1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the MemorySSA class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemorySSA.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/PassManager.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "memoryssa" 60 61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 62 true) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 66 true) 67 68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 69 "Memory SSA Printer", false, false) 70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 72 "Memory SSA Printer", false, false) 73 74 static cl::opt<unsigned> MaxCheckLimit( 75 "memssa-check-limit", cl::Hidden, cl::init(100), 76 cl::desc("The maximum number of stores/phis MemorySSA" 77 "will consider trying to walk past (default = 100)")); 78 79 static cl::opt<bool> 80 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, 81 cl::desc("Verify MemorySSA in legacy printer pass.")); 82 83 namespace llvm { 84 85 /// \brief An assembly annotator class to print Memory SSA information in 86 /// comments. 87 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 88 friend class MemorySSA; 89 90 const MemorySSA *MSSA; 91 92 public: 93 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 94 95 void emitBasicBlockStartAnnot(const BasicBlock *BB, 96 formatted_raw_ostream &OS) override { 97 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 98 OS << "; " << *MA << "\n"; 99 } 100 101 void emitInstructionAnnot(const Instruction *I, 102 formatted_raw_ostream &OS) override { 103 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 104 OS << "; " << *MA << "\n"; 105 } 106 }; 107 108 } // end namespace llvm 109 110 namespace { 111 112 /// Our current alias analysis API differentiates heavily between calls and 113 /// non-calls, and functions called on one usually assert on the other. 114 /// This class encapsulates the distinction to simplify other code that wants 115 /// "Memory affecting instructions and related data" to use as a key. 116 /// For example, this class is used as a densemap key in the use optimizer. 117 class MemoryLocOrCall { 118 public: 119 bool IsCall = false; 120 121 MemoryLocOrCall() = default; 122 MemoryLocOrCall(MemoryUseOrDef *MUD) 123 : MemoryLocOrCall(MUD->getMemoryInst()) {} 124 MemoryLocOrCall(const MemoryUseOrDef *MUD) 125 : MemoryLocOrCall(MUD->getMemoryInst()) {} 126 127 MemoryLocOrCall(Instruction *Inst) { 128 if (ImmutableCallSite(Inst)) { 129 IsCall = true; 130 CS = ImmutableCallSite(Inst); 131 } else { 132 IsCall = false; 133 // There is no such thing as a memorylocation for a fence inst, and it is 134 // unique in that regard. 135 if (!isa<FenceInst>(Inst)) 136 Loc = MemoryLocation::get(Inst); 137 } 138 } 139 140 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 141 142 ImmutableCallSite getCS() const { 143 assert(IsCall); 144 return CS; 145 } 146 147 MemoryLocation getLoc() const { 148 assert(!IsCall); 149 return Loc; 150 } 151 152 bool operator==(const MemoryLocOrCall &Other) const { 153 if (IsCall != Other.IsCall) 154 return false; 155 156 if (!IsCall) 157 return Loc == Other.Loc; 158 159 if (CS.getCalledValue() != Other.CS.getCalledValue()) 160 return false; 161 162 return CS.arg_size() == Other.CS.arg_size() && 163 std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin()); 164 } 165 166 private: 167 union { 168 ImmutableCallSite CS; 169 MemoryLocation Loc; 170 }; 171 }; 172 173 } // end anonymous namespace 174 175 namespace llvm { 176 177 template <> struct DenseMapInfo<MemoryLocOrCall> { 178 static inline MemoryLocOrCall getEmptyKey() { 179 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 180 } 181 182 static inline MemoryLocOrCall getTombstoneKey() { 183 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 184 } 185 186 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 187 if (!MLOC.IsCall) 188 return hash_combine( 189 MLOC.IsCall, 190 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 191 192 hash_code hash = 193 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 194 MLOC.getCS().getCalledValue())); 195 196 for (const Value *Arg : MLOC.getCS().args()) 197 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 198 return hash; 199 } 200 201 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 202 return LHS == RHS; 203 } 204 }; 205 206 } // end namespace llvm 207 208 /// This does one-way checks to see if Use could theoretically be hoisted above 209 /// MayClobber. This will not check the other way around. 210 /// 211 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 212 /// MayClobber, with no potentially clobbering operations in between them. 213 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 214 static bool areLoadsReorderable(const LoadInst *Use, 215 const LoadInst *MayClobber) { 216 bool VolatileUse = Use->isVolatile(); 217 bool VolatileClobber = MayClobber->isVolatile(); 218 // Volatile operations may never be reordered with other volatile operations. 219 if (VolatileUse && VolatileClobber) 220 return false; 221 // Otherwise, volatile doesn't matter here. From the language reference: 222 // 'optimizers may change the order of volatile operations relative to 223 // non-volatile operations.'" 224 225 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 226 // is weaker, it can be moved above other loads. We just need to be sure that 227 // MayClobber isn't an acquire load, because loads can't be moved above 228 // acquire loads. 229 // 230 // Note that this explicitly *does* allow the free reordering of monotonic (or 231 // weaker) loads of the same address. 232 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 233 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 234 AtomicOrdering::Acquire); 235 return !(SeqCstUse || MayClobberIsAcquire); 236 } 237 238 namespace { 239 240 struct ClobberAlias { 241 bool IsClobber; 242 Optional<AliasResult> AR; 243 }; 244 245 } // end anonymous namespace 246 247 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 248 // ignored if IsClobber = false. 249 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 250 const MemoryLocation &UseLoc, 251 const Instruction *UseInst, 252 AliasAnalysis &AA) { 253 Instruction *DefInst = MD->getMemoryInst(); 254 assert(DefInst && "Defining instruction not actually an instruction"); 255 ImmutableCallSite UseCS(UseInst); 256 Optional<AliasResult> AR; 257 258 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 259 // These intrinsics will show up as affecting memory, but they are just 260 // markers. 261 switch (II->getIntrinsicID()) { 262 case Intrinsic::lifetime_start: 263 if (UseCS) 264 return {false, NoAlias}; 265 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 266 return {AR == MustAlias, AR}; 267 case Intrinsic::lifetime_end: 268 case Intrinsic::invariant_start: 269 case Intrinsic::invariant_end: 270 case Intrinsic::assume: 271 return {false, NoAlias}; 272 default: 273 break; 274 } 275 } 276 277 if (UseCS) { 278 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); 279 AR = isMustSet(I) ? MustAlias : MayAlias; 280 return {isModOrRefSet(I), AR}; 281 } 282 283 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 284 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 285 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 286 287 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 288 AR = isMustSet(I) ? MustAlias : MayAlias; 289 return {isModSet(I), AR}; 290 } 291 292 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 293 const MemoryUseOrDef *MU, 294 const MemoryLocOrCall &UseMLOC, 295 AliasAnalysis &AA) { 296 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 297 // to exist while MemoryLocOrCall is pushed through places. 298 if (UseMLOC.IsCall) 299 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 300 AA); 301 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 302 AA); 303 } 304 305 // Return true when MD may alias MU, return false otherwise. 306 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 307 AliasAnalysis &AA) { 308 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 309 } 310 311 namespace { 312 313 struct UpwardsMemoryQuery { 314 // True if our original query started off as a call 315 bool IsCall = false; 316 // The pointer location we started the query with. This will be empty if 317 // IsCall is true. 318 MemoryLocation StartingLoc; 319 // This is the instruction we were querying about. 320 const Instruction *Inst = nullptr; 321 // The MemoryAccess we actually got called with, used to test local domination 322 const MemoryAccess *OriginalAccess = nullptr; 323 Optional<AliasResult> AR = MayAlias; 324 325 UpwardsMemoryQuery() = default; 326 327 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 328 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { 329 if (!IsCall) 330 StartingLoc = MemoryLocation::get(Inst); 331 } 332 }; 333 334 } // end anonymous namespace 335 336 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 337 AliasAnalysis &AA) { 338 Instruction *Inst = MD->getMemoryInst(); 339 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 340 switch (II->getIntrinsicID()) { 341 case Intrinsic::lifetime_end: 342 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); 343 default: 344 return false; 345 } 346 } 347 return false; 348 } 349 350 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, 351 const Instruction *I) { 352 // If the memory can't be changed, then loads of the memory can't be 353 // clobbered. 354 // 355 // FIXME: We should handle invariant groups, as well. It's a bit harder, 356 // because we need to pay close attention to invariant group barriers. 357 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 358 AA.pointsToConstantMemory(cast<LoadInst>(I)-> 359 getPointerOperand())); 360 } 361 362 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 363 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 364 /// 365 /// This is meant to be as simple and self-contained as possible. Because it 366 /// uses no cache, etc., it can be relatively expensive. 367 /// 368 /// \param Start The MemoryAccess that we want to walk from. 369 /// \param ClobberAt A clobber for Start. 370 /// \param StartLoc The MemoryLocation for Start. 371 /// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. 372 /// \param Query The UpwardsMemoryQuery we used for our search. 373 /// \param AA The AliasAnalysis we used for our search. 374 static void LLVM_ATTRIBUTE_UNUSED 375 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, 376 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 377 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { 378 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 379 380 if (MSSA.isLiveOnEntryDef(Start)) { 381 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 382 "liveOnEntry must clobber itself"); 383 return; 384 } 385 386 bool FoundClobber = false; 387 DenseSet<MemoryAccessPair> VisitedPhis; 388 SmallVector<MemoryAccessPair, 8> Worklist; 389 Worklist.emplace_back(Start, StartLoc); 390 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 391 // is found, complain. 392 while (!Worklist.empty()) { 393 MemoryAccessPair MAP = Worklist.pop_back_val(); 394 // All we care about is that nothing from Start to ClobberAt clobbers Start. 395 // We learn nothing from revisiting nodes. 396 if (!VisitedPhis.insert(MAP).second) 397 continue; 398 399 for (MemoryAccess *MA : def_chain(MAP.first)) { 400 if (MA == ClobberAt) { 401 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 402 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 403 // since it won't let us short-circuit. 404 // 405 // Also, note that this can't be hoisted out of the `Worklist` loop, 406 // since MD may only act as a clobber for 1 of N MemoryLocations. 407 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 408 if (!FoundClobber) { 409 ClobberAlias CA = 410 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 411 if (CA.IsClobber) { 412 FoundClobber = true; 413 // Not used: CA.AR; 414 } 415 } 416 } 417 break; 418 } 419 420 // We should never hit liveOnEntry, unless it's the clobber. 421 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 422 423 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 424 (void)MD; 425 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 426 .IsClobber && 427 "Found clobber before reaching ClobberAt!"); 428 continue; 429 } 430 431 assert(isa<MemoryPhi>(MA)); 432 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); 433 } 434 } 435 436 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 437 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 438 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 439 "ClobberAt never acted as a clobber"); 440 } 441 442 namespace { 443 444 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 445 /// in one class. 446 class ClobberWalker { 447 /// Save a few bytes by using unsigned instead of size_t. 448 using ListIndex = unsigned; 449 450 /// Represents a span of contiguous MemoryDefs, potentially ending in a 451 /// MemoryPhi. 452 struct DefPath { 453 MemoryLocation Loc; 454 // Note that, because we always walk in reverse, Last will always dominate 455 // First. Also note that First and Last are inclusive. 456 MemoryAccess *First; 457 MemoryAccess *Last; 458 Optional<ListIndex> Previous; 459 460 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 461 Optional<ListIndex> Previous) 462 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 463 464 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 465 Optional<ListIndex> Previous) 466 : DefPath(Loc, Init, Init, Previous) {} 467 }; 468 469 const MemorySSA &MSSA; 470 AliasAnalysis &AA; 471 DominatorTree &DT; 472 UpwardsMemoryQuery *Query; 473 474 // Phi optimization bookkeeping 475 SmallVector<DefPath, 32> Paths; 476 DenseSet<ConstMemoryAccessPair> VisitedPhis; 477 478 /// Find the nearest def or phi that `From` can legally be optimized to. 479 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 480 assert(From->getNumOperands() && "Phi with no operands?"); 481 482 BasicBlock *BB = From->getBlock(); 483 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 484 DomTreeNode *Node = DT.getNode(BB); 485 while ((Node = Node->getIDom())) { 486 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 487 if (Defs) 488 return &*Defs->rbegin(); 489 } 490 return Result; 491 } 492 493 /// Result of calling walkToPhiOrClobber. 494 struct UpwardsWalkResult { 495 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 496 /// both. Include alias info when clobber found. 497 MemoryAccess *Result; 498 bool IsKnownClobber; 499 Optional<AliasResult> AR; 500 }; 501 502 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 503 /// This will update Desc.Last as it walks. It will (optionally) also stop at 504 /// StopAt. 505 /// 506 /// This does not test for whether StopAt is a clobber 507 UpwardsWalkResult 508 walkToPhiOrClobber(DefPath &Desc, 509 const MemoryAccess *StopAt = nullptr) const { 510 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 511 512 for (MemoryAccess *Current : def_chain(Desc.Last)) { 513 Desc.Last = Current; 514 if (Current == StopAt) 515 return {Current, false, MayAlias}; 516 517 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 518 if (MSSA.isLiveOnEntryDef(MD)) 519 return {MD, true, MustAlias}; 520 ClobberAlias CA = 521 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 522 if (CA.IsClobber) 523 return {MD, true, CA.AR}; 524 } 525 } 526 527 assert(isa<MemoryPhi>(Desc.Last) && 528 "Ended at a non-clobber that's not a phi?"); 529 return {Desc.Last, false, MayAlias}; 530 } 531 532 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 533 ListIndex PriorNode) { 534 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 535 upward_defs_end()); 536 for (const MemoryAccessPair &P : UpwardDefs) { 537 PausedSearches.push_back(Paths.size()); 538 Paths.emplace_back(P.second, P.first, PriorNode); 539 } 540 } 541 542 /// Represents a search that terminated after finding a clobber. This clobber 543 /// may or may not be present in the path of defs from LastNode..SearchStart, 544 /// since it may have been retrieved from cache. 545 struct TerminatedPath { 546 MemoryAccess *Clobber; 547 ListIndex LastNode; 548 }; 549 550 /// Get an access that keeps us from optimizing to the given phi. 551 /// 552 /// PausedSearches is an array of indices into the Paths array. Its incoming 553 /// value is the indices of searches that stopped at the last phi optimization 554 /// target. It's left in an unspecified state. 555 /// 556 /// If this returns None, NewPaused is a vector of searches that terminated 557 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 558 Optional<TerminatedPath> 559 getBlockingAccess(const MemoryAccess *StopWhere, 560 SmallVectorImpl<ListIndex> &PausedSearches, 561 SmallVectorImpl<ListIndex> &NewPaused, 562 SmallVectorImpl<TerminatedPath> &Terminated) { 563 assert(!PausedSearches.empty() && "No searches to continue?"); 564 565 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 566 // PausedSearches as our stack. 567 while (!PausedSearches.empty()) { 568 ListIndex PathIndex = PausedSearches.pop_back_val(); 569 DefPath &Node = Paths[PathIndex]; 570 571 // If we've already visited this path with this MemoryLocation, we don't 572 // need to do so again. 573 // 574 // NOTE: That we just drop these paths on the ground makes caching 575 // behavior sporadic. e.g. given a diamond: 576 // A 577 // B C 578 // D 579 // 580 // ...If we walk D, B, A, C, we'll only cache the result of phi 581 // optimization for A, B, and D; C will be skipped because it dies here. 582 // This arguably isn't the worst thing ever, since: 583 // - We generally query things in a top-down order, so if we got below D 584 // without needing cache entries for {C, MemLoc}, then chances are 585 // that those cache entries would end up ultimately unused. 586 // - We still cache things for A, so C only needs to walk up a bit. 587 // If this behavior becomes problematic, we can fix without a ton of extra 588 // work. 589 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 590 continue; 591 592 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); 593 if (Res.IsKnownClobber) { 594 assert(Res.Result != StopWhere); 595 // If this wasn't a cache hit, we hit a clobber when walking. That's a 596 // failure. 597 TerminatedPath Term{Res.Result, PathIndex}; 598 if (!MSSA.dominates(Res.Result, StopWhere)) 599 return Term; 600 601 // Otherwise, it's a valid thing to potentially optimize to. 602 Terminated.push_back(Term); 603 continue; 604 } 605 606 if (Res.Result == StopWhere) { 607 // We've hit our target. Save this path off for if we want to continue 608 // walking. 609 NewPaused.push_back(PathIndex); 610 continue; 611 } 612 613 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 614 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 615 } 616 617 return None; 618 } 619 620 template <typename T, typename Walker> 621 struct generic_def_path_iterator 622 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 623 std::forward_iterator_tag, T *> { 624 generic_def_path_iterator() = default; 625 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 626 627 T &operator*() const { return curNode(); } 628 629 generic_def_path_iterator &operator++() { 630 N = curNode().Previous; 631 return *this; 632 } 633 634 bool operator==(const generic_def_path_iterator &O) const { 635 if (N.hasValue() != O.N.hasValue()) 636 return false; 637 return !N.hasValue() || *N == *O.N; 638 } 639 640 private: 641 T &curNode() const { return W->Paths[*N]; } 642 643 Walker *W = nullptr; 644 Optional<ListIndex> N = None; 645 }; 646 647 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 648 using const_def_path_iterator = 649 generic_def_path_iterator<const DefPath, const ClobberWalker>; 650 651 iterator_range<def_path_iterator> def_path(ListIndex From) { 652 return make_range(def_path_iterator(this, From), def_path_iterator()); 653 } 654 655 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 656 return make_range(const_def_path_iterator(this, From), 657 const_def_path_iterator()); 658 } 659 660 struct OptznResult { 661 /// The path that contains our result. 662 TerminatedPath PrimaryClobber; 663 /// The paths that we can legally cache back from, but that aren't 664 /// necessarily the result of the Phi optimization. 665 SmallVector<TerminatedPath, 4> OtherClobbers; 666 }; 667 668 ListIndex defPathIndex(const DefPath &N) const { 669 // The assert looks nicer if we don't need to do &N 670 const DefPath *NP = &N; 671 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 672 "Out of bounds DefPath!"); 673 return NP - &Paths.front(); 674 } 675 676 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 677 /// that act as legal clobbers. Note that this won't return *all* clobbers. 678 /// 679 /// Phi optimization algorithm tl;dr: 680 /// - Find the earliest def/phi, A, we can optimize to 681 /// - Find if all paths from the starting memory access ultimately reach A 682 /// - If not, optimization isn't possible. 683 /// - Otherwise, walk from A to another clobber or phi, A'. 684 /// - If A' is a def, we're done. 685 /// - If A' is a phi, try to optimize it. 686 /// 687 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 688 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 689 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 690 const MemoryLocation &Loc) { 691 assert(Paths.empty() && VisitedPhis.empty() && 692 "Reset the optimization state."); 693 694 Paths.emplace_back(Loc, Start, Phi, None); 695 // Stores how many "valid" optimization nodes we had prior to calling 696 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 697 auto PriorPathsSize = Paths.size(); 698 699 SmallVector<ListIndex, 16> PausedSearches; 700 SmallVector<ListIndex, 8> NewPaused; 701 SmallVector<TerminatedPath, 4> TerminatedPaths; 702 703 addSearches(Phi, PausedSearches, 0); 704 705 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 706 // Paths. 707 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 708 assert(!Paths.empty() && "Need a path to move"); 709 auto Dom = Paths.begin(); 710 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 711 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 712 Dom = I; 713 auto Last = Paths.end() - 1; 714 if (Last != Dom) 715 std::iter_swap(Last, Dom); 716 }; 717 718 MemoryPhi *Current = Phi; 719 while (true) { 720 assert(!MSSA.isLiveOnEntryDef(Current) && 721 "liveOnEntry wasn't treated as a clobber?"); 722 723 const auto *Target = getWalkTarget(Current); 724 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 725 // optimization for the prior phi. 726 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 727 return MSSA.dominates(P.Clobber, Target); 728 })); 729 730 // FIXME: This is broken, because the Blocker may be reported to be 731 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 732 // For the moment, this is fine, since we do nothing with blocker info. 733 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 734 Target, PausedSearches, NewPaused, TerminatedPaths)) { 735 736 // Find the node we started at. We can't search based on N->Last, since 737 // we may have gone around a loop with a different MemoryLocation. 738 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 739 return defPathIndex(N) < PriorPathsSize; 740 }); 741 assert(Iter != def_path_iterator()); 742 743 DefPath &CurNode = *Iter; 744 assert(CurNode.Last == Current); 745 746 // Two things: 747 // A. We can't reliably cache all of NewPaused back. Consider a case 748 // where we have two paths in NewPaused; one of which can't optimize 749 // above this phi, whereas the other can. If we cache the second path 750 // back, we'll end up with suboptimal cache entries. We can handle 751 // cases like this a bit better when we either try to find all 752 // clobbers that block phi optimization, or when our cache starts 753 // supporting unfinished searches. 754 // B. We can't reliably cache TerminatedPaths back here without doing 755 // extra checks; consider a case like: 756 // T 757 // / \ 758 // D C 759 // \ / 760 // S 761 // Where T is our target, C is a node with a clobber on it, D is a 762 // diamond (with a clobber *only* on the left or right node, N), and 763 // S is our start. Say we walk to D, through the node opposite N 764 // (read: ignoring the clobber), and see a cache entry in the top 765 // node of D. That cache entry gets put into TerminatedPaths. We then 766 // walk up to C (N is later in our worklist), find the clobber, and 767 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 768 // the bottom part of D to the cached clobber, ignoring the clobber 769 // in N. Again, this problem goes away if we start tracking all 770 // blockers for a given phi optimization. 771 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 772 return {Result, {}}; 773 } 774 775 // If there's nothing left to search, then all paths led to valid clobbers 776 // that we got from our cache; pick the nearest to the start, and allow 777 // the rest to be cached back. 778 if (NewPaused.empty()) { 779 MoveDominatedPathToEnd(TerminatedPaths); 780 TerminatedPath Result = TerminatedPaths.pop_back_val(); 781 return {Result, std::move(TerminatedPaths)}; 782 } 783 784 MemoryAccess *DefChainEnd = nullptr; 785 SmallVector<TerminatedPath, 4> Clobbers; 786 for (ListIndex Paused : NewPaused) { 787 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 788 if (WR.IsKnownClobber) 789 Clobbers.push_back({WR.Result, Paused}); 790 else 791 // Micro-opt: If we hit the end of the chain, save it. 792 DefChainEnd = WR.Result; 793 } 794 795 if (!TerminatedPaths.empty()) { 796 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 797 // do it now. 798 if (!DefChainEnd) 799 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 800 DefChainEnd = MA; 801 802 // If any of the terminated paths don't dominate the phi we'll try to 803 // optimize, we need to figure out what they are and quit. 804 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 805 for (const TerminatedPath &TP : TerminatedPaths) { 806 // Because we know that DefChainEnd is as "high" as we can go, we 807 // don't need local dominance checks; BB dominance is sufficient. 808 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 809 Clobbers.push_back(TP); 810 } 811 } 812 813 // If we have clobbers in the def chain, find the one closest to Current 814 // and quit. 815 if (!Clobbers.empty()) { 816 MoveDominatedPathToEnd(Clobbers); 817 TerminatedPath Result = Clobbers.pop_back_val(); 818 return {Result, std::move(Clobbers)}; 819 } 820 821 assert(all_of(NewPaused, 822 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 823 824 // Because liveOnEntry is a clobber, this must be a phi. 825 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 826 827 PriorPathsSize = Paths.size(); 828 PausedSearches.clear(); 829 for (ListIndex I : NewPaused) 830 addSearches(DefChainPhi, PausedSearches, I); 831 NewPaused.clear(); 832 833 Current = DefChainPhi; 834 } 835 } 836 837 void verifyOptResult(const OptznResult &R) const { 838 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 839 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 840 })); 841 } 842 843 void resetPhiOptznState() { 844 Paths.clear(); 845 VisitedPhis.clear(); 846 } 847 848 public: 849 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) 850 : MSSA(MSSA), AA(AA), DT(DT) {} 851 852 /// Finds the nearest clobber for the given query, optimizing phis if 853 /// possible. 854 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { 855 Query = &Q; 856 857 MemoryAccess *Current = Start; 858 // This walker pretends uses don't exist. If we're handed one, silently grab 859 // its def. (This has the nice side-effect of ensuring we never cache uses) 860 if (auto *MU = dyn_cast<MemoryUse>(Start)) 861 Current = MU->getDefiningAccess(); 862 863 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 864 // Fast path for the overly-common case (no crazy phi optimization 865 // necessary) 866 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 867 MemoryAccess *Result; 868 if (WalkResult.IsKnownClobber) { 869 Result = WalkResult.Result; 870 Q.AR = WalkResult.AR; 871 } else { 872 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 873 Current, Q.StartingLoc); 874 verifyOptResult(OptRes); 875 resetPhiOptznState(); 876 Result = OptRes.PrimaryClobber.Clobber; 877 } 878 879 #ifdef EXPENSIVE_CHECKS 880 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 881 #endif 882 return Result; 883 } 884 885 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } 886 }; 887 888 struct RenamePassData { 889 DomTreeNode *DTN; 890 DomTreeNode::const_iterator ChildIt; 891 MemoryAccess *IncomingVal; 892 893 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 894 MemoryAccess *M) 895 : DTN(D), ChildIt(It), IncomingVal(M) {} 896 897 void swap(RenamePassData &RHS) { 898 std::swap(DTN, RHS.DTN); 899 std::swap(ChildIt, RHS.ChildIt); 900 std::swap(IncomingVal, RHS.IncomingVal); 901 } 902 }; 903 904 } // end anonymous namespace 905 906 namespace llvm { 907 908 /// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no 909 /// longer does caching on its own, 910 /// but the name has been retained for the moment. 911 class MemorySSA::CachingWalker final : public MemorySSAWalker { 912 ClobberWalker Walker; 913 914 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); 915 916 public: 917 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); 918 ~CachingWalker() override = default; 919 920 using MemorySSAWalker::getClobberingMemoryAccess; 921 922 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; 923 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 924 const MemoryLocation &) override; 925 void invalidateInfo(MemoryAccess *) override; 926 927 void verify(const MemorySSA *MSSA) override { 928 MemorySSAWalker::verify(MSSA); 929 Walker.verify(MSSA); 930 } 931 }; 932 933 } // end namespace llvm 934 935 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 936 bool RenameAllUses) { 937 // Pass through values to our successors 938 for (const BasicBlock *S : successors(BB)) { 939 auto It = PerBlockAccesses.find(S); 940 // Rename the phi nodes in our successor block 941 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 942 continue; 943 AccessList *Accesses = It->second.get(); 944 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 945 if (RenameAllUses) { 946 int PhiIndex = Phi->getBasicBlockIndex(BB); 947 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 948 Phi->setIncomingValue(PhiIndex, IncomingVal); 949 } else 950 Phi->addIncoming(IncomingVal, BB); 951 } 952 } 953 954 /// \brief Rename a single basic block into MemorySSA form. 955 /// Uses the standard SSA renaming algorithm. 956 /// \returns The new incoming value. 957 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 958 bool RenameAllUses) { 959 auto It = PerBlockAccesses.find(BB); 960 // Skip most processing if the list is empty. 961 if (It != PerBlockAccesses.end()) { 962 AccessList *Accesses = It->second.get(); 963 for (MemoryAccess &L : *Accesses) { 964 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 965 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 966 MUD->setDefiningAccess(IncomingVal); 967 if (isa<MemoryDef>(&L)) 968 IncomingVal = &L; 969 } else { 970 IncomingVal = &L; 971 } 972 } 973 } 974 return IncomingVal; 975 } 976 977 /// \brief This is the standard SSA renaming algorithm. 978 /// 979 /// We walk the dominator tree in preorder, renaming accesses, and then filling 980 /// in phi nodes in our successors. 981 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 982 SmallPtrSetImpl<BasicBlock *> &Visited, 983 bool SkipVisited, bool RenameAllUses) { 984 SmallVector<RenamePassData, 32> WorkStack; 985 // Skip everything if we already renamed this block and we are skipping. 986 // Note: You can't sink this into the if, because we need it to occur 987 // regardless of whether we skip blocks or not. 988 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 989 if (SkipVisited && AlreadyVisited) 990 return; 991 992 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 993 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 994 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 995 996 while (!WorkStack.empty()) { 997 DomTreeNode *Node = WorkStack.back().DTN; 998 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 999 IncomingVal = WorkStack.back().IncomingVal; 1000 1001 if (ChildIt == Node->end()) { 1002 WorkStack.pop_back(); 1003 } else { 1004 DomTreeNode *Child = *ChildIt; 1005 ++WorkStack.back().ChildIt; 1006 BasicBlock *BB = Child->getBlock(); 1007 // Note: You can't sink this into the if, because we need it to occur 1008 // regardless of whether we skip blocks or not. 1009 AlreadyVisited = !Visited.insert(BB).second; 1010 if (SkipVisited && AlreadyVisited) { 1011 // We already visited this during our renaming, which can happen when 1012 // being asked to rename multiple blocks. Figure out the incoming val, 1013 // which is the last def. 1014 // Incoming value can only change if there is a block def, and in that 1015 // case, it's the last block def in the list. 1016 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1017 IncomingVal = &*BlockDefs->rbegin(); 1018 } else 1019 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1020 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1021 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1022 } 1023 } 1024 } 1025 1026 /// \brief This handles unreachable block accesses by deleting phi nodes in 1027 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1028 /// being uses of the live on entry definition. 1029 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1030 assert(!DT->isReachableFromEntry(BB) && 1031 "Reachable block found while handling unreachable blocks"); 1032 1033 // Make sure phi nodes in our reachable successors end up with a 1034 // LiveOnEntryDef for our incoming edge, even though our block is forward 1035 // unreachable. We could just disconnect these blocks from the CFG fully, 1036 // but we do not right now. 1037 for (const BasicBlock *S : successors(BB)) { 1038 if (!DT->isReachableFromEntry(S)) 1039 continue; 1040 auto It = PerBlockAccesses.find(S); 1041 // Rename the phi nodes in our successor block 1042 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1043 continue; 1044 AccessList *Accesses = It->second.get(); 1045 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1046 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1047 } 1048 1049 auto It = PerBlockAccesses.find(BB); 1050 if (It == PerBlockAccesses.end()) 1051 return; 1052 1053 auto &Accesses = It->second; 1054 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1055 auto Next = std::next(AI); 1056 // If we have a phi, just remove it. We are going to replace all 1057 // users with live on entry. 1058 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1059 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1060 else 1061 Accesses->erase(AI); 1062 AI = Next; 1063 } 1064 } 1065 1066 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1067 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1068 NextID(0) { 1069 buildMemorySSA(); 1070 } 1071 1072 MemorySSA::~MemorySSA() { 1073 // Drop all our references 1074 for (const auto &Pair : PerBlockAccesses) 1075 for (MemoryAccess &MA : *Pair.second) 1076 MA.dropAllReferences(); 1077 } 1078 1079 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1080 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1081 1082 if (Res.second) 1083 Res.first->second = llvm::make_unique<AccessList>(); 1084 return Res.first->second.get(); 1085 } 1086 1087 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1088 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1089 1090 if (Res.second) 1091 Res.first->second = llvm::make_unique<DefsList>(); 1092 return Res.first->second.get(); 1093 } 1094 1095 namespace llvm { 1096 1097 /// This class is a batch walker of all MemoryUse's in the program, and points 1098 /// their defining access at the thing that actually clobbers them. Because it 1099 /// is a batch walker that touches everything, it does not operate like the 1100 /// other walkers. This walker is basically performing a top-down SSA renaming 1101 /// pass, where the version stack is used as the cache. This enables it to be 1102 /// significantly more time and memory efficient than using the regular walker, 1103 /// which is walking bottom-up. 1104 class MemorySSA::OptimizeUses { 1105 public: 1106 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, 1107 DominatorTree *DT) 1108 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { 1109 Walker = MSSA->getWalker(); 1110 } 1111 1112 void optimizeUses(); 1113 1114 private: 1115 /// This represents where a given memorylocation is in the stack. 1116 struct MemlocStackInfo { 1117 // This essentially is keeping track of versions of the stack. Whenever 1118 // the stack changes due to pushes or pops, these versions increase. 1119 unsigned long StackEpoch; 1120 unsigned long PopEpoch; 1121 // This is the lower bound of places on the stack to check. It is equal to 1122 // the place the last stack walk ended. 1123 // Note: Correctness depends on this being initialized to 0, which densemap 1124 // does 1125 unsigned long LowerBound; 1126 const BasicBlock *LowerBoundBlock; 1127 // This is where the last walk for this memory location ended. 1128 unsigned long LastKill; 1129 bool LastKillValid; 1130 Optional<AliasResult> AR; 1131 }; 1132 1133 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1134 SmallVectorImpl<MemoryAccess *> &, 1135 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1136 1137 MemorySSA *MSSA; 1138 MemorySSAWalker *Walker; 1139 AliasAnalysis *AA; 1140 DominatorTree *DT; 1141 }; 1142 1143 } // end namespace llvm 1144 1145 /// Optimize the uses in a given block This is basically the SSA renaming 1146 /// algorithm, with one caveat: We are able to use a single stack for all 1147 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1148 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1149 /// going to be some position in that stack of possible ones. 1150 /// 1151 /// We track the stack positions that each MemoryLocation needs 1152 /// to check, and last ended at. This is because we only want to check the 1153 /// things that changed since last time. The same MemoryLocation should 1154 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1155 /// things like this, and if they start, we can modify MemoryLocOrCall to 1156 /// include relevant data) 1157 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1158 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1159 SmallVectorImpl<MemoryAccess *> &VersionStack, 1160 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1161 1162 /// If no accesses, nothing to do. 1163 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1164 if (Accesses == nullptr) 1165 return; 1166 1167 // Pop everything that doesn't dominate the current block off the stack, 1168 // increment the PopEpoch to account for this. 1169 while (true) { 1170 assert( 1171 !VersionStack.empty() && 1172 "Version stack should have liveOnEntry sentinel dominating everything"); 1173 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1174 if (DT->dominates(BackBlock, BB)) 1175 break; 1176 while (VersionStack.back()->getBlock() == BackBlock) 1177 VersionStack.pop_back(); 1178 ++PopEpoch; 1179 } 1180 1181 for (MemoryAccess &MA : *Accesses) { 1182 auto *MU = dyn_cast<MemoryUse>(&MA); 1183 if (!MU) { 1184 VersionStack.push_back(&MA); 1185 ++StackEpoch; 1186 continue; 1187 } 1188 1189 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1190 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1191 continue; 1192 } 1193 1194 MemoryLocOrCall UseMLOC(MU); 1195 auto &LocInfo = LocStackInfo[UseMLOC]; 1196 // If the pop epoch changed, it means we've removed stuff from top of 1197 // stack due to changing blocks. We may have to reset the lower bound or 1198 // last kill info. 1199 if (LocInfo.PopEpoch != PopEpoch) { 1200 LocInfo.PopEpoch = PopEpoch; 1201 LocInfo.StackEpoch = StackEpoch; 1202 // If the lower bound was in something that no longer dominates us, we 1203 // have to reset it. 1204 // We can't simply track stack size, because the stack may have had 1205 // pushes/pops in the meantime. 1206 // XXX: This is non-optimal, but only is slower cases with heavily 1207 // branching dominator trees. To get the optimal number of queries would 1208 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1209 // the top of that stack dominates us. This does not seem worth it ATM. 1210 // A much cheaper optimization would be to always explore the deepest 1211 // branch of the dominator tree first. This will guarantee this resets on 1212 // the smallest set of blocks. 1213 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1214 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1215 // Reset the lower bound of things to check. 1216 // TODO: Some day we should be able to reset to last kill, rather than 1217 // 0. 1218 LocInfo.LowerBound = 0; 1219 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1220 LocInfo.LastKillValid = false; 1221 } 1222 } else if (LocInfo.StackEpoch != StackEpoch) { 1223 // If all that has changed is the StackEpoch, we only have to check the 1224 // new things on the stack, because we've checked everything before. In 1225 // this case, the lower bound of things to check remains the same. 1226 LocInfo.PopEpoch = PopEpoch; 1227 LocInfo.StackEpoch = StackEpoch; 1228 } 1229 if (!LocInfo.LastKillValid) { 1230 LocInfo.LastKill = VersionStack.size() - 1; 1231 LocInfo.LastKillValid = true; 1232 LocInfo.AR = MayAlias; 1233 } 1234 1235 // At this point, we should have corrected last kill and LowerBound to be 1236 // in bounds. 1237 assert(LocInfo.LowerBound < VersionStack.size() && 1238 "Lower bound out of range"); 1239 assert(LocInfo.LastKill < VersionStack.size() && 1240 "Last kill info out of range"); 1241 // In any case, the new upper bound is the top of the stack. 1242 unsigned long UpperBound = VersionStack.size() - 1; 1243 1244 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1245 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1246 << *(MU->getMemoryInst()) << ")" 1247 << " because there are " << UpperBound - LocInfo.LowerBound 1248 << " stores to disambiguate\n"); 1249 // Because we did not walk, LastKill is no longer valid, as this may 1250 // have been a kill. 1251 LocInfo.LastKillValid = false; 1252 continue; 1253 } 1254 bool FoundClobberResult = false; 1255 while (UpperBound > LocInfo.LowerBound) { 1256 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1257 // For phis, use the walker, see where we ended up, go there 1258 Instruction *UseInst = MU->getMemoryInst(); 1259 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); 1260 // We are guaranteed to find it or something is wrong 1261 while (VersionStack[UpperBound] != Result) { 1262 assert(UpperBound != 0); 1263 --UpperBound; 1264 } 1265 FoundClobberResult = true; 1266 break; 1267 } 1268 1269 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1270 // If the lifetime of the pointer ends at this instruction, it's live on 1271 // entry. 1272 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1273 // Reset UpperBound to liveOnEntryDef's place in the stack 1274 UpperBound = 0; 1275 FoundClobberResult = true; 1276 LocInfo.AR = MustAlias; 1277 break; 1278 } 1279 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1280 if (CA.IsClobber) { 1281 FoundClobberResult = true; 1282 LocInfo.AR = CA.AR; 1283 break; 1284 } 1285 --UpperBound; 1286 } 1287 1288 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1289 1290 // At the end of this loop, UpperBound is either a clobber, or lower bound 1291 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1292 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1293 // We were last killed now by where we got to 1294 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1295 LocInfo.AR = None; 1296 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1297 LocInfo.LastKill = UpperBound; 1298 } else { 1299 // Otherwise, we checked all the new ones, and now we know we can get to 1300 // LastKill. 1301 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1302 } 1303 LocInfo.LowerBound = VersionStack.size() - 1; 1304 LocInfo.LowerBoundBlock = BB; 1305 } 1306 } 1307 1308 /// Optimize uses to point to their actual clobbering definitions. 1309 void MemorySSA::OptimizeUses::optimizeUses() { 1310 SmallVector<MemoryAccess *, 16> VersionStack; 1311 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1312 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1313 1314 unsigned long StackEpoch = 1; 1315 unsigned long PopEpoch = 1; 1316 // We perform a non-recursive top-down dominator tree walk. 1317 for (const auto *DomNode : depth_first(DT->getRootNode())) 1318 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1319 LocStackInfo); 1320 } 1321 1322 void MemorySSA::placePHINodes( 1323 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks, 1324 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) { 1325 // Determine where our MemoryPhi's should go 1326 ForwardIDFCalculator IDFs(*DT); 1327 IDFs.setDefiningBlocks(DefiningBlocks); 1328 SmallVector<BasicBlock *, 32> IDFBlocks; 1329 IDFs.calculate(IDFBlocks); 1330 1331 llvm::sort(IDFBlocks.begin(), IDFBlocks.end(), 1332 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) { 1333 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 1334 }); 1335 1336 // Now place MemoryPhi nodes. 1337 for (auto &BB : IDFBlocks) 1338 createMemoryPhi(BB); 1339 } 1340 1341 void MemorySSA::buildMemorySSA() { 1342 // We create an access to represent "live on entry", for things like 1343 // arguments or users of globals, where the memory they use is defined before 1344 // the beginning of the function. We do not actually insert it into the IR. 1345 // We do not define a live on exit for the immediate uses, and thus our 1346 // semantics do *not* imply that something with no immediate uses can simply 1347 // be removed. 1348 BasicBlock &StartingPoint = F.getEntryBlock(); 1349 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1350 &StartingPoint, NextID++)); 1351 DenseMap<const BasicBlock *, unsigned int> BBNumbers; 1352 unsigned NextBBNum = 0; 1353 1354 // We maintain lists of memory accesses per-block, trading memory for time. We 1355 // could just look up the memory access for every possible instruction in the 1356 // stream. 1357 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1358 // Go through each block, figure out where defs occur, and chain together all 1359 // the accesses. 1360 for (BasicBlock &B : F) { 1361 BBNumbers[&B] = NextBBNum++; 1362 bool InsertIntoDef = false; 1363 AccessList *Accesses = nullptr; 1364 DefsList *Defs = nullptr; 1365 for (Instruction &I : B) { 1366 MemoryUseOrDef *MUD = createNewAccess(&I); 1367 if (!MUD) 1368 continue; 1369 1370 if (!Accesses) 1371 Accesses = getOrCreateAccessList(&B); 1372 Accesses->push_back(MUD); 1373 if (isa<MemoryDef>(MUD)) { 1374 InsertIntoDef = true; 1375 if (!Defs) 1376 Defs = getOrCreateDefsList(&B); 1377 Defs->push_back(*MUD); 1378 } 1379 } 1380 if (InsertIntoDef) 1381 DefiningBlocks.insert(&B); 1382 } 1383 placePHINodes(DefiningBlocks, BBNumbers); 1384 1385 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1386 // filled in with all blocks. 1387 SmallPtrSet<BasicBlock *, 16> Visited; 1388 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1389 1390 CachingWalker *Walker = getWalkerImpl(); 1391 1392 OptimizeUses(this, Walker, AA, DT).optimizeUses(); 1393 1394 // Mark the uses in unreachable blocks as live on entry, so that they go 1395 // somewhere. 1396 for (auto &BB : F) 1397 if (!Visited.count(&BB)) 1398 markUnreachableAsLiveOnEntry(&BB); 1399 } 1400 1401 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1402 1403 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1404 if (Walker) 1405 return Walker.get(); 1406 1407 Walker = llvm::make_unique<CachingWalker>(this, AA, DT); 1408 return Walker.get(); 1409 } 1410 1411 // This is a helper function used by the creation routines. It places NewAccess 1412 // into the access and defs lists for a given basic block, at the given 1413 // insertion point. 1414 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1415 const BasicBlock *BB, 1416 InsertionPlace Point) { 1417 auto *Accesses = getOrCreateAccessList(BB); 1418 if (Point == Beginning) { 1419 // If it's a phi node, it goes first, otherwise, it goes after any phi 1420 // nodes. 1421 if (isa<MemoryPhi>(NewAccess)) { 1422 Accesses->push_front(NewAccess); 1423 auto *Defs = getOrCreateDefsList(BB); 1424 Defs->push_front(*NewAccess); 1425 } else { 1426 auto AI = find_if_not( 1427 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1428 Accesses->insert(AI, NewAccess); 1429 if (!isa<MemoryUse>(NewAccess)) { 1430 auto *Defs = getOrCreateDefsList(BB); 1431 auto DI = find_if_not( 1432 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1433 Defs->insert(DI, *NewAccess); 1434 } 1435 } 1436 } else { 1437 Accesses->push_back(NewAccess); 1438 if (!isa<MemoryUse>(NewAccess)) { 1439 auto *Defs = getOrCreateDefsList(BB); 1440 Defs->push_back(*NewAccess); 1441 } 1442 } 1443 BlockNumberingValid.erase(BB); 1444 } 1445 1446 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1447 AccessList::iterator InsertPt) { 1448 auto *Accesses = getWritableBlockAccesses(BB); 1449 bool WasEnd = InsertPt == Accesses->end(); 1450 Accesses->insert(AccessList::iterator(InsertPt), What); 1451 if (!isa<MemoryUse>(What)) { 1452 auto *Defs = getOrCreateDefsList(BB); 1453 // If we got asked to insert at the end, we have an easy job, just shove it 1454 // at the end. If we got asked to insert before an existing def, we also get 1455 // an iterator. If we got asked to insert before a use, we have to hunt for 1456 // the next def. 1457 if (WasEnd) { 1458 Defs->push_back(*What); 1459 } else if (isa<MemoryDef>(InsertPt)) { 1460 Defs->insert(InsertPt->getDefsIterator(), *What); 1461 } else { 1462 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1463 ++InsertPt; 1464 // Either we found a def, or we are inserting at the end 1465 if (InsertPt == Accesses->end()) 1466 Defs->push_back(*What); 1467 else 1468 Defs->insert(InsertPt->getDefsIterator(), *What); 1469 } 1470 } 1471 BlockNumberingValid.erase(BB); 1472 } 1473 1474 // Move What before Where in the IR. The end result is that What will belong to 1475 // the right lists and have the right Block set, but will not otherwise be 1476 // correct. It will not have the right defining access, and if it is a def, 1477 // things below it will not properly be updated. 1478 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1479 AccessList::iterator Where) { 1480 // Keep it in the lookup tables, remove from the lists 1481 removeFromLists(What, false); 1482 What->setBlock(BB); 1483 insertIntoListsBefore(What, BB, Where); 1484 } 1485 1486 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1487 InsertionPlace Point) { 1488 removeFromLists(What, false); 1489 What->setBlock(BB); 1490 insertIntoListsForBlock(What, BB, Point); 1491 } 1492 1493 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1494 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1495 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1496 // Phi's always are placed at the front of the block. 1497 insertIntoListsForBlock(Phi, BB, Beginning); 1498 ValueToMemoryAccess[BB] = Phi; 1499 return Phi; 1500 } 1501 1502 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1503 MemoryAccess *Definition) { 1504 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1505 MemoryUseOrDef *NewAccess = createNewAccess(I); 1506 assert( 1507 NewAccess != nullptr && 1508 "Tried to create a memory access for a non-memory touching instruction"); 1509 NewAccess->setDefiningAccess(Definition); 1510 return NewAccess; 1511 } 1512 1513 // Return true if the instruction has ordering constraints. 1514 // Note specifically that this only considers stores and loads 1515 // because others are still considered ModRef by getModRefInfo. 1516 static inline bool isOrdered(const Instruction *I) { 1517 if (auto *SI = dyn_cast<StoreInst>(I)) { 1518 if (!SI->isUnordered()) 1519 return true; 1520 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1521 if (!LI->isUnordered()) 1522 return true; 1523 } 1524 return false; 1525 } 1526 1527 /// \brief Helper function to create new memory accesses 1528 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { 1529 // The assume intrinsic has a control dependency which we model by claiming 1530 // that it writes arbitrarily. Ignore that fake memory dependency here. 1531 // FIXME: Replace this special casing with a more accurate modelling of 1532 // assume's control dependency. 1533 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1534 if (II->getIntrinsicID() == Intrinsic::assume) 1535 return nullptr; 1536 1537 // Find out what affect this instruction has on memory. 1538 ModRefInfo ModRef = AA->getModRefInfo(I, None); 1539 // The isOrdered check is used to ensure that volatiles end up as defs 1540 // (atomics end up as ModRef right now anyway). Until we separate the 1541 // ordering chain from the memory chain, this enables people to see at least 1542 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1543 // will still give an answer that bypasses other volatile loads. TODO: 1544 // Separate memory aliasing and ordering into two different chains so that we 1545 // can precisely represent both "what memory will this read/write/is clobbered 1546 // by" and "what instructions can I move this past". 1547 bool Def = isModSet(ModRef) || isOrdered(I); 1548 bool Use = isRefSet(ModRef); 1549 1550 // It's possible for an instruction to not modify memory at all. During 1551 // construction, we ignore them. 1552 if (!Def && !Use) 1553 return nullptr; 1554 1555 MemoryUseOrDef *MUD; 1556 if (Def) 1557 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1558 else 1559 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1560 ValueToMemoryAccess[I] = MUD; 1561 return MUD; 1562 } 1563 1564 /// \brief Returns true if \p Replacer dominates \p Replacee . 1565 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1566 const MemoryAccess *Replacee) const { 1567 if (isa<MemoryUseOrDef>(Replacee)) 1568 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1569 const auto *MP = cast<MemoryPhi>(Replacee); 1570 // For a phi node, the use occurs in the predecessor block of the phi node. 1571 // Since we may occur multiple times in the phi node, we have to check each 1572 // operand to ensure Replacer dominates each operand where Replacee occurs. 1573 for (const Use &Arg : MP->operands()) { 1574 if (Arg.get() != Replacee && 1575 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1576 return false; 1577 } 1578 return true; 1579 } 1580 1581 /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. 1582 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1583 assert(MA->use_empty() && 1584 "Trying to remove memory access that still has uses"); 1585 BlockNumbering.erase(MA); 1586 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1587 MUD->setDefiningAccess(nullptr); 1588 // Invalidate our walker's cache if necessary 1589 if (!isa<MemoryUse>(MA)) 1590 Walker->invalidateInfo(MA); 1591 // The call below to erase will destroy MA, so we can't change the order we 1592 // are doing things here 1593 Value *MemoryInst; 1594 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { 1595 MemoryInst = MUD->getMemoryInst(); 1596 } else { 1597 MemoryInst = MA->getBlock(); 1598 } 1599 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1600 if (VMA->second == MA) 1601 ValueToMemoryAccess.erase(VMA); 1602 } 1603 1604 /// \brief Properly remove \p MA from all of MemorySSA's lists. 1605 /// 1606 /// Because of the way the intrusive list and use lists work, it is important to 1607 /// do removal in the right order. 1608 /// ShouldDelete defaults to true, and will cause the memory access to also be 1609 /// deleted, not just removed. 1610 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1611 // The access list owns the reference, so we erase it from the non-owning list 1612 // first. 1613 if (!isa<MemoryUse>(MA)) { 1614 auto DefsIt = PerBlockDefs.find(MA->getBlock()); 1615 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1616 Defs->remove(*MA); 1617 if (Defs->empty()) 1618 PerBlockDefs.erase(DefsIt); 1619 } 1620 1621 // The erase call here will delete it. If we don't want it deleted, we call 1622 // remove instead. 1623 auto AccessIt = PerBlockAccesses.find(MA->getBlock()); 1624 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1625 if (ShouldDelete) 1626 Accesses->erase(MA); 1627 else 1628 Accesses->remove(MA); 1629 1630 if (Accesses->empty()) 1631 PerBlockAccesses.erase(AccessIt); 1632 } 1633 1634 void MemorySSA::print(raw_ostream &OS) const { 1635 MemorySSAAnnotatedWriter Writer(this); 1636 F.print(OS, &Writer); 1637 } 1638 1639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1640 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1641 #endif 1642 1643 void MemorySSA::verifyMemorySSA() const { 1644 verifyDefUses(F); 1645 verifyDomination(F); 1646 verifyOrdering(F); 1647 Walker->verify(this); 1648 } 1649 1650 /// \brief Verify that the order and existence of MemoryAccesses matches the 1651 /// order and existence of memory affecting instructions. 1652 void MemorySSA::verifyOrdering(Function &F) const { 1653 // Walk all the blocks, comparing what the lookups think and what the access 1654 // lists think, as well as the order in the blocks vs the order in the access 1655 // lists. 1656 SmallVector<MemoryAccess *, 32> ActualAccesses; 1657 SmallVector<MemoryAccess *, 32> ActualDefs; 1658 for (BasicBlock &B : F) { 1659 const AccessList *AL = getBlockAccesses(&B); 1660 const auto *DL = getBlockDefs(&B); 1661 MemoryAccess *Phi = getMemoryAccess(&B); 1662 if (Phi) { 1663 ActualAccesses.push_back(Phi); 1664 ActualDefs.push_back(Phi); 1665 } 1666 1667 for (Instruction &I : B) { 1668 MemoryAccess *MA = getMemoryAccess(&I); 1669 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1670 "We have memory affecting instructions " 1671 "in this block but they are not in the " 1672 "access list or defs list"); 1673 if (MA) { 1674 ActualAccesses.push_back(MA); 1675 if (isa<MemoryDef>(MA)) 1676 ActualDefs.push_back(MA); 1677 } 1678 } 1679 // Either we hit the assert, really have no accesses, or we have both 1680 // accesses and an access list. 1681 // Same with defs. 1682 if (!AL && !DL) 1683 continue; 1684 assert(AL->size() == ActualAccesses.size() && 1685 "We don't have the same number of accesses in the block as on the " 1686 "access list"); 1687 assert((DL || ActualDefs.size() == 0) && 1688 "Either we should have a defs list, or we should have no defs"); 1689 assert((!DL || DL->size() == ActualDefs.size()) && 1690 "We don't have the same number of defs in the block as on the " 1691 "def list"); 1692 auto ALI = AL->begin(); 1693 auto AAI = ActualAccesses.begin(); 1694 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1695 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1696 ++ALI; 1697 ++AAI; 1698 } 1699 ActualAccesses.clear(); 1700 if (DL) { 1701 auto DLI = DL->begin(); 1702 auto ADI = ActualDefs.begin(); 1703 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1704 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1705 ++DLI; 1706 ++ADI; 1707 } 1708 } 1709 ActualDefs.clear(); 1710 } 1711 } 1712 1713 /// \brief Verify the domination properties of MemorySSA by checking that each 1714 /// definition dominates all of its uses. 1715 void MemorySSA::verifyDomination(Function &F) const { 1716 #ifndef NDEBUG 1717 for (BasicBlock &B : F) { 1718 // Phi nodes are attached to basic blocks 1719 if (MemoryPhi *MP = getMemoryAccess(&B)) 1720 for (const Use &U : MP->uses()) 1721 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1722 1723 for (Instruction &I : B) { 1724 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1725 if (!MD) 1726 continue; 1727 1728 for (const Use &U : MD->uses()) 1729 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1730 } 1731 } 1732 #endif 1733 } 1734 1735 /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use 1736 /// appears in the use list of \p Def. 1737 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1738 #ifndef NDEBUG 1739 // The live on entry use may cause us to get a NULL def here 1740 if (!Def) 1741 assert(isLiveOnEntryDef(Use) && 1742 "Null def but use not point to live on entry def"); 1743 else 1744 assert(is_contained(Def->users(), Use) && 1745 "Did not find use in def's use list"); 1746 #endif 1747 } 1748 1749 /// \brief Verify the immediate use information, by walking all the memory 1750 /// accesses and verifying that, for each use, it appears in the 1751 /// appropriate def's use list 1752 void MemorySSA::verifyDefUses(Function &F) const { 1753 for (BasicBlock &B : F) { 1754 // Phi nodes are attached to basic blocks 1755 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 1756 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1757 pred_begin(&B), pred_end(&B))) && 1758 "Incomplete MemoryPhi Node"); 1759 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1760 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1761 } 1762 1763 for (Instruction &I : B) { 1764 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 1765 verifyUseInDefs(MA->getDefiningAccess(), MA); 1766 } 1767 } 1768 } 1769 } 1770 1771 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { 1772 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); 1773 } 1774 1775 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { 1776 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); 1777 } 1778 1779 /// Perform a local numbering on blocks so that instruction ordering can be 1780 /// determined in constant time. 1781 /// TODO: We currently just number in order. If we numbered by N, we could 1782 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 1783 /// log2(N) sequences of mixed before and after) without needing to invalidate 1784 /// the numbering. 1785 void MemorySSA::renumberBlock(const BasicBlock *B) const { 1786 // The pre-increment ensures the numbers really start at 1. 1787 unsigned long CurrentNumber = 0; 1788 const AccessList *AL = getBlockAccesses(B); 1789 assert(AL != nullptr && "Asking to renumber an empty block"); 1790 for (const auto &I : *AL) 1791 BlockNumbering[&I] = ++CurrentNumber; 1792 BlockNumberingValid.insert(B); 1793 } 1794 1795 /// \brief Determine, for two memory accesses in the same block, 1796 /// whether \p Dominator dominates \p Dominatee. 1797 /// \returns True if \p Dominator dominates \p Dominatee. 1798 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 1799 const MemoryAccess *Dominatee) const { 1800 const BasicBlock *DominatorBlock = Dominator->getBlock(); 1801 1802 assert((DominatorBlock == Dominatee->getBlock()) && 1803 "Asking for local domination when accesses are in different blocks!"); 1804 // A node dominates itself. 1805 if (Dominatee == Dominator) 1806 return true; 1807 1808 // When Dominatee is defined on function entry, it is not dominated by another 1809 // memory access. 1810 if (isLiveOnEntryDef(Dominatee)) 1811 return false; 1812 1813 // When Dominator is defined on function entry, it dominates the other memory 1814 // access. 1815 if (isLiveOnEntryDef(Dominator)) 1816 return true; 1817 1818 if (!BlockNumberingValid.count(DominatorBlock)) 1819 renumberBlock(DominatorBlock); 1820 1821 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 1822 // All numbers start with 1 1823 assert(DominatorNum != 0 && "Block was not numbered properly"); 1824 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 1825 assert(DominateeNum != 0 && "Block was not numbered properly"); 1826 return DominatorNum < DominateeNum; 1827 } 1828 1829 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1830 const MemoryAccess *Dominatee) const { 1831 if (Dominator == Dominatee) 1832 return true; 1833 1834 if (isLiveOnEntryDef(Dominatee)) 1835 return false; 1836 1837 if (Dominator->getBlock() != Dominatee->getBlock()) 1838 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 1839 return locallyDominates(Dominator, Dominatee); 1840 } 1841 1842 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1843 const Use &Dominatee) const { 1844 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 1845 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 1846 // The def must dominate the incoming block of the phi. 1847 if (UseBB != Dominator->getBlock()) 1848 return DT->dominates(Dominator->getBlock(), UseBB); 1849 // If the UseBB and the DefBB are the same, compare locally. 1850 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 1851 } 1852 // If it's not a PHI node use, the normal dominates can already handle it. 1853 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 1854 } 1855 1856 const static char LiveOnEntryStr[] = "liveOnEntry"; 1857 1858 void MemoryAccess::print(raw_ostream &OS) const { 1859 switch (getValueID()) { 1860 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 1861 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 1862 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 1863 } 1864 llvm_unreachable("invalid value id"); 1865 } 1866 1867 void MemoryDef::print(raw_ostream &OS) const { 1868 MemoryAccess *UO = getDefiningAccess(); 1869 1870 OS << getID() << " = MemoryDef("; 1871 if (UO && UO->getID()) 1872 OS << UO->getID(); 1873 else 1874 OS << LiveOnEntryStr; 1875 OS << ')'; 1876 } 1877 1878 void MemoryPhi::print(raw_ostream &OS) const { 1879 bool First = true; 1880 OS << getID() << " = MemoryPhi("; 1881 for (const auto &Op : operands()) { 1882 BasicBlock *BB = getIncomingBlock(Op); 1883 MemoryAccess *MA = cast<MemoryAccess>(Op); 1884 if (!First) 1885 OS << ','; 1886 else 1887 First = false; 1888 1889 OS << '{'; 1890 if (BB->hasName()) 1891 OS << BB->getName(); 1892 else 1893 BB->printAsOperand(OS, false); 1894 OS << ','; 1895 if (unsigned ID = MA->getID()) 1896 OS << ID; 1897 else 1898 OS << LiveOnEntryStr; 1899 OS << '}'; 1900 } 1901 OS << ')'; 1902 } 1903 1904 void MemoryUse::print(raw_ostream &OS) const { 1905 MemoryAccess *UO = getDefiningAccess(); 1906 OS << "MemoryUse("; 1907 if (UO && UO->getID()) 1908 OS << UO->getID(); 1909 else 1910 OS << LiveOnEntryStr; 1911 OS << ')'; 1912 } 1913 1914 void MemoryAccess::dump() const { 1915 // Cannot completely remove virtual function even in release mode. 1916 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1917 print(dbgs()); 1918 dbgs() << "\n"; 1919 #endif 1920 } 1921 1922 char MemorySSAPrinterLegacyPass::ID = 0; 1923 1924 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 1925 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 1926 } 1927 1928 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 1929 AU.setPreservesAll(); 1930 AU.addRequired<MemorySSAWrapperPass>(); 1931 } 1932 1933 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 1934 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1935 MSSA.print(dbgs()); 1936 if (VerifyMemorySSA) 1937 MSSA.verifyMemorySSA(); 1938 return false; 1939 } 1940 1941 AnalysisKey MemorySSAAnalysis::Key; 1942 1943 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 1944 FunctionAnalysisManager &AM) { 1945 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1946 auto &AA = AM.getResult<AAManager>(F); 1947 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 1948 } 1949 1950 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 1951 FunctionAnalysisManager &AM) { 1952 OS << "MemorySSA for function: " << F.getName() << "\n"; 1953 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 1954 1955 return PreservedAnalyses::all(); 1956 } 1957 1958 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 1959 FunctionAnalysisManager &AM) { 1960 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 1961 1962 return PreservedAnalyses::all(); 1963 } 1964 1965 char MemorySSAWrapperPass::ID = 0; 1966 1967 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 1968 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 1969 } 1970 1971 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 1972 1973 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1974 AU.setPreservesAll(); 1975 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1976 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1977 } 1978 1979 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 1980 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1981 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1982 MSSA.reset(new MemorySSA(F, &AA, &DT)); 1983 return false; 1984 } 1985 1986 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 1987 1988 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 1989 MSSA->print(OS); 1990 } 1991 1992 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 1993 1994 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, 1995 DominatorTree *D) 1996 : MemorySSAWalker(M), Walker(*M, *A, *D) {} 1997 1998 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { 1999 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 2000 MUD->resetOptimized(); 2001 } 2002 2003 /// \brief Walk the use-def chains starting at \p MA and find 2004 /// the MemoryAccess that actually clobbers Loc. 2005 /// 2006 /// \returns our clobbering memory access 2007 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 2008 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { 2009 return Walker.findClobber(StartingAccess, Q); 2010 } 2011 2012 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 2013 MemoryAccess *StartingAccess, const MemoryLocation &Loc) { 2014 if (isa<MemoryPhi>(StartingAccess)) 2015 return StartingAccess; 2016 2017 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2018 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2019 return StartingUseOrDef; 2020 2021 Instruction *I = StartingUseOrDef->getMemoryInst(); 2022 2023 // Conservatively, fences are always clobbers, so don't perform the walk if we 2024 // hit a fence. 2025 if (!ImmutableCallSite(I) && I->isFenceLike()) 2026 return StartingUseOrDef; 2027 2028 UpwardsMemoryQuery Q; 2029 Q.OriginalAccess = StartingUseOrDef; 2030 Q.StartingLoc = Loc; 2031 Q.Inst = I; 2032 Q.IsCall = false; 2033 2034 // Unlike the other function, do not walk to the def of a def, because we are 2035 // handed something we already believe is the clobbering access. 2036 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2037 ? StartingUseOrDef->getDefiningAccess() 2038 : StartingUseOrDef; 2039 2040 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); 2041 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2042 DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2043 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2044 DEBUG(dbgs() << *Clobber << "\n"); 2045 return Clobber; 2046 } 2047 2048 MemoryAccess * 2049 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2050 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2051 // If this is a MemoryPhi, we can't do anything. 2052 if (!StartingAccess) 2053 return MA; 2054 2055 // If this is an already optimized use or def, return the optimized result. 2056 // Note: Currently, we store the optimized def result in a separate field, 2057 // since we can't use the defining access. 2058 if (StartingAccess->isOptimized()) 2059 return StartingAccess->getOptimized(); 2060 2061 const Instruction *I = StartingAccess->getMemoryInst(); 2062 UpwardsMemoryQuery Q(I, StartingAccess); 2063 // We can't sanely do anything with a fence, since they conservatively clobber 2064 // all memory, and have no locations to get pointers from to try to 2065 // disambiguate. 2066 if (!Q.IsCall && I->isFenceLike()) 2067 return StartingAccess; 2068 2069 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { 2070 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2071 StartingAccess->setOptimized(LiveOnEntry); 2072 StartingAccess->setOptimizedAccessType(None); 2073 return LiveOnEntry; 2074 } 2075 2076 // Start with the thing we already think clobbers this location 2077 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2078 2079 // At this point, DefiningAccess may be the live on entry def. 2080 // If it is, we will not get a better result. 2081 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2082 StartingAccess->setOptimized(DefiningAccess); 2083 StartingAccess->setOptimizedAccessType(None); 2084 return DefiningAccess; 2085 } 2086 2087 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); 2088 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2089 DEBUG(dbgs() << *DefiningAccess << "\n"); 2090 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2091 DEBUG(dbgs() << *Result << "\n"); 2092 2093 StartingAccess->setOptimized(Result); 2094 if (MSSA->isLiveOnEntryDef(Result)) 2095 StartingAccess->setOptimizedAccessType(None); 2096 else if (Q.AR == MustAlias) 2097 StartingAccess->setOptimizedAccessType(MustAlias); 2098 2099 return Result; 2100 } 2101 2102 MemoryAccess * 2103 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2104 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2105 return Use->getDefiningAccess(); 2106 return MA; 2107 } 2108 2109 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2110 MemoryAccess *StartingAccess, const MemoryLocation &) { 2111 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2112 return Use->getDefiningAccess(); 2113 return StartingAccess; 2114 } 2115 2116 void MemoryPhi::deleteMe(DerivedUser *Self) { 2117 delete static_cast<MemoryPhi *>(Self); 2118 } 2119 2120 void MemoryDef::deleteMe(DerivedUser *Self) { 2121 delete static_cast<MemoryDef *>(Self); 2122 } 2123 2124 void MemoryUse::deleteMe(DerivedUser *Self) { 2125 delete static_cast<MemoryUse *>(Self); 2126 } 2127