1 //===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------===// 9 // 10 // This file implements the MemorySSA class. 11 // 12 //===----------------------------------------------------------------===// 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/GraphTraits.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/PHITransAddr.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/FormattedStream.h" 42 #include <algorithm> 43 44 #define DEBUG_TYPE "memoryssa" 45 using namespace llvm; 46 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 47 true) 48 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 49 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 50 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 51 true) 52 53 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 54 "Memory SSA Printer", false, false) 55 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 56 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 57 "Memory SSA Printer", false, false) 58 59 static cl::opt<unsigned> MaxCheckLimit( 60 "memssa-check-limit", cl::Hidden, cl::init(100), 61 cl::desc("The maximum number of stores/phis MemorySSA" 62 "will consider trying to walk past (default = 100)")); 63 64 static cl::opt<bool> 65 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, 66 cl::desc("Verify MemorySSA in legacy printer pass.")); 67 68 namespace llvm { 69 /// \brief An assembly annotator class to print Memory SSA information in 70 /// comments. 71 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 72 friend class MemorySSA; 73 const MemorySSA *MSSA; 74 75 public: 76 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 77 78 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 79 formatted_raw_ostream &OS) { 80 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 81 OS << "; " << *MA << "\n"; 82 } 83 84 virtual void emitInstructionAnnot(const Instruction *I, 85 formatted_raw_ostream &OS) { 86 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 87 OS << "; " << *MA << "\n"; 88 } 89 }; 90 } 91 92 namespace { 93 /// Our current alias analysis API differentiates heavily between calls and 94 /// non-calls, and functions called on one usually assert on the other. 95 /// This class encapsulates the distinction to simplify other code that wants 96 /// "Memory affecting instructions and related data" to use as a key. 97 /// For example, this class is used as a densemap key in the use optimizer. 98 class MemoryLocOrCall { 99 public: 100 MemoryLocOrCall() : IsCall(false) {} 101 MemoryLocOrCall(MemoryUseOrDef *MUD) 102 : MemoryLocOrCall(MUD->getMemoryInst()) {} 103 MemoryLocOrCall(const MemoryUseOrDef *MUD) 104 : MemoryLocOrCall(MUD->getMemoryInst()) {} 105 106 MemoryLocOrCall(Instruction *Inst) { 107 if (ImmutableCallSite(Inst)) { 108 IsCall = true; 109 CS = ImmutableCallSite(Inst); 110 } else { 111 IsCall = false; 112 // There is no such thing as a memorylocation for a fence inst, and it is 113 // unique in that regard. 114 if (!isa<FenceInst>(Inst)) 115 Loc = MemoryLocation::get(Inst); 116 } 117 } 118 119 explicit MemoryLocOrCall(const MemoryLocation &Loc) 120 : IsCall(false), Loc(Loc) {} 121 122 bool IsCall; 123 ImmutableCallSite getCS() const { 124 assert(IsCall); 125 return CS; 126 } 127 MemoryLocation getLoc() const { 128 assert(!IsCall); 129 return Loc; 130 } 131 132 bool operator==(const MemoryLocOrCall &Other) const { 133 if (IsCall != Other.IsCall) 134 return false; 135 136 if (IsCall) 137 return CS.getCalledValue() == Other.CS.getCalledValue(); 138 return Loc == Other.Loc; 139 } 140 141 private: 142 union { 143 ImmutableCallSite CS; 144 MemoryLocation Loc; 145 }; 146 }; 147 } 148 149 namespace llvm { 150 template <> struct DenseMapInfo<MemoryLocOrCall> { 151 static inline MemoryLocOrCall getEmptyKey() { 152 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 153 } 154 static inline MemoryLocOrCall getTombstoneKey() { 155 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 156 } 157 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 158 if (MLOC.IsCall) 159 return hash_combine(MLOC.IsCall, 160 DenseMapInfo<const Value *>::getHashValue( 161 MLOC.getCS().getCalledValue())); 162 return hash_combine( 163 MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 164 } 165 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 166 return LHS == RHS; 167 } 168 }; 169 170 enum class Reorderability { Always, IfNoAlias, Never }; 171 172 /// This does one-way checks to see if Use could theoretically be hoisted above 173 /// MayClobber. This will not check the other way around. 174 /// 175 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 176 /// MayClobber, with no potentially clobbering operations in between them. 177 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 178 static Reorderability getLoadReorderability(const LoadInst *Use, 179 const LoadInst *MayClobber) { 180 bool VolatileUse = Use->isVolatile(); 181 bool VolatileClobber = MayClobber->isVolatile(); 182 // Volatile operations may never be reordered with other volatile operations. 183 if (VolatileUse && VolatileClobber) 184 return Reorderability::Never; 185 186 // The lang ref allows reordering of volatile and non-volatile operations. 187 // Whether an aliasing nonvolatile load and volatile load can be reordered, 188 // though, is ambiguous. Because it may not be best to exploit this ambiguity, 189 // we only allow volatile/non-volatile reordering if the volatile and 190 // non-volatile operations don't alias. 191 Reorderability Result = VolatileUse || VolatileClobber 192 ? Reorderability::IfNoAlias 193 : Reorderability::Always; 194 195 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 196 // is weaker, it can be moved above other loads. We just need to be sure that 197 // MayClobber isn't an acquire load, because loads can't be moved above 198 // acquire loads. 199 // 200 // Note that this explicitly *does* allow the free reordering of monotonic (or 201 // weaker) loads of the same address. 202 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 203 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 204 AtomicOrdering::Acquire); 205 if (SeqCstUse || MayClobberIsAcquire) 206 return Reorderability::Never; 207 return Result; 208 } 209 210 static bool instructionClobbersQuery(MemoryDef *MD, 211 const MemoryLocation &UseLoc, 212 const Instruction *UseInst, 213 AliasAnalysis &AA) { 214 Instruction *DefInst = MD->getMemoryInst(); 215 assert(DefInst && "Defining instruction not actually an instruction"); 216 ImmutableCallSite UseCS(UseInst); 217 218 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 219 // These intrinsics will show up as affecting memory, but they are just 220 // markers. 221 switch (II->getIntrinsicID()) { 222 case Intrinsic::lifetime_start: 223 if (UseCS) 224 return false; 225 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc); 226 case Intrinsic::lifetime_end: 227 case Intrinsic::invariant_start: 228 case Intrinsic::invariant_end: 229 case Intrinsic::assume: 230 return false; 231 default: 232 break; 233 } 234 } 235 236 if (UseCS) { 237 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); 238 return I != MRI_NoModRef; 239 } 240 241 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) { 242 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) { 243 switch (getLoadReorderability(UseLoad, DefLoad)) { 244 case Reorderability::Always: 245 return false; 246 case Reorderability::Never: 247 return true; 248 case Reorderability::IfNoAlias: 249 return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad)); 250 } 251 } 252 } 253 254 return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod; 255 } 256 257 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, 258 const MemoryLocOrCall &UseMLOC, 259 AliasAnalysis &AA) { 260 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 261 // to exist while MemoryLocOrCall is pushed through places. 262 if (UseMLOC.IsCall) 263 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 264 AA); 265 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 266 AA); 267 } 268 269 // Return true when MD may alias MU, return false otherwise. 270 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 271 AliasAnalysis &AA) { 272 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); 273 } 274 } 275 276 namespace { 277 struct UpwardsMemoryQuery { 278 // True if our original query started off as a call 279 bool IsCall; 280 // The pointer location we started the query with. This will be empty if 281 // IsCall is true. 282 MemoryLocation StartingLoc; 283 // This is the instruction we were querying about. 284 const Instruction *Inst; 285 // The MemoryAccess we actually got called with, used to test local domination 286 const MemoryAccess *OriginalAccess; 287 288 UpwardsMemoryQuery() 289 : IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {} 290 291 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 292 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { 293 if (!IsCall) 294 StartingLoc = MemoryLocation::get(Inst); 295 } 296 }; 297 298 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 299 AliasAnalysis &AA) { 300 Instruction *Inst = MD->getMemoryInst(); 301 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 302 switch (II->getIntrinsicID()) { 303 case Intrinsic::lifetime_end: 304 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); 305 default: 306 return false; 307 } 308 } 309 return false; 310 } 311 312 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, 313 const Instruction *I) { 314 // If the memory can't be changed, then loads of the memory can't be 315 // clobbered. 316 // 317 // FIXME: We should handle invariant groups, as well. It's a bit harder, 318 // because we need to pay close attention to invariant group barriers. 319 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 320 AA.pointsToConstantMemory(cast<LoadInst>(I)-> 321 getPointerOperand())); 322 } 323 324 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 325 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 326 /// 327 /// This is meant to be as simple and self-contained as possible. Because it 328 /// uses no cache, etc., it can be relatively expensive. 329 /// 330 /// \param Start The MemoryAccess that we want to walk from. 331 /// \param ClobberAt A clobber for Start. 332 /// \param StartLoc The MemoryLocation for Start. 333 /// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. 334 /// \param Query The UpwardsMemoryQuery we used for our search. 335 /// \param AA The AliasAnalysis we used for our search. 336 static void LLVM_ATTRIBUTE_UNUSED 337 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, 338 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 339 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { 340 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 341 342 if (MSSA.isLiveOnEntryDef(Start)) { 343 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 344 "liveOnEntry must clobber itself"); 345 return; 346 } 347 348 bool FoundClobber = false; 349 DenseSet<MemoryAccessPair> VisitedPhis; 350 SmallVector<MemoryAccessPair, 8> Worklist; 351 Worklist.emplace_back(Start, StartLoc); 352 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 353 // is found, complain. 354 while (!Worklist.empty()) { 355 MemoryAccessPair MAP = Worklist.pop_back_val(); 356 // All we care about is that nothing from Start to ClobberAt clobbers Start. 357 // We learn nothing from revisiting nodes. 358 if (!VisitedPhis.insert(MAP).second) 359 continue; 360 361 for (MemoryAccess *MA : def_chain(MAP.first)) { 362 if (MA == ClobberAt) { 363 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 364 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 365 // since it won't let us short-circuit. 366 // 367 // Also, note that this can't be hoisted out of the `Worklist` loop, 368 // since MD may only act as a clobber for 1 of N MemoryLocations. 369 FoundClobber = 370 FoundClobber || MSSA.isLiveOnEntryDef(MD) || 371 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 372 } 373 break; 374 } 375 376 // We should never hit liveOnEntry, unless it's the clobber. 377 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 378 379 if (auto *MD = dyn_cast<MemoryDef>(MA)) { 380 (void)MD; 381 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && 382 "Found clobber before reaching ClobberAt!"); 383 continue; 384 } 385 386 assert(isa<MemoryPhi>(MA)); 387 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); 388 } 389 } 390 391 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 392 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 393 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 394 "ClobberAt never acted as a clobber"); 395 } 396 397 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 398 /// in one class. 399 class ClobberWalker { 400 /// Save a few bytes by using unsigned instead of size_t. 401 using ListIndex = unsigned; 402 403 /// Represents a span of contiguous MemoryDefs, potentially ending in a 404 /// MemoryPhi. 405 struct DefPath { 406 MemoryLocation Loc; 407 // Note that, because we always walk in reverse, Last will always dominate 408 // First. Also note that First and Last are inclusive. 409 MemoryAccess *First; 410 MemoryAccess *Last; 411 Optional<ListIndex> Previous; 412 413 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 414 Optional<ListIndex> Previous) 415 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 416 417 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 418 Optional<ListIndex> Previous) 419 : DefPath(Loc, Init, Init, Previous) {} 420 }; 421 422 const MemorySSA &MSSA; 423 AliasAnalysis &AA; 424 DominatorTree &DT; 425 UpwardsMemoryQuery *Query; 426 427 // Phi optimization bookkeeping 428 SmallVector<DefPath, 32> Paths; 429 DenseSet<ConstMemoryAccessPair> VisitedPhis; 430 431 /// Find the nearest def or phi that `From` can legally be optimized to. 432 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 433 assert(From->getNumOperands() && "Phi with no operands?"); 434 435 BasicBlock *BB = From->getBlock(); 436 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 437 DomTreeNode *Node = DT.getNode(BB); 438 while ((Node = Node->getIDom())) { 439 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 440 if (Defs) 441 return &*Defs->rbegin(); 442 } 443 return Result; 444 } 445 446 /// Result of calling walkToPhiOrClobber. 447 struct UpwardsWalkResult { 448 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 449 /// both. 450 MemoryAccess *Result; 451 bool IsKnownClobber; 452 }; 453 454 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 455 /// This will update Desc.Last as it walks. It will (optionally) also stop at 456 /// StopAt. 457 /// 458 /// This does not test for whether StopAt is a clobber 459 UpwardsWalkResult 460 walkToPhiOrClobber(DefPath &Desc, 461 const MemoryAccess *StopAt = nullptr) const { 462 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 463 464 for (MemoryAccess *Current : def_chain(Desc.Last)) { 465 Desc.Last = Current; 466 if (Current == StopAt) 467 return {Current, false}; 468 469 if (auto *MD = dyn_cast<MemoryDef>(Current)) 470 if (MSSA.isLiveOnEntryDef(MD) || 471 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA)) 472 return {MD, true}; 473 } 474 475 assert(isa<MemoryPhi>(Desc.Last) && 476 "Ended at a non-clobber that's not a phi?"); 477 return {Desc.Last, false}; 478 } 479 480 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 481 ListIndex PriorNode) { 482 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 483 upward_defs_end()); 484 for (const MemoryAccessPair &P : UpwardDefs) { 485 PausedSearches.push_back(Paths.size()); 486 Paths.emplace_back(P.second, P.first, PriorNode); 487 } 488 } 489 490 /// Represents a search that terminated after finding a clobber. This clobber 491 /// may or may not be present in the path of defs from LastNode..SearchStart, 492 /// since it may have been retrieved from cache. 493 struct TerminatedPath { 494 MemoryAccess *Clobber; 495 ListIndex LastNode; 496 }; 497 498 /// Get an access that keeps us from optimizing to the given phi. 499 /// 500 /// PausedSearches is an array of indices into the Paths array. Its incoming 501 /// value is the indices of searches that stopped at the last phi optimization 502 /// target. It's left in an unspecified state. 503 /// 504 /// If this returns None, NewPaused is a vector of searches that terminated 505 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 506 Optional<TerminatedPath> 507 getBlockingAccess(const MemoryAccess *StopWhere, 508 SmallVectorImpl<ListIndex> &PausedSearches, 509 SmallVectorImpl<ListIndex> &NewPaused, 510 SmallVectorImpl<TerminatedPath> &Terminated) { 511 assert(!PausedSearches.empty() && "No searches to continue?"); 512 513 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 514 // PausedSearches as our stack. 515 while (!PausedSearches.empty()) { 516 ListIndex PathIndex = PausedSearches.pop_back_val(); 517 DefPath &Node = Paths[PathIndex]; 518 519 // If we've already visited this path with this MemoryLocation, we don't 520 // need to do so again. 521 // 522 // NOTE: That we just drop these paths on the ground makes caching 523 // behavior sporadic. e.g. given a diamond: 524 // A 525 // B C 526 // D 527 // 528 // ...If we walk D, B, A, C, we'll only cache the result of phi 529 // optimization for A, B, and D; C will be skipped because it dies here. 530 // This arguably isn't the worst thing ever, since: 531 // - We generally query things in a top-down order, so if we got below D 532 // without needing cache entries for {C, MemLoc}, then chances are 533 // that those cache entries would end up ultimately unused. 534 // - We still cache things for A, so C only needs to walk up a bit. 535 // If this behavior becomes problematic, we can fix without a ton of extra 536 // work. 537 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 538 continue; 539 540 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); 541 if (Res.IsKnownClobber) { 542 assert(Res.Result != StopWhere); 543 // If this wasn't a cache hit, we hit a clobber when walking. That's a 544 // failure. 545 TerminatedPath Term{Res.Result, PathIndex}; 546 if (!MSSA.dominates(Res.Result, StopWhere)) 547 return Term; 548 549 // Otherwise, it's a valid thing to potentially optimize to. 550 Terminated.push_back(Term); 551 continue; 552 } 553 554 if (Res.Result == StopWhere) { 555 // We've hit our target. Save this path off for if we want to continue 556 // walking. 557 NewPaused.push_back(PathIndex); 558 continue; 559 } 560 561 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 562 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 563 } 564 565 return None; 566 } 567 568 template <typename T, typename Walker> 569 struct generic_def_path_iterator 570 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 571 std::forward_iterator_tag, T *> { 572 generic_def_path_iterator() : W(nullptr), N(None) {} 573 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 574 575 T &operator*() const { return curNode(); } 576 577 generic_def_path_iterator &operator++() { 578 N = curNode().Previous; 579 return *this; 580 } 581 582 bool operator==(const generic_def_path_iterator &O) const { 583 if (N.hasValue() != O.N.hasValue()) 584 return false; 585 return !N.hasValue() || *N == *O.N; 586 } 587 588 private: 589 T &curNode() const { return W->Paths[*N]; } 590 591 Walker *W; 592 Optional<ListIndex> N; 593 }; 594 595 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 596 using const_def_path_iterator = 597 generic_def_path_iterator<const DefPath, const ClobberWalker>; 598 599 iterator_range<def_path_iterator> def_path(ListIndex From) { 600 return make_range(def_path_iterator(this, From), def_path_iterator()); 601 } 602 603 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 604 return make_range(const_def_path_iterator(this, From), 605 const_def_path_iterator()); 606 } 607 608 struct OptznResult { 609 /// The path that contains our result. 610 TerminatedPath PrimaryClobber; 611 /// The paths that we can legally cache back from, but that aren't 612 /// necessarily the result of the Phi optimization. 613 SmallVector<TerminatedPath, 4> OtherClobbers; 614 }; 615 616 ListIndex defPathIndex(const DefPath &N) const { 617 // The assert looks nicer if we don't need to do &N 618 const DefPath *NP = &N; 619 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 620 "Out of bounds DefPath!"); 621 return NP - &Paths.front(); 622 } 623 624 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 625 /// that act as legal clobbers. Note that this won't return *all* clobbers. 626 /// 627 /// Phi optimization algorithm tl;dr: 628 /// - Find the earliest def/phi, A, we can optimize to 629 /// - Find if all paths from the starting memory access ultimately reach A 630 /// - If not, optimization isn't possible. 631 /// - Otherwise, walk from A to another clobber or phi, A'. 632 /// - If A' is a def, we're done. 633 /// - If A' is a phi, try to optimize it. 634 /// 635 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 636 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 637 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 638 const MemoryLocation &Loc) { 639 assert(Paths.empty() && VisitedPhis.empty() && 640 "Reset the optimization state."); 641 642 Paths.emplace_back(Loc, Start, Phi, None); 643 // Stores how many "valid" optimization nodes we had prior to calling 644 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 645 auto PriorPathsSize = Paths.size(); 646 647 SmallVector<ListIndex, 16> PausedSearches; 648 SmallVector<ListIndex, 8> NewPaused; 649 SmallVector<TerminatedPath, 4> TerminatedPaths; 650 651 addSearches(Phi, PausedSearches, 0); 652 653 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 654 // Paths. 655 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 656 assert(!Paths.empty() && "Need a path to move"); 657 auto Dom = Paths.begin(); 658 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 659 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 660 Dom = I; 661 auto Last = Paths.end() - 1; 662 if (Last != Dom) 663 std::iter_swap(Last, Dom); 664 }; 665 666 MemoryPhi *Current = Phi; 667 while (1) { 668 assert(!MSSA.isLiveOnEntryDef(Current) && 669 "liveOnEntry wasn't treated as a clobber?"); 670 671 const auto *Target = getWalkTarget(Current); 672 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 673 // optimization for the prior phi. 674 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 675 return MSSA.dominates(P.Clobber, Target); 676 })); 677 678 // FIXME: This is broken, because the Blocker may be reported to be 679 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 680 // For the moment, this is fine, since we do nothing with blocker info. 681 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 682 Target, PausedSearches, NewPaused, TerminatedPaths)) { 683 684 // Find the node we started at. We can't search based on N->Last, since 685 // we may have gone around a loop with a different MemoryLocation. 686 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 687 return defPathIndex(N) < PriorPathsSize; 688 }); 689 assert(Iter != def_path_iterator()); 690 691 DefPath &CurNode = *Iter; 692 assert(CurNode.Last == Current); 693 694 // Two things: 695 // A. We can't reliably cache all of NewPaused back. Consider a case 696 // where we have two paths in NewPaused; one of which can't optimize 697 // above this phi, whereas the other can. If we cache the second path 698 // back, we'll end up with suboptimal cache entries. We can handle 699 // cases like this a bit better when we either try to find all 700 // clobbers that block phi optimization, or when our cache starts 701 // supporting unfinished searches. 702 // B. We can't reliably cache TerminatedPaths back here without doing 703 // extra checks; consider a case like: 704 // T 705 // / \ 706 // D C 707 // \ / 708 // S 709 // Where T is our target, C is a node with a clobber on it, D is a 710 // diamond (with a clobber *only* on the left or right node, N), and 711 // S is our start. Say we walk to D, through the node opposite N 712 // (read: ignoring the clobber), and see a cache entry in the top 713 // node of D. That cache entry gets put into TerminatedPaths. We then 714 // walk up to C (N is later in our worklist), find the clobber, and 715 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 716 // the bottom part of D to the cached clobber, ignoring the clobber 717 // in N. Again, this problem goes away if we start tracking all 718 // blockers for a given phi optimization. 719 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 720 return {Result, {}}; 721 } 722 723 // If there's nothing left to search, then all paths led to valid clobbers 724 // that we got from our cache; pick the nearest to the start, and allow 725 // the rest to be cached back. 726 if (NewPaused.empty()) { 727 MoveDominatedPathToEnd(TerminatedPaths); 728 TerminatedPath Result = TerminatedPaths.pop_back_val(); 729 return {Result, std::move(TerminatedPaths)}; 730 } 731 732 MemoryAccess *DefChainEnd = nullptr; 733 SmallVector<TerminatedPath, 4> Clobbers; 734 for (ListIndex Paused : NewPaused) { 735 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 736 if (WR.IsKnownClobber) 737 Clobbers.push_back({WR.Result, Paused}); 738 else 739 // Micro-opt: If we hit the end of the chain, save it. 740 DefChainEnd = WR.Result; 741 } 742 743 if (!TerminatedPaths.empty()) { 744 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 745 // do it now. 746 if (!DefChainEnd) 747 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 748 DefChainEnd = MA; 749 750 // If any of the terminated paths don't dominate the phi we'll try to 751 // optimize, we need to figure out what they are and quit. 752 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 753 for (const TerminatedPath &TP : TerminatedPaths) { 754 // Because we know that DefChainEnd is as "high" as we can go, we 755 // don't need local dominance checks; BB dominance is sufficient. 756 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 757 Clobbers.push_back(TP); 758 } 759 } 760 761 // If we have clobbers in the def chain, find the one closest to Current 762 // and quit. 763 if (!Clobbers.empty()) { 764 MoveDominatedPathToEnd(Clobbers); 765 TerminatedPath Result = Clobbers.pop_back_val(); 766 return {Result, std::move(Clobbers)}; 767 } 768 769 assert(all_of(NewPaused, 770 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 771 772 // Because liveOnEntry is a clobber, this must be a phi. 773 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 774 775 PriorPathsSize = Paths.size(); 776 PausedSearches.clear(); 777 for (ListIndex I : NewPaused) 778 addSearches(DefChainPhi, PausedSearches, I); 779 NewPaused.clear(); 780 781 Current = DefChainPhi; 782 } 783 } 784 785 void verifyOptResult(const OptznResult &R) const { 786 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 787 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 788 })); 789 } 790 791 void resetPhiOptznState() { 792 Paths.clear(); 793 VisitedPhis.clear(); 794 } 795 796 public: 797 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) 798 : MSSA(MSSA), AA(AA), DT(DT) {} 799 800 void reset() {} 801 802 /// Finds the nearest clobber for the given query, optimizing phis if 803 /// possible. 804 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { 805 Query = &Q; 806 807 MemoryAccess *Current = Start; 808 // This walker pretends uses don't exist. If we're handed one, silently grab 809 // its def. (This has the nice side-effect of ensuring we never cache uses) 810 if (auto *MU = dyn_cast<MemoryUse>(Start)) 811 Current = MU->getDefiningAccess(); 812 813 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 814 // Fast path for the overly-common case (no crazy phi optimization 815 // necessary) 816 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 817 MemoryAccess *Result; 818 if (WalkResult.IsKnownClobber) { 819 Result = WalkResult.Result; 820 } else { 821 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 822 Current, Q.StartingLoc); 823 verifyOptResult(OptRes); 824 resetPhiOptznState(); 825 Result = OptRes.PrimaryClobber.Clobber; 826 } 827 828 #ifdef EXPENSIVE_CHECKS 829 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 830 #endif 831 return Result; 832 } 833 834 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } 835 }; 836 837 struct RenamePassData { 838 DomTreeNode *DTN; 839 DomTreeNode::const_iterator ChildIt; 840 MemoryAccess *IncomingVal; 841 842 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 843 MemoryAccess *M) 844 : DTN(D), ChildIt(It), IncomingVal(M) {} 845 void swap(RenamePassData &RHS) { 846 std::swap(DTN, RHS.DTN); 847 std::swap(ChildIt, RHS.ChildIt); 848 std::swap(IncomingVal, RHS.IncomingVal); 849 } 850 }; 851 } // anonymous namespace 852 853 namespace llvm { 854 /// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no 855 /// longer does caching on its own, 856 /// but the name has been retained for the moment. 857 class MemorySSA::CachingWalker final : public MemorySSAWalker { 858 ClobberWalker Walker; 859 bool AutoResetWalker; 860 861 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); 862 void verifyRemoved(MemoryAccess *); 863 864 public: 865 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); 866 ~CachingWalker() override; 867 868 using MemorySSAWalker::getClobberingMemoryAccess; 869 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; 870 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 871 const MemoryLocation &) override; 872 void invalidateInfo(MemoryAccess *) override; 873 874 /// Whether we call resetClobberWalker() after each time we *actually* walk to 875 /// answer a clobber query. 876 void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } 877 878 /// Drop the walker's persistent data structures. 879 void resetClobberWalker() { Walker.reset(); } 880 881 void verify(const MemorySSA *MSSA) override { 882 MemorySSAWalker::verify(MSSA); 883 Walker.verify(MSSA); 884 } 885 }; 886 887 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 888 bool RenameAllUses) { 889 // Pass through values to our successors 890 for (const BasicBlock *S : successors(BB)) { 891 auto It = PerBlockAccesses.find(S); 892 // Rename the phi nodes in our successor block 893 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 894 continue; 895 AccessList *Accesses = It->second.get(); 896 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 897 if (RenameAllUses) { 898 int PhiIndex = Phi->getBasicBlockIndex(BB); 899 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 900 Phi->setIncomingValue(PhiIndex, IncomingVal); 901 } else 902 Phi->addIncoming(IncomingVal, BB); 903 } 904 } 905 906 /// \brief Rename a single basic block into MemorySSA form. 907 /// Uses the standard SSA renaming algorithm. 908 /// \returns The new incoming value. 909 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 910 bool RenameAllUses) { 911 auto It = PerBlockAccesses.find(BB); 912 // Skip most processing if the list is empty. 913 if (It != PerBlockAccesses.end()) { 914 AccessList *Accesses = It->second.get(); 915 for (MemoryAccess &L : *Accesses) { 916 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 917 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 918 MUD->setDefiningAccess(IncomingVal); 919 if (isa<MemoryDef>(&L)) 920 IncomingVal = &L; 921 } else { 922 IncomingVal = &L; 923 } 924 } 925 } 926 return IncomingVal; 927 } 928 929 /// \brief This is the standard SSA renaming algorithm. 930 /// 931 /// We walk the dominator tree in preorder, renaming accesses, and then filling 932 /// in phi nodes in our successors. 933 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 934 SmallPtrSetImpl<BasicBlock *> &Visited, 935 bool SkipVisited, bool RenameAllUses) { 936 SmallVector<RenamePassData, 32> WorkStack; 937 // Skip everything if we already renamed this block and we are skipping. 938 // Note: You can't sink this into the if, because we need it to occur 939 // regardless of whether we skip blocks or not. 940 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 941 if (SkipVisited && AlreadyVisited) 942 return; 943 944 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 945 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 946 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 947 948 while (!WorkStack.empty()) { 949 DomTreeNode *Node = WorkStack.back().DTN; 950 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 951 IncomingVal = WorkStack.back().IncomingVal; 952 953 if (ChildIt == Node->end()) { 954 WorkStack.pop_back(); 955 } else { 956 DomTreeNode *Child = *ChildIt; 957 ++WorkStack.back().ChildIt; 958 BasicBlock *BB = Child->getBlock(); 959 // Note: You can't sink this into the if, because we need it to occur 960 // regardless of whether we skip blocks or not. 961 AlreadyVisited = !Visited.insert(BB).second; 962 if (SkipVisited && AlreadyVisited) { 963 // We already visited this during our renaming, which can happen when 964 // being asked to rename multiple blocks. Figure out the incoming val, 965 // which is the last def. 966 // Incoming value can only change if there is a block def, and in that 967 // case, it's the last block def in the list. 968 if (auto *BlockDefs = getWritableBlockDefs(BB)) 969 IncomingVal = &*BlockDefs->rbegin(); 970 } else 971 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 972 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 973 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 974 } 975 } 976 } 977 978 /// \brief This handles unreachable block accesses by deleting phi nodes in 979 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 980 /// being uses of the live on entry definition. 981 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 982 assert(!DT->isReachableFromEntry(BB) && 983 "Reachable block found while handling unreachable blocks"); 984 985 // Make sure phi nodes in our reachable successors end up with a 986 // LiveOnEntryDef for our incoming edge, even though our block is forward 987 // unreachable. We could just disconnect these blocks from the CFG fully, 988 // but we do not right now. 989 for (const BasicBlock *S : successors(BB)) { 990 if (!DT->isReachableFromEntry(S)) 991 continue; 992 auto It = PerBlockAccesses.find(S); 993 // Rename the phi nodes in our successor block 994 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 995 continue; 996 AccessList *Accesses = It->second.get(); 997 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 998 Phi->addIncoming(LiveOnEntryDef.get(), BB); 999 } 1000 1001 auto It = PerBlockAccesses.find(BB); 1002 if (It == PerBlockAccesses.end()) 1003 return; 1004 1005 auto &Accesses = It->second; 1006 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1007 auto Next = std::next(AI); 1008 // If we have a phi, just remove it. We are going to replace all 1009 // users with live on entry. 1010 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1011 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1012 else 1013 Accesses->erase(AI); 1014 AI = Next; 1015 } 1016 } 1017 1018 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1019 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1020 NextID(INVALID_MEMORYACCESS_ID) { 1021 buildMemorySSA(); 1022 } 1023 1024 MemorySSA::~MemorySSA() { 1025 // Drop all our references 1026 for (const auto &Pair : PerBlockAccesses) 1027 for (MemoryAccess &MA : *Pair.second) 1028 MA.dropAllReferences(); 1029 } 1030 1031 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1032 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1033 1034 if (Res.second) 1035 Res.first->second = make_unique<AccessList>(); 1036 return Res.first->second.get(); 1037 } 1038 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1039 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1040 1041 if (Res.second) 1042 Res.first->second = make_unique<DefsList>(); 1043 return Res.first->second.get(); 1044 } 1045 1046 /// This class is a batch walker of all MemoryUse's in the program, and points 1047 /// their defining access at the thing that actually clobbers them. Because it 1048 /// is a batch walker that touches everything, it does not operate like the 1049 /// other walkers. This walker is basically performing a top-down SSA renaming 1050 /// pass, where the version stack is used as the cache. This enables it to be 1051 /// significantly more time and memory efficient than using the regular walker, 1052 /// which is walking bottom-up. 1053 class MemorySSA::OptimizeUses { 1054 public: 1055 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, 1056 DominatorTree *DT) 1057 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { 1058 Walker = MSSA->getWalker(); 1059 } 1060 1061 void optimizeUses(); 1062 1063 private: 1064 /// This represents where a given memorylocation is in the stack. 1065 struct MemlocStackInfo { 1066 // This essentially is keeping track of versions of the stack. Whenever 1067 // the stack changes due to pushes or pops, these versions increase. 1068 unsigned long StackEpoch; 1069 unsigned long PopEpoch; 1070 // This is the lower bound of places on the stack to check. It is equal to 1071 // the place the last stack walk ended. 1072 // Note: Correctness depends on this being initialized to 0, which densemap 1073 // does 1074 unsigned long LowerBound; 1075 const BasicBlock *LowerBoundBlock; 1076 // This is where the last walk for this memory location ended. 1077 unsigned long LastKill; 1078 bool LastKillValid; 1079 }; 1080 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1081 SmallVectorImpl<MemoryAccess *> &, 1082 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1083 MemorySSA *MSSA; 1084 MemorySSAWalker *Walker; 1085 AliasAnalysis *AA; 1086 DominatorTree *DT; 1087 }; 1088 1089 /// Optimize the uses in a given block This is basically the SSA renaming 1090 /// algorithm, with one caveat: We are able to use a single stack for all 1091 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1092 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1093 /// going to be some position in that stack of possible ones. 1094 /// 1095 /// We track the stack positions that each MemoryLocation needs 1096 /// to check, and last ended at. This is because we only want to check the 1097 /// things that changed since last time. The same MemoryLocation should 1098 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1099 /// things like this, and if they start, we can modify MemoryLocOrCall to 1100 /// include relevant data) 1101 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1102 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1103 SmallVectorImpl<MemoryAccess *> &VersionStack, 1104 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1105 1106 /// If no accesses, nothing to do. 1107 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1108 if (Accesses == nullptr) 1109 return; 1110 1111 // Pop everything that doesn't dominate the current block off the stack, 1112 // increment the PopEpoch to account for this. 1113 while (true) { 1114 assert( 1115 !VersionStack.empty() && 1116 "Version stack should have liveOnEntry sentinel dominating everything"); 1117 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1118 if (DT->dominates(BackBlock, BB)) 1119 break; 1120 while (VersionStack.back()->getBlock() == BackBlock) 1121 VersionStack.pop_back(); 1122 ++PopEpoch; 1123 } 1124 1125 for (MemoryAccess &MA : *Accesses) { 1126 auto *MU = dyn_cast<MemoryUse>(&MA); 1127 if (!MU) { 1128 VersionStack.push_back(&MA); 1129 ++StackEpoch; 1130 continue; 1131 } 1132 1133 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1134 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true); 1135 continue; 1136 } 1137 1138 MemoryLocOrCall UseMLOC(MU); 1139 auto &LocInfo = LocStackInfo[UseMLOC]; 1140 // If the pop epoch changed, it means we've removed stuff from top of 1141 // stack due to changing blocks. We may have to reset the lower bound or 1142 // last kill info. 1143 if (LocInfo.PopEpoch != PopEpoch) { 1144 LocInfo.PopEpoch = PopEpoch; 1145 LocInfo.StackEpoch = StackEpoch; 1146 // If the lower bound was in something that no longer dominates us, we 1147 // have to reset it. 1148 // We can't simply track stack size, because the stack may have had 1149 // pushes/pops in the meantime. 1150 // XXX: This is non-optimal, but only is slower cases with heavily 1151 // branching dominator trees. To get the optimal number of queries would 1152 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1153 // the top of that stack dominates us. This does not seem worth it ATM. 1154 // A much cheaper optimization would be to always explore the deepest 1155 // branch of the dominator tree first. This will guarantee this resets on 1156 // the smallest set of blocks. 1157 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1158 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1159 // Reset the lower bound of things to check. 1160 // TODO: Some day we should be able to reset to last kill, rather than 1161 // 0. 1162 LocInfo.LowerBound = 0; 1163 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1164 LocInfo.LastKillValid = false; 1165 } 1166 } else if (LocInfo.StackEpoch != StackEpoch) { 1167 // If all that has changed is the StackEpoch, we only have to check the 1168 // new things on the stack, because we've checked everything before. In 1169 // this case, the lower bound of things to check remains the same. 1170 LocInfo.PopEpoch = PopEpoch; 1171 LocInfo.StackEpoch = StackEpoch; 1172 } 1173 if (!LocInfo.LastKillValid) { 1174 LocInfo.LastKill = VersionStack.size() - 1; 1175 LocInfo.LastKillValid = true; 1176 } 1177 1178 // At this point, we should have corrected last kill and LowerBound to be 1179 // in bounds. 1180 assert(LocInfo.LowerBound < VersionStack.size() && 1181 "Lower bound out of range"); 1182 assert(LocInfo.LastKill < VersionStack.size() && 1183 "Last kill info out of range"); 1184 // In any case, the new upper bound is the top of the stack. 1185 unsigned long UpperBound = VersionStack.size() - 1; 1186 1187 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1188 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1189 << *(MU->getMemoryInst()) << ")" 1190 << " because there are " << UpperBound - LocInfo.LowerBound 1191 << " stores to disambiguate\n"); 1192 // Because we did not walk, LastKill is no longer valid, as this may 1193 // have been a kill. 1194 LocInfo.LastKillValid = false; 1195 continue; 1196 } 1197 bool FoundClobberResult = false; 1198 while (UpperBound > LocInfo.LowerBound) { 1199 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1200 // For phis, use the walker, see where we ended up, go there 1201 Instruction *UseInst = MU->getMemoryInst(); 1202 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); 1203 // We are guaranteed to find it or something is wrong 1204 while (VersionStack[UpperBound] != Result) { 1205 assert(UpperBound != 0); 1206 --UpperBound; 1207 } 1208 FoundClobberResult = true; 1209 break; 1210 } 1211 1212 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1213 // If the lifetime of the pointer ends at this instruction, it's live on 1214 // entry. 1215 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1216 // Reset UpperBound to liveOnEntryDef's place in the stack 1217 UpperBound = 0; 1218 FoundClobberResult = true; 1219 break; 1220 } 1221 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { 1222 FoundClobberResult = true; 1223 break; 1224 } 1225 --UpperBound; 1226 } 1227 // At the end of this loop, UpperBound is either a clobber, or lower bound 1228 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1229 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1230 MU->setDefiningAccess(VersionStack[UpperBound], true); 1231 // We were last killed now by where we got to 1232 LocInfo.LastKill = UpperBound; 1233 } else { 1234 // Otherwise, we checked all the new ones, and now we know we can get to 1235 // LastKill. 1236 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); 1237 } 1238 LocInfo.LowerBound = VersionStack.size() - 1; 1239 LocInfo.LowerBoundBlock = BB; 1240 } 1241 } 1242 1243 /// Optimize uses to point to their actual clobbering definitions. 1244 void MemorySSA::OptimizeUses::optimizeUses() { 1245 SmallVector<MemoryAccess *, 16> VersionStack; 1246 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1247 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1248 1249 unsigned long StackEpoch = 1; 1250 unsigned long PopEpoch = 1; 1251 // We perform a non-recursive top-down dominator tree walk. 1252 for (const auto *DomNode : depth_first(DT->getRootNode())) 1253 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1254 LocStackInfo); 1255 } 1256 1257 void MemorySSA::placePHINodes( 1258 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks, 1259 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) { 1260 // Determine where our MemoryPhi's should go 1261 ForwardIDFCalculator IDFs(*DT); 1262 IDFs.setDefiningBlocks(DefiningBlocks); 1263 SmallVector<BasicBlock *, 32> IDFBlocks; 1264 IDFs.calculate(IDFBlocks); 1265 1266 std::sort(IDFBlocks.begin(), IDFBlocks.end(), 1267 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) { 1268 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 1269 }); 1270 1271 // Now place MemoryPhi nodes. 1272 for (auto &BB : IDFBlocks) 1273 createMemoryPhi(BB); 1274 } 1275 1276 void MemorySSA::buildMemorySSA() { 1277 // We create an access to represent "live on entry", for things like 1278 // arguments or users of globals, where the memory they use is defined before 1279 // the beginning of the function. We do not actually insert it into the IR. 1280 // We do not define a live on exit for the immediate uses, and thus our 1281 // semantics do *not* imply that something with no immediate uses can simply 1282 // be removed. 1283 BasicBlock &StartingPoint = F.getEntryBlock(); 1284 LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, 1285 &StartingPoint, NextID++); 1286 DenseMap<const BasicBlock *, unsigned int> BBNumbers; 1287 unsigned NextBBNum = 0; 1288 1289 // We maintain lists of memory accesses per-block, trading memory for time. We 1290 // could just look up the memory access for every possible instruction in the 1291 // stream. 1292 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1293 // Go through each block, figure out where defs occur, and chain together all 1294 // the accesses. 1295 for (BasicBlock &B : F) { 1296 BBNumbers[&B] = NextBBNum++; 1297 bool InsertIntoDef = false; 1298 AccessList *Accesses = nullptr; 1299 DefsList *Defs = nullptr; 1300 for (Instruction &I : B) { 1301 MemoryUseOrDef *MUD = createNewAccess(&I); 1302 if (!MUD) 1303 continue; 1304 1305 if (!Accesses) 1306 Accesses = getOrCreateAccessList(&B); 1307 Accesses->push_back(MUD); 1308 if (isa<MemoryDef>(MUD)) { 1309 InsertIntoDef = true; 1310 if (!Defs) 1311 Defs = getOrCreateDefsList(&B); 1312 Defs->push_back(*MUD); 1313 } 1314 } 1315 if (InsertIntoDef) 1316 DefiningBlocks.insert(&B); 1317 } 1318 placePHINodes(DefiningBlocks, BBNumbers); 1319 1320 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1321 // filled in with all blocks. 1322 SmallPtrSet<BasicBlock *, 16> Visited; 1323 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1324 1325 CachingWalker *Walker = getWalkerImpl(); 1326 1327 // We're doing a batch of updates; don't drop useful caches between them. 1328 Walker->setAutoResetWalker(false); 1329 OptimizeUses(this, Walker, AA, DT).optimizeUses(); 1330 Walker->setAutoResetWalker(true); 1331 Walker->resetClobberWalker(); 1332 1333 // Mark the uses in unreachable blocks as live on entry, so that they go 1334 // somewhere. 1335 for (auto &BB : F) 1336 if (!Visited.count(&BB)) 1337 markUnreachableAsLiveOnEntry(&BB); 1338 } 1339 1340 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1341 1342 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1343 if (Walker) 1344 return Walker.get(); 1345 1346 Walker = make_unique<CachingWalker>(this, AA, DT); 1347 return Walker.get(); 1348 } 1349 1350 // This is a helper function used by the creation routines. It places NewAccess 1351 // into the access and defs lists for a given basic block, at the given 1352 // insertion point. 1353 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1354 const BasicBlock *BB, 1355 InsertionPlace Point) { 1356 auto *Accesses = getOrCreateAccessList(BB); 1357 if (Point == Beginning) { 1358 // If it's a phi node, it goes first, otherwise, it goes after any phi 1359 // nodes. 1360 if (isa<MemoryPhi>(NewAccess)) { 1361 Accesses->push_front(NewAccess); 1362 auto *Defs = getOrCreateDefsList(BB); 1363 Defs->push_front(*NewAccess); 1364 } else { 1365 auto AI = find_if_not( 1366 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1367 Accesses->insert(AI, NewAccess); 1368 if (!isa<MemoryUse>(NewAccess)) { 1369 auto *Defs = getOrCreateDefsList(BB); 1370 auto DI = find_if_not( 1371 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1372 Defs->insert(DI, *NewAccess); 1373 } 1374 } 1375 } else { 1376 Accesses->push_back(NewAccess); 1377 if (!isa<MemoryUse>(NewAccess)) { 1378 auto *Defs = getOrCreateDefsList(BB); 1379 Defs->push_back(*NewAccess); 1380 } 1381 } 1382 BlockNumberingValid.erase(BB); 1383 } 1384 1385 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1386 AccessList::iterator InsertPt) { 1387 auto *Accesses = getWritableBlockAccesses(BB); 1388 bool WasEnd = InsertPt == Accesses->end(); 1389 Accesses->insert(AccessList::iterator(InsertPt), What); 1390 if (!isa<MemoryUse>(What)) { 1391 auto *Defs = getOrCreateDefsList(BB); 1392 // If we got asked to insert at the end, we have an easy job, just shove it 1393 // at the end. If we got asked to insert before an existing def, we also get 1394 // an terator. If we got asked to insert before a use, we have to hunt for 1395 // the next def. 1396 if (WasEnd) { 1397 Defs->push_back(*What); 1398 } else if (isa<MemoryDef>(InsertPt)) { 1399 Defs->insert(InsertPt->getDefsIterator(), *What); 1400 } else { 1401 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1402 ++InsertPt; 1403 // Either we found a def, or we are inserting at the end 1404 if (InsertPt == Accesses->end()) 1405 Defs->push_back(*What); 1406 else 1407 Defs->insert(InsertPt->getDefsIterator(), *What); 1408 } 1409 } 1410 BlockNumberingValid.erase(BB); 1411 } 1412 1413 // Move What before Where in the IR. The end result is taht What will belong to 1414 // the right lists and have the right Block set, but will not otherwise be 1415 // correct. It will not have the right defining access, and if it is a def, 1416 // things below it will not properly be updated. 1417 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1418 AccessList::iterator Where) { 1419 // Keep it in the lookup tables, remove from the lists 1420 removeFromLists(What, false); 1421 What->setBlock(BB); 1422 insertIntoListsBefore(What, BB, Where); 1423 } 1424 1425 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1426 InsertionPlace Point) { 1427 removeFromLists(What, false); 1428 What->setBlock(BB); 1429 insertIntoListsForBlock(What, BB, Point); 1430 } 1431 1432 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1433 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1434 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1435 // Phi's always are placed at the front of the block. 1436 insertIntoListsForBlock(Phi, BB, Beginning); 1437 ValueToMemoryAccess[BB] = Phi; 1438 return Phi; 1439 } 1440 1441 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1442 MemoryAccess *Definition) { 1443 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1444 MemoryUseOrDef *NewAccess = createNewAccess(I); 1445 assert( 1446 NewAccess != nullptr && 1447 "Tried to create a memory access for a non-memory touching instruction"); 1448 NewAccess->setDefiningAccess(Definition); 1449 return NewAccess; 1450 } 1451 1452 // Return true if the instruction has ordering constraints. 1453 // Note specifically that this only considers stores and loads 1454 // because others are still considered ModRef by getModRefInfo. 1455 static inline bool isOrdered(const Instruction *I) { 1456 if (auto *SI = dyn_cast<StoreInst>(I)) { 1457 if (!SI->isUnordered()) 1458 return true; 1459 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1460 if (!LI->isUnordered()) 1461 return true; 1462 } 1463 return false; 1464 } 1465 /// \brief Helper function to create new memory accesses 1466 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { 1467 // The assume intrinsic has a control dependency which we model by claiming 1468 // that it writes arbitrarily. Ignore that fake memory dependency here. 1469 // FIXME: Replace this special casing with a more accurate modelling of 1470 // assume's control dependency. 1471 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1472 if (II->getIntrinsicID() == Intrinsic::assume) 1473 return nullptr; 1474 1475 // Find out what affect this instruction has on memory. 1476 ModRefInfo ModRef = AA->getModRefInfo(I); 1477 // The isOrdered check is used to ensure that volatiles end up as defs 1478 // (atomics end up as ModRef right now anyway). Until we separate the 1479 // ordering chain from the memory chain, this enables people to see at least 1480 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1481 // will still give an answer that bypasses other volatile loads. TODO: 1482 // Separate memory aliasing and ordering into two different chains so that we 1483 // can precisely represent both "what memory will this read/write/is clobbered 1484 // by" and "what instructions can I move this past". 1485 bool Def = bool(ModRef & MRI_Mod) || isOrdered(I); 1486 bool Use = bool(ModRef & MRI_Ref); 1487 1488 // It's possible for an instruction to not modify memory at all. During 1489 // construction, we ignore them. 1490 if (!Def && !Use) 1491 return nullptr; 1492 1493 assert((Def || Use) && 1494 "Trying to create a memory access with a non-memory instruction"); 1495 1496 MemoryUseOrDef *MUD; 1497 if (Def) 1498 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1499 else 1500 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1501 ValueToMemoryAccess[I] = MUD; 1502 return MUD; 1503 } 1504 1505 /// \brief Returns true if \p Replacer dominates \p Replacee . 1506 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1507 const MemoryAccess *Replacee) const { 1508 if (isa<MemoryUseOrDef>(Replacee)) 1509 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1510 const auto *MP = cast<MemoryPhi>(Replacee); 1511 // For a phi node, the use occurs in the predecessor block of the phi node. 1512 // Since we may occur multiple times in the phi node, we have to check each 1513 // operand to ensure Replacer dominates each operand where Replacee occurs. 1514 for (const Use &Arg : MP->operands()) { 1515 if (Arg.get() != Replacee && 1516 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1517 return false; 1518 } 1519 return true; 1520 } 1521 1522 /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. 1523 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1524 assert(MA->use_empty() && 1525 "Trying to remove memory access that still has uses"); 1526 BlockNumbering.erase(MA); 1527 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1528 MUD->setDefiningAccess(nullptr); 1529 // Invalidate our walker's cache if necessary 1530 if (!isa<MemoryUse>(MA)) 1531 Walker->invalidateInfo(MA); 1532 // The call below to erase will destroy MA, so we can't change the order we 1533 // are doing things here 1534 Value *MemoryInst; 1535 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { 1536 MemoryInst = MUD->getMemoryInst(); 1537 } else { 1538 MemoryInst = MA->getBlock(); 1539 } 1540 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1541 if (VMA->second == MA) 1542 ValueToMemoryAccess.erase(VMA); 1543 } 1544 1545 /// \brief Properly remove \p MA from all of MemorySSA's lists. 1546 /// 1547 /// Because of the way the intrusive list and use lists work, it is important to 1548 /// do removal in the right order. 1549 /// ShouldDelete defaults to true, and will cause the memory access to also be 1550 /// deleted, not just removed. 1551 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1552 // The access list owns the reference, so we erase it from the non-owning list 1553 // first. 1554 if (!isa<MemoryUse>(MA)) { 1555 auto DefsIt = PerBlockDefs.find(MA->getBlock()); 1556 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1557 Defs->remove(*MA); 1558 if (Defs->empty()) 1559 PerBlockDefs.erase(DefsIt); 1560 } 1561 1562 // The erase call here will delete it. If we don't want it deleted, we call 1563 // remove instead. 1564 auto AccessIt = PerBlockAccesses.find(MA->getBlock()); 1565 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1566 if (ShouldDelete) 1567 Accesses->erase(MA); 1568 else 1569 Accesses->remove(MA); 1570 1571 if (Accesses->empty()) 1572 PerBlockAccesses.erase(AccessIt); 1573 } 1574 1575 void MemorySSA::print(raw_ostream &OS) const { 1576 MemorySSAAnnotatedWriter Writer(this); 1577 F.print(OS, &Writer); 1578 } 1579 1580 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1581 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1582 #endif 1583 1584 void MemorySSA::verifyMemorySSA() const { 1585 verifyDefUses(F); 1586 verifyDomination(F); 1587 verifyOrdering(F); 1588 Walker->verify(this); 1589 } 1590 1591 /// \brief Verify that the order and existence of MemoryAccesses matches the 1592 /// order and existence of memory affecting instructions. 1593 void MemorySSA::verifyOrdering(Function &F) const { 1594 // Walk all the blocks, comparing what the lookups think and what the access 1595 // lists think, as well as the order in the blocks vs the order in the access 1596 // lists. 1597 SmallVector<MemoryAccess *, 32> ActualAccesses; 1598 SmallVector<MemoryAccess *, 32> ActualDefs; 1599 for (BasicBlock &B : F) { 1600 const AccessList *AL = getBlockAccesses(&B); 1601 const auto *DL = getBlockDefs(&B); 1602 MemoryAccess *Phi = getMemoryAccess(&B); 1603 if (Phi) { 1604 ActualAccesses.push_back(Phi); 1605 ActualDefs.push_back(Phi); 1606 } 1607 1608 for (Instruction &I : B) { 1609 MemoryAccess *MA = getMemoryAccess(&I); 1610 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1611 "We have memory affecting instructions " 1612 "in this block but they are not in the " 1613 "access list or defs list"); 1614 if (MA) { 1615 ActualAccesses.push_back(MA); 1616 if (isa<MemoryDef>(MA)) 1617 ActualDefs.push_back(MA); 1618 } 1619 } 1620 // Either we hit the assert, really have no accesses, or we have both 1621 // accesses and an access list. 1622 // Same with defs. 1623 if (!AL && !DL) 1624 continue; 1625 assert(AL->size() == ActualAccesses.size() && 1626 "We don't have the same number of accesses in the block as on the " 1627 "access list"); 1628 assert((DL || ActualDefs.size() == 0) && 1629 "Either we should have a defs list, or we should have no defs"); 1630 assert((!DL || DL->size() == ActualDefs.size()) && 1631 "We don't have the same number of defs in the block as on the " 1632 "def list"); 1633 auto ALI = AL->begin(); 1634 auto AAI = ActualAccesses.begin(); 1635 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1636 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1637 ++ALI; 1638 ++AAI; 1639 } 1640 ActualAccesses.clear(); 1641 if (DL) { 1642 auto DLI = DL->begin(); 1643 auto ADI = ActualDefs.begin(); 1644 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1645 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1646 ++DLI; 1647 ++ADI; 1648 } 1649 } 1650 ActualDefs.clear(); 1651 } 1652 } 1653 1654 /// \brief Verify the domination properties of MemorySSA by checking that each 1655 /// definition dominates all of its uses. 1656 void MemorySSA::verifyDomination(Function &F) const { 1657 #ifndef NDEBUG 1658 for (BasicBlock &B : F) { 1659 // Phi nodes are attached to basic blocks 1660 if (MemoryPhi *MP = getMemoryAccess(&B)) 1661 for (const Use &U : MP->uses()) 1662 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1663 1664 for (Instruction &I : B) { 1665 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1666 if (!MD) 1667 continue; 1668 1669 for (const Use &U : MD->uses()) 1670 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1671 } 1672 } 1673 #endif 1674 } 1675 1676 /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use 1677 /// appears in the use list of \p Def. 1678 1679 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1680 #ifndef NDEBUG 1681 // The live on entry use may cause us to get a NULL def here 1682 if (!Def) 1683 assert(isLiveOnEntryDef(Use) && 1684 "Null def but use not point to live on entry def"); 1685 else 1686 assert(is_contained(Def->users(), Use) && 1687 "Did not find use in def's use list"); 1688 #endif 1689 } 1690 1691 /// \brief Verify the immediate use information, by walking all the memory 1692 /// accesses and verifying that, for each use, it appears in the 1693 /// appropriate def's use list 1694 void MemorySSA::verifyDefUses(Function &F) const { 1695 for (BasicBlock &B : F) { 1696 // Phi nodes are attached to basic blocks 1697 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 1698 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1699 pred_begin(&B), pred_end(&B))) && 1700 "Incomplete MemoryPhi Node"); 1701 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1702 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1703 } 1704 1705 for (Instruction &I : B) { 1706 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 1707 verifyUseInDefs(MA->getDefiningAccess(), MA); 1708 } 1709 } 1710 } 1711 } 1712 1713 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { 1714 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); 1715 } 1716 1717 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { 1718 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); 1719 } 1720 1721 /// Perform a local numbering on blocks so that instruction ordering can be 1722 /// determined in constant time. 1723 /// TODO: We currently just number in order. If we numbered by N, we could 1724 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 1725 /// log2(N) sequences of mixed before and after) without needing to invalidate 1726 /// the numbering. 1727 void MemorySSA::renumberBlock(const BasicBlock *B) const { 1728 // The pre-increment ensures the numbers really start at 1. 1729 unsigned long CurrentNumber = 0; 1730 const AccessList *AL = getBlockAccesses(B); 1731 assert(AL != nullptr && "Asking to renumber an empty block"); 1732 for (const auto &I : *AL) 1733 BlockNumbering[&I] = ++CurrentNumber; 1734 BlockNumberingValid.insert(B); 1735 } 1736 1737 /// \brief Determine, for two memory accesses in the same block, 1738 /// whether \p Dominator dominates \p Dominatee. 1739 /// \returns True if \p Dominator dominates \p Dominatee. 1740 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 1741 const MemoryAccess *Dominatee) const { 1742 1743 const BasicBlock *DominatorBlock = Dominator->getBlock(); 1744 1745 assert((DominatorBlock == Dominatee->getBlock()) && 1746 "Asking for local domination when accesses are in different blocks!"); 1747 // A node dominates itself. 1748 if (Dominatee == Dominator) 1749 return true; 1750 1751 // When Dominatee is defined on function entry, it is not dominated by another 1752 // memory access. 1753 if (isLiveOnEntryDef(Dominatee)) 1754 return false; 1755 1756 // When Dominator is defined on function entry, it dominates the other memory 1757 // access. 1758 if (isLiveOnEntryDef(Dominator)) 1759 return true; 1760 1761 if (!BlockNumberingValid.count(DominatorBlock)) 1762 renumberBlock(DominatorBlock); 1763 1764 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 1765 // All numbers start with 1 1766 assert(DominatorNum != 0 && "Block was not numbered properly"); 1767 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 1768 assert(DominateeNum != 0 && "Block was not numbered properly"); 1769 return DominatorNum < DominateeNum; 1770 } 1771 1772 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1773 const MemoryAccess *Dominatee) const { 1774 if (Dominator == Dominatee) 1775 return true; 1776 1777 if (isLiveOnEntryDef(Dominatee)) 1778 return false; 1779 1780 if (Dominator->getBlock() != Dominatee->getBlock()) 1781 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 1782 return locallyDominates(Dominator, Dominatee); 1783 } 1784 1785 bool MemorySSA::dominates(const MemoryAccess *Dominator, 1786 const Use &Dominatee) const { 1787 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 1788 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 1789 // The def must dominate the incoming block of the phi. 1790 if (UseBB != Dominator->getBlock()) 1791 return DT->dominates(Dominator->getBlock(), UseBB); 1792 // If the UseBB and the DefBB are the same, compare locally. 1793 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 1794 } 1795 // If it's not a PHI node use, the normal dominates can already handle it. 1796 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 1797 } 1798 1799 const static char LiveOnEntryStr[] = "liveOnEntry"; 1800 1801 void MemoryAccess::print(raw_ostream &OS) const { 1802 switch (getValueID()) { 1803 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 1804 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 1805 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 1806 } 1807 llvm_unreachable("invalid value id"); 1808 } 1809 1810 void MemoryDef::print(raw_ostream &OS) const { 1811 MemoryAccess *UO = getDefiningAccess(); 1812 1813 OS << getID() << " = MemoryDef("; 1814 if (UO && UO->getID()) 1815 OS << UO->getID(); 1816 else 1817 OS << LiveOnEntryStr; 1818 OS << ')'; 1819 } 1820 1821 void MemoryPhi::print(raw_ostream &OS) const { 1822 bool First = true; 1823 OS << getID() << " = MemoryPhi("; 1824 for (const auto &Op : operands()) { 1825 BasicBlock *BB = getIncomingBlock(Op); 1826 MemoryAccess *MA = cast<MemoryAccess>(Op); 1827 if (!First) 1828 OS << ','; 1829 else 1830 First = false; 1831 1832 OS << '{'; 1833 if (BB->hasName()) 1834 OS << BB->getName(); 1835 else 1836 BB->printAsOperand(OS, false); 1837 OS << ','; 1838 if (unsigned ID = MA->getID()) 1839 OS << ID; 1840 else 1841 OS << LiveOnEntryStr; 1842 OS << '}'; 1843 } 1844 OS << ')'; 1845 } 1846 1847 void MemoryUse::print(raw_ostream &OS) const { 1848 MemoryAccess *UO = getDefiningAccess(); 1849 OS << "MemoryUse("; 1850 if (UO && UO->getID()) 1851 OS << UO->getID(); 1852 else 1853 OS << LiveOnEntryStr; 1854 OS << ')'; 1855 } 1856 1857 void MemoryAccess::dump() const { 1858 // Cannot completely remove virtual function even in release mode. 1859 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1860 print(dbgs()); 1861 dbgs() << "\n"; 1862 #endif 1863 } 1864 1865 char MemorySSAPrinterLegacyPass::ID = 0; 1866 1867 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 1868 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 1869 } 1870 1871 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 1872 AU.setPreservesAll(); 1873 AU.addRequired<MemorySSAWrapperPass>(); 1874 } 1875 1876 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 1877 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1878 MSSA.print(dbgs()); 1879 if (VerifyMemorySSA) 1880 MSSA.verifyMemorySSA(); 1881 return false; 1882 } 1883 1884 AnalysisKey MemorySSAAnalysis::Key; 1885 1886 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 1887 FunctionAnalysisManager &AM) { 1888 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1889 auto &AA = AM.getResult<AAManager>(F); 1890 return MemorySSAAnalysis::Result(make_unique<MemorySSA>(F, &AA, &DT)); 1891 } 1892 1893 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 1894 FunctionAnalysisManager &AM) { 1895 OS << "MemorySSA for function: " << F.getName() << "\n"; 1896 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 1897 1898 return PreservedAnalyses::all(); 1899 } 1900 1901 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 1902 FunctionAnalysisManager &AM) { 1903 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 1904 1905 return PreservedAnalyses::all(); 1906 } 1907 1908 char MemorySSAWrapperPass::ID = 0; 1909 1910 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 1911 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 1912 } 1913 1914 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 1915 1916 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1917 AU.setPreservesAll(); 1918 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1919 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1920 } 1921 1922 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 1923 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1924 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1925 MSSA.reset(new MemorySSA(F, &AA, &DT)); 1926 return false; 1927 } 1928 1929 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 1930 1931 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 1932 MSSA->print(OS); 1933 } 1934 1935 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 1936 1937 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, 1938 DominatorTree *D) 1939 : MemorySSAWalker(M), Walker(*M, *A, *D), AutoResetWalker(true) {} 1940 1941 MemorySSA::CachingWalker::~CachingWalker() {} 1942 1943 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { 1944 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1945 MUD->resetOptimized(); 1946 } 1947 1948 /// \brief Walk the use-def chains starting at \p MA and find 1949 /// the MemoryAccess that actually clobbers Loc. 1950 /// 1951 /// \returns our clobbering memory access 1952 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 1953 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { 1954 MemoryAccess *New = Walker.findClobber(StartingAccess, Q); 1955 #ifdef EXPENSIVE_CHECKS 1956 MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q); 1957 assert(NewNoCache == New && "Cache made us hand back a different result?"); 1958 (void)NewNoCache; 1959 #endif 1960 if (AutoResetWalker) 1961 resetClobberWalker(); 1962 return New; 1963 } 1964 1965 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( 1966 MemoryAccess *StartingAccess, const MemoryLocation &Loc) { 1967 if (isa<MemoryPhi>(StartingAccess)) 1968 return StartingAccess; 1969 1970 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 1971 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 1972 return StartingUseOrDef; 1973 1974 Instruction *I = StartingUseOrDef->getMemoryInst(); 1975 1976 // Conservatively, fences are always clobbers, so don't perform the walk if we 1977 // hit a fence. 1978 if (!ImmutableCallSite(I) && I->isFenceLike()) 1979 return StartingUseOrDef; 1980 1981 UpwardsMemoryQuery Q; 1982 Q.OriginalAccess = StartingUseOrDef; 1983 Q.StartingLoc = Loc; 1984 Q.Inst = I; 1985 Q.IsCall = false; 1986 1987 // Unlike the other function, do not walk to the def of a def, because we are 1988 // handed something we already believe is the clobbering access. 1989 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 1990 ? StartingUseOrDef->getDefiningAccess() 1991 : StartingUseOrDef; 1992 1993 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); 1994 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 1995 DEBUG(dbgs() << *StartingUseOrDef << "\n"); 1996 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 1997 DEBUG(dbgs() << *Clobber << "\n"); 1998 return Clobber; 1999 } 2000 2001 MemoryAccess * 2002 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2003 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2004 // If this is a MemoryPhi, we can't do anything. 2005 if (!StartingAccess) 2006 return MA; 2007 2008 // If this is an already optimized use or def, return the optimized result. 2009 // Note: Currently, we do not store the optimized def result because we'd need 2010 // a separate field, since we can't use it as the defining access. 2011 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2012 if (MUD->isOptimized()) 2013 return MUD->getOptimized(); 2014 2015 const Instruction *I = StartingAccess->getMemoryInst(); 2016 UpwardsMemoryQuery Q(I, StartingAccess); 2017 // We can't sanely do anything with a fences, they conservatively 2018 // clobber all memory, and have no locations to get pointers from to 2019 // try to disambiguate. 2020 if (!Q.IsCall && I->isFenceLike()) 2021 return StartingAccess; 2022 2023 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { 2024 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2025 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2026 MUD->setOptimized(LiveOnEntry); 2027 return LiveOnEntry; 2028 } 2029 2030 // Start with the thing we already think clobbers this location 2031 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2032 2033 // At this point, DefiningAccess may be the live on entry def. 2034 // If it is, we will not get a better result. 2035 if (MSSA->isLiveOnEntryDef(DefiningAccess)) 2036 return DefiningAccess; 2037 2038 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); 2039 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2040 DEBUG(dbgs() << *DefiningAccess << "\n"); 2041 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2042 DEBUG(dbgs() << *Result << "\n"); 2043 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2044 MUD->setOptimized(Result); 2045 2046 return Result; 2047 } 2048 2049 MemoryAccess * 2050 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2051 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2052 return Use->getDefiningAccess(); 2053 return MA; 2054 } 2055 2056 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2057 MemoryAccess *StartingAccess, const MemoryLocation &) { 2058 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2059 return Use->getDefiningAccess(); 2060 return StartingAccess; 2061 } 2062 } // namespace llvm 2063 2064 void MemoryPhi::deleteMe(DerivedUser *Self) { 2065 delete static_cast<MemoryPhi *>(Self); 2066 } 2067 2068 void MemoryDef::deleteMe(DerivedUser *Self) { 2069 delete static_cast<MemoryDef *>(Self); 2070 } 2071 2072 void MemoryUse::deleteMe(DerivedUser *Self) { 2073 delete static_cast<MemoryUse *>(Self); 2074 } 2075