1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdlib> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "memoryssa" 60 61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 62 true) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 66 true) 67 68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 69 "Memory SSA Printer", false, false) 70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 72 "Memory SSA Printer", false, false) 73 74 static cl::opt<unsigned> MaxCheckLimit( 75 "memssa-check-limit", cl::Hidden, cl::init(100), 76 cl::desc("The maximum number of stores/phis MemorySSA" 77 "will consider trying to walk past (default = 100)")); 78 79 // Always verify MemorySSA if expensive checking is enabled. 80 #ifdef EXPENSIVE_CHECKS 81 bool llvm::VerifyMemorySSA = true; 82 #else 83 bool llvm::VerifyMemorySSA = false; 84 #endif 85 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 86 cl::opt<bool> llvm::EnableMSSALoopDependency( 87 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 88 cl::desc("Enable MemorySSA dependency for loop pass manager")); 89 90 static cl::opt<bool, true> 91 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 92 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 93 94 namespace llvm { 95 96 /// An assembly annotator class to print Memory SSA information in 97 /// comments. 98 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 99 friend class MemorySSA; 100 101 const MemorySSA *MSSA; 102 103 public: 104 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 105 106 void emitBasicBlockStartAnnot(const BasicBlock *BB, 107 formatted_raw_ostream &OS) override { 108 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 109 OS << "; " << *MA << "\n"; 110 } 111 112 void emitInstructionAnnot(const Instruction *I, 113 formatted_raw_ostream &OS) override { 114 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 115 OS << "; " << *MA << "\n"; 116 } 117 }; 118 119 } // end namespace llvm 120 121 namespace { 122 123 /// Our current alias analysis API differentiates heavily between calls and 124 /// non-calls, and functions called on one usually assert on the other. 125 /// This class encapsulates the distinction to simplify other code that wants 126 /// "Memory affecting instructions and related data" to use as a key. 127 /// For example, this class is used as a densemap key in the use optimizer. 128 class MemoryLocOrCall { 129 public: 130 bool IsCall = false; 131 132 MemoryLocOrCall(MemoryUseOrDef *MUD) 133 : MemoryLocOrCall(MUD->getMemoryInst()) {} 134 MemoryLocOrCall(const MemoryUseOrDef *MUD) 135 : MemoryLocOrCall(MUD->getMemoryInst()) {} 136 137 MemoryLocOrCall(Instruction *Inst) { 138 if (auto *C = dyn_cast<CallBase>(Inst)) { 139 IsCall = true; 140 Call = C; 141 } else { 142 IsCall = false; 143 // There is no such thing as a memorylocation for a fence inst, and it is 144 // unique in that regard. 145 if (!isa<FenceInst>(Inst)) 146 Loc = MemoryLocation::get(Inst); 147 } 148 } 149 150 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 151 152 const CallBase *getCall() const { 153 assert(IsCall); 154 return Call; 155 } 156 157 MemoryLocation getLoc() const { 158 assert(!IsCall); 159 return Loc; 160 } 161 162 bool operator==(const MemoryLocOrCall &Other) const { 163 if (IsCall != Other.IsCall) 164 return false; 165 166 if (!IsCall) 167 return Loc == Other.Loc; 168 169 if (Call->getCalledValue() != Other.Call->getCalledValue()) 170 return false; 171 172 return Call->arg_size() == Other.Call->arg_size() && 173 std::equal(Call->arg_begin(), Call->arg_end(), 174 Other.Call->arg_begin()); 175 } 176 177 private: 178 union { 179 const CallBase *Call; 180 MemoryLocation Loc; 181 }; 182 }; 183 184 } // end anonymous namespace 185 186 namespace llvm { 187 188 template <> struct DenseMapInfo<MemoryLocOrCall> { 189 static inline MemoryLocOrCall getEmptyKey() { 190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 191 } 192 193 static inline MemoryLocOrCall getTombstoneKey() { 194 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 195 } 196 197 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 198 if (!MLOC.IsCall) 199 return hash_combine( 200 MLOC.IsCall, 201 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 202 203 hash_code hash = 204 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 205 MLOC.getCall()->getCalledValue())); 206 207 for (const Value *Arg : MLOC.getCall()->args()) 208 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 209 return hash; 210 } 211 212 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 213 return LHS == RHS; 214 } 215 }; 216 217 } // end namespace llvm 218 219 /// This does one-way checks to see if Use could theoretically be hoisted above 220 /// MayClobber. This will not check the other way around. 221 /// 222 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 223 /// MayClobber, with no potentially clobbering operations in between them. 224 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 225 static bool areLoadsReorderable(const LoadInst *Use, 226 const LoadInst *MayClobber) { 227 bool VolatileUse = Use->isVolatile(); 228 bool VolatileClobber = MayClobber->isVolatile(); 229 // Volatile operations may never be reordered with other volatile operations. 230 if (VolatileUse && VolatileClobber) 231 return false; 232 // Otherwise, volatile doesn't matter here. From the language reference: 233 // 'optimizers may change the order of volatile operations relative to 234 // non-volatile operations.'" 235 236 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 237 // is weaker, it can be moved above other loads. We just need to be sure that 238 // MayClobber isn't an acquire load, because loads can't be moved above 239 // acquire loads. 240 // 241 // Note that this explicitly *does* allow the free reordering of monotonic (or 242 // weaker) loads of the same address. 243 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 244 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 245 AtomicOrdering::Acquire); 246 return !(SeqCstUse || MayClobberIsAcquire); 247 } 248 249 namespace { 250 251 struct ClobberAlias { 252 bool IsClobber; 253 Optional<AliasResult> AR; 254 }; 255 256 } // end anonymous namespace 257 258 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 259 // ignored if IsClobber = false. 260 template <typename AliasAnalysisType> 261 static ClobberAlias 262 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 263 const Instruction *UseInst, AliasAnalysisType &AA) { 264 Instruction *DefInst = MD->getMemoryInst(); 265 assert(DefInst && "Defining instruction not actually an instruction"); 266 const auto *UseCall = dyn_cast<CallBase>(UseInst); 267 Optional<AliasResult> AR; 268 269 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 270 // These intrinsics will show up as affecting memory, but they are just 271 // markers, mostly. 272 // 273 // FIXME: We probably don't actually want MemorySSA to model these at all 274 // (including creating MemoryAccesses for them): we just end up inventing 275 // clobbers where they don't really exist at all. Please see D43269 for 276 // context. 277 switch (II->getIntrinsicID()) { 278 case Intrinsic::lifetime_start: 279 if (UseCall) 280 return {false, NoAlias}; 281 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 282 return {AR != NoAlias, AR}; 283 case Intrinsic::lifetime_end: 284 case Intrinsic::invariant_start: 285 case Intrinsic::invariant_end: 286 case Intrinsic::assume: 287 return {false, NoAlias}; 288 default: 289 break; 290 } 291 } 292 293 if (UseCall) { 294 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 295 AR = isMustSet(I) ? MustAlias : MayAlias; 296 return {isModOrRefSet(I), AR}; 297 } 298 299 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 300 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 301 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 302 303 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 304 AR = isMustSet(I) ? MustAlias : MayAlias; 305 return {isModSet(I), AR}; 306 } 307 308 template <typename AliasAnalysisType> 309 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 310 const MemoryUseOrDef *MU, 311 const MemoryLocOrCall &UseMLOC, 312 AliasAnalysisType &AA) { 313 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 314 // to exist while MemoryLocOrCall is pushed through places. 315 if (UseMLOC.IsCall) 316 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 317 AA); 318 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 319 AA); 320 } 321 322 // Return true when MD may alias MU, return false otherwise. 323 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 324 AliasAnalysis &AA) { 325 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 326 } 327 328 namespace { 329 330 struct UpwardsMemoryQuery { 331 // True if our original query started off as a call 332 bool IsCall = false; 333 // The pointer location we started the query with. This will be empty if 334 // IsCall is true. 335 MemoryLocation StartingLoc; 336 // This is the instruction we were querying about. 337 const Instruction *Inst = nullptr; 338 // The MemoryAccess we actually got called with, used to test local domination 339 const MemoryAccess *OriginalAccess = nullptr; 340 Optional<AliasResult> AR = MayAlias; 341 bool SkipSelfAccess = false; 342 343 UpwardsMemoryQuery() = default; 344 345 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 346 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 347 if (!IsCall) 348 StartingLoc = MemoryLocation::get(Inst); 349 } 350 }; 351 352 } // end anonymous namespace 353 354 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 355 BatchAAResults &AA) { 356 Instruction *Inst = MD->getMemoryInst(); 357 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 358 switch (II->getIntrinsicID()) { 359 case Intrinsic::lifetime_end: 360 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 361 default: 362 return false; 363 } 364 } 365 return false; 366 } 367 368 template <typename AliasAnalysisType> 369 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 370 const Instruction *I) { 371 // If the memory can't be changed, then loads of the memory can't be 372 // clobbered. 373 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) || 374 AA.pointsToConstantMemory(MemoryLocation( 375 cast<LoadInst>(I)->getPointerOperand()))); 376 } 377 378 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 379 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 380 /// 381 /// This is meant to be as simple and self-contained as possible. Because it 382 /// uses no cache, etc., it can be relatively expensive. 383 /// 384 /// \param Start The MemoryAccess that we want to walk from. 385 /// \param ClobberAt A clobber for Start. 386 /// \param StartLoc The MemoryLocation for Start. 387 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 388 /// \param Query The UpwardsMemoryQuery we used for our search. 389 /// \param AA The AliasAnalysis we used for our search. 390 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 391 392 template <typename AliasAnalysisType> 393 LLVM_ATTRIBUTE_UNUSED static void 394 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 395 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 396 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 397 bool AllowImpreciseClobber = false) { 398 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 399 400 if (MSSA.isLiveOnEntryDef(Start)) { 401 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 402 "liveOnEntry must clobber itself"); 403 return; 404 } 405 406 bool FoundClobber = false; 407 DenseSet<ConstMemoryAccessPair> VisitedPhis; 408 SmallVector<ConstMemoryAccessPair, 8> Worklist; 409 Worklist.emplace_back(Start, StartLoc); 410 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 411 // is found, complain. 412 while (!Worklist.empty()) { 413 auto MAP = Worklist.pop_back_val(); 414 // All we care about is that nothing from Start to ClobberAt clobbers Start. 415 // We learn nothing from revisiting nodes. 416 if (!VisitedPhis.insert(MAP).second) 417 continue; 418 419 for (const auto *MA : def_chain(MAP.first)) { 420 if (MA == ClobberAt) { 421 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 422 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 423 // since it won't let us short-circuit. 424 // 425 // Also, note that this can't be hoisted out of the `Worklist` loop, 426 // since MD may only act as a clobber for 1 of N MemoryLocations. 427 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 428 if (!FoundClobber) { 429 ClobberAlias CA = 430 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 431 if (CA.IsClobber) { 432 FoundClobber = true; 433 // Not used: CA.AR; 434 } 435 } 436 } 437 break; 438 } 439 440 // We should never hit liveOnEntry, unless it's the clobber. 441 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 442 443 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 444 // If Start is a Def, skip self. 445 if (MD == Start) 446 continue; 447 448 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 449 .IsClobber && 450 "Found clobber before reaching ClobberAt!"); 451 continue; 452 } 453 454 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 455 (void)MU; 456 assert (MU == Start && 457 "Can only find use in def chain if Start is a use"); 458 continue; 459 } 460 461 assert(isa<MemoryPhi>(MA)); 462 Worklist.append( 463 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 464 upward_defs_end()); 465 } 466 } 467 468 // If the verify is done following an optimization, it's possible that 469 // ClobberAt was a conservative clobbering, that we can now infer is not a 470 // true clobbering access. Don't fail the verify if that's the case. 471 // We do have accesses that claim they're optimized, but could be optimized 472 // further. Updating all these can be expensive, so allow it for now (FIXME). 473 if (AllowImpreciseClobber) 474 return; 475 476 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 477 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 478 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 479 "ClobberAt never acted as a clobber"); 480 } 481 482 namespace { 483 484 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 485 /// in one class. 486 template <class AliasAnalysisType> class ClobberWalker { 487 /// Save a few bytes by using unsigned instead of size_t. 488 using ListIndex = unsigned; 489 490 /// Represents a span of contiguous MemoryDefs, potentially ending in a 491 /// MemoryPhi. 492 struct DefPath { 493 MemoryLocation Loc; 494 // Note that, because we always walk in reverse, Last will always dominate 495 // First. Also note that First and Last are inclusive. 496 MemoryAccess *First; 497 MemoryAccess *Last; 498 Optional<ListIndex> Previous; 499 500 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 501 Optional<ListIndex> Previous) 502 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 503 504 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 505 Optional<ListIndex> Previous) 506 : DefPath(Loc, Init, Init, Previous) {} 507 }; 508 509 const MemorySSA &MSSA; 510 AliasAnalysisType &AA; 511 DominatorTree &DT; 512 UpwardsMemoryQuery *Query; 513 unsigned *UpwardWalkLimit; 514 515 // Phi optimization bookkeeping 516 SmallVector<DefPath, 32> Paths; 517 DenseSet<ConstMemoryAccessPair> VisitedPhis; 518 519 /// Find the nearest def or phi that `From` can legally be optimized to. 520 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 521 assert(From->getNumOperands() && "Phi with no operands?"); 522 523 BasicBlock *BB = From->getBlock(); 524 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 525 DomTreeNode *Node = DT.getNode(BB); 526 while ((Node = Node->getIDom())) { 527 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 528 if (Defs) 529 return &*Defs->rbegin(); 530 } 531 return Result; 532 } 533 534 /// Result of calling walkToPhiOrClobber. 535 struct UpwardsWalkResult { 536 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 537 /// both. Include alias info when clobber found. 538 MemoryAccess *Result; 539 bool IsKnownClobber; 540 Optional<AliasResult> AR; 541 }; 542 543 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 544 /// This will update Desc.Last as it walks. It will (optionally) also stop at 545 /// StopAt. 546 /// 547 /// This does not test for whether StopAt is a clobber 548 UpwardsWalkResult 549 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 550 const MemoryAccess *SkipStopAt = nullptr) const { 551 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 552 assert(UpwardWalkLimit && "Need a valid walk limit"); 553 bool LimitAlreadyReached = false; 554 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 555 // it to 1. This will not do any alias() calls. It either returns in the 556 // first iteration in the loop below, or is set back to 0 if all def chains 557 // are free of MemoryDefs. 558 if (!*UpwardWalkLimit) { 559 *UpwardWalkLimit = 1; 560 LimitAlreadyReached = true; 561 } 562 563 for (MemoryAccess *Current : def_chain(Desc.Last)) { 564 Desc.Last = Current; 565 if (Current == StopAt || Current == SkipStopAt) 566 return {Current, false, MayAlias}; 567 568 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 569 if (MSSA.isLiveOnEntryDef(MD)) 570 return {MD, true, MustAlias}; 571 572 if (!--*UpwardWalkLimit) 573 return {Current, true, MayAlias}; 574 575 ClobberAlias CA = 576 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 577 if (CA.IsClobber) 578 return {MD, true, CA.AR}; 579 } 580 } 581 582 if (LimitAlreadyReached) 583 *UpwardWalkLimit = 0; 584 585 assert(isa<MemoryPhi>(Desc.Last) && 586 "Ended at a non-clobber that's not a phi?"); 587 return {Desc.Last, false, MayAlias}; 588 } 589 590 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 591 ListIndex PriorNode) { 592 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 593 upward_defs_end()); 594 for (const MemoryAccessPair &P : UpwardDefs) { 595 PausedSearches.push_back(Paths.size()); 596 Paths.emplace_back(P.second, P.first, PriorNode); 597 } 598 } 599 600 /// Represents a search that terminated after finding a clobber. This clobber 601 /// may or may not be present in the path of defs from LastNode..SearchStart, 602 /// since it may have been retrieved from cache. 603 struct TerminatedPath { 604 MemoryAccess *Clobber; 605 ListIndex LastNode; 606 }; 607 608 /// Get an access that keeps us from optimizing to the given phi. 609 /// 610 /// PausedSearches is an array of indices into the Paths array. Its incoming 611 /// value is the indices of searches that stopped at the last phi optimization 612 /// target. It's left in an unspecified state. 613 /// 614 /// If this returns None, NewPaused is a vector of searches that terminated 615 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 616 Optional<TerminatedPath> 617 getBlockingAccess(const MemoryAccess *StopWhere, 618 SmallVectorImpl<ListIndex> &PausedSearches, 619 SmallVectorImpl<ListIndex> &NewPaused, 620 SmallVectorImpl<TerminatedPath> &Terminated) { 621 assert(!PausedSearches.empty() && "No searches to continue?"); 622 623 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 624 // PausedSearches as our stack. 625 while (!PausedSearches.empty()) { 626 ListIndex PathIndex = PausedSearches.pop_back_val(); 627 DefPath &Node = Paths[PathIndex]; 628 629 // If we've already visited this path with this MemoryLocation, we don't 630 // need to do so again. 631 // 632 // NOTE: That we just drop these paths on the ground makes caching 633 // behavior sporadic. e.g. given a diamond: 634 // A 635 // B C 636 // D 637 // 638 // ...If we walk D, B, A, C, we'll only cache the result of phi 639 // optimization for A, B, and D; C will be skipped because it dies here. 640 // This arguably isn't the worst thing ever, since: 641 // - We generally query things in a top-down order, so if we got below D 642 // without needing cache entries for {C, MemLoc}, then chances are 643 // that those cache entries would end up ultimately unused. 644 // - We still cache things for A, so C only needs to walk up a bit. 645 // If this behavior becomes problematic, we can fix without a ton of extra 646 // work. 647 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 648 continue; 649 650 const MemoryAccess *SkipStopWhere = nullptr; 651 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 652 assert(isa<MemoryDef>(Query->OriginalAccess)); 653 SkipStopWhere = Query->OriginalAccess; 654 } 655 656 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 657 /*StopAt=*/StopWhere, 658 /*SkipStopAt=*/SkipStopWhere); 659 if (Res.IsKnownClobber) { 660 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 661 662 // If this wasn't a cache hit, we hit a clobber when walking. That's a 663 // failure. 664 TerminatedPath Term{Res.Result, PathIndex}; 665 if (!MSSA.dominates(Res.Result, StopWhere)) 666 return Term; 667 668 // Otherwise, it's a valid thing to potentially optimize to. 669 Terminated.push_back(Term); 670 continue; 671 } 672 673 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 674 // We've hit our target. Save this path off for if we want to continue 675 // walking. If we are in the mode of skipping the OriginalAccess, and 676 // we've reached back to the OriginalAccess, do not save path, we've 677 // just looped back to self. 678 if (Res.Result != SkipStopWhere) 679 NewPaused.push_back(PathIndex); 680 continue; 681 } 682 683 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 684 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 685 } 686 687 return None; 688 } 689 690 template <typename T, typename Walker> 691 struct generic_def_path_iterator 692 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 693 std::forward_iterator_tag, T *> { 694 generic_def_path_iterator() {} 695 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 696 697 T &operator*() const { return curNode(); } 698 699 generic_def_path_iterator &operator++() { 700 N = curNode().Previous; 701 return *this; 702 } 703 704 bool operator==(const generic_def_path_iterator &O) const { 705 if (N.hasValue() != O.N.hasValue()) 706 return false; 707 return !N.hasValue() || *N == *O.N; 708 } 709 710 private: 711 T &curNode() const { return W->Paths[*N]; } 712 713 Walker *W = nullptr; 714 Optional<ListIndex> N = None; 715 }; 716 717 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 718 using const_def_path_iterator = 719 generic_def_path_iterator<const DefPath, const ClobberWalker>; 720 721 iterator_range<def_path_iterator> def_path(ListIndex From) { 722 return make_range(def_path_iterator(this, From), def_path_iterator()); 723 } 724 725 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 726 return make_range(const_def_path_iterator(this, From), 727 const_def_path_iterator()); 728 } 729 730 struct OptznResult { 731 /// The path that contains our result. 732 TerminatedPath PrimaryClobber; 733 /// The paths that we can legally cache back from, but that aren't 734 /// necessarily the result of the Phi optimization. 735 SmallVector<TerminatedPath, 4> OtherClobbers; 736 }; 737 738 ListIndex defPathIndex(const DefPath &N) const { 739 // The assert looks nicer if we don't need to do &N 740 const DefPath *NP = &N; 741 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 742 "Out of bounds DefPath!"); 743 return NP - &Paths.front(); 744 } 745 746 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 747 /// that act as legal clobbers. Note that this won't return *all* clobbers. 748 /// 749 /// Phi optimization algorithm tl;dr: 750 /// - Find the earliest def/phi, A, we can optimize to 751 /// - Find if all paths from the starting memory access ultimately reach A 752 /// - If not, optimization isn't possible. 753 /// - Otherwise, walk from A to another clobber or phi, A'. 754 /// - If A' is a def, we're done. 755 /// - If A' is a phi, try to optimize it. 756 /// 757 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 758 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 759 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 760 const MemoryLocation &Loc) { 761 assert(Paths.empty() && VisitedPhis.empty() && 762 "Reset the optimization state."); 763 764 Paths.emplace_back(Loc, Start, Phi, None); 765 // Stores how many "valid" optimization nodes we had prior to calling 766 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 767 auto PriorPathsSize = Paths.size(); 768 769 SmallVector<ListIndex, 16> PausedSearches; 770 SmallVector<ListIndex, 8> NewPaused; 771 SmallVector<TerminatedPath, 4> TerminatedPaths; 772 773 addSearches(Phi, PausedSearches, 0); 774 775 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 776 // Paths. 777 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 778 assert(!Paths.empty() && "Need a path to move"); 779 auto Dom = Paths.begin(); 780 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 781 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 782 Dom = I; 783 auto Last = Paths.end() - 1; 784 if (Last != Dom) 785 std::iter_swap(Last, Dom); 786 }; 787 788 MemoryPhi *Current = Phi; 789 while (true) { 790 assert(!MSSA.isLiveOnEntryDef(Current) && 791 "liveOnEntry wasn't treated as a clobber?"); 792 793 const auto *Target = getWalkTarget(Current); 794 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 795 // optimization for the prior phi. 796 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 797 return MSSA.dominates(P.Clobber, Target); 798 })); 799 800 // FIXME: This is broken, because the Blocker may be reported to be 801 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 802 // For the moment, this is fine, since we do nothing with blocker info. 803 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 804 Target, PausedSearches, NewPaused, TerminatedPaths)) { 805 806 // Find the node we started at. We can't search based on N->Last, since 807 // we may have gone around a loop with a different MemoryLocation. 808 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 809 return defPathIndex(N) < PriorPathsSize; 810 }); 811 assert(Iter != def_path_iterator()); 812 813 DefPath &CurNode = *Iter; 814 assert(CurNode.Last == Current); 815 816 // Two things: 817 // A. We can't reliably cache all of NewPaused back. Consider a case 818 // where we have two paths in NewPaused; one of which can't optimize 819 // above this phi, whereas the other can. If we cache the second path 820 // back, we'll end up with suboptimal cache entries. We can handle 821 // cases like this a bit better when we either try to find all 822 // clobbers that block phi optimization, or when our cache starts 823 // supporting unfinished searches. 824 // B. We can't reliably cache TerminatedPaths back here without doing 825 // extra checks; consider a case like: 826 // T 827 // / \ 828 // D C 829 // \ / 830 // S 831 // Where T is our target, C is a node with a clobber on it, D is a 832 // diamond (with a clobber *only* on the left or right node, N), and 833 // S is our start. Say we walk to D, through the node opposite N 834 // (read: ignoring the clobber), and see a cache entry in the top 835 // node of D. That cache entry gets put into TerminatedPaths. We then 836 // walk up to C (N is later in our worklist), find the clobber, and 837 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 838 // the bottom part of D to the cached clobber, ignoring the clobber 839 // in N. Again, this problem goes away if we start tracking all 840 // blockers for a given phi optimization. 841 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 842 return {Result, {}}; 843 } 844 845 // If there's nothing left to search, then all paths led to valid clobbers 846 // that we got from our cache; pick the nearest to the start, and allow 847 // the rest to be cached back. 848 if (NewPaused.empty()) { 849 MoveDominatedPathToEnd(TerminatedPaths); 850 TerminatedPath Result = TerminatedPaths.pop_back_val(); 851 return {Result, std::move(TerminatedPaths)}; 852 } 853 854 MemoryAccess *DefChainEnd = nullptr; 855 SmallVector<TerminatedPath, 4> Clobbers; 856 for (ListIndex Paused : NewPaused) { 857 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 858 if (WR.IsKnownClobber) 859 Clobbers.push_back({WR.Result, Paused}); 860 else 861 // Micro-opt: If we hit the end of the chain, save it. 862 DefChainEnd = WR.Result; 863 } 864 865 if (!TerminatedPaths.empty()) { 866 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 867 // do it now. 868 if (!DefChainEnd) 869 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 870 DefChainEnd = MA; 871 872 // If any of the terminated paths don't dominate the phi we'll try to 873 // optimize, we need to figure out what they are and quit. 874 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 875 for (const TerminatedPath &TP : TerminatedPaths) { 876 // Because we know that DefChainEnd is as "high" as we can go, we 877 // don't need local dominance checks; BB dominance is sufficient. 878 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 879 Clobbers.push_back(TP); 880 } 881 } 882 883 // If we have clobbers in the def chain, find the one closest to Current 884 // and quit. 885 if (!Clobbers.empty()) { 886 MoveDominatedPathToEnd(Clobbers); 887 TerminatedPath Result = Clobbers.pop_back_val(); 888 return {Result, std::move(Clobbers)}; 889 } 890 891 assert(all_of(NewPaused, 892 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 893 894 // Because liveOnEntry is a clobber, this must be a phi. 895 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 896 897 PriorPathsSize = Paths.size(); 898 PausedSearches.clear(); 899 for (ListIndex I : NewPaused) 900 addSearches(DefChainPhi, PausedSearches, I); 901 NewPaused.clear(); 902 903 Current = DefChainPhi; 904 } 905 } 906 907 void verifyOptResult(const OptznResult &R) const { 908 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 909 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 910 })); 911 } 912 913 void resetPhiOptznState() { 914 Paths.clear(); 915 VisitedPhis.clear(); 916 } 917 918 public: 919 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 920 : MSSA(MSSA), AA(AA), DT(DT) {} 921 922 AliasAnalysisType *getAA() { return &AA; } 923 /// Finds the nearest clobber for the given query, optimizing phis if 924 /// possible. 925 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 926 unsigned &UpWalkLimit) { 927 Query = &Q; 928 UpwardWalkLimit = &UpWalkLimit; 929 // Starting limit must be > 0. 930 if (!UpWalkLimit) 931 UpWalkLimit++; 932 933 MemoryAccess *Current = Start; 934 // This walker pretends uses don't exist. If we're handed one, silently grab 935 // its def. (This has the nice side-effect of ensuring we never cache uses) 936 if (auto *MU = dyn_cast<MemoryUse>(Start)) 937 Current = MU->getDefiningAccess(); 938 939 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 940 // Fast path for the overly-common case (no crazy phi optimization 941 // necessary) 942 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 943 MemoryAccess *Result; 944 if (WalkResult.IsKnownClobber) { 945 Result = WalkResult.Result; 946 Q.AR = WalkResult.AR; 947 } else { 948 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 949 Current, Q.StartingLoc); 950 verifyOptResult(OptRes); 951 resetPhiOptznState(); 952 Result = OptRes.PrimaryClobber.Clobber; 953 } 954 955 #ifdef EXPENSIVE_CHECKS 956 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 957 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 958 #endif 959 return Result; 960 } 961 }; 962 963 struct RenamePassData { 964 DomTreeNode *DTN; 965 DomTreeNode::const_iterator ChildIt; 966 MemoryAccess *IncomingVal; 967 968 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 969 MemoryAccess *M) 970 : DTN(D), ChildIt(It), IncomingVal(M) {} 971 972 void swap(RenamePassData &RHS) { 973 std::swap(DTN, RHS.DTN); 974 std::swap(ChildIt, RHS.ChildIt); 975 std::swap(IncomingVal, RHS.IncomingVal); 976 } 977 }; 978 979 } // end anonymous namespace 980 981 namespace llvm { 982 983 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 984 ClobberWalker<AliasAnalysisType> Walker; 985 MemorySSA *MSSA; 986 987 public: 988 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 989 : Walker(*M, *A, *D), MSSA(M) {} 990 991 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 992 const MemoryLocation &, 993 unsigned &); 994 // Third argument (bool), defines whether the clobber search should skip the 995 // original queried access. If true, there will be a follow-up query searching 996 // for a clobber access past "self". Note that the Optimized access is not 997 // updated if a new clobber is found by this SkipSelf search. If this 998 // additional query becomes heavily used we may decide to cache the result. 999 // Walker instantiations will decide how to set the SkipSelf bool. 1000 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1001 }; 1002 1003 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1004 /// longer does caching on its own, but the name has been retained for the 1005 /// moment. 1006 template <class AliasAnalysisType> 1007 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1008 ClobberWalkerBase<AliasAnalysisType> *Walker; 1009 1010 public: 1011 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1012 : MemorySSAWalker(M), Walker(W) {} 1013 ~CachingWalker() override = default; 1014 1015 using MemorySSAWalker::getClobberingMemoryAccess; 1016 1017 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1018 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1019 } 1020 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1021 const MemoryLocation &Loc, 1022 unsigned &UWL) { 1023 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1024 } 1025 1026 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1027 unsigned UpwardWalkLimit = MaxCheckLimit; 1028 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1029 } 1030 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1031 const MemoryLocation &Loc) override { 1032 unsigned UpwardWalkLimit = MaxCheckLimit; 1033 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1034 } 1035 1036 void invalidateInfo(MemoryAccess *MA) override { 1037 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1038 MUD->resetOptimized(); 1039 } 1040 }; 1041 1042 template <class AliasAnalysisType> 1043 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1044 ClobberWalkerBase<AliasAnalysisType> *Walker; 1045 1046 public: 1047 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1048 : MemorySSAWalker(M), Walker(W) {} 1049 ~SkipSelfWalker() override = default; 1050 1051 using MemorySSAWalker::getClobberingMemoryAccess; 1052 1053 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1054 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1055 } 1056 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1057 const MemoryLocation &Loc, 1058 unsigned &UWL) { 1059 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1060 } 1061 1062 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1063 unsigned UpwardWalkLimit = MaxCheckLimit; 1064 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1065 } 1066 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1067 const MemoryLocation &Loc) override { 1068 unsigned UpwardWalkLimit = MaxCheckLimit; 1069 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1070 } 1071 1072 void invalidateInfo(MemoryAccess *MA) override { 1073 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1074 MUD->resetOptimized(); 1075 } 1076 }; 1077 1078 } // end namespace llvm 1079 1080 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1081 bool RenameAllUses) { 1082 // Pass through values to our successors 1083 for (const BasicBlock *S : successors(BB)) { 1084 auto It = PerBlockAccesses.find(S); 1085 // Rename the phi nodes in our successor block 1086 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1087 continue; 1088 AccessList *Accesses = It->second.get(); 1089 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1090 if (RenameAllUses) { 1091 bool ReplacementDone = false; 1092 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1093 if (Phi->getIncomingBlock(I) == BB) { 1094 Phi->setIncomingValue(I, IncomingVal); 1095 ReplacementDone = true; 1096 } 1097 (void) ReplacementDone; 1098 assert(ReplacementDone && "Incomplete phi during partial rename"); 1099 } else 1100 Phi->addIncoming(IncomingVal, BB); 1101 } 1102 } 1103 1104 /// Rename a single basic block into MemorySSA form. 1105 /// Uses the standard SSA renaming algorithm. 1106 /// \returns The new incoming value. 1107 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1108 bool RenameAllUses) { 1109 auto It = PerBlockAccesses.find(BB); 1110 // Skip most processing if the list is empty. 1111 if (It != PerBlockAccesses.end()) { 1112 AccessList *Accesses = It->second.get(); 1113 for (MemoryAccess &L : *Accesses) { 1114 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1115 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1116 MUD->setDefiningAccess(IncomingVal); 1117 if (isa<MemoryDef>(&L)) 1118 IncomingVal = &L; 1119 } else { 1120 IncomingVal = &L; 1121 } 1122 } 1123 } 1124 return IncomingVal; 1125 } 1126 1127 /// This is the standard SSA renaming algorithm. 1128 /// 1129 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1130 /// in phi nodes in our successors. 1131 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1132 SmallPtrSetImpl<BasicBlock *> &Visited, 1133 bool SkipVisited, bool RenameAllUses) { 1134 assert(Root && "Trying to rename accesses in an unreachable block"); 1135 1136 SmallVector<RenamePassData, 32> WorkStack; 1137 // Skip everything if we already renamed this block and we are skipping. 1138 // Note: You can't sink this into the if, because we need it to occur 1139 // regardless of whether we skip blocks or not. 1140 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1141 if (SkipVisited && AlreadyVisited) 1142 return; 1143 1144 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1145 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1146 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1147 1148 while (!WorkStack.empty()) { 1149 DomTreeNode *Node = WorkStack.back().DTN; 1150 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1151 IncomingVal = WorkStack.back().IncomingVal; 1152 1153 if (ChildIt == Node->end()) { 1154 WorkStack.pop_back(); 1155 } else { 1156 DomTreeNode *Child = *ChildIt; 1157 ++WorkStack.back().ChildIt; 1158 BasicBlock *BB = Child->getBlock(); 1159 // Note: You can't sink this into the if, because we need it to occur 1160 // regardless of whether we skip blocks or not. 1161 AlreadyVisited = !Visited.insert(BB).second; 1162 if (SkipVisited && AlreadyVisited) { 1163 // We already visited this during our renaming, which can happen when 1164 // being asked to rename multiple blocks. Figure out the incoming val, 1165 // which is the last def. 1166 // Incoming value can only change if there is a block def, and in that 1167 // case, it's the last block def in the list. 1168 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1169 IncomingVal = &*BlockDefs->rbegin(); 1170 } else 1171 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1172 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1173 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1174 } 1175 } 1176 } 1177 1178 /// This handles unreachable block accesses by deleting phi nodes in 1179 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1180 /// being uses of the live on entry definition. 1181 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1182 assert(!DT->isReachableFromEntry(BB) && 1183 "Reachable block found while handling unreachable blocks"); 1184 1185 // Make sure phi nodes in our reachable successors end up with a 1186 // LiveOnEntryDef for our incoming edge, even though our block is forward 1187 // unreachable. We could just disconnect these blocks from the CFG fully, 1188 // but we do not right now. 1189 for (const BasicBlock *S : successors(BB)) { 1190 if (!DT->isReachableFromEntry(S)) 1191 continue; 1192 auto It = PerBlockAccesses.find(S); 1193 // Rename the phi nodes in our successor block 1194 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1195 continue; 1196 AccessList *Accesses = It->second.get(); 1197 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1198 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1199 } 1200 1201 auto It = PerBlockAccesses.find(BB); 1202 if (It == PerBlockAccesses.end()) 1203 return; 1204 1205 auto &Accesses = It->second; 1206 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1207 auto Next = std::next(AI); 1208 // If we have a phi, just remove it. We are going to replace all 1209 // users with live on entry. 1210 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1211 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1212 else 1213 Accesses->erase(AI); 1214 AI = Next; 1215 } 1216 } 1217 1218 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1219 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1220 SkipWalker(nullptr), NextID(0) { 1221 // Build MemorySSA using a batch alias analysis. This reuses the internal 1222 // state that AA collects during an alias()/getModRefInfo() call. This is 1223 // safe because there are no CFG changes while building MemorySSA and can 1224 // significantly reduce the time spent by the compiler in AA, because we will 1225 // make queries about all the instructions in the Function. 1226 BatchAAResults BatchAA(*AA); 1227 buildMemorySSA(BatchAA); 1228 // Intentionally leave AA to nullptr while building so we don't accidently 1229 // use non-batch AliasAnalysis. 1230 this->AA = AA; 1231 // Also create the walker here. 1232 getWalker(); 1233 } 1234 1235 MemorySSA::~MemorySSA() { 1236 // Drop all our references 1237 for (const auto &Pair : PerBlockAccesses) 1238 for (MemoryAccess &MA : *Pair.second) 1239 MA.dropAllReferences(); 1240 } 1241 1242 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1243 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1244 1245 if (Res.second) 1246 Res.first->second = std::make_unique<AccessList>(); 1247 return Res.first->second.get(); 1248 } 1249 1250 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1251 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1252 1253 if (Res.second) 1254 Res.first->second = std::make_unique<DefsList>(); 1255 return Res.first->second.get(); 1256 } 1257 1258 namespace llvm { 1259 1260 /// This class is a batch walker of all MemoryUse's in the program, and points 1261 /// their defining access at the thing that actually clobbers them. Because it 1262 /// is a batch walker that touches everything, it does not operate like the 1263 /// other walkers. This walker is basically performing a top-down SSA renaming 1264 /// pass, where the version stack is used as the cache. This enables it to be 1265 /// significantly more time and memory efficient than using the regular walker, 1266 /// which is walking bottom-up. 1267 class MemorySSA::OptimizeUses { 1268 public: 1269 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1270 BatchAAResults *BAA, DominatorTree *DT) 1271 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1272 1273 void optimizeUses(); 1274 1275 private: 1276 /// This represents where a given memorylocation is in the stack. 1277 struct MemlocStackInfo { 1278 // This essentially is keeping track of versions of the stack. Whenever 1279 // the stack changes due to pushes or pops, these versions increase. 1280 unsigned long StackEpoch; 1281 unsigned long PopEpoch; 1282 // This is the lower bound of places on the stack to check. It is equal to 1283 // the place the last stack walk ended. 1284 // Note: Correctness depends on this being initialized to 0, which densemap 1285 // does 1286 unsigned long LowerBound; 1287 const BasicBlock *LowerBoundBlock; 1288 // This is where the last walk for this memory location ended. 1289 unsigned long LastKill; 1290 bool LastKillValid; 1291 Optional<AliasResult> AR; 1292 }; 1293 1294 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1295 SmallVectorImpl<MemoryAccess *> &, 1296 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1297 1298 MemorySSA *MSSA; 1299 CachingWalker<BatchAAResults> *Walker; 1300 BatchAAResults *AA; 1301 DominatorTree *DT; 1302 }; 1303 1304 } // end namespace llvm 1305 1306 /// Optimize the uses in a given block This is basically the SSA renaming 1307 /// algorithm, with one caveat: We are able to use a single stack for all 1308 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1309 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1310 /// going to be some position in that stack of possible ones. 1311 /// 1312 /// We track the stack positions that each MemoryLocation needs 1313 /// to check, and last ended at. This is because we only want to check the 1314 /// things that changed since last time. The same MemoryLocation should 1315 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1316 /// things like this, and if they start, we can modify MemoryLocOrCall to 1317 /// include relevant data) 1318 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1319 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1320 SmallVectorImpl<MemoryAccess *> &VersionStack, 1321 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1322 1323 /// If no accesses, nothing to do. 1324 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1325 if (Accesses == nullptr) 1326 return; 1327 1328 // Pop everything that doesn't dominate the current block off the stack, 1329 // increment the PopEpoch to account for this. 1330 while (true) { 1331 assert( 1332 !VersionStack.empty() && 1333 "Version stack should have liveOnEntry sentinel dominating everything"); 1334 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1335 if (DT->dominates(BackBlock, BB)) 1336 break; 1337 while (VersionStack.back()->getBlock() == BackBlock) 1338 VersionStack.pop_back(); 1339 ++PopEpoch; 1340 } 1341 1342 for (MemoryAccess &MA : *Accesses) { 1343 auto *MU = dyn_cast<MemoryUse>(&MA); 1344 if (!MU) { 1345 VersionStack.push_back(&MA); 1346 ++StackEpoch; 1347 continue; 1348 } 1349 1350 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1351 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1352 continue; 1353 } 1354 1355 MemoryLocOrCall UseMLOC(MU); 1356 auto &LocInfo = LocStackInfo[UseMLOC]; 1357 // If the pop epoch changed, it means we've removed stuff from top of 1358 // stack due to changing blocks. We may have to reset the lower bound or 1359 // last kill info. 1360 if (LocInfo.PopEpoch != PopEpoch) { 1361 LocInfo.PopEpoch = PopEpoch; 1362 LocInfo.StackEpoch = StackEpoch; 1363 // If the lower bound was in something that no longer dominates us, we 1364 // have to reset it. 1365 // We can't simply track stack size, because the stack may have had 1366 // pushes/pops in the meantime. 1367 // XXX: This is non-optimal, but only is slower cases with heavily 1368 // branching dominator trees. To get the optimal number of queries would 1369 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1370 // the top of that stack dominates us. This does not seem worth it ATM. 1371 // A much cheaper optimization would be to always explore the deepest 1372 // branch of the dominator tree first. This will guarantee this resets on 1373 // the smallest set of blocks. 1374 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1375 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1376 // Reset the lower bound of things to check. 1377 // TODO: Some day we should be able to reset to last kill, rather than 1378 // 0. 1379 LocInfo.LowerBound = 0; 1380 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1381 LocInfo.LastKillValid = false; 1382 } 1383 } else if (LocInfo.StackEpoch != StackEpoch) { 1384 // If all that has changed is the StackEpoch, we only have to check the 1385 // new things on the stack, because we've checked everything before. In 1386 // this case, the lower bound of things to check remains the same. 1387 LocInfo.PopEpoch = PopEpoch; 1388 LocInfo.StackEpoch = StackEpoch; 1389 } 1390 if (!LocInfo.LastKillValid) { 1391 LocInfo.LastKill = VersionStack.size() - 1; 1392 LocInfo.LastKillValid = true; 1393 LocInfo.AR = MayAlias; 1394 } 1395 1396 // At this point, we should have corrected last kill and LowerBound to be 1397 // in bounds. 1398 assert(LocInfo.LowerBound < VersionStack.size() && 1399 "Lower bound out of range"); 1400 assert(LocInfo.LastKill < VersionStack.size() && 1401 "Last kill info out of range"); 1402 // In any case, the new upper bound is the top of the stack. 1403 unsigned long UpperBound = VersionStack.size() - 1; 1404 1405 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1406 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1407 << *(MU->getMemoryInst()) << ")" 1408 << " because there are " 1409 << UpperBound - LocInfo.LowerBound 1410 << " stores to disambiguate\n"); 1411 // Because we did not walk, LastKill is no longer valid, as this may 1412 // have been a kill. 1413 LocInfo.LastKillValid = false; 1414 continue; 1415 } 1416 bool FoundClobberResult = false; 1417 unsigned UpwardWalkLimit = MaxCheckLimit; 1418 while (UpperBound > LocInfo.LowerBound) { 1419 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1420 // For phis, use the walker, see where we ended up, go there 1421 MemoryAccess *Result = 1422 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1423 // We are guaranteed to find it or something is wrong 1424 while (VersionStack[UpperBound] != Result) { 1425 assert(UpperBound != 0); 1426 --UpperBound; 1427 } 1428 FoundClobberResult = true; 1429 break; 1430 } 1431 1432 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1433 // If the lifetime of the pointer ends at this instruction, it's live on 1434 // entry. 1435 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1436 // Reset UpperBound to liveOnEntryDef's place in the stack 1437 UpperBound = 0; 1438 FoundClobberResult = true; 1439 LocInfo.AR = MustAlias; 1440 break; 1441 } 1442 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1443 if (CA.IsClobber) { 1444 FoundClobberResult = true; 1445 LocInfo.AR = CA.AR; 1446 break; 1447 } 1448 --UpperBound; 1449 } 1450 1451 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1452 1453 // At the end of this loop, UpperBound is either a clobber, or lower bound 1454 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1455 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1456 // We were last killed now by where we got to 1457 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1458 LocInfo.AR = None; 1459 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1460 LocInfo.LastKill = UpperBound; 1461 } else { 1462 // Otherwise, we checked all the new ones, and now we know we can get to 1463 // LastKill. 1464 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1465 } 1466 LocInfo.LowerBound = VersionStack.size() - 1; 1467 LocInfo.LowerBoundBlock = BB; 1468 } 1469 } 1470 1471 /// Optimize uses to point to their actual clobbering definitions. 1472 void MemorySSA::OptimizeUses::optimizeUses() { 1473 SmallVector<MemoryAccess *, 16> VersionStack; 1474 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1475 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1476 1477 unsigned long StackEpoch = 1; 1478 unsigned long PopEpoch = 1; 1479 // We perform a non-recursive top-down dominator tree walk. 1480 for (const auto *DomNode : depth_first(DT->getRootNode())) 1481 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1482 LocStackInfo); 1483 } 1484 1485 void MemorySSA::placePHINodes( 1486 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1487 // Determine where our MemoryPhi's should go 1488 ForwardIDFCalculator IDFs(*DT); 1489 IDFs.setDefiningBlocks(DefiningBlocks); 1490 SmallVector<BasicBlock *, 32> IDFBlocks; 1491 IDFs.calculate(IDFBlocks); 1492 1493 // Now place MemoryPhi nodes. 1494 for (auto &BB : IDFBlocks) 1495 createMemoryPhi(BB); 1496 } 1497 1498 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1499 // We create an access to represent "live on entry", for things like 1500 // arguments or users of globals, where the memory they use is defined before 1501 // the beginning of the function. We do not actually insert it into the IR. 1502 // We do not define a live on exit for the immediate uses, and thus our 1503 // semantics do *not* imply that something with no immediate uses can simply 1504 // be removed. 1505 BasicBlock &StartingPoint = F.getEntryBlock(); 1506 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1507 &StartingPoint, NextID++)); 1508 1509 // We maintain lists of memory accesses per-block, trading memory for time. We 1510 // could just look up the memory access for every possible instruction in the 1511 // stream. 1512 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1513 // Go through each block, figure out where defs occur, and chain together all 1514 // the accesses. 1515 for (BasicBlock &B : F) { 1516 bool InsertIntoDef = false; 1517 AccessList *Accesses = nullptr; 1518 DefsList *Defs = nullptr; 1519 for (Instruction &I : B) { 1520 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1521 if (!MUD) 1522 continue; 1523 1524 if (!Accesses) 1525 Accesses = getOrCreateAccessList(&B); 1526 Accesses->push_back(MUD); 1527 if (isa<MemoryDef>(MUD)) { 1528 InsertIntoDef = true; 1529 if (!Defs) 1530 Defs = getOrCreateDefsList(&B); 1531 Defs->push_back(*MUD); 1532 } 1533 } 1534 if (InsertIntoDef) 1535 DefiningBlocks.insert(&B); 1536 } 1537 placePHINodes(DefiningBlocks); 1538 1539 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1540 // filled in with all blocks. 1541 SmallPtrSet<BasicBlock *, 16> Visited; 1542 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1543 1544 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1545 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1546 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1547 1548 // Mark the uses in unreachable blocks as live on entry, so that they go 1549 // somewhere. 1550 for (auto &BB : F) 1551 if (!Visited.count(&BB)) 1552 markUnreachableAsLiveOnEntry(&BB); 1553 } 1554 1555 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1556 1557 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1558 if (Walker) 1559 return Walker.get(); 1560 1561 if (!WalkerBase) 1562 WalkerBase = 1563 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1564 1565 Walker = 1566 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1567 return Walker.get(); 1568 } 1569 1570 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1571 if (SkipWalker) 1572 return SkipWalker.get(); 1573 1574 if (!WalkerBase) 1575 WalkerBase = 1576 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1577 1578 SkipWalker = 1579 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1580 return SkipWalker.get(); 1581 } 1582 1583 1584 // This is a helper function used by the creation routines. It places NewAccess 1585 // into the access and defs lists for a given basic block, at the given 1586 // insertion point. 1587 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1588 const BasicBlock *BB, 1589 InsertionPlace Point) { 1590 auto *Accesses = getOrCreateAccessList(BB); 1591 if (Point == Beginning) { 1592 // If it's a phi node, it goes first, otherwise, it goes after any phi 1593 // nodes. 1594 if (isa<MemoryPhi>(NewAccess)) { 1595 Accesses->push_front(NewAccess); 1596 auto *Defs = getOrCreateDefsList(BB); 1597 Defs->push_front(*NewAccess); 1598 } else { 1599 auto AI = find_if_not( 1600 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1601 Accesses->insert(AI, NewAccess); 1602 if (!isa<MemoryUse>(NewAccess)) { 1603 auto *Defs = getOrCreateDefsList(BB); 1604 auto DI = find_if_not( 1605 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1606 Defs->insert(DI, *NewAccess); 1607 } 1608 } 1609 } else { 1610 Accesses->push_back(NewAccess); 1611 if (!isa<MemoryUse>(NewAccess)) { 1612 auto *Defs = getOrCreateDefsList(BB); 1613 Defs->push_back(*NewAccess); 1614 } 1615 } 1616 BlockNumberingValid.erase(BB); 1617 } 1618 1619 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1620 AccessList::iterator InsertPt) { 1621 auto *Accesses = getWritableBlockAccesses(BB); 1622 bool WasEnd = InsertPt == Accesses->end(); 1623 Accesses->insert(AccessList::iterator(InsertPt), What); 1624 if (!isa<MemoryUse>(What)) { 1625 auto *Defs = getOrCreateDefsList(BB); 1626 // If we got asked to insert at the end, we have an easy job, just shove it 1627 // at the end. If we got asked to insert before an existing def, we also get 1628 // an iterator. If we got asked to insert before a use, we have to hunt for 1629 // the next def. 1630 if (WasEnd) { 1631 Defs->push_back(*What); 1632 } else if (isa<MemoryDef>(InsertPt)) { 1633 Defs->insert(InsertPt->getDefsIterator(), *What); 1634 } else { 1635 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1636 ++InsertPt; 1637 // Either we found a def, or we are inserting at the end 1638 if (InsertPt == Accesses->end()) 1639 Defs->push_back(*What); 1640 else 1641 Defs->insert(InsertPt->getDefsIterator(), *What); 1642 } 1643 } 1644 BlockNumberingValid.erase(BB); 1645 } 1646 1647 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1648 // Keep it in the lookup tables, remove from the lists 1649 removeFromLists(What, false); 1650 1651 // Note that moving should implicitly invalidate the optimized state of a 1652 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1653 // MemoryDef. 1654 if (auto *MD = dyn_cast<MemoryDef>(What)) 1655 MD->resetOptimized(); 1656 What->setBlock(BB); 1657 } 1658 1659 // Move What before Where in the IR. The end result is that What will belong to 1660 // the right lists and have the right Block set, but will not otherwise be 1661 // correct. It will not have the right defining access, and if it is a def, 1662 // things below it will not properly be updated. 1663 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1664 AccessList::iterator Where) { 1665 prepareForMoveTo(What, BB); 1666 insertIntoListsBefore(What, BB, Where); 1667 } 1668 1669 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1670 InsertionPlace Point) { 1671 if (isa<MemoryPhi>(What)) { 1672 assert(Point == Beginning && 1673 "Can only move a Phi at the beginning of the block"); 1674 // Update lookup table entry 1675 ValueToMemoryAccess.erase(What->getBlock()); 1676 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1677 (void)Inserted; 1678 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1679 } 1680 1681 prepareForMoveTo(What, BB); 1682 insertIntoListsForBlock(What, BB, Point); 1683 } 1684 1685 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1686 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1687 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1688 // Phi's always are placed at the front of the block. 1689 insertIntoListsForBlock(Phi, BB, Beginning); 1690 ValueToMemoryAccess[BB] = Phi; 1691 return Phi; 1692 } 1693 1694 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1695 MemoryAccess *Definition, 1696 const MemoryUseOrDef *Template, 1697 bool CreationMustSucceed) { 1698 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1699 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1700 if (CreationMustSucceed) 1701 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1702 "non-memory touching instruction"); 1703 if (NewAccess) 1704 NewAccess->setDefiningAccess(Definition); 1705 return NewAccess; 1706 } 1707 1708 // Return true if the instruction has ordering constraints. 1709 // Note specifically that this only considers stores and loads 1710 // because others are still considered ModRef by getModRefInfo. 1711 static inline bool isOrdered(const Instruction *I) { 1712 if (auto *SI = dyn_cast<StoreInst>(I)) { 1713 if (!SI->isUnordered()) 1714 return true; 1715 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1716 if (!LI->isUnordered()) 1717 return true; 1718 } 1719 return false; 1720 } 1721 1722 /// Helper function to create new memory accesses 1723 template <typename AliasAnalysisType> 1724 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1725 AliasAnalysisType *AAP, 1726 const MemoryUseOrDef *Template) { 1727 // The assume intrinsic has a control dependency which we model by claiming 1728 // that it writes arbitrarily. Ignore that fake memory dependency here. 1729 // FIXME: Replace this special casing with a more accurate modelling of 1730 // assume's control dependency. 1731 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1732 if (II->getIntrinsicID() == Intrinsic::assume) 1733 return nullptr; 1734 1735 bool Def, Use; 1736 if (Template) { 1737 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1738 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1739 #if !defined(NDEBUG) 1740 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1741 bool DefCheck, UseCheck; 1742 DefCheck = isModSet(ModRef) || isOrdered(I); 1743 UseCheck = isRefSet(ModRef); 1744 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1745 #endif 1746 } else { 1747 // Find out what affect this instruction has on memory. 1748 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1749 // The isOrdered check is used to ensure that volatiles end up as defs 1750 // (atomics end up as ModRef right now anyway). Until we separate the 1751 // ordering chain from the memory chain, this enables people to see at least 1752 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1753 // will still give an answer that bypasses other volatile loads. TODO: 1754 // Separate memory aliasing and ordering into two different chains so that 1755 // we can precisely represent both "what memory will this read/write/is 1756 // clobbered by" and "what instructions can I move this past". 1757 Def = isModSet(ModRef) || isOrdered(I); 1758 Use = isRefSet(ModRef); 1759 } 1760 1761 // It's possible for an instruction to not modify memory at all. During 1762 // construction, we ignore them. 1763 if (!Def && !Use) 1764 return nullptr; 1765 1766 MemoryUseOrDef *MUD; 1767 if (Def) 1768 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1769 else 1770 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1771 ValueToMemoryAccess[I] = MUD; 1772 return MUD; 1773 } 1774 1775 /// Returns true if \p Replacer dominates \p Replacee . 1776 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1777 const MemoryAccess *Replacee) const { 1778 if (isa<MemoryUseOrDef>(Replacee)) 1779 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1780 const auto *MP = cast<MemoryPhi>(Replacee); 1781 // For a phi node, the use occurs in the predecessor block of the phi node. 1782 // Since we may occur multiple times in the phi node, we have to check each 1783 // operand to ensure Replacer dominates each operand where Replacee occurs. 1784 for (const Use &Arg : MP->operands()) { 1785 if (Arg.get() != Replacee && 1786 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1787 return false; 1788 } 1789 return true; 1790 } 1791 1792 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1793 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1794 assert(MA->use_empty() && 1795 "Trying to remove memory access that still has uses"); 1796 BlockNumbering.erase(MA); 1797 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1798 MUD->setDefiningAccess(nullptr); 1799 // Invalidate our walker's cache if necessary 1800 if (!isa<MemoryUse>(MA)) 1801 getWalker()->invalidateInfo(MA); 1802 1803 Value *MemoryInst; 1804 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1805 MemoryInst = MUD->getMemoryInst(); 1806 else 1807 MemoryInst = MA->getBlock(); 1808 1809 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1810 if (VMA->second == MA) 1811 ValueToMemoryAccess.erase(VMA); 1812 } 1813 1814 /// Properly remove \p MA from all of MemorySSA's lists. 1815 /// 1816 /// Because of the way the intrusive list and use lists work, it is important to 1817 /// do removal in the right order. 1818 /// ShouldDelete defaults to true, and will cause the memory access to also be 1819 /// deleted, not just removed. 1820 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1821 BasicBlock *BB = MA->getBlock(); 1822 // The access list owns the reference, so we erase it from the non-owning list 1823 // first. 1824 if (!isa<MemoryUse>(MA)) { 1825 auto DefsIt = PerBlockDefs.find(BB); 1826 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1827 Defs->remove(*MA); 1828 if (Defs->empty()) 1829 PerBlockDefs.erase(DefsIt); 1830 } 1831 1832 // The erase call here will delete it. If we don't want it deleted, we call 1833 // remove instead. 1834 auto AccessIt = PerBlockAccesses.find(BB); 1835 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1836 if (ShouldDelete) 1837 Accesses->erase(MA); 1838 else 1839 Accesses->remove(MA); 1840 1841 if (Accesses->empty()) { 1842 PerBlockAccesses.erase(AccessIt); 1843 BlockNumberingValid.erase(BB); 1844 } 1845 } 1846 1847 void MemorySSA::print(raw_ostream &OS) const { 1848 MemorySSAAnnotatedWriter Writer(this); 1849 F.print(OS, &Writer); 1850 } 1851 1852 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1853 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1854 #endif 1855 1856 void MemorySSA::verifyMemorySSA() const { 1857 verifyDefUses(F); 1858 verifyDomination(F); 1859 verifyOrdering(F); 1860 verifyDominationNumbers(F); 1861 verifyPrevDefInPhis(F); 1862 // Previously, the verification used to also verify that the clobberingAccess 1863 // cached by MemorySSA is the same as the clobberingAccess found at a later 1864 // query to AA. This does not hold true in general due to the current fragility 1865 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1866 // up. As a result, transformations that are correct, will lead to BasicAA 1867 // returning different Alias answers before and after that transformation. 1868 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1869 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1870 // every transformation, which defeats the purpose of using it. For such an 1871 // example, see test4 added in D51960. 1872 } 1873 1874 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1875 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1876 for (const BasicBlock &BB : F) { 1877 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1878 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1879 auto *Pred = Phi->getIncomingBlock(I); 1880 auto *IncAcc = Phi->getIncomingValue(I); 1881 // If Pred has no unreachable predecessors, get last def looking at 1882 // IDoms. If, while walkings IDoms, any of these has an unreachable 1883 // predecessor, then the incoming def can be any access. 1884 if (auto *DTNode = DT->getNode(Pred)) { 1885 while (DTNode) { 1886 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1887 auto *LastAcc = &*(--DefList->end()); 1888 assert(LastAcc == IncAcc && 1889 "Incorrect incoming access into phi."); 1890 break; 1891 } 1892 DTNode = DTNode->getIDom(); 1893 } 1894 } else { 1895 // If Pred has unreachable predecessors, but has at least a Def, the 1896 // incoming access can be the last Def in Pred, or it could have been 1897 // optimized to LoE. After an update, though, the LoE may have been 1898 // replaced by another access, so IncAcc may be any access. 1899 // If Pred has unreachable predecessors and no Defs, incoming access 1900 // should be LoE; However, after an update, it may be any access. 1901 } 1902 } 1903 } 1904 } 1905 #endif 1906 } 1907 1908 /// Verify that all of the blocks we believe to have valid domination numbers 1909 /// actually have valid domination numbers. 1910 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1911 #ifndef NDEBUG 1912 if (BlockNumberingValid.empty()) 1913 return; 1914 1915 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1916 for (const BasicBlock &BB : F) { 1917 if (!ValidBlocks.count(&BB)) 1918 continue; 1919 1920 ValidBlocks.erase(&BB); 1921 1922 const AccessList *Accesses = getBlockAccesses(&BB); 1923 // It's correct to say an empty block has valid numbering. 1924 if (!Accesses) 1925 continue; 1926 1927 // Block numbering starts at 1. 1928 unsigned long LastNumber = 0; 1929 for (const MemoryAccess &MA : *Accesses) { 1930 auto ThisNumberIter = BlockNumbering.find(&MA); 1931 assert(ThisNumberIter != BlockNumbering.end() && 1932 "MemoryAccess has no domination number in a valid block!"); 1933 1934 unsigned long ThisNumber = ThisNumberIter->second; 1935 assert(ThisNumber > LastNumber && 1936 "Domination numbers should be strictly increasing!"); 1937 LastNumber = ThisNumber; 1938 } 1939 } 1940 1941 assert(ValidBlocks.empty() && 1942 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1943 #endif 1944 } 1945 1946 /// Verify that the order and existence of MemoryAccesses matches the 1947 /// order and existence of memory affecting instructions. 1948 void MemorySSA::verifyOrdering(Function &F) const { 1949 #ifndef NDEBUG 1950 // Walk all the blocks, comparing what the lookups think and what the access 1951 // lists think, as well as the order in the blocks vs the order in the access 1952 // lists. 1953 SmallVector<MemoryAccess *, 32> ActualAccesses; 1954 SmallVector<MemoryAccess *, 32> ActualDefs; 1955 for (BasicBlock &B : F) { 1956 const AccessList *AL = getBlockAccesses(&B); 1957 const auto *DL = getBlockDefs(&B); 1958 MemoryAccess *Phi = getMemoryAccess(&B); 1959 if (Phi) { 1960 ActualAccesses.push_back(Phi); 1961 ActualDefs.push_back(Phi); 1962 } 1963 1964 for (Instruction &I : B) { 1965 MemoryAccess *MA = getMemoryAccess(&I); 1966 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1967 "We have memory affecting instructions " 1968 "in this block but they are not in the " 1969 "access list or defs list"); 1970 if (MA) { 1971 ActualAccesses.push_back(MA); 1972 if (isa<MemoryDef>(MA)) 1973 ActualDefs.push_back(MA); 1974 } 1975 } 1976 // Either we hit the assert, really have no accesses, or we have both 1977 // accesses and an access list. 1978 // Same with defs. 1979 if (!AL && !DL) 1980 continue; 1981 assert(AL->size() == ActualAccesses.size() && 1982 "We don't have the same number of accesses in the block as on the " 1983 "access list"); 1984 assert((DL || ActualDefs.size() == 0) && 1985 "Either we should have a defs list, or we should have no defs"); 1986 assert((!DL || DL->size() == ActualDefs.size()) && 1987 "We don't have the same number of defs in the block as on the " 1988 "def list"); 1989 auto ALI = AL->begin(); 1990 auto AAI = ActualAccesses.begin(); 1991 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1992 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1993 ++ALI; 1994 ++AAI; 1995 } 1996 ActualAccesses.clear(); 1997 if (DL) { 1998 auto DLI = DL->begin(); 1999 auto ADI = ActualDefs.begin(); 2000 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2001 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2002 ++DLI; 2003 ++ADI; 2004 } 2005 } 2006 ActualDefs.clear(); 2007 } 2008 #endif 2009 } 2010 2011 /// Verify the domination properties of MemorySSA by checking that each 2012 /// definition dominates all of its uses. 2013 void MemorySSA::verifyDomination(Function &F) const { 2014 #ifndef NDEBUG 2015 for (BasicBlock &B : F) { 2016 // Phi nodes are attached to basic blocks 2017 if (MemoryPhi *MP = getMemoryAccess(&B)) 2018 for (const Use &U : MP->uses()) 2019 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 2020 2021 for (Instruction &I : B) { 2022 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 2023 if (!MD) 2024 continue; 2025 2026 for (const Use &U : MD->uses()) 2027 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 2028 } 2029 } 2030 #endif 2031 } 2032 2033 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2034 /// appears in the use list of \p Def. 2035 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2036 #ifndef NDEBUG 2037 // The live on entry use may cause us to get a NULL def here 2038 if (!Def) 2039 assert(isLiveOnEntryDef(Use) && 2040 "Null def but use not point to live on entry def"); 2041 else 2042 assert(is_contained(Def->users(), Use) && 2043 "Did not find use in def's use list"); 2044 #endif 2045 } 2046 2047 /// Verify the immediate use information, by walking all the memory 2048 /// accesses and verifying that, for each use, it appears in the 2049 /// appropriate def's use list 2050 void MemorySSA::verifyDefUses(Function &F) const { 2051 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 2052 for (BasicBlock &B : F) { 2053 // Phi nodes are attached to basic blocks 2054 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 2055 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2056 pred_begin(&B), pred_end(&B))) && 2057 "Incomplete MemoryPhi Node"); 2058 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2059 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2060 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2061 pred_end(&B) && 2062 "Incoming phi block not a block predecessor"); 2063 } 2064 } 2065 2066 for (Instruction &I : B) { 2067 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 2068 verifyUseInDefs(MA->getDefiningAccess(), MA); 2069 } 2070 } 2071 } 2072 #endif 2073 } 2074 2075 /// Perform a local numbering on blocks so that instruction ordering can be 2076 /// determined in constant time. 2077 /// TODO: We currently just number in order. If we numbered by N, we could 2078 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2079 /// log2(N) sequences of mixed before and after) without needing to invalidate 2080 /// the numbering. 2081 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2082 // The pre-increment ensures the numbers really start at 1. 2083 unsigned long CurrentNumber = 0; 2084 const AccessList *AL = getBlockAccesses(B); 2085 assert(AL != nullptr && "Asking to renumber an empty block"); 2086 for (const auto &I : *AL) 2087 BlockNumbering[&I] = ++CurrentNumber; 2088 BlockNumberingValid.insert(B); 2089 } 2090 2091 /// Determine, for two memory accesses in the same block, 2092 /// whether \p Dominator dominates \p Dominatee. 2093 /// \returns True if \p Dominator dominates \p Dominatee. 2094 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2095 const MemoryAccess *Dominatee) const { 2096 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2097 2098 assert((DominatorBlock == Dominatee->getBlock()) && 2099 "Asking for local domination when accesses are in different blocks!"); 2100 // A node dominates itself. 2101 if (Dominatee == Dominator) 2102 return true; 2103 2104 // When Dominatee is defined on function entry, it is not dominated by another 2105 // memory access. 2106 if (isLiveOnEntryDef(Dominatee)) 2107 return false; 2108 2109 // When Dominator is defined on function entry, it dominates the other memory 2110 // access. 2111 if (isLiveOnEntryDef(Dominator)) 2112 return true; 2113 2114 if (!BlockNumberingValid.count(DominatorBlock)) 2115 renumberBlock(DominatorBlock); 2116 2117 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2118 // All numbers start with 1 2119 assert(DominatorNum != 0 && "Block was not numbered properly"); 2120 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2121 assert(DominateeNum != 0 && "Block was not numbered properly"); 2122 return DominatorNum < DominateeNum; 2123 } 2124 2125 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2126 const MemoryAccess *Dominatee) const { 2127 if (Dominator == Dominatee) 2128 return true; 2129 2130 if (isLiveOnEntryDef(Dominatee)) 2131 return false; 2132 2133 if (Dominator->getBlock() != Dominatee->getBlock()) 2134 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2135 return locallyDominates(Dominator, Dominatee); 2136 } 2137 2138 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2139 const Use &Dominatee) const { 2140 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2141 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2142 // The def must dominate the incoming block of the phi. 2143 if (UseBB != Dominator->getBlock()) 2144 return DT->dominates(Dominator->getBlock(), UseBB); 2145 // If the UseBB and the DefBB are the same, compare locally. 2146 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2147 } 2148 // If it's not a PHI node use, the normal dominates can already handle it. 2149 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2150 } 2151 2152 const static char LiveOnEntryStr[] = "liveOnEntry"; 2153 2154 void MemoryAccess::print(raw_ostream &OS) const { 2155 switch (getValueID()) { 2156 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2157 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2158 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2159 } 2160 llvm_unreachable("invalid value id"); 2161 } 2162 2163 void MemoryDef::print(raw_ostream &OS) const { 2164 MemoryAccess *UO = getDefiningAccess(); 2165 2166 auto printID = [&OS](MemoryAccess *A) { 2167 if (A && A->getID()) 2168 OS << A->getID(); 2169 else 2170 OS << LiveOnEntryStr; 2171 }; 2172 2173 OS << getID() << " = MemoryDef("; 2174 printID(UO); 2175 OS << ")"; 2176 2177 if (isOptimized()) { 2178 OS << "->"; 2179 printID(getOptimized()); 2180 2181 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2182 OS << " " << *AR; 2183 } 2184 } 2185 2186 void MemoryPhi::print(raw_ostream &OS) const { 2187 bool First = true; 2188 OS << getID() << " = MemoryPhi("; 2189 for (const auto &Op : operands()) { 2190 BasicBlock *BB = getIncomingBlock(Op); 2191 MemoryAccess *MA = cast<MemoryAccess>(Op); 2192 if (!First) 2193 OS << ','; 2194 else 2195 First = false; 2196 2197 OS << '{'; 2198 if (BB->hasName()) 2199 OS << BB->getName(); 2200 else 2201 BB->printAsOperand(OS, false); 2202 OS << ','; 2203 if (unsigned ID = MA->getID()) 2204 OS << ID; 2205 else 2206 OS << LiveOnEntryStr; 2207 OS << '}'; 2208 } 2209 OS << ')'; 2210 } 2211 2212 void MemoryUse::print(raw_ostream &OS) const { 2213 MemoryAccess *UO = getDefiningAccess(); 2214 OS << "MemoryUse("; 2215 if (UO && UO->getID()) 2216 OS << UO->getID(); 2217 else 2218 OS << LiveOnEntryStr; 2219 OS << ')'; 2220 2221 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2222 OS << " " << *AR; 2223 } 2224 2225 void MemoryAccess::dump() const { 2226 // Cannot completely remove virtual function even in release mode. 2227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2228 print(dbgs()); 2229 dbgs() << "\n"; 2230 #endif 2231 } 2232 2233 char MemorySSAPrinterLegacyPass::ID = 0; 2234 2235 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2236 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2237 } 2238 2239 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2240 AU.setPreservesAll(); 2241 AU.addRequired<MemorySSAWrapperPass>(); 2242 } 2243 2244 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2245 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2246 MSSA.print(dbgs()); 2247 if (VerifyMemorySSA) 2248 MSSA.verifyMemorySSA(); 2249 return false; 2250 } 2251 2252 AnalysisKey MemorySSAAnalysis::Key; 2253 2254 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2255 FunctionAnalysisManager &AM) { 2256 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2257 auto &AA = AM.getResult<AAManager>(F); 2258 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2259 } 2260 2261 bool MemorySSAAnalysis::Result::invalidate( 2262 Function &F, const PreservedAnalyses &PA, 2263 FunctionAnalysisManager::Invalidator &Inv) { 2264 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2265 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2266 Inv.invalidate<AAManager>(F, PA) || 2267 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2268 } 2269 2270 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2271 FunctionAnalysisManager &AM) { 2272 OS << "MemorySSA for function: " << F.getName() << "\n"; 2273 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2274 2275 return PreservedAnalyses::all(); 2276 } 2277 2278 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2279 FunctionAnalysisManager &AM) { 2280 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2281 2282 return PreservedAnalyses::all(); 2283 } 2284 2285 char MemorySSAWrapperPass::ID = 0; 2286 2287 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2288 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2289 } 2290 2291 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2292 2293 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2294 AU.setPreservesAll(); 2295 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2296 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2297 } 2298 2299 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2300 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2301 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2302 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2303 return false; 2304 } 2305 2306 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2307 2308 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2309 MSSA->print(OS); 2310 } 2311 2312 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2313 2314 /// Walk the use-def chains starting at \p StartingAccess and find 2315 /// the MemoryAccess that actually clobbers Loc. 2316 /// 2317 /// \returns our clobbering memory access 2318 template <typename AliasAnalysisType> 2319 MemoryAccess * 2320 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2321 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2322 unsigned &UpwardWalkLimit) { 2323 if (isa<MemoryPhi>(StartingAccess)) 2324 return StartingAccess; 2325 2326 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2327 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2328 return StartingUseOrDef; 2329 2330 Instruction *I = StartingUseOrDef->getMemoryInst(); 2331 2332 // Conservatively, fences are always clobbers, so don't perform the walk if we 2333 // hit a fence. 2334 if (!isa<CallBase>(I) && I->isFenceLike()) 2335 return StartingUseOrDef; 2336 2337 UpwardsMemoryQuery Q; 2338 Q.OriginalAccess = StartingUseOrDef; 2339 Q.StartingLoc = Loc; 2340 Q.Inst = I; 2341 Q.IsCall = false; 2342 2343 // Unlike the other function, do not walk to the def of a def, because we are 2344 // handed something we already believe is the clobbering access. 2345 // We never set SkipSelf to true in Q in this method. 2346 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2347 ? StartingUseOrDef->getDefiningAccess() 2348 : StartingUseOrDef; 2349 2350 MemoryAccess *Clobber = 2351 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2352 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2353 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2354 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2355 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2356 return Clobber; 2357 } 2358 2359 template <typename AliasAnalysisType> 2360 MemoryAccess * 2361 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2362 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2363 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2364 // If this is a MemoryPhi, we can't do anything. 2365 if (!StartingAccess) 2366 return MA; 2367 2368 bool IsOptimized = false; 2369 2370 // If this is an already optimized use or def, return the optimized result. 2371 // Note: Currently, we store the optimized def result in a separate field, 2372 // since we can't use the defining access. 2373 if (StartingAccess->isOptimized()) { 2374 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2375 return StartingAccess->getOptimized(); 2376 IsOptimized = true; 2377 } 2378 2379 const Instruction *I = StartingAccess->getMemoryInst(); 2380 // We can't sanely do anything with a fence, since they conservatively clobber 2381 // all memory, and have no locations to get pointers from to try to 2382 // disambiguate. 2383 if (!isa<CallBase>(I) && I->isFenceLike()) 2384 return StartingAccess; 2385 2386 UpwardsMemoryQuery Q(I, StartingAccess); 2387 2388 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2389 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2390 StartingAccess->setOptimized(LiveOnEntry); 2391 StartingAccess->setOptimizedAccessType(None); 2392 return LiveOnEntry; 2393 } 2394 2395 MemoryAccess *OptimizedAccess; 2396 if (!IsOptimized) { 2397 // Start with the thing we already think clobbers this location 2398 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2399 2400 // At this point, DefiningAccess may be the live on entry def. 2401 // If it is, we will not get a better result. 2402 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2403 StartingAccess->setOptimized(DefiningAccess); 2404 StartingAccess->setOptimizedAccessType(None); 2405 return DefiningAccess; 2406 } 2407 2408 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2409 StartingAccess->setOptimized(OptimizedAccess); 2410 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2411 StartingAccess->setOptimizedAccessType(None); 2412 else if (Q.AR == MustAlias) 2413 StartingAccess->setOptimizedAccessType(MustAlias); 2414 } else 2415 OptimizedAccess = StartingAccess->getOptimized(); 2416 2417 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2418 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2419 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2420 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2421 2422 MemoryAccess *Result; 2423 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2424 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2425 assert(isa<MemoryDef>(Q.OriginalAccess)); 2426 Q.SkipSelfAccess = true; 2427 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2428 } else 2429 Result = OptimizedAccess; 2430 2431 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2432 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2433 2434 return Result; 2435 } 2436 2437 MemoryAccess * 2438 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2439 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2440 return Use->getDefiningAccess(); 2441 return MA; 2442 } 2443 2444 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2445 MemoryAccess *StartingAccess, const MemoryLocation &) { 2446 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2447 return Use->getDefiningAccess(); 2448 return StartingAccess; 2449 } 2450 2451 void MemoryPhi::deleteMe(DerivedUser *Self) { 2452 delete static_cast<MemoryPhi *>(Self); 2453 } 2454 2455 void MemoryDef::deleteMe(DerivedUser *Self) { 2456 delete static_cast<MemoryDef *>(Self); 2457 } 2458 2459 void MemoryUse::deleteMe(DerivedUser *Self) { 2460 delete static_cast<MemoryUse *>(Self); 2461 } 2462