1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <memory> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "memoryssa" 59 60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 61 true) 62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 64 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 65 true) 66 67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 68 "Memory SSA Printer", false, false) 69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 71 "Memory SSA Printer", false, false) 72 73 static cl::opt<unsigned> MaxCheckLimit( 74 "memssa-check-limit", cl::Hidden, cl::init(100), 75 cl::desc("The maximum number of stores/phis MemorySSA" 76 "will consider trying to walk past (default = 100)")); 77 78 // Always verify MemorySSA if expensive checking is enabled. 79 #ifdef EXPENSIVE_CHECKS 80 bool llvm::VerifyMemorySSA = true; 81 #else 82 bool llvm::VerifyMemorySSA = false; 83 #endif 84 static cl::opt<bool, true> 85 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 86 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 87 88 namespace llvm { 89 90 /// An assembly annotator class to print Memory SSA information in 91 /// comments. 92 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 93 friend class MemorySSA; 94 95 const MemorySSA *MSSA; 96 97 public: 98 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 99 100 void emitBasicBlockStartAnnot(const BasicBlock *BB, 101 formatted_raw_ostream &OS) override { 102 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 103 OS << "; " << *MA << "\n"; 104 } 105 106 void emitInstructionAnnot(const Instruction *I, 107 formatted_raw_ostream &OS) override { 108 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 109 OS << "; " << *MA << "\n"; 110 } 111 }; 112 113 } // end namespace llvm 114 115 namespace { 116 117 /// Our current alias analysis API differentiates heavily between calls and 118 /// non-calls, and functions called on one usually assert on the other. 119 /// This class encapsulates the distinction to simplify other code that wants 120 /// "Memory affecting instructions and related data" to use as a key. 121 /// For example, this class is used as a densemap key in the use optimizer. 122 class MemoryLocOrCall { 123 public: 124 bool IsCall = false; 125 126 MemoryLocOrCall(MemoryUseOrDef *MUD) 127 : MemoryLocOrCall(MUD->getMemoryInst()) {} 128 MemoryLocOrCall(const MemoryUseOrDef *MUD) 129 : MemoryLocOrCall(MUD->getMemoryInst()) {} 130 131 MemoryLocOrCall(Instruction *Inst) { 132 if (auto *C = dyn_cast<CallBase>(Inst)) { 133 IsCall = true; 134 Call = C; 135 } else { 136 IsCall = false; 137 // There is no such thing as a memorylocation for a fence inst, and it is 138 // unique in that regard. 139 if (!isa<FenceInst>(Inst)) 140 Loc = MemoryLocation::get(Inst); 141 } 142 } 143 144 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 145 146 const CallBase *getCall() const { 147 assert(IsCall); 148 return Call; 149 } 150 151 MemoryLocation getLoc() const { 152 assert(!IsCall); 153 return Loc; 154 } 155 156 bool operator==(const MemoryLocOrCall &Other) const { 157 if (IsCall != Other.IsCall) 158 return false; 159 160 if (!IsCall) 161 return Loc == Other.Loc; 162 163 if (Call->getCalledValue() != Other.Call->getCalledValue()) 164 return false; 165 166 return Call->arg_size() == Other.Call->arg_size() && 167 std::equal(Call->arg_begin(), Call->arg_end(), 168 Other.Call->arg_begin()); 169 } 170 171 private: 172 union { 173 const CallBase *Call; 174 MemoryLocation Loc; 175 }; 176 }; 177 178 } // end anonymous namespace 179 180 namespace llvm { 181 182 template <> struct DenseMapInfo<MemoryLocOrCall> { 183 static inline MemoryLocOrCall getEmptyKey() { 184 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 185 } 186 187 static inline MemoryLocOrCall getTombstoneKey() { 188 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 189 } 190 191 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 192 if (!MLOC.IsCall) 193 return hash_combine( 194 MLOC.IsCall, 195 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 196 197 hash_code hash = 198 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 199 MLOC.getCall()->getCalledValue())); 200 201 for (const Value *Arg : MLOC.getCall()->args()) 202 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 203 return hash; 204 } 205 206 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 207 return LHS == RHS; 208 } 209 }; 210 211 } // end namespace llvm 212 213 /// This does one-way checks to see if Use could theoretically be hoisted above 214 /// MayClobber. This will not check the other way around. 215 /// 216 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 217 /// MayClobber, with no potentially clobbering operations in between them. 218 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 219 static bool areLoadsReorderable(const LoadInst *Use, 220 const LoadInst *MayClobber) { 221 bool VolatileUse = Use->isVolatile(); 222 bool VolatileClobber = MayClobber->isVolatile(); 223 // Volatile operations may never be reordered with other volatile operations. 224 if (VolatileUse && VolatileClobber) 225 return false; 226 // Otherwise, volatile doesn't matter here. From the language reference: 227 // 'optimizers may change the order of volatile operations relative to 228 // non-volatile operations.'" 229 230 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 231 // is weaker, it can be moved above other loads. We just need to be sure that 232 // MayClobber isn't an acquire load, because loads can't be moved above 233 // acquire loads. 234 // 235 // Note that this explicitly *does* allow the free reordering of monotonic (or 236 // weaker) loads of the same address. 237 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 238 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 239 AtomicOrdering::Acquire); 240 return !(SeqCstUse || MayClobberIsAcquire); 241 } 242 243 namespace { 244 245 struct ClobberAlias { 246 bool IsClobber; 247 Optional<AliasResult> AR; 248 }; 249 250 } // end anonymous namespace 251 252 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 253 // ignored if IsClobber = false. 254 template <typename AliasAnalysisType> 255 static ClobberAlias 256 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 257 const Instruction *UseInst, AliasAnalysisType &AA) { 258 Instruction *DefInst = MD->getMemoryInst(); 259 assert(DefInst && "Defining instruction not actually an instruction"); 260 const auto *UseCall = dyn_cast<CallBase>(UseInst); 261 Optional<AliasResult> AR; 262 263 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 264 // These intrinsics will show up as affecting memory, but they are just 265 // markers, mostly. 266 // 267 // FIXME: We probably don't actually want MemorySSA to model these at all 268 // (including creating MemoryAccesses for them): we just end up inventing 269 // clobbers where they don't really exist at all. Please see D43269 for 270 // context. 271 switch (II->getIntrinsicID()) { 272 case Intrinsic::lifetime_start: 273 if (UseCall) 274 return {false, NoAlias}; 275 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 276 return {AR != NoAlias, AR}; 277 case Intrinsic::lifetime_end: 278 case Intrinsic::invariant_start: 279 case Intrinsic::invariant_end: 280 case Intrinsic::assume: 281 return {false, NoAlias}; 282 default: 283 break; 284 } 285 } 286 287 if (UseCall) { 288 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 289 AR = isMustSet(I) ? MustAlias : MayAlias; 290 return {isModOrRefSet(I), AR}; 291 } 292 293 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 294 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 295 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 296 297 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 298 AR = isMustSet(I) ? MustAlias : MayAlias; 299 return {isModSet(I), AR}; 300 } 301 302 template <typename AliasAnalysisType> 303 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 304 const MemoryUseOrDef *MU, 305 const MemoryLocOrCall &UseMLOC, 306 AliasAnalysisType &AA) { 307 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 308 // to exist while MemoryLocOrCall is pushed through places. 309 if (UseMLOC.IsCall) 310 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 311 AA); 312 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 313 AA); 314 } 315 316 // Return true when MD may alias MU, return false otherwise. 317 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 318 AliasAnalysis &AA) { 319 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 320 } 321 322 namespace { 323 324 struct UpwardsMemoryQuery { 325 // True if our original query started off as a call 326 bool IsCall = false; 327 // The pointer location we started the query with. This will be empty if 328 // IsCall is true. 329 MemoryLocation StartingLoc; 330 // This is the instruction we were querying about. 331 const Instruction *Inst = nullptr; 332 // The MemoryAccess we actually got called with, used to test local domination 333 const MemoryAccess *OriginalAccess = nullptr; 334 Optional<AliasResult> AR = MayAlias; 335 bool SkipSelfAccess = false; 336 337 UpwardsMemoryQuery() = default; 338 339 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 340 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 341 if (!IsCall) 342 StartingLoc = MemoryLocation::get(Inst); 343 } 344 }; 345 346 } // end anonymous namespace 347 348 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 349 BatchAAResults &AA) { 350 Instruction *Inst = MD->getMemoryInst(); 351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 352 switch (II->getIntrinsicID()) { 353 case Intrinsic::lifetime_end: 354 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 355 default: 356 return false; 357 } 358 } 359 return false; 360 } 361 362 template <typename AliasAnalysisType> 363 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 364 const Instruction *I) { 365 // If the memory can't be changed, then loads of the memory can't be 366 // clobbered. 367 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 368 AA.pointsToConstantMemory(MemoryLocation( 369 cast<LoadInst>(I)->getPointerOperand()))); 370 } 371 372 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 373 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 374 /// 375 /// This is meant to be as simple and self-contained as possible. Because it 376 /// uses no cache, etc., it can be relatively expensive. 377 /// 378 /// \param Start The MemoryAccess that we want to walk from. 379 /// \param ClobberAt A clobber for Start. 380 /// \param StartLoc The MemoryLocation for Start. 381 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 382 /// \param Query The UpwardsMemoryQuery we used for our search. 383 /// \param AA The AliasAnalysis we used for our search. 384 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 385 386 template <typename AliasAnalysisType> 387 LLVM_ATTRIBUTE_UNUSED static void 388 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 389 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 390 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 391 bool AllowImpreciseClobber = false) { 392 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 393 394 if (MSSA.isLiveOnEntryDef(Start)) { 395 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 396 "liveOnEntry must clobber itself"); 397 return; 398 } 399 400 bool FoundClobber = false; 401 DenseSet<ConstMemoryAccessPair> VisitedPhis; 402 SmallVector<ConstMemoryAccessPair, 8> Worklist; 403 Worklist.emplace_back(Start, StartLoc); 404 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 405 // is found, complain. 406 while (!Worklist.empty()) { 407 auto MAP = Worklist.pop_back_val(); 408 // All we care about is that nothing from Start to ClobberAt clobbers Start. 409 // We learn nothing from revisiting nodes. 410 if (!VisitedPhis.insert(MAP).second) 411 continue; 412 413 for (const auto *MA : def_chain(MAP.first)) { 414 if (MA == ClobberAt) { 415 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 416 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 417 // since it won't let us short-circuit. 418 // 419 // Also, note that this can't be hoisted out of the `Worklist` loop, 420 // since MD may only act as a clobber for 1 of N MemoryLocations. 421 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 422 if (!FoundClobber) { 423 ClobberAlias CA = 424 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 425 if (CA.IsClobber) { 426 FoundClobber = true; 427 // Not used: CA.AR; 428 } 429 } 430 } 431 break; 432 } 433 434 // We should never hit liveOnEntry, unless it's the clobber. 435 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 436 437 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 438 // If Start is a Def, skip self. 439 if (MD == Start) 440 continue; 441 442 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 443 .IsClobber && 444 "Found clobber before reaching ClobberAt!"); 445 continue; 446 } 447 448 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 449 (void)MU; 450 assert (MU == Start && 451 "Can only find use in def chain if Start is a use"); 452 continue; 453 } 454 455 assert(isa<MemoryPhi>(MA)); 456 Worklist.append( 457 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 458 upward_defs_end()); 459 } 460 } 461 462 // If the verify is done following an optimization, it's possible that 463 // ClobberAt was a conservative clobbering, that we can now infer is not a 464 // true clobbering access. Don't fail the verify if that's the case. 465 // We do have accesses that claim they're optimized, but could be optimized 466 // further. Updating all these can be expensive, so allow it for now (FIXME). 467 if (AllowImpreciseClobber) 468 return; 469 470 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 471 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 472 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 473 "ClobberAt never acted as a clobber"); 474 } 475 476 namespace { 477 478 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 479 /// in one class. 480 template <class AliasAnalysisType> class ClobberWalker { 481 /// Save a few bytes by using unsigned instead of size_t. 482 using ListIndex = unsigned; 483 484 /// Represents a span of contiguous MemoryDefs, potentially ending in a 485 /// MemoryPhi. 486 struct DefPath { 487 MemoryLocation Loc; 488 // Note that, because we always walk in reverse, Last will always dominate 489 // First. Also note that First and Last are inclusive. 490 MemoryAccess *First; 491 MemoryAccess *Last; 492 Optional<ListIndex> Previous; 493 494 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 495 Optional<ListIndex> Previous) 496 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 497 498 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 499 Optional<ListIndex> Previous) 500 : DefPath(Loc, Init, Init, Previous) {} 501 }; 502 503 const MemorySSA &MSSA; 504 AliasAnalysisType &AA; 505 DominatorTree &DT; 506 UpwardsMemoryQuery *Query; 507 unsigned *UpwardWalkLimit; 508 509 // Phi optimization bookkeeping 510 SmallVector<DefPath, 32> Paths; 511 DenseSet<ConstMemoryAccessPair> VisitedPhis; 512 513 /// Find the nearest def or phi that `From` can legally be optimized to. 514 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 515 assert(From->getNumOperands() && "Phi with no operands?"); 516 517 BasicBlock *BB = From->getBlock(); 518 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 519 DomTreeNode *Node = DT.getNode(BB); 520 while ((Node = Node->getIDom())) { 521 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 522 if (Defs) 523 return &*Defs->rbegin(); 524 } 525 return Result; 526 } 527 528 /// Result of calling walkToPhiOrClobber. 529 struct UpwardsWalkResult { 530 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 531 /// both. Include alias info when clobber found. 532 MemoryAccess *Result; 533 bool IsKnownClobber; 534 Optional<AliasResult> AR; 535 }; 536 537 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 538 /// This will update Desc.Last as it walks. It will (optionally) also stop at 539 /// StopAt. 540 /// 541 /// This does not test for whether StopAt is a clobber 542 UpwardsWalkResult 543 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 544 const MemoryAccess *SkipStopAt = nullptr) const { 545 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 546 assert(UpwardWalkLimit && "Need a valid walk limit"); 547 // This will not do any alias() calls. It returns in the first iteration in 548 // the loop below. 549 if (*UpwardWalkLimit == 0) 550 (*UpwardWalkLimit)++; 551 552 for (MemoryAccess *Current : def_chain(Desc.Last)) { 553 Desc.Last = Current; 554 if (Current == StopAt || Current == SkipStopAt) 555 return {Current, false, MayAlias}; 556 557 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 558 if (MSSA.isLiveOnEntryDef(MD)) 559 return {MD, true, MustAlias}; 560 561 if (!--*UpwardWalkLimit) 562 return {Current, true, MayAlias}; 563 564 ClobberAlias CA = 565 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 566 if (CA.IsClobber) 567 return {MD, true, CA.AR}; 568 } 569 } 570 571 assert(isa<MemoryPhi>(Desc.Last) && 572 "Ended at a non-clobber that's not a phi?"); 573 return {Desc.Last, false, MayAlias}; 574 } 575 576 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 577 ListIndex PriorNode) { 578 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 579 upward_defs_end()); 580 for (const MemoryAccessPair &P : UpwardDefs) { 581 PausedSearches.push_back(Paths.size()); 582 Paths.emplace_back(P.second, P.first, PriorNode); 583 } 584 } 585 586 /// Represents a search that terminated after finding a clobber. This clobber 587 /// may or may not be present in the path of defs from LastNode..SearchStart, 588 /// since it may have been retrieved from cache. 589 struct TerminatedPath { 590 MemoryAccess *Clobber; 591 ListIndex LastNode; 592 }; 593 594 /// Get an access that keeps us from optimizing to the given phi. 595 /// 596 /// PausedSearches is an array of indices into the Paths array. Its incoming 597 /// value is the indices of searches that stopped at the last phi optimization 598 /// target. It's left in an unspecified state. 599 /// 600 /// If this returns None, NewPaused is a vector of searches that terminated 601 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 602 Optional<TerminatedPath> 603 getBlockingAccess(const MemoryAccess *StopWhere, 604 SmallVectorImpl<ListIndex> &PausedSearches, 605 SmallVectorImpl<ListIndex> &NewPaused, 606 SmallVectorImpl<TerminatedPath> &Terminated) { 607 assert(!PausedSearches.empty() && "No searches to continue?"); 608 609 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 610 // PausedSearches as our stack. 611 while (!PausedSearches.empty()) { 612 ListIndex PathIndex = PausedSearches.pop_back_val(); 613 DefPath &Node = Paths[PathIndex]; 614 615 // If we've already visited this path with this MemoryLocation, we don't 616 // need to do so again. 617 // 618 // NOTE: That we just drop these paths on the ground makes caching 619 // behavior sporadic. e.g. given a diamond: 620 // A 621 // B C 622 // D 623 // 624 // ...If we walk D, B, A, C, we'll only cache the result of phi 625 // optimization for A, B, and D; C will be skipped because it dies here. 626 // This arguably isn't the worst thing ever, since: 627 // - We generally query things in a top-down order, so if we got below D 628 // without needing cache entries for {C, MemLoc}, then chances are 629 // that those cache entries would end up ultimately unused. 630 // - We still cache things for A, so C only needs to walk up a bit. 631 // If this behavior becomes problematic, we can fix without a ton of extra 632 // work. 633 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 634 continue; 635 636 const MemoryAccess *SkipStopWhere = nullptr; 637 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 638 assert(isa<MemoryDef>(Query->OriginalAccess)); 639 SkipStopWhere = Query->OriginalAccess; 640 } 641 642 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 643 /*StopAt=*/StopWhere, 644 /*SkipStopAt=*/SkipStopWhere); 645 if (Res.IsKnownClobber) { 646 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 647 648 // If this wasn't a cache hit, we hit a clobber when walking. That's a 649 // failure. 650 TerminatedPath Term{Res.Result, PathIndex}; 651 if (!MSSA.dominates(Res.Result, StopWhere)) 652 return Term; 653 654 // Otherwise, it's a valid thing to potentially optimize to. 655 Terminated.push_back(Term); 656 continue; 657 } 658 659 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 660 // We've hit our target. Save this path off for if we want to continue 661 // walking. If we are in the mode of skipping the OriginalAccess, and 662 // we've reached back to the OriginalAccess, do not save path, we've 663 // just looped back to self. 664 if (Res.Result != SkipStopWhere) 665 NewPaused.push_back(PathIndex); 666 continue; 667 } 668 669 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 670 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 671 } 672 673 return None; 674 } 675 676 template <typename T, typename Walker> 677 struct generic_def_path_iterator 678 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 679 std::forward_iterator_tag, T *> { 680 generic_def_path_iterator() {} 681 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 682 683 T &operator*() const { return curNode(); } 684 685 generic_def_path_iterator &operator++() { 686 N = curNode().Previous; 687 return *this; 688 } 689 690 bool operator==(const generic_def_path_iterator &O) const { 691 if (N.hasValue() != O.N.hasValue()) 692 return false; 693 return !N.hasValue() || *N == *O.N; 694 } 695 696 private: 697 T &curNode() const { return W->Paths[*N]; } 698 699 Walker *W = nullptr; 700 Optional<ListIndex> N = None; 701 }; 702 703 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 704 using const_def_path_iterator = 705 generic_def_path_iterator<const DefPath, const ClobberWalker>; 706 707 iterator_range<def_path_iterator> def_path(ListIndex From) { 708 return make_range(def_path_iterator(this, From), def_path_iterator()); 709 } 710 711 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 712 return make_range(const_def_path_iterator(this, From), 713 const_def_path_iterator()); 714 } 715 716 struct OptznResult { 717 /// The path that contains our result. 718 TerminatedPath PrimaryClobber; 719 /// The paths that we can legally cache back from, but that aren't 720 /// necessarily the result of the Phi optimization. 721 SmallVector<TerminatedPath, 4> OtherClobbers; 722 }; 723 724 ListIndex defPathIndex(const DefPath &N) const { 725 // The assert looks nicer if we don't need to do &N 726 const DefPath *NP = &N; 727 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 728 "Out of bounds DefPath!"); 729 return NP - &Paths.front(); 730 } 731 732 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 733 /// that act as legal clobbers. Note that this won't return *all* clobbers. 734 /// 735 /// Phi optimization algorithm tl;dr: 736 /// - Find the earliest def/phi, A, we can optimize to 737 /// - Find if all paths from the starting memory access ultimately reach A 738 /// - If not, optimization isn't possible. 739 /// - Otherwise, walk from A to another clobber or phi, A'. 740 /// - If A' is a def, we're done. 741 /// - If A' is a phi, try to optimize it. 742 /// 743 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 744 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 745 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 746 const MemoryLocation &Loc) { 747 assert(Paths.empty() && VisitedPhis.empty() && 748 "Reset the optimization state."); 749 750 Paths.emplace_back(Loc, Start, Phi, None); 751 // Stores how many "valid" optimization nodes we had prior to calling 752 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 753 auto PriorPathsSize = Paths.size(); 754 755 SmallVector<ListIndex, 16> PausedSearches; 756 SmallVector<ListIndex, 8> NewPaused; 757 SmallVector<TerminatedPath, 4> TerminatedPaths; 758 759 addSearches(Phi, PausedSearches, 0); 760 761 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 762 // Paths. 763 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 764 assert(!Paths.empty() && "Need a path to move"); 765 auto Dom = Paths.begin(); 766 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 767 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 768 Dom = I; 769 auto Last = Paths.end() - 1; 770 if (Last != Dom) 771 std::iter_swap(Last, Dom); 772 }; 773 774 MemoryPhi *Current = Phi; 775 while (true) { 776 assert(!MSSA.isLiveOnEntryDef(Current) && 777 "liveOnEntry wasn't treated as a clobber?"); 778 779 const auto *Target = getWalkTarget(Current); 780 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 781 // optimization for the prior phi. 782 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 783 return MSSA.dominates(P.Clobber, Target); 784 })); 785 786 // FIXME: This is broken, because the Blocker may be reported to be 787 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 788 // For the moment, this is fine, since we do nothing with blocker info. 789 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 790 Target, PausedSearches, NewPaused, TerminatedPaths)) { 791 792 // Find the node we started at. We can't search based on N->Last, since 793 // we may have gone around a loop with a different MemoryLocation. 794 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 795 return defPathIndex(N) < PriorPathsSize; 796 }); 797 assert(Iter != def_path_iterator()); 798 799 DefPath &CurNode = *Iter; 800 assert(CurNode.Last == Current); 801 802 // Two things: 803 // A. We can't reliably cache all of NewPaused back. Consider a case 804 // where we have two paths in NewPaused; one of which can't optimize 805 // above this phi, whereas the other can. If we cache the second path 806 // back, we'll end up with suboptimal cache entries. We can handle 807 // cases like this a bit better when we either try to find all 808 // clobbers that block phi optimization, or when our cache starts 809 // supporting unfinished searches. 810 // B. We can't reliably cache TerminatedPaths back here without doing 811 // extra checks; consider a case like: 812 // T 813 // / \ 814 // D C 815 // \ / 816 // S 817 // Where T is our target, C is a node with a clobber on it, D is a 818 // diamond (with a clobber *only* on the left or right node, N), and 819 // S is our start. Say we walk to D, through the node opposite N 820 // (read: ignoring the clobber), and see a cache entry in the top 821 // node of D. That cache entry gets put into TerminatedPaths. We then 822 // walk up to C (N is later in our worklist), find the clobber, and 823 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 824 // the bottom part of D to the cached clobber, ignoring the clobber 825 // in N. Again, this problem goes away if we start tracking all 826 // blockers for a given phi optimization. 827 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 828 return {Result, {}}; 829 } 830 831 // If there's nothing left to search, then all paths led to valid clobbers 832 // that we got from our cache; pick the nearest to the start, and allow 833 // the rest to be cached back. 834 if (NewPaused.empty()) { 835 MoveDominatedPathToEnd(TerminatedPaths); 836 TerminatedPath Result = TerminatedPaths.pop_back_val(); 837 return {Result, std::move(TerminatedPaths)}; 838 } 839 840 MemoryAccess *DefChainEnd = nullptr; 841 SmallVector<TerminatedPath, 4> Clobbers; 842 for (ListIndex Paused : NewPaused) { 843 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 844 if (WR.IsKnownClobber) 845 Clobbers.push_back({WR.Result, Paused}); 846 else 847 // Micro-opt: If we hit the end of the chain, save it. 848 DefChainEnd = WR.Result; 849 } 850 851 if (!TerminatedPaths.empty()) { 852 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 853 // do it now. 854 if (!DefChainEnd) 855 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 856 DefChainEnd = MA; 857 858 // If any of the terminated paths don't dominate the phi we'll try to 859 // optimize, we need to figure out what they are and quit. 860 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 861 for (const TerminatedPath &TP : TerminatedPaths) { 862 // Because we know that DefChainEnd is as "high" as we can go, we 863 // don't need local dominance checks; BB dominance is sufficient. 864 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 865 Clobbers.push_back(TP); 866 } 867 } 868 869 // If we have clobbers in the def chain, find the one closest to Current 870 // and quit. 871 if (!Clobbers.empty()) { 872 MoveDominatedPathToEnd(Clobbers); 873 TerminatedPath Result = Clobbers.pop_back_val(); 874 return {Result, std::move(Clobbers)}; 875 } 876 877 assert(all_of(NewPaused, 878 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 879 880 // Because liveOnEntry is a clobber, this must be a phi. 881 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 882 883 PriorPathsSize = Paths.size(); 884 PausedSearches.clear(); 885 for (ListIndex I : NewPaused) 886 addSearches(DefChainPhi, PausedSearches, I); 887 NewPaused.clear(); 888 889 Current = DefChainPhi; 890 } 891 } 892 893 void verifyOptResult(const OptznResult &R) const { 894 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 895 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 896 })); 897 } 898 899 void resetPhiOptznState() { 900 Paths.clear(); 901 VisitedPhis.clear(); 902 } 903 904 public: 905 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 906 : MSSA(MSSA), AA(AA), DT(DT) {} 907 908 AliasAnalysisType *getAA() { return &AA; } 909 /// Finds the nearest clobber for the given query, optimizing phis if 910 /// possible. 911 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 912 unsigned &UpWalkLimit) { 913 Query = &Q; 914 UpwardWalkLimit = &UpWalkLimit; 915 // Starting limit must be > 0. 916 if (!UpWalkLimit) 917 UpWalkLimit++; 918 919 MemoryAccess *Current = Start; 920 // This walker pretends uses don't exist. If we're handed one, silently grab 921 // its def. (This has the nice side-effect of ensuring we never cache uses) 922 if (auto *MU = dyn_cast<MemoryUse>(Start)) 923 Current = MU->getDefiningAccess(); 924 925 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 926 // Fast path for the overly-common case (no crazy phi optimization 927 // necessary) 928 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 929 MemoryAccess *Result; 930 if (WalkResult.IsKnownClobber) { 931 Result = WalkResult.Result; 932 Q.AR = WalkResult.AR; 933 } else { 934 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 935 Current, Q.StartingLoc); 936 verifyOptResult(OptRes); 937 resetPhiOptznState(); 938 Result = OptRes.PrimaryClobber.Clobber; 939 } 940 941 #ifdef EXPENSIVE_CHECKS 942 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 943 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 944 #endif 945 return Result; 946 } 947 }; 948 949 struct RenamePassData { 950 DomTreeNode *DTN; 951 DomTreeNode::const_iterator ChildIt; 952 MemoryAccess *IncomingVal; 953 954 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 955 MemoryAccess *M) 956 : DTN(D), ChildIt(It), IncomingVal(M) {} 957 958 void swap(RenamePassData &RHS) { 959 std::swap(DTN, RHS.DTN); 960 std::swap(ChildIt, RHS.ChildIt); 961 std::swap(IncomingVal, RHS.IncomingVal); 962 } 963 }; 964 965 } // end anonymous namespace 966 967 namespace llvm { 968 969 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 970 ClobberWalker<AliasAnalysisType> Walker; 971 MemorySSA *MSSA; 972 973 public: 974 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 975 : Walker(*M, *A, *D), MSSA(M) {} 976 977 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 978 const MemoryLocation &, 979 unsigned &); 980 // Third argument (bool), defines whether the clobber search should skip the 981 // original queried access. If true, there will be a follow-up query searching 982 // for a clobber access past "self". Note that the Optimized access is not 983 // updated if a new clobber is found by this SkipSelf search. If this 984 // additional query becomes heavily used we may decide to cache the result. 985 // Walker instantiations will decide how to set the SkipSelf bool. 986 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 987 }; 988 989 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 990 /// longer does caching on its own, but the name has been retained for the 991 /// moment. 992 template <class AliasAnalysisType> 993 class MemorySSA::CachingWalker final : public MemorySSAWalker { 994 ClobberWalkerBase<AliasAnalysisType> *Walker; 995 996 public: 997 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 998 : MemorySSAWalker(M), Walker(W) {} 999 ~CachingWalker() override = default; 1000 1001 using MemorySSAWalker::getClobberingMemoryAccess; 1002 1003 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1004 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1005 } 1006 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1007 const MemoryLocation &Loc, 1008 unsigned &UWL) { 1009 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1010 } 1011 1012 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1013 unsigned UpwardWalkLimit = MaxCheckLimit; 1014 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1015 } 1016 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1017 const MemoryLocation &Loc) override { 1018 unsigned UpwardWalkLimit = MaxCheckLimit; 1019 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1020 } 1021 1022 void invalidateInfo(MemoryAccess *MA) override { 1023 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1024 MUD->resetOptimized(); 1025 } 1026 }; 1027 1028 template <class AliasAnalysisType> 1029 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1030 ClobberWalkerBase<AliasAnalysisType> *Walker; 1031 1032 public: 1033 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1034 : MemorySSAWalker(M), Walker(W) {} 1035 ~SkipSelfWalker() override = default; 1036 1037 using MemorySSAWalker::getClobberingMemoryAccess; 1038 1039 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1040 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1041 } 1042 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1043 const MemoryLocation &Loc, 1044 unsigned &UWL) { 1045 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1046 } 1047 1048 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1049 unsigned UpwardWalkLimit = MaxCheckLimit; 1050 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1051 } 1052 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1053 const MemoryLocation &Loc) override { 1054 unsigned UpwardWalkLimit = MaxCheckLimit; 1055 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1056 } 1057 1058 void invalidateInfo(MemoryAccess *MA) override { 1059 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1060 MUD->resetOptimized(); 1061 } 1062 }; 1063 1064 } // end namespace llvm 1065 1066 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1067 bool RenameAllUses) { 1068 // Pass through values to our successors 1069 for (const BasicBlock *S : successors(BB)) { 1070 auto It = PerBlockAccesses.find(S); 1071 // Rename the phi nodes in our successor block 1072 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1073 continue; 1074 AccessList *Accesses = It->second.get(); 1075 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1076 if (RenameAllUses) { 1077 int PhiIndex = Phi->getBasicBlockIndex(BB); 1078 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 1079 Phi->setIncomingValue(PhiIndex, IncomingVal); 1080 } else 1081 Phi->addIncoming(IncomingVal, BB); 1082 } 1083 } 1084 1085 /// Rename a single basic block into MemorySSA form. 1086 /// Uses the standard SSA renaming algorithm. 1087 /// \returns The new incoming value. 1088 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1089 bool RenameAllUses) { 1090 auto It = PerBlockAccesses.find(BB); 1091 // Skip most processing if the list is empty. 1092 if (It != PerBlockAccesses.end()) { 1093 AccessList *Accesses = It->second.get(); 1094 for (MemoryAccess &L : *Accesses) { 1095 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1096 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1097 MUD->setDefiningAccess(IncomingVal); 1098 if (isa<MemoryDef>(&L)) 1099 IncomingVal = &L; 1100 } else { 1101 IncomingVal = &L; 1102 } 1103 } 1104 } 1105 return IncomingVal; 1106 } 1107 1108 /// This is the standard SSA renaming algorithm. 1109 /// 1110 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1111 /// in phi nodes in our successors. 1112 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1113 SmallPtrSetImpl<BasicBlock *> &Visited, 1114 bool SkipVisited, bool RenameAllUses) { 1115 SmallVector<RenamePassData, 32> WorkStack; 1116 // Skip everything if we already renamed this block and we are skipping. 1117 // Note: You can't sink this into the if, because we need it to occur 1118 // regardless of whether we skip blocks or not. 1119 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1120 if (SkipVisited && AlreadyVisited) 1121 return; 1122 1123 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1124 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1125 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1126 1127 while (!WorkStack.empty()) { 1128 DomTreeNode *Node = WorkStack.back().DTN; 1129 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1130 IncomingVal = WorkStack.back().IncomingVal; 1131 1132 if (ChildIt == Node->end()) { 1133 WorkStack.pop_back(); 1134 } else { 1135 DomTreeNode *Child = *ChildIt; 1136 ++WorkStack.back().ChildIt; 1137 BasicBlock *BB = Child->getBlock(); 1138 // Note: You can't sink this into the if, because we need it to occur 1139 // regardless of whether we skip blocks or not. 1140 AlreadyVisited = !Visited.insert(BB).second; 1141 if (SkipVisited && AlreadyVisited) { 1142 // We already visited this during our renaming, which can happen when 1143 // being asked to rename multiple blocks. Figure out the incoming val, 1144 // which is the last def. 1145 // Incoming value can only change if there is a block def, and in that 1146 // case, it's the last block def in the list. 1147 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1148 IncomingVal = &*BlockDefs->rbegin(); 1149 } else 1150 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1151 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1152 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1153 } 1154 } 1155 } 1156 1157 /// This handles unreachable block accesses by deleting phi nodes in 1158 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1159 /// being uses of the live on entry definition. 1160 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1161 assert(!DT->isReachableFromEntry(BB) && 1162 "Reachable block found while handling unreachable blocks"); 1163 1164 // Make sure phi nodes in our reachable successors end up with a 1165 // LiveOnEntryDef for our incoming edge, even though our block is forward 1166 // unreachable. We could just disconnect these blocks from the CFG fully, 1167 // but we do not right now. 1168 for (const BasicBlock *S : successors(BB)) { 1169 if (!DT->isReachableFromEntry(S)) 1170 continue; 1171 auto It = PerBlockAccesses.find(S); 1172 // Rename the phi nodes in our successor block 1173 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1174 continue; 1175 AccessList *Accesses = It->second.get(); 1176 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1177 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1178 } 1179 1180 auto It = PerBlockAccesses.find(BB); 1181 if (It == PerBlockAccesses.end()) 1182 return; 1183 1184 auto &Accesses = It->second; 1185 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1186 auto Next = std::next(AI); 1187 // If we have a phi, just remove it. We are going to replace all 1188 // users with live on entry. 1189 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1190 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1191 else 1192 Accesses->erase(AI); 1193 AI = Next; 1194 } 1195 } 1196 1197 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1198 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1199 SkipWalker(nullptr), NextID(0) { 1200 // Build MemorySSA using a batch alias analysis. This reuses the internal 1201 // state that AA collects during an alias()/getModRefInfo() call. This is 1202 // safe because there are no CFG changes while building MemorySSA and can 1203 // significantly reduce the time spent by the compiler in AA, because we will 1204 // make queries about all the instructions in the Function. 1205 BatchAAResults BatchAA(*AA); 1206 buildMemorySSA(BatchAA); 1207 // Intentionally leave AA to nullptr while building so we don't accidently 1208 // use non-batch AliasAnalysis. 1209 this->AA = AA; 1210 // Also create the walker here. 1211 getWalker(); 1212 } 1213 1214 MemorySSA::~MemorySSA() { 1215 // Drop all our references 1216 for (const auto &Pair : PerBlockAccesses) 1217 for (MemoryAccess &MA : *Pair.second) 1218 MA.dropAllReferences(); 1219 } 1220 1221 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1222 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1223 1224 if (Res.second) 1225 Res.first->second = llvm::make_unique<AccessList>(); 1226 return Res.first->second.get(); 1227 } 1228 1229 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1230 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1231 1232 if (Res.second) 1233 Res.first->second = llvm::make_unique<DefsList>(); 1234 return Res.first->second.get(); 1235 } 1236 1237 namespace llvm { 1238 1239 /// This class is a batch walker of all MemoryUse's in the program, and points 1240 /// their defining access at the thing that actually clobbers them. Because it 1241 /// is a batch walker that touches everything, it does not operate like the 1242 /// other walkers. This walker is basically performing a top-down SSA renaming 1243 /// pass, where the version stack is used as the cache. This enables it to be 1244 /// significantly more time and memory efficient than using the regular walker, 1245 /// which is walking bottom-up. 1246 class MemorySSA::OptimizeUses { 1247 public: 1248 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1249 BatchAAResults *BAA, DominatorTree *DT) 1250 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1251 1252 void optimizeUses(); 1253 1254 private: 1255 /// This represents where a given memorylocation is in the stack. 1256 struct MemlocStackInfo { 1257 // This essentially is keeping track of versions of the stack. Whenever 1258 // the stack changes due to pushes or pops, these versions increase. 1259 unsigned long StackEpoch; 1260 unsigned long PopEpoch; 1261 // This is the lower bound of places on the stack to check. It is equal to 1262 // the place the last stack walk ended. 1263 // Note: Correctness depends on this being initialized to 0, which densemap 1264 // does 1265 unsigned long LowerBound; 1266 const BasicBlock *LowerBoundBlock; 1267 // This is where the last walk for this memory location ended. 1268 unsigned long LastKill; 1269 bool LastKillValid; 1270 Optional<AliasResult> AR; 1271 }; 1272 1273 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1274 SmallVectorImpl<MemoryAccess *> &, 1275 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1276 1277 MemorySSA *MSSA; 1278 CachingWalker<BatchAAResults> *Walker; 1279 BatchAAResults *AA; 1280 DominatorTree *DT; 1281 }; 1282 1283 } // end namespace llvm 1284 1285 /// Optimize the uses in a given block This is basically the SSA renaming 1286 /// algorithm, with one caveat: We are able to use a single stack for all 1287 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1288 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1289 /// going to be some position in that stack of possible ones. 1290 /// 1291 /// We track the stack positions that each MemoryLocation needs 1292 /// to check, and last ended at. This is because we only want to check the 1293 /// things that changed since last time. The same MemoryLocation should 1294 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1295 /// things like this, and if they start, we can modify MemoryLocOrCall to 1296 /// include relevant data) 1297 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1298 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1299 SmallVectorImpl<MemoryAccess *> &VersionStack, 1300 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1301 1302 /// If no accesses, nothing to do. 1303 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1304 if (Accesses == nullptr) 1305 return; 1306 1307 // Pop everything that doesn't dominate the current block off the stack, 1308 // increment the PopEpoch to account for this. 1309 while (true) { 1310 assert( 1311 !VersionStack.empty() && 1312 "Version stack should have liveOnEntry sentinel dominating everything"); 1313 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1314 if (DT->dominates(BackBlock, BB)) 1315 break; 1316 while (VersionStack.back()->getBlock() == BackBlock) 1317 VersionStack.pop_back(); 1318 ++PopEpoch; 1319 } 1320 1321 for (MemoryAccess &MA : *Accesses) { 1322 auto *MU = dyn_cast<MemoryUse>(&MA); 1323 if (!MU) { 1324 VersionStack.push_back(&MA); 1325 ++StackEpoch; 1326 continue; 1327 } 1328 1329 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1330 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1331 continue; 1332 } 1333 1334 MemoryLocOrCall UseMLOC(MU); 1335 auto &LocInfo = LocStackInfo[UseMLOC]; 1336 // If the pop epoch changed, it means we've removed stuff from top of 1337 // stack due to changing blocks. We may have to reset the lower bound or 1338 // last kill info. 1339 if (LocInfo.PopEpoch != PopEpoch) { 1340 LocInfo.PopEpoch = PopEpoch; 1341 LocInfo.StackEpoch = StackEpoch; 1342 // If the lower bound was in something that no longer dominates us, we 1343 // have to reset it. 1344 // We can't simply track stack size, because the stack may have had 1345 // pushes/pops in the meantime. 1346 // XXX: This is non-optimal, but only is slower cases with heavily 1347 // branching dominator trees. To get the optimal number of queries would 1348 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1349 // the top of that stack dominates us. This does not seem worth it ATM. 1350 // A much cheaper optimization would be to always explore the deepest 1351 // branch of the dominator tree first. This will guarantee this resets on 1352 // the smallest set of blocks. 1353 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1354 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1355 // Reset the lower bound of things to check. 1356 // TODO: Some day we should be able to reset to last kill, rather than 1357 // 0. 1358 LocInfo.LowerBound = 0; 1359 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1360 LocInfo.LastKillValid = false; 1361 } 1362 } else if (LocInfo.StackEpoch != StackEpoch) { 1363 // If all that has changed is the StackEpoch, we only have to check the 1364 // new things on the stack, because we've checked everything before. In 1365 // this case, the lower bound of things to check remains the same. 1366 LocInfo.PopEpoch = PopEpoch; 1367 LocInfo.StackEpoch = StackEpoch; 1368 } 1369 if (!LocInfo.LastKillValid) { 1370 LocInfo.LastKill = VersionStack.size() - 1; 1371 LocInfo.LastKillValid = true; 1372 LocInfo.AR = MayAlias; 1373 } 1374 1375 // At this point, we should have corrected last kill and LowerBound to be 1376 // in bounds. 1377 assert(LocInfo.LowerBound < VersionStack.size() && 1378 "Lower bound out of range"); 1379 assert(LocInfo.LastKill < VersionStack.size() && 1380 "Last kill info out of range"); 1381 // In any case, the new upper bound is the top of the stack. 1382 unsigned long UpperBound = VersionStack.size() - 1; 1383 1384 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1385 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1386 << *(MU->getMemoryInst()) << ")" 1387 << " because there are " 1388 << UpperBound - LocInfo.LowerBound 1389 << " stores to disambiguate\n"); 1390 // Because we did not walk, LastKill is no longer valid, as this may 1391 // have been a kill. 1392 LocInfo.LastKillValid = false; 1393 continue; 1394 } 1395 bool FoundClobberResult = false; 1396 unsigned UpwardWalkLimit = MaxCheckLimit; 1397 while (UpperBound > LocInfo.LowerBound) { 1398 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1399 // For phis, use the walker, see where we ended up, go there 1400 MemoryAccess *Result = 1401 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1402 // We are guaranteed to find it or something is wrong 1403 while (VersionStack[UpperBound] != Result) { 1404 assert(UpperBound != 0); 1405 --UpperBound; 1406 } 1407 FoundClobberResult = true; 1408 break; 1409 } 1410 1411 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1412 // If the lifetime of the pointer ends at this instruction, it's live on 1413 // entry. 1414 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1415 // Reset UpperBound to liveOnEntryDef's place in the stack 1416 UpperBound = 0; 1417 FoundClobberResult = true; 1418 LocInfo.AR = MustAlias; 1419 break; 1420 } 1421 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1422 if (CA.IsClobber) { 1423 FoundClobberResult = true; 1424 LocInfo.AR = CA.AR; 1425 break; 1426 } 1427 --UpperBound; 1428 } 1429 1430 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1431 1432 // At the end of this loop, UpperBound is either a clobber, or lower bound 1433 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1434 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1435 // We were last killed now by where we got to 1436 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1437 LocInfo.AR = None; 1438 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1439 LocInfo.LastKill = UpperBound; 1440 } else { 1441 // Otherwise, we checked all the new ones, and now we know we can get to 1442 // LastKill. 1443 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1444 } 1445 LocInfo.LowerBound = VersionStack.size() - 1; 1446 LocInfo.LowerBoundBlock = BB; 1447 } 1448 } 1449 1450 /// Optimize uses to point to their actual clobbering definitions. 1451 void MemorySSA::OptimizeUses::optimizeUses() { 1452 SmallVector<MemoryAccess *, 16> VersionStack; 1453 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1454 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1455 1456 unsigned long StackEpoch = 1; 1457 unsigned long PopEpoch = 1; 1458 // We perform a non-recursive top-down dominator tree walk. 1459 for (const auto *DomNode : depth_first(DT->getRootNode())) 1460 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1461 LocStackInfo); 1462 } 1463 1464 void MemorySSA::placePHINodes( 1465 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1466 // Determine where our MemoryPhi's should go 1467 ForwardIDFCalculator IDFs(*DT); 1468 IDFs.setDefiningBlocks(DefiningBlocks); 1469 SmallVector<BasicBlock *, 32> IDFBlocks; 1470 IDFs.calculate(IDFBlocks); 1471 1472 // Now place MemoryPhi nodes. 1473 for (auto &BB : IDFBlocks) 1474 createMemoryPhi(BB); 1475 } 1476 1477 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1478 // We create an access to represent "live on entry", for things like 1479 // arguments or users of globals, where the memory they use is defined before 1480 // the beginning of the function. We do not actually insert it into the IR. 1481 // We do not define a live on exit for the immediate uses, and thus our 1482 // semantics do *not* imply that something with no immediate uses can simply 1483 // be removed. 1484 BasicBlock &StartingPoint = F.getEntryBlock(); 1485 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1486 &StartingPoint, NextID++)); 1487 1488 // We maintain lists of memory accesses per-block, trading memory for time. We 1489 // could just look up the memory access for every possible instruction in the 1490 // stream. 1491 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1492 // Go through each block, figure out where defs occur, and chain together all 1493 // the accesses. 1494 for (BasicBlock &B : F) { 1495 bool InsertIntoDef = false; 1496 AccessList *Accesses = nullptr; 1497 DefsList *Defs = nullptr; 1498 for (Instruction &I : B) { 1499 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1500 if (!MUD) 1501 continue; 1502 1503 if (!Accesses) 1504 Accesses = getOrCreateAccessList(&B); 1505 Accesses->push_back(MUD); 1506 if (isa<MemoryDef>(MUD)) { 1507 InsertIntoDef = true; 1508 if (!Defs) 1509 Defs = getOrCreateDefsList(&B); 1510 Defs->push_back(*MUD); 1511 } 1512 } 1513 if (InsertIntoDef) 1514 DefiningBlocks.insert(&B); 1515 } 1516 placePHINodes(DefiningBlocks); 1517 1518 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1519 // filled in with all blocks. 1520 SmallPtrSet<BasicBlock *, 16> Visited; 1521 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1522 1523 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1524 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1525 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1526 1527 // Mark the uses in unreachable blocks as live on entry, so that they go 1528 // somewhere. 1529 for (auto &BB : F) 1530 if (!Visited.count(&BB)) 1531 markUnreachableAsLiveOnEntry(&BB); 1532 } 1533 1534 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1535 1536 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1537 if (Walker) 1538 return Walker.get(); 1539 1540 if (!WalkerBase) 1541 WalkerBase = 1542 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1543 1544 Walker = 1545 llvm::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1546 return Walker.get(); 1547 } 1548 1549 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1550 if (SkipWalker) 1551 return SkipWalker.get(); 1552 1553 if (!WalkerBase) 1554 WalkerBase = 1555 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1556 1557 SkipWalker = 1558 llvm::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1559 return SkipWalker.get(); 1560 } 1561 1562 1563 // This is a helper function used by the creation routines. It places NewAccess 1564 // into the access and defs lists for a given basic block, at the given 1565 // insertion point. 1566 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1567 const BasicBlock *BB, 1568 InsertionPlace Point) { 1569 auto *Accesses = getOrCreateAccessList(BB); 1570 if (Point == Beginning) { 1571 // If it's a phi node, it goes first, otherwise, it goes after any phi 1572 // nodes. 1573 if (isa<MemoryPhi>(NewAccess)) { 1574 Accesses->push_front(NewAccess); 1575 auto *Defs = getOrCreateDefsList(BB); 1576 Defs->push_front(*NewAccess); 1577 } else { 1578 auto AI = find_if_not( 1579 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1580 Accesses->insert(AI, NewAccess); 1581 if (!isa<MemoryUse>(NewAccess)) { 1582 auto *Defs = getOrCreateDefsList(BB); 1583 auto DI = find_if_not( 1584 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1585 Defs->insert(DI, *NewAccess); 1586 } 1587 } 1588 } else { 1589 Accesses->push_back(NewAccess); 1590 if (!isa<MemoryUse>(NewAccess)) { 1591 auto *Defs = getOrCreateDefsList(BB); 1592 Defs->push_back(*NewAccess); 1593 } 1594 } 1595 BlockNumberingValid.erase(BB); 1596 } 1597 1598 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1599 AccessList::iterator InsertPt) { 1600 auto *Accesses = getWritableBlockAccesses(BB); 1601 bool WasEnd = InsertPt == Accesses->end(); 1602 Accesses->insert(AccessList::iterator(InsertPt), What); 1603 if (!isa<MemoryUse>(What)) { 1604 auto *Defs = getOrCreateDefsList(BB); 1605 // If we got asked to insert at the end, we have an easy job, just shove it 1606 // at the end. If we got asked to insert before an existing def, we also get 1607 // an iterator. If we got asked to insert before a use, we have to hunt for 1608 // the next def. 1609 if (WasEnd) { 1610 Defs->push_back(*What); 1611 } else if (isa<MemoryDef>(InsertPt)) { 1612 Defs->insert(InsertPt->getDefsIterator(), *What); 1613 } else { 1614 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1615 ++InsertPt; 1616 // Either we found a def, or we are inserting at the end 1617 if (InsertPt == Accesses->end()) 1618 Defs->push_back(*What); 1619 else 1620 Defs->insert(InsertPt->getDefsIterator(), *What); 1621 } 1622 } 1623 BlockNumberingValid.erase(BB); 1624 } 1625 1626 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1627 // Keep it in the lookup tables, remove from the lists 1628 removeFromLists(What, false); 1629 1630 // Note that moving should implicitly invalidate the optimized state of a 1631 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1632 // MemoryDef. 1633 if (auto *MD = dyn_cast<MemoryDef>(What)) 1634 MD->resetOptimized(); 1635 What->setBlock(BB); 1636 } 1637 1638 // Move What before Where in the IR. The end result is that What will belong to 1639 // the right lists and have the right Block set, but will not otherwise be 1640 // correct. It will not have the right defining access, and if it is a def, 1641 // things below it will not properly be updated. 1642 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1643 AccessList::iterator Where) { 1644 prepareForMoveTo(What, BB); 1645 insertIntoListsBefore(What, BB, Where); 1646 } 1647 1648 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1649 InsertionPlace Point) { 1650 if (isa<MemoryPhi>(What)) { 1651 assert(Point == Beginning && 1652 "Can only move a Phi at the beginning of the block"); 1653 // Update lookup table entry 1654 ValueToMemoryAccess.erase(What->getBlock()); 1655 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1656 (void)Inserted; 1657 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1658 } 1659 1660 prepareForMoveTo(What, BB); 1661 insertIntoListsForBlock(What, BB, Point); 1662 } 1663 1664 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1665 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1666 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1667 // Phi's always are placed at the front of the block. 1668 insertIntoListsForBlock(Phi, BB, Beginning); 1669 ValueToMemoryAccess[BB] = Phi; 1670 return Phi; 1671 } 1672 1673 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1674 MemoryAccess *Definition, 1675 const MemoryUseOrDef *Template) { 1676 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1677 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1678 assert( 1679 NewAccess != nullptr && 1680 "Tried to create a memory access for a non-memory touching instruction"); 1681 NewAccess->setDefiningAccess(Definition); 1682 return NewAccess; 1683 } 1684 1685 // Return true if the instruction has ordering constraints. 1686 // Note specifically that this only considers stores and loads 1687 // because others are still considered ModRef by getModRefInfo. 1688 static inline bool isOrdered(const Instruction *I) { 1689 if (auto *SI = dyn_cast<StoreInst>(I)) { 1690 if (!SI->isUnordered()) 1691 return true; 1692 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1693 if (!LI->isUnordered()) 1694 return true; 1695 } 1696 return false; 1697 } 1698 1699 /// Helper function to create new memory accesses 1700 template <typename AliasAnalysisType> 1701 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1702 AliasAnalysisType *AAP, 1703 const MemoryUseOrDef *Template) { 1704 // The assume intrinsic has a control dependency which we model by claiming 1705 // that it writes arbitrarily. Ignore that fake memory dependency here. 1706 // FIXME: Replace this special casing with a more accurate modelling of 1707 // assume's control dependency. 1708 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1709 if (II->getIntrinsicID() == Intrinsic::assume) 1710 return nullptr; 1711 1712 bool Def, Use; 1713 if (Template) { 1714 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1715 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1716 #if !defined(NDEBUG) 1717 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1718 bool DefCheck, UseCheck; 1719 DefCheck = isModSet(ModRef) || isOrdered(I); 1720 UseCheck = isRefSet(ModRef); 1721 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1722 #endif 1723 } else { 1724 // Find out what affect this instruction has on memory. 1725 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1726 // The isOrdered check is used to ensure that volatiles end up as defs 1727 // (atomics end up as ModRef right now anyway). Until we separate the 1728 // ordering chain from the memory chain, this enables people to see at least 1729 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1730 // will still give an answer that bypasses other volatile loads. TODO: 1731 // Separate memory aliasing and ordering into two different chains so that 1732 // we can precisely represent both "what memory will this read/write/is 1733 // clobbered by" and "what instructions can I move this past". 1734 Def = isModSet(ModRef) || isOrdered(I); 1735 Use = isRefSet(ModRef); 1736 } 1737 1738 // It's possible for an instruction to not modify memory at all. During 1739 // construction, we ignore them. 1740 if (!Def && !Use) 1741 return nullptr; 1742 1743 MemoryUseOrDef *MUD; 1744 if (Def) 1745 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1746 else 1747 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1748 ValueToMemoryAccess[I] = MUD; 1749 return MUD; 1750 } 1751 1752 /// Returns true if \p Replacer dominates \p Replacee . 1753 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1754 const MemoryAccess *Replacee) const { 1755 if (isa<MemoryUseOrDef>(Replacee)) 1756 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1757 const auto *MP = cast<MemoryPhi>(Replacee); 1758 // For a phi node, the use occurs in the predecessor block of the phi node. 1759 // Since we may occur multiple times in the phi node, we have to check each 1760 // operand to ensure Replacer dominates each operand where Replacee occurs. 1761 for (const Use &Arg : MP->operands()) { 1762 if (Arg.get() != Replacee && 1763 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1764 return false; 1765 } 1766 return true; 1767 } 1768 1769 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1770 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1771 assert(MA->use_empty() && 1772 "Trying to remove memory access that still has uses"); 1773 BlockNumbering.erase(MA); 1774 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1775 MUD->setDefiningAccess(nullptr); 1776 // Invalidate our walker's cache if necessary 1777 if (!isa<MemoryUse>(MA)) 1778 getWalker()->invalidateInfo(MA); 1779 1780 Value *MemoryInst; 1781 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1782 MemoryInst = MUD->getMemoryInst(); 1783 else 1784 MemoryInst = MA->getBlock(); 1785 1786 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1787 if (VMA->second == MA) 1788 ValueToMemoryAccess.erase(VMA); 1789 } 1790 1791 /// Properly remove \p MA from all of MemorySSA's lists. 1792 /// 1793 /// Because of the way the intrusive list and use lists work, it is important to 1794 /// do removal in the right order. 1795 /// ShouldDelete defaults to true, and will cause the memory access to also be 1796 /// deleted, not just removed. 1797 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1798 BasicBlock *BB = MA->getBlock(); 1799 // The access list owns the reference, so we erase it from the non-owning list 1800 // first. 1801 if (!isa<MemoryUse>(MA)) { 1802 auto DefsIt = PerBlockDefs.find(BB); 1803 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1804 Defs->remove(*MA); 1805 if (Defs->empty()) 1806 PerBlockDefs.erase(DefsIt); 1807 } 1808 1809 // The erase call here will delete it. If we don't want it deleted, we call 1810 // remove instead. 1811 auto AccessIt = PerBlockAccesses.find(BB); 1812 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1813 if (ShouldDelete) 1814 Accesses->erase(MA); 1815 else 1816 Accesses->remove(MA); 1817 1818 if (Accesses->empty()) { 1819 PerBlockAccesses.erase(AccessIt); 1820 BlockNumberingValid.erase(BB); 1821 } 1822 } 1823 1824 void MemorySSA::print(raw_ostream &OS) const { 1825 MemorySSAAnnotatedWriter Writer(this); 1826 F.print(OS, &Writer); 1827 } 1828 1829 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1830 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1831 #endif 1832 1833 void MemorySSA::verifyMemorySSA() const { 1834 verifyDefUses(F); 1835 verifyDomination(F); 1836 verifyOrdering(F); 1837 verifyDominationNumbers(F); 1838 // Previously, the verification used to also verify that the clobberingAccess 1839 // cached by MemorySSA is the same as the clobberingAccess found at a later 1840 // query to AA. This does not hold true in general due to the current fragility 1841 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1842 // up. As a result, transformations that are correct, will lead to BasicAA 1843 // returning different Alias answers before and after that transformation. 1844 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1845 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1846 // every transformation, which defeats the purpose of using it. For such an 1847 // example, see test4 added in D51960. 1848 } 1849 1850 /// Verify that all of the blocks we believe to have valid domination numbers 1851 /// actually have valid domination numbers. 1852 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1853 #ifndef NDEBUG 1854 if (BlockNumberingValid.empty()) 1855 return; 1856 1857 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1858 for (const BasicBlock &BB : F) { 1859 if (!ValidBlocks.count(&BB)) 1860 continue; 1861 1862 ValidBlocks.erase(&BB); 1863 1864 const AccessList *Accesses = getBlockAccesses(&BB); 1865 // It's correct to say an empty block has valid numbering. 1866 if (!Accesses) 1867 continue; 1868 1869 // Block numbering starts at 1. 1870 unsigned long LastNumber = 0; 1871 for (const MemoryAccess &MA : *Accesses) { 1872 auto ThisNumberIter = BlockNumbering.find(&MA); 1873 assert(ThisNumberIter != BlockNumbering.end() && 1874 "MemoryAccess has no domination number in a valid block!"); 1875 1876 unsigned long ThisNumber = ThisNumberIter->second; 1877 assert(ThisNumber > LastNumber && 1878 "Domination numbers should be strictly increasing!"); 1879 LastNumber = ThisNumber; 1880 } 1881 } 1882 1883 assert(ValidBlocks.empty() && 1884 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1885 #endif 1886 } 1887 1888 /// Verify that the order and existence of MemoryAccesses matches the 1889 /// order and existence of memory affecting instructions. 1890 void MemorySSA::verifyOrdering(Function &F) const { 1891 #ifndef NDEBUG 1892 // Walk all the blocks, comparing what the lookups think and what the access 1893 // lists think, as well as the order in the blocks vs the order in the access 1894 // lists. 1895 SmallVector<MemoryAccess *, 32> ActualAccesses; 1896 SmallVector<MemoryAccess *, 32> ActualDefs; 1897 for (BasicBlock &B : F) { 1898 const AccessList *AL = getBlockAccesses(&B); 1899 const auto *DL = getBlockDefs(&B); 1900 MemoryAccess *Phi = getMemoryAccess(&B); 1901 if (Phi) { 1902 ActualAccesses.push_back(Phi); 1903 ActualDefs.push_back(Phi); 1904 } 1905 1906 for (Instruction &I : B) { 1907 MemoryAccess *MA = getMemoryAccess(&I); 1908 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1909 "We have memory affecting instructions " 1910 "in this block but they are not in the " 1911 "access list or defs list"); 1912 if (MA) { 1913 ActualAccesses.push_back(MA); 1914 if (isa<MemoryDef>(MA)) 1915 ActualDefs.push_back(MA); 1916 } 1917 } 1918 // Either we hit the assert, really have no accesses, or we have both 1919 // accesses and an access list. 1920 // Same with defs. 1921 if (!AL && !DL) 1922 continue; 1923 assert(AL->size() == ActualAccesses.size() && 1924 "We don't have the same number of accesses in the block as on the " 1925 "access list"); 1926 assert((DL || ActualDefs.size() == 0) && 1927 "Either we should have a defs list, or we should have no defs"); 1928 assert((!DL || DL->size() == ActualDefs.size()) && 1929 "We don't have the same number of defs in the block as on the " 1930 "def list"); 1931 auto ALI = AL->begin(); 1932 auto AAI = ActualAccesses.begin(); 1933 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1934 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1935 ++ALI; 1936 ++AAI; 1937 } 1938 ActualAccesses.clear(); 1939 if (DL) { 1940 auto DLI = DL->begin(); 1941 auto ADI = ActualDefs.begin(); 1942 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1943 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1944 ++DLI; 1945 ++ADI; 1946 } 1947 } 1948 ActualDefs.clear(); 1949 } 1950 #endif 1951 } 1952 1953 /// Verify the domination properties of MemorySSA by checking that each 1954 /// definition dominates all of its uses. 1955 void MemorySSA::verifyDomination(Function &F) const { 1956 #ifndef NDEBUG 1957 for (BasicBlock &B : F) { 1958 // Phi nodes are attached to basic blocks 1959 if (MemoryPhi *MP = getMemoryAccess(&B)) 1960 for (const Use &U : MP->uses()) 1961 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1962 1963 for (Instruction &I : B) { 1964 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1965 if (!MD) 1966 continue; 1967 1968 for (const Use &U : MD->uses()) 1969 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1970 } 1971 } 1972 #endif 1973 } 1974 1975 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 1976 /// appears in the use list of \p Def. 1977 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1978 #ifndef NDEBUG 1979 // The live on entry use may cause us to get a NULL def here 1980 if (!Def) 1981 assert(isLiveOnEntryDef(Use) && 1982 "Null def but use not point to live on entry def"); 1983 else 1984 assert(is_contained(Def->users(), Use) && 1985 "Did not find use in def's use list"); 1986 #endif 1987 } 1988 1989 /// Verify the immediate use information, by walking all the memory 1990 /// accesses and verifying that, for each use, it appears in the 1991 /// appropriate def's use list 1992 void MemorySSA::verifyDefUses(Function &F) const { 1993 #ifndef NDEBUG 1994 for (BasicBlock &B : F) { 1995 // Phi nodes are attached to basic blocks 1996 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 1997 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1998 pred_begin(&B), pred_end(&B))) && 1999 "Incomplete MemoryPhi Node"); 2000 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2001 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2002 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2003 pred_end(&B) && 2004 "Incoming phi block not a block predecessor"); 2005 } 2006 } 2007 2008 for (Instruction &I : B) { 2009 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 2010 verifyUseInDefs(MA->getDefiningAccess(), MA); 2011 } 2012 } 2013 } 2014 #endif 2015 } 2016 2017 /// Perform a local numbering on blocks so that instruction ordering can be 2018 /// determined in constant time. 2019 /// TODO: We currently just number in order. If we numbered by N, we could 2020 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2021 /// log2(N) sequences of mixed before and after) without needing to invalidate 2022 /// the numbering. 2023 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2024 // The pre-increment ensures the numbers really start at 1. 2025 unsigned long CurrentNumber = 0; 2026 const AccessList *AL = getBlockAccesses(B); 2027 assert(AL != nullptr && "Asking to renumber an empty block"); 2028 for (const auto &I : *AL) 2029 BlockNumbering[&I] = ++CurrentNumber; 2030 BlockNumberingValid.insert(B); 2031 } 2032 2033 /// Determine, for two memory accesses in the same block, 2034 /// whether \p Dominator dominates \p Dominatee. 2035 /// \returns True if \p Dominator dominates \p Dominatee. 2036 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2037 const MemoryAccess *Dominatee) const { 2038 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2039 2040 assert((DominatorBlock == Dominatee->getBlock()) && 2041 "Asking for local domination when accesses are in different blocks!"); 2042 // A node dominates itself. 2043 if (Dominatee == Dominator) 2044 return true; 2045 2046 // When Dominatee is defined on function entry, it is not dominated by another 2047 // memory access. 2048 if (isLiveOnEntryDef(Dominatee)) 2049 return false; 2050 2051 // When Dominator is defined on function entry, it dominates the other memory 2052 // access. 2053 if (isLiveOnEntryDef(Dominator)) 2054 return true; 2055 2056 if (!BlockNumberingValid.count(DominatorBlock)) 2057 renumberBlock(DominatorBlock); 2058 2059 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2060 // All numbers start with 1 2061 assert(DominatorNum != 0 && "Block was not numbered properly"); 2062 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2063 assert(DominateeNum != 0 && "Block was not numbered properly"); 2064 return DominatorNum < DominateeNum; 2065 } 2066 2067 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2068 const MemoryAccess *Dominatee) const { 2069 if (Dominator == Dominatee) 2070 return true; 2071 2072 if (isLiveOnEntryDef(Dominatee)) 2073 return false; 2074 2075 if (Dominator->getBlock() != Dominatee->getBlock()) 2076 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2077 return locallyDominates(Dominator, Dominatee); 2078 } 2079 2080 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2081 const Use &Dominatee) const { 2082 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2083 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2084 // The def must dominate the incoming block of the phi. 2085 if (UseBB != Dominator->getBlock()) 2086 return DT->dominates(Dominator->getBlock(), UseBB); 2087 // If the UseBB and the DefBB are the same, compare locally. 2088 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2089 } 2090 // If it's not a PHI node use, the normal dominates can already handle it. 2091 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2092 } 2093 2094 const static char LiveOnEntryStr[] = "liveOnEntry"; 2095 2096 void MemoryAccess::print(raw_ostream &OS) const { 2097 switch (getValueID()) { 2098 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2099 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2100 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2101 } 2102 llvm_unreachable("invalid value id"); 2103 } 2104 2105 void MemoryDef::print(raw_ostream &OS) const { 2106 MemoryAccess *UO = getDefiningAccess(); 2107 2108 auto printID = [&OS](MemoryAccess *A) { 2109 if (A && A->getID()) 2110 OS << A->getID(); 2111 else 2112 OS << LiveOnEntryStr; 2113 }; 2114 2115 OS << getID() << " = MemoryDef("; 2116 printID(UO); 2117 OS << ")"; 2118 2119 if (isOptimized()) { 2120 OS << "->"; 2121 printID(getOptimized()); 2122 2123 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2124 OS << " " << *AR; 2125 } 2126 } 2127 2128 void MemoryPhi::print(raw_ostream &OS) const { 2129 bool First = true; 2130 OS << getID() << " = MemoryPhi("; 2131 for (const auto &Op : operands()) { 2132 BasicBlock *BB = getIncomingBlock(Op); 2133 MemoryAccess *MA = cast<MemoryAccess>(Op); 2134 if (!First) 2135 OS << ','; 2136 else 2137 First = false; 2138 2139 OS << '{'; 2140 if (BB->hasName()) 2141 OS << BB->getName(); 2142 else 2143 BB->printAsOperand(OS, false); 2144 OS << ','; 2145 if (unsigned ID = MA->getID()) 2146 OS << ID; 2147 else 2148 OS << LiveOnEntryStr; 2149 OS << '}'; 2150 } 2151 OS << ')'; 2152 } 2153 2154 void MemoryUse::print(raw_ostream &OS) const { 2155 MemoryAccess *UO = getDefiningAccess(); 2156 OS << "MemoryUse("; 2157 if (UO && UO->getID()) 2158 OS << UO->getID(); 2159 else 2160 OS << LiveOnEntryStr; 2161 OS << ')'; 2162 2163 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2164 OS << " " << *AR; 2165 } 2166 2167 void MemoryAccess::dump() const { 2168 // Cannot completely remove virtual function even in release mode. 2169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2170 print(dbgs()); 2171 dbgs() << "\n"; 2172 #endif 2173 } 2174 2175 char MemorySSAPrinterLegacyPass::ID = 0; 2176 2177 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2178 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2179 } 2180 2181 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2182 AU.setPreservesAll(); 2183 AU.addRequired<MemorySSAWrapperPass>(); 2184 } 2185 2186 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2187 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2188 MSSA.print(dbgs()); 2189 if (VerifyMemorySSA) 2190 MSSA.verifyMemorySSA(); 2191 return false; 2192 } 2193 2194 AnalysisKey MemorySSAAnalysis::Key; 2195 2196 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2197 FunctionAnalysisManager &AM) { 2198 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2199 auto &AA = AM.getResult<AAManager>(F); 2200 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 2201 } 2202 2203 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2204 FunctionAnalysisManager &AM) { 2205 OS << "MemorySSA for function: " << F.getName() << "\n"; 2206 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2207 2208 return PreservedAnalyses::all(); 2209 } 2210 2211 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2212 FunctionAnalysisManager &AM) { 2213 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2214 2215 return PreservedAnalyses::all(); 2216 } 2217 2218 char MemorySSAWrapperPass::ID = 0; 2219 2220 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2221 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2222 } 2223 2224 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2225 2226 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2227 AU.setPreservesAll(); 2228 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2229 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2230 } 2231 2232 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2233 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2234 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2235 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2236 return false; 2237 } 2238 2239 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2240 2241 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2242 MSSA->print(OS); 2243 } 2244 2245 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2246 2247 /// Walk the use-def chains starting at \p StartingAccess and find 2248 /// the MemoryAccess that actually clobbers Loc. 2249 /// 2250 /// \returns our clobbering memory access 2251 template <typename AliasAnalysisType> 2252 MemoryAccess * 2253 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2254 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2255 unsigned &UpwardWalkLimit) { 2256 if (isa<MemoryPhi>(StartingAccess)) 2257 return StartingAccess; 2258 2259 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2260 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2261 return StartingUseOrDef; 2262 2263 Instruction *I = StartingUseOrDef->getMemoryInst(); 2264 2265 // Conservatively, fences are always clobbers, so don't perform the walk if we 2266 // hit a fence. 2267 if (!isa<CallBase>(I) && I->isFenceLike()) 2268 return StartingUseOrDef; 2269 2270 UpwardsMemoryQuery Q; 2271 Q.OriginalAccess = StartingUseOrDef; 2272 Q.StartingLoc = Loc; 2273 Q.Inst = I; 2274 Q.IsCall = false; 2275 2276 // Unlike the other function, do not walk to the def of a def, because we are 2277 // handed something we already believe is the clobbering access. 2278 // We never set SkipSelf to true in Q in this method. 2279 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2280 ? StartingUseOrDef->getDefiningAccess() 2281 : StartingUseOrDef; 2282 2283 MemoryAccess *Clobber = 2284 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2285 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2286 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2287 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2288 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2289 return Clobber; 2290 } 2291 2292 template <typename AliasAnalysisType> 2293 MemoryAccess * 2294 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2295 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2296 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2297 // If this is a MemoryPhi, we can't do anything. 2298 if (!StartingAccess) 2299 return MA; 2300 2301 bool IsOptimized = false; 2302 2303 // If this is an already optimized use or def, return the optimized result. 2304 // Note: Currently, we store the optimized def result in a separate field, 2305 // since we can't use the defining access. 2306 if (StartingAccess->isOptimized()) { 2307 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2308 return StartingAccess->getOptimized(); 2309 IsOptimized = true; 2310 } 2311 2312 const Instruction *I = StartingAccess->getMemoryInst(); 2313 // We can't sanely do anything with a fence, since they conservatively clobber 2314 // all memory, and have no locations to get pointers from to try to 2315 // disambiguate. 2316 if (!isa<CallBase>(I) && I->isFenceLike()) 2317 return StartingAccess; 2318 2319 UpwardsMemoryQuery Q(I, StartingAccess); 2320 2321 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2322 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2323 StartingAccess->setOptimized(LiveOnEntry); 2324 StartingAccess->setOptimizedAccessType(None); 2325 return LiveOnEntry; 2326 } 2327 2328 MemoryAccess *OptimizedAccess; 2329 if (!IsOptimized) { 2330 // Start with the thing we already think clobbers this location 2331 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2332 2333 // At this point, DefiningAccess may be the live on entry def. 2334 // If it is, we will not get a better result. 2335 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2336 StartingAccess->setOptimized(DefiningAccess); 2337 StartingAccess->setOptimizedAccessType(None); 2338 return DefiningAccess; 2339 } 2340 2341 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2342 StartingAccess->setOptimized(OptimizedAccess); 2343 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2344 StartingAccess->setOptimizedAccessType(None); 2345 else if (Q.AR == MustAlias) 2346 StartingAccess->setOptimizedAccessType(MustAlias); 2347 } else 2348 OptimizedAccess = StartingAccess->getOptimized(); 2349 2350 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2351 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2352 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2353 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2354 2355 MemoryAccess *Result; 2356 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2357 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2358 assert(isa<MemoryDef>(Q.OriginalAccess)); 2359 Q.SkipSelfAccess = true; 2360 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2361 } else 2362 Result = OptimizedAccess; 2363 2364 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2365 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2366 2367 return Result; 2368 } 2369 2370 MemoryAccess * 2371 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2372 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2373 return Use->getDefiningAccess(); 2374 return MA; 2375 } 2376 2377 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2378 MemoryAccess *StartingAccess, const MemoryLocation &) { 2379 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2380 return Use->getDefiningAccess(); 2381 return StartingAccess; 2382 } 2383 2384 void MemoryPhi::deleteMe(DerivedUser *Self) { 2385 delete static_cast<MemoryPhi *>(Self); 2386 } 2387 2388 void MemoryDef::deleteMe(DerivedUser *Self) { 2389 delete static_cast<MemoryDef *>(Self); 2390 } 2391 2392 void MemoryUse::deleteMe(DerivedUser *Self) { 2393 delete static_cast<MemoryUse *>(Self); 2394 } 2395