform a local numbering on blocks so that instruction ordering can be
1905 /// determined in constant time.
1906 /// TODO: We currently just number in order.  If we numbered by N, we could
1907 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1908 /// log2(N) sequences of mixed before and after) without needing to invalidate
1909 /// the numbering.
1910 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1911   // The pre-increment ensures the numbers really start at 1.
1912   unsigned long CurrentNumber = 0;
1913   const AccessList *AL = getBlockAccesses(B);
1914   assert(AL != nullptr && "Asking to renumber an empty block");
1915   for (const auto &I : *AL)
1916     BlockNumbering[&I] = ++CurrentNumber;
1917   BlockNumberingValid.insert(B);
1918 }
1919 
1920 /// Determine, for two memory accesses in the same block,
1921 /// whether \p Dominator dominates \p Dominatee.
1922 /// \returns True if \p Dominator dominates \p Dominatee.
1923 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1924                                  const MemoryAccess *Dominatee) const {
1925   const BasicBlock *DominatorBlock = Dominator->getBlock();
1926 
1927   assert((DominatorBlock == Dominatee->getBlock()) &&
1928          "Asking for local domination when accesses are in different blocks!");
1929   // A node dominates itself.
1930   if (Dominatee == Dominator)
1931     return true;
1932 
1933   // When Dominatee is defined on function entry, it is not dominated by another
1934   // memory access.
1935   if (isLiveOnEntryDef(Dominatee))
1936     return false;
1937 
1938   // When Dominator is defined on function entry, it dominates the other memory
1939   // access.
1940   if (isLiveOnEntryDef(Dominator))
1941     return true;
1942 
1943   if (!BlockNumberingValid.count(DominatorBlock))
1944     renumberBlock(DominatorBlock);
1945 
1946   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1947   // All numbers start with 1
1948   assert(DominatorNum != 0 && "Block was not numbered properly");
1949   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1950   assert(DominateeNum != 0 && "Block was not numbered properly");
1951   return DominatorNum < DominateeNum;
1952 }
1953 
1954 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1955                           const MemoryAccess *Dominatee) const {
1956   if (Dominator == Dominatee)
1957     return true;
1958 
1959   if (isLiveOnEntryDef(Dominatee))
1960     return false;
1961 
1962   if (Dominator->getBlock() != Dominatee->getBlock())
1963     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1964   return locallyDominates(Dominator, Dominatee);
1965 }
1966 
1967 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1968                           const Use &Dominatee) const {
1969   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1970     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1971     // The def must dominate the incoming block of the phi.
1972     if (UseBB != Dominator->getBlock())
1973       return DT->dominates(Dominator->getBlock(), UseBB);
1974     // If the UseBB and the DefBB are the same, compare locally.
1975     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1976   }
1977   // If it's not a PHI node use, the normal dominates can already handle it.
1978   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1979 }
1980 
1981 const static char LiveOnEntryStr[] = "liveOnEntry";
1982 
1983 void MemoryAccess::print(raw_ostream &OS) const {
1984   switch (getValueID()) {
1985   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1986   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1987   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1988   }
1989   llvm_unreachable("invalid value id");
1990 }
1991 
1992 void MemoryDef::print(raw_ostream &OS) const {
1993   MemoryAccess *UO = getDefiningAccess();
1994 
1995   auto printID = [&OS](MemoryAccess *A) {
1996     if (A && A->getID())
1997       OS << A->getID();
1998     else
1999       OS << LiveOnEntryStr;
2000   };
2001 
2002   OS << getID() << " = MemoryDef(";
2003   printID(UO);
2004   OS << ")";
2005 
2006   if (isOptimized()) {
2007     OS << "->";
2008     printID(getOptimized());
2009 
2010     if (Optional<AliasResult> AR = getOptimizedAccessType())
2011       OS << " " << *AR;
2012   }
2013 }
2014 
2015 void MemoryPhi::print(raw_ostream &OS) const {
2016   bool First = true;
2017   OS << getID() << " = MemoryPhi(";
2018   for (const auto &Op : operands()) {
2019     BasicBlock *BB = getIncomingBlock(Op);
2020     MemoryAccess *MA = cast<MemoryAccess>(Op);
2021     if (!First)
2022       OS << ',';
2023     else
2024       First = false;
2025 
2026     OS << '{';
2027     if (BB->hasName())
2028       OS << BB->getName();
2029     else
2030       BB->printAsOperand(OS, false);
2031     OS << ',';
2032     if (unsigned ID = MA->getID())
2033       OS << ID;
2034     else
2035       OS << LiveOnEntryStr;
2036     OS << '}';
2037   }
2038   OS << ')';
2039 }
2040 
2041 void MemoryUse::print(raw_ostream &OS) const {
2042   MemoryAccess *UO = getDefiningAccess();
2043   OS << "MemoryUse(";
2044   if (UO && UO->getID())
2045     OS << UO->getID();
2046   else
2047     OS << LiveOnEntryStr;
2048   OS << ')';
2049 
2050   if (Optional<AliasResult> AR = getOptimizedAccessType())
2051     OS << " " << *AR;
2052 }
2053 
2054 void MemoryAccess::dump() const {
2055 // Cannot completely remove virtual function even in release mode.
2056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2057   print(dbgs());
2058   dbgs() << "\n";
2059 #endif
2060 }
2061 
2062 char MemorySSAPrinterLegacyPass::ID = 0;
2063 
2064 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2065   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2066 }
2067 
2068 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2069   AU.setPreservesAll();
2070   AU.addRequired<MemorySSAWrapperPass>();
2071 }
2072 
2073 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2074   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2075   MSSA.print(dbgs());
2076   if (VerifyMemorySSA)
2077     MSSA.verifyMemorySSA();
2078   return false;
2079 }
2080 
2081 AnalysisKey MemorySSAAnalysis::Key;
2082 
2083 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2084                                                  FunctionAnalysisManager &AM) {
2085   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2086   auto &AA = AM.getResult<AAManager>(F);
2087   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2088 }
2089 
2090 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2091                                             FunctionAnalysisManager &AM) {
2092   OS << "MemorySSA for function: " << F.getName() << "\n";
2093   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2094 
2095   return PreservedAnalyses::all();
2096 }
2097 
2098 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2099                                              FunctionAnalysisManager &AM) {
2100   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2101 
2102   return PreservedAnalyses::all();
2103 }
2104 
2105 char MemorySSAWrapperPass::ID = 0;
2106 
2107 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2108   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2109 }
2110 
2111 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2112 
2113 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2114   AU.setPreservesAll();
2115   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2116   AU.addRequiredTransitive<AAResultsWrapperPass>();
2117 }
2118 
2119 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2120   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2121   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2122   MSSA.reset(new MemorySSA(F, &AA, &DT));
2123   return false;
2124 }
2125 
2126 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2127 
2128 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2129   MSSA->print(OS);
2130 }
2131 
2132 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2133 
2134 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2135                                         DominatorTree *D)
2136     : MemorySSAWalker(M), Walker(*M, *A, *D) {}
2137 
2138 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
2139   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2140     MUD->resetOptimized();
2141 }
2142 
2143 /// Walk the use-def chains starting at \p MA and find
2144 /// the MemoryAccess that actually clobbers Loc.
2145 ///
2146 /// \returns our clobbering memory access
2147 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2148     MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
2149   return Walker.findClobber(StartingAccess, Q);
2150 }
2151 
2152 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2153     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2154   if (isa<MemoryPhi>(StartingAccess))
2155     return StartingAccess;
2156 
2157   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2158   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2159     return StartingUseOrDef;
2160 
2161   Instruction *I = StartingUseOrDef->getMemoryInst();
2162 
2163   // Conservatively, fences are always clobbers, so don't perform the walk if we
2164   // hit a fence.
2165   if (!ImmutableCallSite(I) && I->isFenceLike())
2166     return StartingUseOrDef;
2167 
2168   UpwardsMemoryQuery Q;
2169   Q.OriginalAccess = StartingUseOrDef;
2170   Q.StartingLoc = Loc;
2171   Q.Inst = I;
2172   Q.IsCall = false;
2173 
2174   // Unlike the other function, do not walk to the def of a def, because we are
2175   // handed something we already believe is the clobbering access.
2176   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2177                                      ? StartingUseOrDef->getDefiningAccess()
2178                                      : StartingUseOrDef;
2179 
2180   MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
2181   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2182   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2183   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2184   LLVM_DEBUG(dbgs() << *Clobber << "\n");
2185   return Clobber;
2186 }
2187 
2188 MemoryAccess *
2189 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2190   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2191   // If this is a MemoryPhi, we can't do anything.
2192   if (!StartingAccess)
2193     return MA;
2194 
2195   // If this is an already optimized use or def, return the optimized result.
2196   // Note: Currently, we store the optimized def result in a separate field,
2197   // since we can't use the defining access.
2198   if (StartingAccess->isOptimized())
2199     return StartingAccess->getOptimized();
2200 
2201   const Instruction *I = StartingAccess->getMemoryInst();
2202   UpwardsMemoryQuery Q(I, StartingAccess);
2203   // We can't sanely do anything with a fence, since they conservatively clobber
2204   // all memory, and have no locations to get pointers from to try to
2205   // disambiguate.
2206   if (!Q.IsCall && I->isFenceLike())
2207     return StartingAccess;
2208 
2209   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2210     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2211     StartingAccess->setOptimized(LiveOnEntry);
2212     StartingAccess->setOptimizedAccessType(None);
2213     return LiveOnEntry;
2214   }
2215 
2216   // Start with the thing we already think clobbers this location
2217   MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2218 
2219   // At this point, DefiningAccess may be the live on entry def.
2220   // If it is, we will not get a better result.
2221   if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2222     StartingAccess->setOptimized(DefiningAccess);
2223     StartingAccess->setOptimizedAccessType(None);
2224     return DefiningAccess;
2225   }
2226 
2227   MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
2228   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2229   LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2230   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2231   LLVM_DEBUG(dbgs() << *Result << "\n");
2232 
2233   StartingAccess->setOptimized(Result);
2234   if (MSSA->isLiveOnEntryDef(Result))
2235     StartingAccess->setOptimizedAccessType(None);
2236   else if (Q.AR == MustAlias)
2237     StartingAccess->setOptimizedAccessType(MustAlias);
2238 
2239   return Result;
2240 }
2241 
2242 MemoryAccess *
2243 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2244   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2245     return Use->getDefiningAccess();
2246   return MA;
2247 }
2248 
2249 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2250     MemoryAccess *StartingAccess, const MemoryLocation &) {
2251   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2252     return Use->getDefiningAccess();
2253   return StartingAccess;
2254 }
2255 
2256 void MemoryPhi::deleteMe(DerivedUser *Self) {
2257   delete static_cast<MemoryPhi *>(Self);
2258 }
2259 
2260 void MemoryDef::deleteMe(DerivedUser *Self) {
2261   delete static_cast<MemoryDef *>(Self);
2262 }
2263 
2264 void MemoryUse::deleteMe(DerivedUser *Self) {
2265   delete static_cast<MemoryUse *>(Self);
2266 }
2267