1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSA class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/PassManager.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <iterator>
54 #include <memory>
55 #include <utility>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "memoryssa"
60 
61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
62                       true)
63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66                     true)
67 
68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69                       "Memory SSA Printer", false, false)
70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72                     "Memory SSA Printer", false, false)
73 
74 static cl::opt<unsigned> MaxCheckLimit(
75     "memssa-check-limit", cl::Hidden, cl::init(100),
76     cl::desc("The maximum number of stores/phis MemorySSA"
77              "will consider trying to walk past (default = 100)"));
78 
79 static cl::opt<bool>
80     VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
81                     cl::desc("Verify MemorySSA in legacy printer pass."));
82 
83 namespace llvm {
84 
85 /// \brief An assembly annotator class to print Memory SSA information in
86 /// comments.
87 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
88   friend class MemorySSA;
89 
90   const MemorySSA *MSSA;
91 
92 public:
93   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
94 
95   void emitBasicBlockStartAnnot(const BasicBlock *BB,
96                                 formatted_raw_ostream &OS) override {
97     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
98       OS << "; " << *MA << "\n";
99   }
100 
101   void emitInstructionAnnot(const Instruction *I,
102                             formatted_raw_ostream &OS) override {
103     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
104       OS << "; " << *MA << "\n";
105   }
106 };
107 
108 } // end namespace llvm
109 
110 namespace {
111 
112 /// Our current alias analysis API differentiates heavily between calls and
113 /// non-calls, and functions called on one usually assert on the other.
114 /// This class encapsulates the distinction to simplify other code that wants
115 /// "Memory affecting instructions and related data" to use as a key.
116 /// For example, this class is used as a densemap key in the use optimizer.
117 class MemoryLocOrCall {
118 public:
119   bool IsCall = false;
120 
121   MemoryLocOrCall() = default;
122   MemoryLocOrCall(MemoryUseOrDef *MUD)
123       : MemoryLocOrCall(MUD->getMemoryInst()) {}
124   MemoryLocOrCall(const MemoryUseOrDef *MUD)
125       : MemoryLocOrCall(MUD->getMemoryInst()) {}
126 
127   MemoryLocOrCall(Instruction *Inst) {
128     if (ImmutableCallSite(Inst)) {
129       IsCall = true;
130       CS = ImmutableCallSite(Inst);
131     } else {
132       IsCall = false;
133       // There is no such thing as a memorylocation for a fence inst, and it is
134       // unique in that regard.
135       if (!isa<FenceInst>(Inst))
136         Loc = MemoryLocation::get(Inst);
137     }
138   }
139 
140   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
141 
142   ImmutableCallSite getCS() const {
143     assert(IsCall);
144     return CS;
145   }
146 
147   MemoryLocation getLoc() const {
148     assert(!IsCall);
149     return Loc;
150   }
151 
152   bool operator==(const MemoryLocOrCall &Other) const {
153     if (IsCall != Other.IsCall)
154       return false;
155 
156     if (!IsCall)
157       return Loc == Other.Loc;
158 
159     if (CS.getCalledValue() != Other.CS.getCalledValue())
160       return false;
161 
162     return CS.arg_size() == Other.CS.arg_size() &&
163            std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
164   }
165 
166 private:
167   union {
168     ImmutableCallSite CS;
169     MemoryLocation Loc;
170   };
171 };
172 
173 } // end anonymous namespace
174 
175 namespace llvm {
176 
177 template <> struct DenseMapInfo<MemoryLocOrCall> {
178   static inline MemoryLocOrCall getEmptyKey() {
179     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
180   }
181 
182   static inline MemoryLocOrCall getTombstoneKey() {
183     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
184   }
185 
186   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
187     if (!MLOC.IsCall)
188       return hash_combine(
189           MLOC.IsCall,
190           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
191 
192     hash_code hash =
193         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
194                                       MLOC.getCS().getCalledValue()));
195 
196     for (const Value *Arg : MLOC.getCS().args())
197       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
198     return hash;
199   }
200 
201   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
202     return LHS == RHS;
203   }
204 };
205 
206 } // end namespace llvm
207 
208 /// This does one-way checks to see if Use could theoretically be hoisted above
209 /// MayClobber. This will not check the other way around.
210 ///
211 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
212 /// MayClobber, with no potentially clobbering operations in between them.
213 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
214 static bool areLoadsReorderable(const LoadInst *Use,
215                                 const LoadInst *MayClobber) {
216   bool VolatileUse = Use->isVolatile();
217   bool VolatileClobber = MayClobber->isVolatile();
218   // Volatile operations may never be reordered with other volatile operations.
219   if (VolatileUse && VolatileClobber)
220     return false;
221   // Otherwise, volatile doesn't matter here. From the language reference:
222   // 'optimizers may change the order of volatile operations relative to
223   // non-volatile operations.'"
224 
225   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
226   // is weaker, it can be moved above other loads. We just need to be sure that
227   // MayClobber isn't an acquire load, because loads can't be moved above
228   // acquire loads.
229   //
230   // Note that this explicitly *does* allow the free reordering of monotonic (or
231   // weaker) loads of the same address.
232   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
233   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
234                                                      AtomicOrdering::Acquire);
235   return !(SeqCstUse || MayClobberIsAcquire);
236 }
237 
238 namespace {
239 
240 struct ClobberAlias {
241   bool IsClobber;
242   Optional<AliasResult> AR;
243 };
244 
245 } // end anonymous namespace
246 
247 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
248 // ignored if IsClobber = false.
249 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
250                                              const MemoryLocation &UseLoc,
251                                              const Instruction *UseInst,
252                                              AliasAnalysis &AA) {
253   Instruction *DefInst = MD->getMemoryInst();
254   assert(DefInst && "Defining instruction not actually an instruction");
255   ImmutableCallSite UseCS(UseInst);
256   Optional<AliasResult> AR;
257 
258   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
259     // These intrinsics will show up as affecting memory, but they are just
260     // markers.
261     switch (II->getIntrinsicID()) {
262     case Intrinsic::lifetime_start:
263       if (UseCS)
264         return {false, NoAlias};
265       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
266       return {AR == MustAlias, AR};
267     case Intrinsic::lifetime_end:
268     case Intrinsic::invariant_start:
269     case Intrinsic::invariant_end:
270     case Intrinsic::assume:
271       return {false, NoAlias};
272     default:
273       break;
274     }
275   }
276 
277   if (UseCS) {
278     ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
279     AR = isMustSet(I) ? MustAlias : MayAlias;
280     return {isModOrRefSet(I), AR};
281   }
282 
283   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
284     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
285       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
286 
287   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
288   AR = isMustSet(I) ? MustAlias : MayAlias;
289   return {isModSet(I), AR};
290 }
291 
292 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
293                                              const MemoryUseOrDef *MU,
294                                              const MemoryLocOrCall &UseMLOC,
295                                              AliasAnalysis &AA) {
296   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
297   // to exist while MemoryLocOrCall is pushed through places.
298   if (UseMLOC.IsCall)
299     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
300                                     AA);
301   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
302                                   AA);
303 }
304 
305 // Return true when MD may alias MU, return false otherwise.
306 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
307                                         AliasAnalysis &AA) {
308   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
309 }
310 
311 namespace {
312 
313 struct UpwardsMemoryQuery {
314   // True if our original query started off as a call
315   bool IsCall = false;
316   // The pointer location we started the query with. This will be empty if
317   // IsCall is true.
318   MemoryLocation StartingLoc;
319   // This is the instruction we were querying about.
320   const Instruction *Inst = nullptr;
321   // The MemoryAccess we actually got called with, used to test local domination
322   const MemoryAccess *OriginalAccess = nullptr;
323   Optional<AliasResult> AR = MayAlias;
324 
325   UpwardsMemoryQuery() = default;
326 
327   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
328       : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
329     if (!IsCall)
330       StartingLoc = MemoryLocation::get(Inst);
331   }
332 };
333 
334 } // end anonymous namespace
335 
336 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
337                            AliasAnalysis &AA) {
338   Instruction *Inst = MD->getMemoryInst();
339   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
340     switch (II->getIntrinsicID()) {
341     case Intrinsic::lifetime_end:
342       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
343     default:
344       return false;
345     }
346   }
347   return false;
348 }
349 
350 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
351                                                    const Instruction *I) {
352   // If the memory can't be changed, then loads of the memory can't be
353   // clobbered.
354   //
355   // FIXME: We should handle invariant groups, as well. It's a bit harder,
356   // because we need to pay close attention to invariant group barriers.
357   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
358                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
359                                                           getPointerOperand()));
360 }
361 
362 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
363 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
364 ///
365 /// This is meant to be as simple and self-contained as possible. Because it
366 /// uses no cache, etc., it can be relatively expensive.
367 ///
368 /// \param Start     The MemoryAccess that we want to walk from.
369 /// \param ClobberAt A clobber for Start.
370 /// \param StartLoc  The MemoryLocation for Start.
371 /// \param MSSA      The MemorySSA isntance that Start and ClobberAt belong to.
372 /// \param Query     The UpwardsMemoryQuery we used for our search.
373 /// \param AA        The AliasAnalysis we used for our search.
374 static void LLVM_ATTRIBUTE_UNUSED
375 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
376                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
377                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
378   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
379 
380   if (MSSA.isLiveOnEntryDef(Start)) {
381     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
382            "liveOnEntry must clobber itself");
383     return;
384   }
385 
386   bool FoundClobber = false;
387   DenseSet<MemoryAccessPair> VisitedPhis;
388   SmallVector<MemoryAccessPair, 8> Worklist;
389   Worklist.emplace_back(Start, StartLoc);
390   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
391   // is found, complain.
392   while (!Worklist.empty()) {
393     MemoryAccessPair MAP = Worklist.pop_back_val();
394     // All we care about is that nothing from Start to ClobberAt clobbers Start.
395     // We learn nothing from revisiting nodes.
396     if (!VisitedPhis.insert(MAP).second)
397       continue;
398 
399     for (MemoryAccess *MA : def_chain(MAP.first)) {
400       if (MA == ClobberAt) {
401         if (auto *MD = dyn_cast<MemoryDef>(MA)) {
402           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
403           // since it won't let us short-circuit.
404           //
405           // Also, note that this can't be hoisted out of the `Worklist` loop,
406           // since MD may only act as a clobber for 1 of N MemoryLocations.
407           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
408           if (!FoundClobber) {
409             ClobberAlias CA =
410                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
411             if (CA.IsClobber) {
412               FoundClobber = true;
413               // Not used: CA.AR;
414             }
415           }
416         }
417         break;
418       }
419 
420       // We should never hit liveOnEntry, unless it's the clobber.
421       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
422 
423       if (auto *MD = dyn_cast<MemoryDef>(MA)) {
424         (void)MD;
425         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
426                     .IsClobber &&
427                "Found clobber before reaching ClobberAt!");
428         continue;
429       }
430 
431       assert(isa<MemoryPhi>(MA));
432       Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
433     }
434   }
435 
436   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
437   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
438   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
439          "ClobberAt never acted as a clobber");
440 }
441 
442 namespace {
443 
444 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
445 /// in one class.
446 class ClobberWalker {
447   /// Save a few bytes by using unsigned instead of size_t.
448   using ListIndex = unsigned;
449 
450   /// Represents a span of contiguous MemoryDefs, potentially ending in a
451   /// MemoryPhi.
452   struct DefPath {
453     MemoryLocation Loc;
454     // Note that, because we always walk in reverse, Last will always dominate
455     // First. Also note that First and Last are inclusive.
456     MemoryAccess *First;
457     MemoryAccess *Last;
458     Optional<ListIndex> Previous;
459 
460     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
461             Optional<ListIndex> Previous)
462         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
463 
464     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
465             Optional<ListIndex> Previous)
466         : DefPath(Loc, Init, Init, Previous) {}
467   };
468 
469   const MemorySSA &MSSA;
470   AliasAnalysis &AA;
471   DominatorTree &DT;
472   UpwardsMemoryQuery *Query;
473 
474   // Phi optimization bookkeeping
475   SmallVector<DefPath, 32> Paths;
476   DenseSet<ConstMemoryAccessPair> VisitedPhis;
477 
478   /// Find the nearest def or phi that `From` can legally be optimized to.
479   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
480     assert(From->getNumOperands() && "Phi with no operands?");
481 
482     BasicBlock *BB = From->getBlock();
483     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
484     DomTreeNode *Node = DT.getNode(BB);
485     while ((Node = Node->getIDom())) {
486       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
487       if (Defs)
488         return &*Defs->rbegin();
489     }
490     return Result;
491   }
492 
493   /// Result of calling walkToPhiOrClobber.
494   struct UpwardsWalkResult {
495     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
496     /// both. Include alias info when clobber found.
497     MemoryAccess *Result;
498     bool IsKnownClobber;
499     Optional<AliasResult> AR;
500   };
501 
502   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
503   /// This will update Desc.Last as it walks. It will (optionally) also stop at
504   /// StopAt.
505   ///
506   /// This does not test for whether StopAt is a clobber
507   UpwardsWalkResult
508   walkToPhiOrClobber(DefPath &Desc,
509                      const MemoryAccess *StopAt = nullptr) const {
510     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
511 
512     for (MemoryAccess *Current : def_chain(Desc.Last)) {
513       Desc.Last = Current;
514       if (Current == StopAt)
515         return {Current, false, MayAlias};
516 
517       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
518         if (MSSA.isLiveOnEntryDef(MD))
519           return {MD, true, MustAlias};
520         ClobberAlias CA =
521             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
522         if (CA.IsClobber)
523           return {MD, true, CA.AR};
524       }
525     }
526 
527     assert(isa<MemoryPhi>(Desc.Last) &&
528            "Ended at a non-clobber that's not a phi?");
529     return {Desc.Last, false, MayAlias};
530   }
531 
532   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
533                    ListIndex PriorNode) {
534     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
535                                  upward_defs_end());
536     for (const MemoryAccessPair &P : UpwardDefs) {
537       PausedSearches.push_back(Paths.size());
538       Paths.emplace_back(P.second, P.first, PriorNode);
539     }
540   }
541 
542   /// Represents a search that terminated after finding a clobber. This clobber
543   /// may or may not be present in the path of defs from LastNode..SearchStart,
544   /// since it may have been retrieved from cache.
545   struct TerminatedPath {
546     MemoryAccess *Clobber;
547     ListIndex LastNode;
548   };
549 
550   /// Get an access that keeps us from optimizing to the given phi.
551   ///
552   /// PausedSearches is an array of indices into the Paths array. Its incoming
553   /// value is the indices of searches that stopped at the last phi optimization
554   /// target. It's left in an unspecified state.
555   ///
556   /// If this returns None, NewPaused is a vector of searches that terminated
557   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
558   Optional<TerminatedPath>
559   getBlockingAccess(const MemoryAccess *StopWhere,
560                     SmallVectorImpl<ListIndex> &PausedSearches,
561                     SmallVectorImpl<ListIndex> &NewPaused,
562                     SmallVectorImpl<TerminatedPath> &Terminated) {
563     assert(!PausedSearches.empty() && "No searches to continue?");
564 
565     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
566     // PausedSearches as our stack.
567     while (!PausedSearches.empty()) {
568       ListIndex PathIndex = PausedSearches.pop_back_val();
569       DefPath &Node = Paths[PathIndex];
570 
571       // If we've already visited this path with this MemoryLocation, we don't
572       // need to do so again.
573       //
574       // NOTE: That we just drop these paths on the ground makes caching
575       // behavior sporadic. e.g. given a diamond:
576       //  A
577       // B C
578       //  D
579       //
580       // ...If we walk D, B, A, C, we'll only cache the result of phi
581       // optimization for A, B, and D; C will be skipped because it dies here.
582       // This arguably isn't the worst thing ever, since:
583       //   - We generally query things in a top-down order, so if we got below D
584       //     without needing cache entries for {C, MemLoc}, then chances are
585       //     that those cache entries would end up ultimately unused.
586       //   - We still cache things for A, so C only needs to walk up a bit.
587       // If this behavior becomes problematic, we can fix without a ton of extra
588       // work.
589       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
590         continue;
591 
592       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
593       if (Res.IsKnownClobber) {
594         assert(Res.Result != StopWhere);
595         // If this wasn't a cache hit, we hit a clobber when walking. That's a
596         // failure.
597         TerminatedPath Term{Res.Result, PathIndex};
598         if (!MSSA.dominates(Res.Result, StopWhere))
599           return Term;
600 
601         // Otherwise, it's a valid thing to potentially optimize to.
602         Terminated.push_back(Term);
603         continue;
604       }
605 
606       if (Res.Result == StopWhere) {
607         // We've hit our target. Save this path off for if we want to continue
608         // walking.
609         NewPaused.push_back(PathIndex);
610         continue;
611       }
612 
613       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
614       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
615     }
616 
617     return None;
618   }
619 
620   template <typename T, typename Walker>
621   struct generic_def_path_iterator
622       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
623                                     std::forward_iterator_tag, T *> {
624     generic_def_path_iterator() = default;
625     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
626 
627     T &operator*() const { return curNode(); }
628 
629     generic_def_path_iterator &operator++() {
630       N = curNode().Previous;
631       return *this;
632     }
633 
634     bool operator==(const generic_def_path_iterator &O) const {
635       if (N.hasValue() != O.N.hasValue())
636         return false;
637       return !N.hasValue() || *N == *O.N;
638     }
639 
640   private:
641     T &curNode() const { return W->Paths[*N]; }
642 
643     Walker *W = nullptr;
644     Optional<ListIndex> N = None;
645   };
646 
647   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
648   using const_def_path_iterator =
649       generic_def_path_iterator<const DefPath, const ClobberWalker>;
650 
651   iterator_range<def_path_iterator> def_path(ListIndex From) {
652     return make_range(def_path_iterator(this, From), def_path_iterator());
653   }
654 
655   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
656     return make_range(const_def_path_iterator(this, From),
657                       const_def_path_iterator());
658   }
659 
660   struct OptznResult {
661     /// The path that contains our result.
662     TerminatedPath PrimaryClobber;
663     /// The paths that we can legally cache back from, but that aren't
664     /// necessarily the result of the Phi optimization.
665     SmallVector<TerminatedPath, 4> OtherClobbers;
666   };
667 
668   ListIndex defPathIndex(const DefPath &N) const {
669     // The assert looks nicer if we don't need to do &N
670     const DefPath *NP = &N;
671     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
672            "Out of bounds DefPath!");
673     return NP - &Paths.front();
674   }
675 
676   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
677   /// that act as legal clobbers. Note that this won't return *all* clobbers.
678   ///
679   /// Phi optimization algorithm tl;dr:
680   ///   - Find the earliest def/phi, A, we can optimize to
681   ///   - Find if all paths from the starting memory access ultimately reach A
682   ///     - If not, optimization isn't possible.
683   ///     - Otherwise, walk from A to another clobber or phi, A'.
684   ///       - If A' is a def, we're done.
685   ///       - If A' is a phi, try to optimize it.
686   ///
687   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
688   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
689   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
690                              const MemoryLocation &Loc) {
691     assert(Paths.empty() && VisitedPhis.empty() &&
692            "Reset the optimization state.");
693 
694     Paths.emplace_back(Loc, Start, Phi, None);
695     // Stores how many "valid" optimization nodes we had prior to calling
696     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
697     auto PriorPathsSize = Paths.size();
698 
699     SmallVector<ListIndex, 16> PausedSearches;
700     SmallVector<ListIndex, 8> NewPaused;
701     SmallVector<TerminatedPath, 4> TerminatedPaths;
702 
703     addSearches(Phi, PausedSearches, 0);
704 
705     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
706     // Paths.
707     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
708       assert(!Paths.empty() && "Need a path to move");
709       auto Dom = Paths.begin();
710       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
711         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
712           Dom = I;
713       auto Last = Paths.end() - 1;
714       if (Last != Dom)
715         std::iter_swap(Last, Dom);
716     };
717 
718     MemoryPhi *Current = Phi;
719     while (true) {
720       assert(!MSSA.isLiveOnEntryDef(Current) &&
721              "liveOnEntry wasn't treated as a clobber?");
722 
723       const auto *Target = getWalkTarget(Current);
724       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
725       // optimization for the prior phi.
726       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
727         return MSSA.dominates(P.Clobber, Target);
728       }));
729 
730       // FIXME: This is broken, because the Blocker may be reported to be
731       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
732       // For the moment, this is fine, since we do nothing with blocker info.
733       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
734               Target, PausedSearches, NewPaused, TerminatedPaths)) {
735 
736         // Find the node we started at. We can't search based on N->Last, since
737         // we may have gone around a loop with a different MemoryLocation.
738         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
739           return defPathIndex(N) < PriorPathsSize;
740         });
741         assert(Iter != def_path_iterator());
742 
743         DefPath &CurNode = *Iter;
744         assert(CurNode.Last == Current);
745 
746         // Two things:
747         // A. We can't reliably cache all of NewPaused back. Consider a case
748         //    where we have two paths in NewPaused; one of which can't optimize
749         //    above this phi, whereas the other can. If we cache the second path
750         //    back, we'll end up with suboptimal cache entries. We can handle
751         //    cases like this a bit better when we either try to find all
752         //    clobbers that block phi optimization, or when our cache starts
753         //    supporting unfinished searches.
754         // B. We can't reliably cache TerminatedPaths back here without doing
755         //    extra checks; consider a case like:
756         //       T
757         //      / \
758         //     D   C
759         //      \ /
760         //       S
761         //    Where T is our target, C is a node with a clobber on it, D is a
762         //    diamond (with a clobber *only* on the left or right node, N), and
763         //    S is our start. Say we walk to D, through the node opposite N
764         //    (read: ignoring the clobber), and see a cache entry in the top
765         //    node of D. That cache entry gets put into TerminatedPaths. We then
766         //    walk up to C (N is later in our worklist), find the clobber, and
767         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
768         //    the bottom part of D to the cached clobber, ignoring the clobber
769         //    in N. Again, this problem goes away if we start tracking all
770         //    blockers for a given phi optimization.
771         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
772         return {Result, {}};
773       }
774 
775       // If there's nothing left to search, then all paths led to valid clobbers
776       // that we got from our cache; pick the nearest to the start, and allow
777       // the rest to be cached back.
778       if (NewPaused.empty()) {
779         MoveDominatedPathToEnd(TerminatedPaths);
780         TerminatedPath Result = TerminatedPaths.pop_back_val();
781         return {Result, std::move(TerminatedPaths)};
782       }
783 
784       MemoryAccess *DefChainEnd = nullptr;
785       SmallVector<TerminatedPath, 4> Clobbers;
786       for (ListIndex Paused : NewPaused) {
787         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
788         if (WR.IsKnownClobber)
789           Clobbers.push_back({WR.Result, Paused});
790         else
791           // Micro-opt: If we hit the end of the chain, save it.
792           DefChainEnd = WR.Result;
793       }
794 
795       if (!TerminatedPaths.empty()) {
796         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
797         // do it now.
798         if (!DefChainEnd)
799           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
800             DefChainEnd = MA;
801 
802         // If any of the terminated paths don't dominate the phi we'll try to
803         // optimize, we need to figure out what they are and quit.
804         const BasicBlock *ChainBB = DefChainEnd->getBlock();
805         for (const TerminatedPath &TP : TerminatedPaths) {
806           // Because we know that DefChainEnd is as "high" as we can go, we
807           // don't need local dominance checks; BB dominance is sufficient.
808           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
809             Clobbers.push_back(TP);
810         }
811       }
812 
813       // If we have clobbers in the def chain, find the one closest to Current
814       // and quit.
815       if (!Clobbers.empty()) {
816         MoveDominatedPathToEnd(Clobbers);
817         TerminatedPath Result = Clobbers.pop_back_val();
818         return {Result, std::move(Clobbers)};
819       }
820 
821       assert(all_of(NewPaused,
822                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
823 
824       // Because liveOnEntry is a clobber, this must be a phi.
825       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
826 
827       PriorPathsSize = Paths.size();
828       PausedSearches.clear();
829       for (ListIndex I : NewPaused)
830         addSearches(DefChainPhi, PausedSearches, I);
831       NewPaused.clear();
832 
833       Current = DefChainPhi;
834     }
835   }
836 
837   void verifyOptResult(const OptznResult &R) const {
838     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
839       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
840     }));
841   }
842 
843   void resetPhiOptznState() {
844     Paths.clear();
845     VisitedPhis.clear();
846   }
847 
848 public:
849   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
850       : MSSA(MSSA), AA(AA), DT(DT) {}
851 
852   /// Finds the nearest clobber for the given query, optimizing phis if
853   /// possible.
854   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
855     Query = &Q;
856 
857     MemoryAccess *Current = Start;
858     // This walker pretends uses don't exist. If we're handed one, silently grab
859     // its def. (This has the nice side-effect of ensuring we never cache uses)
860     if (auto *MU = dyn_cast<MemoryUse>(Start))
861       Current = MU->getDefiningAccess();
862 
863     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
864     // Fast path for the overly-common case (no crazy phi optimization
865     // necessary)
866     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
867     MemoryAccess *Result;
868     if (WalkResult.IsKnownClobber) {
869       Result = WalkResult.Result;
870       Q.AR = WalkResult.AR;
871     } else {
872       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
873                                           Current, Q.StartingLoc);
874       verifyOptResult(OptRes);
875       resetPhiOptznState();
876       Result = OptRes.PrimaryClobber.Clobber;
877     }
878 
879 #ifdef EXPENSIVE_CHECKS
880     checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
881 #endif
882     return Result;
883   }
884 
885   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
886 };
887 
888 struct RenamePassData {
889   DomTreeNode *DTN;
890   DomTreeNode::const_iterator ChildIt;
891   MemoryAccess *IncomingVal;
892 
893   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
894                  MemoryAccess *M)
895       : DTN(D), ChildIt(It), IncomingVal(M) {}
896 
897   void swap(RenamePassData &RHS) {
898     std::swap(DTN, RHS.DTN);
899     std::swap(ChildIt, RHS.ChildIt);
900     std::swap(IncomingVal, RHS.IncomingVal);
901   }
902 };
903 
904 } // end anonymous namespace
905 
906 namespace llvm {
907 
908 /// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
909 /// longer does caching on its own,
910 /// but the name has been retained for the moment.
911 class MemorySSA::CachingWalker final : public MemorySSAWalker {
912   ClobberWalker Walker;
913 
914   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
915 
916 public:
917   CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
918   ~CachingWalker() override = default;
919 
920   using MemorySSAWalker::getClobberingMemoryAccess;
921 
922   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
923   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
924                                           const MemoryLocation &) override;
925   void invalidateInfo(MemoryAccess *) override;
926 
927   void verify(const MemorySSA *MSSA) override {
928     MemorySSAWalker::verify(MSSA);
929     Walker.verify(MSSA);
930   }
931 };
932 
933 } // end namespace llvm
934 
935 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
936                                     bool RenameAllUses) {
937   // Pass through values to our successors
938   for (const BasicBlock *S : successors(BB)) {
939     auto It = PerBlockAccesses.find(S);
940     // Rename the phi nodes in our successor block
941     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
942       continue;
943     AccessList *Accesses = It->second.get();
944     auto *Phi = cast<MemoryPhi>(&Accesses->front());
945     if (RenameAllUses) {
946       int PhiIndex = Phi->getBasicBlockIndex(BB);
947       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
948       Phi->setIncomingValue(PhiIndex, IncomingVal);
949     } else
950       Phi->addIncoming(IncomingVal, BB);
951   }
952 }
953 
954 /// \brief Rename a single basic block into MemorySSA form.
955 /// Uses the standard SSA renaming algorithm.
956 /// \returns The new incoming value.
957 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
958                                      bool RenameAllUses) {
959   auto It = PerBlockAccesses.find(BB);
960   // Skip most processing if the list is empty.
961   if (It != PerBlockAccesses.end()) {
962     AccessList *Accesses = It->second.get();
963     for (MemoryAccess &L : *Accesses) {
964       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
965         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
966           MUD->setDefiningAccess(IncomingVal);
967         if (isa<MemoryDef>(&L))
968           IncomingVal = &L;
969       } else {
970         IncomingVal = &L;
971       }
972     }
973   }
974   return IncomingVal;
975 }
976 
977 /// \brief This is the standard SSA renaming algorithm.
978 ///
979 /// We walk the dominator tree in preorder, renaming accesses, and then filling
980 /// in phi nodes in our successors.
981 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
982                            SmallPtrSetImpl<BasicBlock *> &Visited,
983                            bool SkipVisited, bool RenameAllUses) {
984   SmallVector<RenamePassData, 32> WorkStack;
985   // Skip everything if we already renamed this block and we are skipping.
986   // Note: You can't sink this into the if, because we need it to occur
987   // regardless of whether we skip blocks or not.
988   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
989   if (SkipVisited && AlreadyVisited)
990     return;
991 
992   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
993   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
994   WorkStack.push_back({Root, Root->begin(), IncomingVal});
995 
996   while (!WorkStack.empty()) {
997     DomTreeNode *Node = WorkStack.back().DTN;
998     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
999     IncomingVal = WorkStack.back().IncomingVal;
1000 
1001     if (ChildIt == Node->end()) {
1002       WorkStack.pop_back();
1003     } else {
1004       DomTreeNode *Child = *ChildIt;
1005       ++WorkStack.back().ChildIt;
1006       BasicBlock *BB = Child->getBlock();
1007       // Note: You can't sink this into the if, because we need it to occur
1008       // regardless of whether we skip blocks or not.
1009       AlreadyVisited = !Visited.insert(BB).second;
1010       if (SkipVisited && AlreadyVisited) {
1011         // We already visited this during our renaming, which can happen when
1012         // being asked to rename multiple blocks. Figure out the incoming val,
1013         // which is the last def.
1014         // Incoming value can only change if there is a block def, and in that
1015         // case, it's the last block def in the list.
1016         if (auto *BlockDefs = getWritableBlockDefs(BB))
1017           IncomingVal = &*BlockDefs->rbegin();
1018       } else
1019         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1020       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1021       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1022     }
1023   }
1024 }
1025 
1026 /// \brief This handles unreachable block accesses by deleting phi nodes in
1027 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1028 /// being uses of the live on entry definition.
1029 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1030   assert(!DT->isReachableFromEntry(BB) &&
1031          "Reachable block found while handling unreachable blocks");
1032 
1033   // Make sure phi nodes in our reachable successors end up with a
1034   // LiveOnEntryDef for our incoming edge, even though our block is forward
1035   // unreachable.  We could just disconnect these blocks from the CFG fully,
1036   // but we do not right now.
1037   for (const BasicBlock *S : successors(BB)) {
1038     if (!DT->isReachableFromEntry(S))
1039       continue;
1040     auto It = PerBlockAccesses.find(S);
1041     // Rename the phi nodes in our successor block
1042     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1043       continue;
1044     AccessList *Accesses = It->second.get();
1045     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1046     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1047   }
1048 
1049   auto It = PerBlockAccesses.find(BB);
1050   if (It == PerBlockAccesses.end())
1051     return;
1052 
1053   auto &Accesses = It->second;
1054   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1055     auto Next = std::next(AI);
1056     // If we have a phi, just remove it. We are going to replace all
1057     // users with live on entry.
1058     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1059       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1060     else
1061       Accesses->erase(AI);
1062     AI = Next;
1063   }
1064 }
1065 
1066 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1067     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1068       NextID(0) {
1069   buildMemorySSA();
1070 }
1071 
1072 MemorySSA::~MemorySSA() {
1073   // Drop all our references
1074   for (const auto &Pair : PerBlockAccesses)
1075     for (MemoryAccess &MA : *Pair.second)
1076       MA.dropAllReferences();
1077 }
1078 
1079 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1080   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1081 
1082   if (Res.second)
1083     Res.first->second = llvm::make_unique<AccessList>();
1084   return Res.first->second.get();
1085 }
1086 
1087 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1088   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1089 
1090   if (Res.second)
1091     Res.first->second = llvm::make_unique<DefsList>();
1092   return Res.first->second.get();
1093 }
1094 
1095 namespace llvm {
1096 
1097 /// This class is a batch walker of all MemoryUse's in the program, and points
1098 /// their defining access at the thing that actually clobbers them.  Because it
1099 /// is a batch walker that touches everything, it does not operate like the
1100 /// other walkers.  This walker is basically performing a top-down SSA renaming
1101 /// pass, where the version stack is used as the cache.  This enables it to be
1102 /// significantly more time and memory efficient than using the regular walker,
1103 /// which is walking bottom-up.
1104 class MemorySSA::OptimizeUses {
1105 public:
1106   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1107                DominatorTree *DT)
1108       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1109     Walker = MSSA->getWalker();
1110   }
1111 
1112   void optimizeUses();
1113 
1114 private:
1115   /// This represents where a given memorylocation is in the stack.
1116   struct MemlocStackInfo {
1117     // This essentially is keeping track of versions of the stack. Whenever
1118     // the stack changes due to pushes or pops, these versions increase.
1119     unsigned long StackEpoch;
1120     unsigned long PopEpoch;
1121     // This is the lower bound of places on the stack to check. It is equal to
1122     // the place the last stack walk ended.
1123     // Note: Correctness depends on this being initialized to 0, which densemap
1124     // does
1125     unsigned long LowerBound;
1126     const BasicBlock *LowerBoundBlock;
1127     // This is where the last walk for this memory location ended.
1128     unsigned long LastKill;
1129     bool LastKillValid;
1130     Optional<AliasResult> AR;
1131   };
1132 
1133   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1134                            SmallVectorImpl<MemoryAccess *> &,
1135                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1136 
1137   MemorySSA *MSSA;
1138   MemorySSAWalker *Walker;
1139   AliasAnalysis *AA;
1140   DominatorTree *DT;
1141 };
1142 
1143 } // end namespace llvm
1144 
1145 /// Optimize the uses in a given block This is basically the SSA renaming
1146 /// algorithm, with one caveat: We are able to use a single stack for all
1147 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1148 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1149 /// going to be some position in that stack of possible ones.
1150 ///
1151 /// We track the stack positions that each MemoryLocation needs
1152 /// to check, and last ended at.  This is because we only want to check the
1153 /// things that changed since last time.  The same MemoryLocation should
1154 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1155 /// things like this, and if they start, we can modify MemoryLocOrCall to
1156 /// include relevant data)
1157 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1158     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1159     SmallVectorImpl<MemoryAccess *> &VersionStack,
1160     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1161 
1162   /// If no accesses, nothing to do.
1163   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1164   if (Accesses == nullptr)
1165     return;
1166 
1167   // Pop everything that doesn't dominate the current block off the stack,
1168   // increment the PopEpoch to account for this.
1169   while (true) {
1170     assert(
1171         !VersionStack.empty() &&
1172         "Version stack should have liveOnEntry sentinel dominating everything");
1173     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1174     if (DT->dominates(BackBlock, BB))
1175       break;
1176     while (VersionStack.back()->getBlock() == BackBlock)
1177       VersionStack.pop_back();
1178     ++PopEpoch;
1179   }
1180 
1181   for (MemoryAccess &MA : *Accesses) {
1182     auto *MU = dyn_cast<MemoryUse>(&MA);
1183     if (!MU) {
1184       VersionStack.push_back(&MA);
1185       ++StackEpoch;
1186       continue;
1187     }
1188 
1189     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1190       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1191       continue;
1192     }
1193 
1194     MemoryLocOrCall UseMLOC(MU);
1195     auto &LocInfo = LocStackInfo[UseMLOC];
1196     // If the pop epoch changed, it means we've removed stuff from top of
1197     // stack due to changing blocks. We may have to reset the lower bound or
1198     // last kill info.
1199     if (LocInfo.PopEpoch != PopEpoch) {
1200       LocInfo.PopEpoch = PopEpoch;
1201       LocInfo.StackEpoch = StackEpoch;
1202       // If the lower bound was in something that no longer dominates us, we
1203       // have to reset it.
1204       // We can't simply track stack size, because the stack may have had
1205       // pushes/pops in the meantime.
1206       // XXX: This is non-optimal, but only is slower cases with heavily
1207       // branching dominator trees.  To get the optimal number of queries would
1208       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1209       // the top of that stack dominates us.  This does not seem worth it ATM.
1210       // A much cheaper optimization would be to always explore the deepest
1211       // branch of the dominator tree first. This will guarantee this resets on
1212       // the smallest set of blocks.
1213       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1214           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1215         // Reset the lower bound of things to check.
1216         // TODO: Some day we should be able to reset to last kill, rather than
1217         // 0.
1218         LocInfo.LowerBound = 0;
1219         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1220         LocInfo.LastKillValid = false;
1221       }
1222     } else if (LocInfo.StackEpoch != StackEpoch) {
1223       // If all that has changed is the StackEpoch, we only have to check the
1224       // new things on the stack, because we've checked everything before.  In
1225       // this case, the lower bound of things to check remains the same.
1226       LocInfo.PopEpoch = PopEpoch;
1227       LocInfo.StackEpoch = StackEpoch;
1228     }
1229     if (!LocInfo.LastKillValid) {
1230       LocInfo.LastKill = VersionStack.size() - 1;
1231       LocInfo.LastKillValid = true;
1232       LocInfo.AR = MayAlias;
1233     }
1234 
1235     // At this point, we should have corrected last kill and LowerBound to be
1236     // in bounds.
1237     assert(LocInfo.LowerBound < VersionStack.size() &&
1238            "Lower bound out of range");
1239     assert(LocInfo.LastKill < VersionStack.size() &&
1240            "Last kill info out of range");
1241     // In any case, the new upper bound is the top of the stack.
1242     unsigned long UpperBound = VersionStack.size() - 1;
1243 
1244     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1245       DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1246                    << *(MU->getMemoryInst()) << ")"
1247                    << " because there are " << UpperBound - LocInfo.LowerBound
1248                    << " stores to disambiguate\n");
1249       // Because we did not walk, LastKill is no longer valid, as this may
1250       // have been a kill.
1251       LocInfo.LastKillValid = false;
1252       continue;
1253     }
1254     bool FoundClobberResult = false;
1255     while (UpperBound > LocInfo.LowerBound) {
1256       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1257         // For phis, use the walker, see where we ended up, go there
1258         Instruction *UseInst = MU->getMemoryInst();
1259         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1260         // We are guaranteed to find it or something is wrong
1261         while (VersionStack[UpperBound] != Result) {
1262           assert(UpperBound != 0);
1263           --UpperBound;
1264         }
1265         FoundClobberResult = true;
1266         break;
1267       }
1268 
1269       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1270       // If the lifetime of the pointer ends at this instruction, it's live on
1271       // entry.
1272       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1273         // Reset UpperBound to liveOnEntryDef's place in the stack
1274         UpperBound = 0;
1275         FoundClobberResult = true;
1276         LocInfo.AR = MustAlias;
1277         break;
1278       }
1279       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1280       if (CA.IsClobber) {
1281         FoundClobberResult = true;
1282         LocInfo.AR = CA.AR;
1283         break;
1284       }
1285       --UpperBound;
1286     }
1287 
1288     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1289 
1290     // At the end of this loop, UpperBound is either a clobber, or lower bound
1291     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1292     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1293       // We were last killed now by where we got to
1294       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1295         LocInfo.AR = None;
1296       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1297       LocInfo.LastKill = UpperBound;
1298     } else {
1299       // Otherwise, we checked all the new ones, and now we know we can get to
1300       // LastKill.
1301       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1302     }
1303     LocInfo.LowerBound = VersionStack.size() - 1;
1304     LocInfo.LowerBoundBlock = BB;
1305   }
1306 }
1307 
1308 /// Optimize uses to point to their actual clobbering definitions.
1309 void MemorySSA::OptimizeUses::optimizeUses() {
1310   SmallVector<MemoryAccess *, 16> VersionStack;
1311   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1312   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1313 
1314   unsigned long StackEpoch = 1;
1315   unsigned long PopEpoch = 1;
1316   // We perform a non-recursive top-down dominator tree walk.
1317   for (const auto *DomNode : depth_first(DT->getRootNode()))
1318     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1319                         LocStackInfo);
1320 }
1321 
1322 void MemorySSA::placePHINodes(
1323     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
1324     const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
1325   // Determine where our MemoryPhi's should go
1326   ForwardIDFCalculator IDFs(*DT);
1327   IDFs.setDefiningBlocks(DefiningBlocks);
1328   SmallVector<BasicBlock *, 32> IDFBlocks;
1329   IDFs.calculate(IDFBlocks);
1330 
1331   llvm::sort(IDFBlocks.begin(), IDFBlocks.end(),
1332              [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
1333                return BBNumbers.lookup(A) < BBNumbers.lookup(B);
1334              });
1335 
1336   // Now place MemoryPhi nodes.
1337   for (auto &BB : IDFBlocks)
1338     createMemoryPhi(BB);
1339 }
1340 
1341 void MemorySSA::buildMemorySSA() {
1342   // We create an access to represent "live on entry", for things like
1343   // arguments or users of globals, where the memory they use is defined before
1344   // the beginning of the function. We do not actually insert it into the IR.
1345   // We do not define a live on exit for the immediate uses, and thus our
1346   // semantics do *not* imply that something with no immediate uses can simply
1347   // be removed.
1348   BasicBlock &StartingPoint = F.getEntryBlock();
1349   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1350                                      &StartingPoint, NextID++));
1351   DenseMap<const BasicBlock *, unsigned int> BBNumbers;
1352   unsigned NextBBNum = 0;
1353 
1354   // We maintain lists of memory accesses per-block, trading memory for time. We
1355   // could just look up the memory access for every possible instruction in the
1356   // stream.
1357   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1358   // Go through each block, figure out where defs occur, and chain together all
1359   // the accesses.
1360   for (BasicBlock &B : F) {
1361     BBNumbers[&B] = NextBBNum++;
1362     bool InsertIntoDef = false;
1363     AccessList *Accesses = nullptr;
1364     DefsList *Defs = nullptr;
1365     for (Instruction &I : B) {
1366       MemoryUseOrDef *MUD = createNewAccess(&I);
1367       if (!MUD)
1368         continue;
1369 
1370       if (!Accesses)
1371         Accesses = getOrCreateAccessList(&B);
1372       Accesses->push_back(MUD);
1373       if (isa<MemoryDef>(MUD)) {
1374         InsertIntoDef = true;
1375         if (!Defs)
1376           Defs = getOrCreateDefsList(&B);
1377         Defs->push_back(*MUD);
1378       }
1379     }
1380     if (InsertIntoDef)
1381       DefiningBlocks.insert(&B);
1382   }
1383   placePHINodes(DefiningBlocks, BBNumbers);
1384 
1385   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1386   // filled in with all blocks.
1387   SmallPtrSet<BasicBlock *, 16> Visited;
1388   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1389 
1390   CachingWalker *Walker = getWalkerImpl();
1391 
1392   OptimizeUses(this, Walker, AA, DT).optimizeUses();
1393 
1394   // Mark the uses in unreachable blocks as live on entry, so that they go
1395   // somewhere.
1396   for (auto &BB : F)
1397     if (!Visited.count(&BB))
1398       markUnreachableAsLiveOnEntry(&BB);
1399 }
1400 
1401 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1402 
1403 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1404   if (Walker)
1405     return Walker.get();
1406 
1407   Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
1408   return Walker.get();
1409 }
1410 
1411 // This is a helper function used by the creation routines. It places NewAccess
1412 // into the access and defs lists for a given basic block, at the given
1413 // insertion point.
1414 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1415                                         const BasicBlock *BB,
1416                                         InsertionPlace Point) {
1417   auto *Accesses = getOrCreateAccessList(BB);
1418   if (Point == Beginning) {
1419     // If it's a phi node, it goes first, otherwise, it goes after any phi
1420     // nodes.
1421     if (isa<MemoryPhi>(NewAccess)) {
1422       Accesses->push_front(NewAccess);
1423       auto *Defs = getOrCreateDefsList(BB);
1424       Defs->push_front(*NewAccess);
1425     } else {
1426       auto AI = find_if_not(
1427           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1428       Accesses->insert(AI, NewAccess);
1429       if (!isa<MemoryUse>(NewAccess)) {
1430         auto *Defs = getOrCreateDefsList(BB);
1431         auto DI = find_if_not(
1432             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1433         Defs->insert(DI, *NewAccess);
1434       }
1435     }
1436   } else {
1437     Accesses->push_back(NewAccess);
1438     if (!isa<MemoryUse>(NewAccess)) {
1439       auto *Defs = getOrCreateDefsList(BB);
1440       Defs->push_back(*NewAccess);
1441     }
1442   }
1443   BlockNumberingValid.erase(BB);
1444 }
1445 
1446 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1447                                       AccessList::iterator InsertPt) {
1448   auto *Accesses = getWritableBlockAccesses(BB);
1449   bool WasEnd = InsertPt == Accesses->end();
1450   Accesses->insert(AccessList::iterator(InsertPt), What);
1451   if (!isa<MemoryUse>(What)) {
1452     auto *Defs = getOrCreateDefsList(BB);
1453     // If we got asked to insert at the end, we have an easy job, just shove it
1454     // at the end. If we got asked to insert before an existing def, we also get
1455     // an iterator. If we got asked to insert before a use, we have to hunt for
1456     // the next def.
1457     if (WasEnd) {
1458       Defs->push_back(*What);
1459     } else if (isa<MemoryDef>(InsertPt)) {
1460       Defs->insert(InsertPt->getDefsIterator(), *What);
1461     } else {
1462       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1463         ++InsertPt;
1464       // Either we found a def, or we are inserting at the end
1465       if (InsertPt == Accesses->end())
1466         Defs->push_back(*What);
1467       else
1468         Defs->insert(InsertPt->getDefsIterator(), *What);
1469     }
1470   }
1471   BlockNumberingValid.erase(BB);
1472 }
1473 
1474 // Move What before Where in the IR.  The end result is that What will belong to
1475 // the right lists and have the right Block set, but will not otherwise be
1476 // correct. It will not have the right defining access, and if it is a def,
1477 // things below it will not properly be updated.
1478 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1479                        AccessList::iterator Where) {
1480   // Keep it in the lookup tables, remove from the lists
1481   removeFromLists(What, false);
1482   What->setBlock(BB);
1483   insertIntoListsBefore(What, BB, Where);
1484 }
1485 
1486 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1487                        InsertionPlace Point) {
1488   removeFromLists(What, false);
1489   What->setBlock(BB);
1490   insertIntoListsForBlock(What, BB, Point);
1491 }
1492 
1493 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1494   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1495   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1496   // Phi's always are placed at the front of the block.
1497   insertIntoListsForBlock(Phi, BB, Beginning);
1498   ValueToMemoryAccess[BB] = Phi;
1499   return Phi;
1500 }
1501 
1502 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1503                                                MemoryAccess *Definition) {
1504   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1505   MemoryUseOrDef *NewAccess = createNewAccess(I);
1506   assert(
1507       NewAccess != nullptr &&
1508       "Tried to create a memory access for a non-memory touching instruction");
1509   NewAccess->setDefiningAccess(Definition);
1510   return NewAccess;
1511 }
1512 
1513 // Return true if the instruction has ordering constraints.
1514 // Note specifically that this only considers stores and loads
1515 // because others are still considered ModRef by getModRefInfo.
1516 static inline bool isOrdered(const Instruction *I) {
1517   if (auto *SI = dyn_cast<StoreInst>(I)) {
1518     if (!SI->isUnordered())
1519       return true;
1520   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1521     if (!LI->isUnordered())
1522       return true;
1523   }
1524   return false;
1525 }
1526 
1527 /// \brief Helper function to create new memory accesses
1528 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
1529   // The assume intrinsic has a control dependency which we model by claiming
1530   // that it writes arbitrarily. Ignore that fake memory dependency here.
1531   // FIXME: Replace this special casing with a more accurate modelling of
1532   // assume's control dependency.
1533   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1534     if (II->getIntrinsicID() == Intrinsic::assume)
1535       return nullptr;
1536 
1537   // Find out what affect this instruction has on memory.
1538   ModRefInfo ModRef = AA->getModRefInfo(I, None);
1539   // The isOrdered check is used to ensure that volatiles end up as defs
1540   // (atomics end up as ModRef right now anyway).  Until we separate the
1541   // ordering chain from the memory chain, this enables people to see at least
1542   // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1543   // will still give an answer that bypasses other volatile loads.  TODO:
1544   // Separate memory aliasing and ordering into two different chains so that we
1545   // can precisely represent both "what memory will this read/write/is clobbered
1546   // by" and "what instructions can I move this past".
1547   bool Def = isModSet(ModRef) || isOrdered(I);
1548   bool Use = isRefSet(ModRef);
1549 
1550   // It's possible for an instruction to not modify memory at all. During
1551   // construction, we ignore them.
1552   if (!Def && !Use)
1553     return nullptr;
1554 
1555   MemoryUseOrDef *MUD;
1556   if (Def)
1557     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1558   else
1559     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1560   ValueToMemoryAccess[I] = MUD;
1561   return MUD;
1562 }
1563 
1564 /// \brief Returns true if \p Replacer dominates \p Replacee .
1565 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1566                              const MemoryAccess *Replacee) const {
1567   if (isa<MemoryUseOrDef>(Replacee))
1568     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1569   const auto *MP = cast<MemoryPhi>(Replacee);
1570   // For a phi node, the use occurs in the predecessor block of the phi node.
1571   // Since we may occur multiple times in the phi node, we have to check each
1572   // operand to ensure Replacer dominates each operand where Replacee occurs.
1573   for (const Use &Arg : MP->operands()) {
1574     if (Arg.get() != Replacee &&
1575         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1576       return false;
1577   }
1578   return true;
1579 }
1580 
1581 /// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
1582 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1583   assert(MA->use_empty() &&
1584          "Trying to remove memory access that still has uses");
1585   BlockNumbering.erase(MA);
1586   if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
1587     MUD->setDefiningAccess(nullptr);
1588   // Invalidate our walker's cache if necessary
1589   if (!isa<MemoryUse>(MA))
1590     Walker->invalidateInfo(MA);
1591   // The call below to erase will destroy MA, so we can't change the order we
1592   // are doing things here
1593   Value *MemoryInst;
1594   if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1595     MemoryInst = MUD->getMemoryInst();
1596   } else {
1597     MemoryInst = MA->getBlock();
1598   }
1599   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1600   if (VMA->second == MA)
1601     ValueToMemoryAccess.erase(VMA);
1602 }
1603 
1604 /// \brief Properly remove \p MA from all of MemorySSA's lists.
1605 ///
1606 /// Because of the way the intrusive list and use lists work, it is important to
1607 /// do removal in the right order.
1608 /// ShouldDelete defaults to true, and will cause the memory access to also be
1609 /// deleted, not just removed.
1610 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1611   // The access list owns the reference, so we erase it from the non-owning list
1612   // first.
1613   if (!isa<MemoryUse>(MA)) {
1614     auto DefsIt = PerBlockDefs.find(MA->getBlock());
1615     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1616     Defs->remove(*MA);
1617     if (Defs->empty())
1618       PerBlockDefs.erase(DefsIt);
1619   }
1620 
1621   // The erase call here will delete it. If we don't want it deleted, we call
1622   // remove instead.
1623   auto AccessIt = PerBlockAccesses.find(MA->getBlock());
1624   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1625   if (ShouldDelete)
1626     Accesses->erase(MA);
1627   else
1628     Accesses->remove(MA);
1629 
1630   if (Accesses->empty())
1631     PerBlockAccesses.erase(AccessIt);
1632 }
1633 
1634 void MemorySSA::print(raw_ostream &OS) const {
1635   MemorySSAAnnotatedWriter Writer(this);
1636   F.print(OS, &Writer);
1637 }
1638 
1639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1640 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1641 #endif
1642 
1643 void MemorySSA::verifyMemorySSA() const {
1644   verifyDefUses(F);
1645   verifyDomination(F);
1646   verifyOrdering(F);
1647   Walker->verify(this);
1648 }
1649 
1650 /// \brief Verify that the order and existence of MemoryAccesses matches the
1651 /// order and existence of memory affecting instructions.
1652 void MemorySSA::verifyOrdering(Function &F) const {
1653   // Walk all the blocks, comparing what the lookups think and what the access
1654   // lists think, as well as the order in the blocks vs the order in the access
1655   // lists.
1656   SmallVector<MemoryAccess *, 32> ActualAccesses;
1657   SmallVector<MemoryAccess *, 32> ActualDefs;
1658   for (BasicBlock &B : F) {
1659     const AccessList *AL = getBlockAccesses(&B);
1660     const auto *DL = getBlockDefs(&B);
1661     MemoryAccess *Phi = getMemoryAccess(&B);
1662     if (Phi) {
1663       ActualAccesses.push_back(Phi);
1664       ActualDefs.push_back(Phi);
1665     }
1666 
1667     for (Instruction &I : B) {
1668       MemoryAccess *MA = getMemoryAccess(&I);
1669       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1670              "We have memory affecting instructions "
1671              "in this block but they are not in the "
1672              "access list or defs list");
1673       if (MA) {
1674         ActualAccesses.push_back(MA);
1675         if (isa<MemoryDef>(MA))
1676           ActualDefs.push_back(MA);
1677       }
1678     }
1679     // Either we hit the assert, really have no accesses, or we have both
1680     // accesses and an access list.
1681     // Same with defs.
1682     if (!AL && !DL)
1683       continue;
1684     assert(AL->size() == ActualAccesses.size() &&
1685            "We don't have the same number of accesses in the block as on the "
1686            "access list");
1687     assert((DL || ActualDefs.size() == 0) &&
1688            "Either we should have a defs list, or we should have no defs");
1689     assert((!DL || DL->size() == ActualDefs.size()) &&
1690            "We don't have the same number of defs in the block as on the "
1691            "def list");
1692     auto ALI = AL->begin();
1693     auto AAI = ActualAccesses.begin();
1694     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1695       assert(&*ALI == *AAI && "Not the same accesses in the same order");
1696       ++ALI;
1697       ++AAI;
1698     }
1699     ActualAccesses.clear();
1700     if (DL) {
1701       auto DLI = DL->begin();
1702       auto ADI = ActualDefs.begin();
1703       while (DLI != DL->end() && ADI != ActualDefs.end()) {
1704         assert(&*DLI == *ADI && "Not the same defs in the same order");
1705         ++DLI;
1706         ++ADI;
1707       }
1708     }
1709     ActualDefs.clear();
1710   }
1711 }
1712 
1713 /// \brief Verify the domination properties of MemorySSA by checking that each
1714 /// definition dominates all of its uses.
1715 void MemorySSA::verifyDomination(Function &F) const {
1716 #ifndef NDEBUG
1717   for (BasicBlock &B : F) {
1718     // Phi nodes are attached to basic blocks
1719     if (MemoryPhi *MP = getMemoryAccess(&B))
1720       for (const Use &U : MP->uses())
1721         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1722 
1723     for (Instruction &I : B) {
1724       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1725       if (!MD)
1726         continue;
1727 
1728       for (const Use &U : MD->uses())
1729         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1730     }
1731   }
1732 #endif
1733 }
1734 
1735 /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
1736 /// appears in the use list of \p Def.
1737 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1738 #ifndef NDEBUG
1739   // The live on entry use may cause us to get a NULL def here
1740   if (!Def)
1741     assert(isLiveOnEntryDef(Use) &&
1742            "Null def but use not point to live on entry def");
1743   else
1744     assert(is_contained(Def->users(), Use) &&
1745            "Did not find use in def's use list");
1746 #endif
1747 }
1748 
1749 /// \brief Verify the immediate use information, by walking all the memory
1750 /// accesses and verifying that, for each use, it appears in the
1751 /// appropriate def's use list
1752 void MemorySSA::verifyDefUses(Function &F) const {
1753   for (BasicBlock &B : F) {
1754     // Phi nodes are attached to basic blocks
1755     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1756       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1757                                           pred_begin(&B), pred_end(&B))) &&
1758              "Incomplete MemoryPhi Node");
1759       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1760         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1761     }
1762 
1763     for (Instruction &I : B) {
1764       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1765         verifyUseInDefs(MA->getDefiningAccess(), MA);
1766       }
1767     }
1768   }
1769 }
1770 
1771 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1772   return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
1773 }
1774 
1775 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
1776   return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
1777 }
1778 
1779 /// Perform a local numbering on blocks so that instruction ordering can be
1780 /// determined in constant time.
1781 /// TODO: We currently just number in order.  If we numbered by N, we could
1782 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1783 /// log2(N) sequences of mixed before and after) without needing to invalidate
1784 /// the numbering.
1785 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1786   // The pre-increment ensures the numbers really start at 1.
1787   unsigned long CurrentNumber = 0;
1788   const AccessList *AL = getBlockAccesses(B);
1789   assert(AL != nullptr && "Asking to renumber an empty block");
1790   for (const auto &I : *AL)
1791     BlockNumbering[&I] = ++CurrentNumber;
1792   BlockNumberingValid.insert(B);
1793 }
1794 
1795 /// \brief Determine, for two memory accesses in the same block,
1796 /// whether \p Dominator dominates \p Dominatee.
1797 /// \returns True if \p Dominator dominates \p Dominatee.
1798 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1799                                  const MemoryAccess *Dominatee) const {
1800   const BasicBlock *DominatorBlock = Dominator->getBlock();
1801 
1802   assert((DominatorBlock == Dominatee->getBlock()) &&
1803          "Asking for local domination when accesses are in different blocks!");
1804   // A node dominates itself.
1805   if (Dominatee == Dominator)
1806     return true;
1807 
1808   // When Dominatee is defined on function entry, it is not dominated by another
1809   // memory access.
1810   if (isLiveOnEntryDef(Dominatee))
1811     return false;
1812 
1813   // When Dominator is defined on function entry, it dominates the other memory
1814   // access.
1815   if (isLiveOnEntryDef(Dominator))
1816     return true;
1817 
1818   if (!BlockNumberingValid.count(DominatorBlock))
1819     renumberBlock(DominatorBlock);
1820 
1821   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1822   // All numbers start with 1
1823   assert(DominatorNum != 0 && "Block was not numbered properly");
1824   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1825   assert(DominateeNum != 0 && "Block was not numbered properly");
1826   return DominatorNum < DominateeNum;
1827 }
1828 
1829 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1830                           const MemoryAccess *Dominatee) const {
1831   if (Dominator == Dominatee)
1832     return true;
1833 
1834   if (isLiveOnEntryDef(Dominatee))
1835     return false;
1836 
1837   if (Dominator->getBlock() != Dominatee->getBlock())
1838     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1839   return locallyDominates(Dominator, Dominatee);
1840 }
1841 
1842 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1843                           const Use &Dominatee) const {
1844   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1845     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1846     // The def must dominate the incoming block of the phi.
1847     if (UseBB != Dominator->getBlock())
1848       return DT->dominates(Dominator->getBlock(), UseBB);
1849     // If the UseBB and the DefBB are the same, compare locally.
1850     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1851   }
1852   // If it's not a PHI node use, the normal dominates can already handle it.
1853   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1854 }
1855 
1856 const static char LiveOnEntryStr[] = "liveOnEntry";
1857 
1858 void MemoryAccess::print(raw_ostream &OS) const {
1859   switch (getValueID()) {
1860   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1861   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1862   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1863   }
1864   llvm_unreachable("invalid value id");
1865 }
1866 
1867 void MemoryDef::print(raw_ostream &OS) const {
1868   MemoryAccess *UO = getDefiningAccess();
1869 
1870   OS << getID() << " = MemoryDef(";
1871   if (UO && UO->getID())
1872     OS << UO->getID();
1873   else
1874     OS << LiveOnEntryStr;
1875   OS << ')';
1876 }
1877 
1878 void MemoryPhi::print(raw_ostream &OS) const {
1879   bool First = true;
1880   OS << getID() << " = MemoryPhi(";
1881   for (const auto &Op : operands()) {
1882     BasicBlock *BB = getIncomingBlock(Op);
1883     MemoryAccess *MA = cast<MemoryAccess>(Op);
1884     if (!First)
1885       OS << ',';
1886     else
1887       First = false;
1888 
1889     OS << '{';
1890     if (BB->hasName())
1891       OS << BB->getName();
1892     else
1893       BB->printAsOperand(OS, false);
1894     OS << ',';
1895     if (unsigned ID = MA->getID())
1896       OS << ID;
1897     else
1898       OS << LiveOnEntryStr;
1899     OS << '}';
1900   }
1901   OS << ')';
1902 }
1903 
1904 void MemoryUse::print(raw_ostream &OS) const {
1905   MemoryAccess *UO = getDefiningAccess();
1906   OS << "MemoryUse(";
1907   if (UO && UO->getID())
1908     OS << UO->getID();
1909   else
1910     OS << LiveOnEntryStr;
1911   OS << ')';
1912 }
1913 
1914 void MemoryAccess::dump() const {
1915 // Cannot completely remove virtual function even in release mode.
1916 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1917   print(dbgs());
1918   dbgs() << "\n";
1919 #endif
1920 }
1921 
1922 char MemorySSAPrinterLegacyPass::ID = 0;
1923 
1924 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1925   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1926 }
1927 
1928 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1929   AU.setPreservesAll();
1930   AU.addRequired<MemorySSAWrapperPass>();
1931 }
1932 
1933 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1934   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1935   MSSA.print(dbgs());
1936   if (VerifyMemorySSA)
1937     MSSA.verifyMemorySSA();
1938   return false;
1939 }
1940 
1941 AnalysisKey MemorySSAAnalysis::Key;
1942 
1943 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
1944                                                  FunctionAnalysisManager &AM) {
1945   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1946   auto &AA = AM.getResult<AAManager>(F);
1947   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
1948 }
1949 
1950 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
1951                                             FunctionAnalysisManager &AM) {
1952   OS << "MemorySSA for function: " << F.getName() << "\n";
1953   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
1954 
1955   return PreservedAnalyses::all();
1956 }
1957 
1958 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
1959                                              FunctionAnalysisManager &AM) {
1960   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
1961 
1962   return PreservedAnalyses::all();
1963 }
1964 
1965 char MemorySSAWrapperPass::ID = 0;
1966 
1967 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
1968   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
1969 }
1970 
1971 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
1972 
1973 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1974   AU.setPreservesAll();
1975   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1976   AU.addRequiredTransitive<AAResultsWrapperPass>();
1977 }
1978 
1979 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
1980   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1981   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1982   MSSA.reset(new MemorySSA(F, &AA, &DT));
1983   return false;
1984 }
1985 
1986 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
1987 
1988 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
1989   MSSA->print(OS);
1990 }
1991 
1992 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
1993 
1994 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
1995                                         DominatorTree *D)
1996     : MemorySSAWalker(M), Walker(*M, *A, *D) {}
1997 
1998 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
1999   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2000     MUD->resetOptimized();
2001 }
2002 
2003 /// \brief Walk the use-def chains starting at \p MA and find
2004 /// the MemoryAccess that actually clobbers Loc.
2005 ///
2006 /// \returns our clobbering memory access
2007 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2008     MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
2009   return Walker.findClobber(StartingAccess, Q);
2010 }
2011 
2012 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2013     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2014   if (isa<MemoryPhi>(StartingAccess))
2015     return StartingAccess;
2016 
2017   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2018   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2019     return StartingUseOrDef;
2020 
2021   Instruction *I = StartingUseOrDef->getMemoryInst();
2022 
2023   // Conservatively, fences are always clobbers, so don't perform the walk if we
2024   // hit a fence.
2025   if (!ImmutableCallSite(I) && I->isFenceLike())
2026     return StartingUseOrDef;
2027 
2028   UpwardsMemoryQuery Q;
2029   Q.OriginalAccess = StartingUseOrDef;
2030   Q.StartingLoc = Loc;
2031   Q.Inst = I;
2032   Q.IsCall = false;
2033 
2034   // Unlike the other function, do not walk to the def of a def, because we are
2035   // handed something we already believe is the clobbering access.
2036   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2037                                      ? StartingUseOrDef->getDefiningAccess()
2038                                      : StartingUseOrDef;
2039 
2040   MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
2041   DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2042   DEBUG(dbgs() << *StartingUseOrDef << "\n");
2043   DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2044   DEBUG(dbgs() << *Clobber << "\n");
2045   return Clobber;
2046 }
2047 
2048 MemoryAccess *
2049 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2050   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2051   // If this is a MemoryPhi, we can't do anything.
2052   if (!StartingAccess)
2053     return MA;
2054 
2055   // If this is an already optimized use or def, return the optimized result.
2056   // Note: Currently, we store the optimized def result in a separate field,
2057   // since we can't use the defining access.
2058   if (StartingAccess->isOptimized())
2059     return StartingAccess->getOptimized();
2060 
2061   const Instruction *I = StartingAccess->getMemoryInst();
2062   UpwardsMemoryQuery Q(I, StartingAccess);
2063   // We can't sanely do anything with a fence, since they conservatively clobber
2064   // all memory, and have no locations to get pointers from to try to
2065   // disambiguate.
2066   if (!Q.IsCall && I->isFenceLike())
2067     return StartingAccess;
2068 
2069   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2070     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2071     StartingAccess->setOptimized(LiveOnEntry);
2072     StartingAccess->setOptimizedAccessType(None);
2073     return LiveOnEntry;
2074   }
2075 
2076   // Start with the thing we already think clobbers this location
2077   MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2078 
2079   // At this point, DefiningAccess may be the live on entry def.
2080   // If it is, we will not get a better result.
2081   if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2082     StartingAccess->setOptimized(DefiningAccess);
2083     StartingAccess->setOptimizedAccessType(None);
2084     return DefiningAccess;
2085   }
2086 
2087   MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
2088   DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2089   DEBUG(dbgs() << *DefiningAccess << "\n");
2090   DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2091   DEBUG(dbgs() << *Result << "\n");
2092 
2093   StartingAccess->setOptimized(Result);
2094   if (MSSA->isLiveOnEntryDef(Result))
2095     StartingAccess->setOptimizedAccessType(None);
2096   else if (Q.AR == MustAlias)
2097     StartingAccess->setOptimizedAccessType(MustAlias);
2098 
2099   return Result;
2100 }
2101 
2102 MemoryAccess *
2103 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2104   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2105     return Use->getDefiningAccess();
2106   return MA;
2107 }
2108 
2109 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2110     MemoryAccess *StartingAccess, const MemoryLocation &) {
2111   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2112     return Use->getDefiningAccess();
2113   return StartingAccess;
2114 }
2115 
2116 void MemoryPhi::deleteMe(DerivedUser *Self) {
2117   delete static_cast<MemoryPhi *>(Self);
2118 }
2119 
2120 void MemoryDef::deleteMe(DerivedUser *Self) {
2121   delete static_cast<MemoryDef *>(Self);
2122 }
2123 
2124 void MemoryUse::deleteMe(DerivedUser *Self) {
2125   delete static_cast<MemoryUse *>(Self);
2126 }
2127