1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <memory> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "memoryssa" 59 60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 61 true) 62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 64 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 65 true) 66 67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 68 "Memory SSA Printer", false, false) 69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 71 "Memory SSA Printer", false, false) 72 73 static cl::opt<unsigned> MaxCheckLimit( 74 "memssa-check-limit", cl::Hidden, cl::init(100), 75 cl::desc("The maximum number of stores/phis MemorySSA" 76 "will consider trying to walk past (default = 100)")); 77 78 // Always verify MemorySSA if expensive checking is enabled. 79 #ifdef EXPENSIVE_CHECKS 80 bool llvm::VerifyMemorySSA = true; 81 #else 82 bool llvm::VerifyMemorySSA = false; 83 #endif 84 static cl::opt<bool, true> 85 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 86 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 87 88 namespace llvm { 89 90 /// An assembly annotator class to print Memory SSA information in 91 /// comments. 92 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 93 friend class MemorySSA; 94 95 const MemorySSA *MSSA; 96 97 public: 98 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 99 100 void emitBasicBlockStartAnnot(const BasicBlock *BB, 101 formatted_raw_ostream &OS) override { 102 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 103 OS << "; " << *MA << "\n"; 104 } 105 106 void emitInstructionAnnot(const Instruction *I, 107 formatted_raw_ostream &OS) override { 108 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 109 OS << "; " << *MA << "\n"; 110 } 111 }; 112 113 } // end namespace llvm 114 115 namespace { 116 117 /// Our current alias analysis API differentiates heavily between calls and 118 /// non-calls, and functions called on one usually assert on the other. 119 /// This class encapsulates the distinction to simplify other code that wants 120 /// "Memory affecting instructions and related data" to use as a key. 121 /// For example, this class is used as a densemap key in the use optimizer. 122 class MemoryLocOrCall { 123 public: 124 bool IsCall = false; 125 126 MemoryLocOrCall(MemoryUseOrDef *MUD) 127 : MemoryLocOrCall(MUD->getMemoryInst()) {} 128 MemoryLocOrCall(const MemoryUseOrDef *MUD) 129 : MemoryLocOrCall(MUD->getMemoryInst()) {} 130 131 MemoryLocOrCall(Instruction *Inst) { 132 if (auto *C = dyn_cast<CallBase>(Inst)) { 133 IsCall = true; 134 Call = C; 135 } else { 136 IsCall = false; 137 // There is no such thing as a memorylocation for a fence inst, and it is 138 // unique in that regard. 139 if (!isa<FenceInst>(Inst)) 140 Loc = MemoryLocation::get(Inst); 141 } 142 } 143 144 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 145 146 const CallBase *getCall() const { 147 assert(IsCall); 148 return Call; 149 } 150 151 MemoryLocation getLoc() const { 152 assert(!IsCall); 153 return Loc; 154 } 155 156 bool operator==(const MemoryLocOrCall &Other) const { 157 if (IsCall != Other.IsCall) 158 return false; 159 160 if (!IsCall) 161 return Loc == Other.Loc; 162 163 if (Call->getCalledValue() != Other.Call->getCalledValue()) 164 return false; 165 166 return Call->arg_size() == Other.Call->arg_size() && 167 std::equal(Call->arg_begin(), Call->arg_end(), 168 Other.Call->arg_begin()); 169 } 170 171 private: 172 union { 173 const CallBase *Call; 174 MemoryLocation Loc; 175 }; 176 }; 177 178 } // end anonymous namespace 179 180 namespace llvm { 181 182 template <> struct DenseMapInfo<MemoryLocOrCall> { 183 static inline MemoryLocOrCall getEmptyKey() { 184 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 185 } 186 187 static inline MemoryLocOrCall getTombstoneKey() { 188 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 189 } 190 191 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 192 if (!MLOC.IsCall) 193 return hash_combine( 194 MLOC.IsCall, 195 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 196 197 hash_code hash = 198 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 199 MLOC.getCall()->getCalledValue())); 200 201 for (const Value *Arg : MLOC.getCall()->args()) 202 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 203 return hash; 204 } 205 206 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 207 return LHS == RHS; 208 } 209 }; 210 211 } // end namespace llvm 212 213 /// This does one-way checks to see if Use could theoretically be hoisted above 214 /// MayClobber. This will not check the other way around. 215 /// 216 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 217 /// MayClobber, with no potentially clobbering operations in between them. 218 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 219 static bool areLoadsReorderable(const LoadInst *Use, 220 const LoadInst *MayClobber) { 221 bool VolatileUse = Use->isVolatile(); 222 bool VolatileClobber = MayClobber->isVolatile(); 223 // Volatile operations may never be reordered with other volatile operations. 224 if (VolatileUse && VolatileClobber) 225 return false; 226 // Otherwise, volatile doesn't matter here. From the language reference: 227 // 'optimizers may change the order of volatile operations relative to 228 // non-volatile operations.'" 229 230 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 231 // is weaker, it can be moved above other loads. We just need to be sure that 232 // MayClobber isn't an acquire load, because loads can't be moved above 233 // acquire loads. 234 // 235 // Note that this explicitly *does* allow the free reordering of monotonic (or 236 // weaker) loads of the same address. 237 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 238 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 239 AtomicOrdering::Acquire); 240 return !(SeqCstUse || MayClobberIsAcquire); 241 } 242 243 namespace { 244 245 struct ClobberAlias { 246 bool IsClobber; 247 Optional<AliasResult> AR; 248 }; 249 250 } // end anonymous namespace 251 252 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 253 // ignored if IsClobber = false. 254 static ClobberAlias instructionClobbersQuery(const MemoryDef *MD, 255 const MemoryLocation &UseLoc, 256 const Instruction *UseInst, 257 AliasAnalysis &AA) { 258 Instruction *DefInst = MD->getMemoryInst(); 259 assert(DefInst && "Defining instruction not actually an instruction"); 260 const auto *UseCall = dyn_cast<CallBase>(UseInst); 261 Optional<AliasResult> AR; 262 263 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 264 // These intrinsics will show up as affecting memory, but they are just 265 // markers, mostly. 266 // 267 // FIXME: We probably don't actually want MemorySSA to model these at all 268 // (including creating MemoryAccesses for them): we just end up inventing 269 // clobbers where they don't really exist at all. Please see D43269 for 270 // context. 271 switch (II->getIntrinsicID()) { 272 case Intrinsic::lifetime_start: 273 if (UseCall) 274 return {false, NoAlias}; 275 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 276 return {AR != NoAlias, AR}; 277 case Intrinsic::lifetime_end: 278 case Intrinsic::invariant_start: 279 case Intrinsic::invariant_end: 280 case Intrinsic::assume: 281 return {false, NoAlias}; 282 default: 283 break; 284 } 285 } 286 287 if (UseCall) { 288 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 289 AR = isMustSet(I) ? MustAlias : MayAlias; 290 return {isModOrRefSet(I), AR}; 291 } 292 293 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 294 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 295 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 296 297 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 298 AR = isMustSet(I) ? MustAlias : MayAlias; 299 return {isModSet(I), AR}; 300 } 301 302 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 303 const MemoryUseOrDef *MU, 304 const MemoryLocOrCall &UseMLOC, 305 AliasAnalysis &AA) { 306 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 307 // to exist while MemoryLocOrCall is pushed through places. 308 if (UseMLOC.IsCall) 309 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 310 AA); 311 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 312 AA); 313 } 314 315 // Return true when MD may alias MU, return false otherwise. 316 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 317 AliasAnalysis &AA) { 318 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 319 } 320 321 namespace { 322 323 struct UpwardsMemoryQuery { 324 // True if our original query started off as a call 325 bool IsCall = false; 326 // The pointer location we started the query with. This will be empty if 327 // IsCall is true. 328 MemoryLocation StartingLoc; 329 // This is the instruction we were querying about. 330 const Instruction *Inst = nullptr; 331 // The MemoryAccess we actually got called with, used to test local domination 332 const MemoryAccess *OriginalAccess = nullptr; 333 Optional<AliasResult> AR = MayAlias; 334 bool SkipSelfAccess = false; 335 336 UpwardsMemoryQuery() = default; 337 338 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 339 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 340 if (!IsCall) 341 StartingLoc = MemoryLocation::get(Inst); 342 } 343 }; 344 345 } // end anonymous namespace 346 347 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 348 AliasAnalysis &AA) { 349 Instruction *Inst = MD->getMemoryInst(); 350 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 351 switch (II->getIntrinsicID()) { 352 case Intrinsic::lifetime_end: 353 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); 354 default: 355 return false; 356 } 357 } 358 return false; 359 } 360 361 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, 362 const Instruction *I) { 363 // If the memory can't be changed, then loads of the memory can't be 364 // clobbered. 365 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 366 AA.pointsToConstantMemory(cast<LoadInst>(I)-> 367 getPointerOperand())); 368 } 369 370 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 371 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 372 /// 373 /// This is meant to be as simple and self-contained as possible. Because it 374 /// uses no cache, etc., it can be relatively expensive. 375 /// 376 /// \param Start The MemoryAccess that we want to walk from. 377 /// \param ClobberAt A clobber for Start. 378 /// \param StartLoc The MemoryLocation for Start. 379 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 380 /// \param Query The UpwardsMemoryQuery we used for our search. 381 /// \param AA The AliasAnalysis we used for our search. 382 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 383 LLVM_ATTRIBUTE_UNUSED static void 384 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 385 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 386 const UpwardsMemoryQuery &Query, AliasAnalysis &AA, 387 bool AllowImpreciseClobber = false) { 388 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 389 390 if (MSSA.isLiveOnEntryDef(Start)) { 391 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 392 "liveOnEntry must clobber itself"); 393 return; 394 } 395 396 bool FoundClobber = false; 397 DenseSet<ConstMemoryAccessPair> VisitedPhis; 398 SmallVector<ConstMemoryAccessPair, 8> Worklist; 399 Worklist.emplace_back(Start, StartLoc); 400 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 401 // is found, complain. 402 while (!Worklist.empty()) { 403 auto MAP = Worklist.pop_back_val(); 404 // All we care about is that nothing from Start to ClobberAt clobbers Start. 405 // We learn nothing from revisiting nodes. 406 if (!VisitedPhis.insert(MAP).second) 407 continue; 408 409 for (const auto *MA : def_chain(MAP.first)) { 410 if (MA == ClobberAt) { 411 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 412 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 413 // since it won't let us short-circuit. 414 // 415 // Also, note that this can't be hoisted out of the `Worklist` loop, 416 // since MD may only act as a clobber for 1 of N MemoryLocations. 417 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 418 if (!FoundClobber) { 419 ClobberAlias CA = 420 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 421 if (CA.IsClobber) { 422 FoundClobber = true; 423 // Not used: CA.AR; 424 } 425 } 426 } 427 break; 428 } 429 430 // We should never hit liveOnEntry, unless it's the clobber. 431 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 432 433 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 434 // If Start is a Def, skip self. 435 if (MD == Start) 436 continue; 437 438 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 439 .IsClobber && 440 "Found clobber before reaching ClobberAt!"); 441 continue; 442 } 443 444 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 445 (void)MU; 446 assert (MU == Start && 447 "Can only find use in def chain if Start is a use"); 448 continue; 449 } 450 451 assert(isa<MemoryPhi>(MA)); 452 Worklist.append( 453 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 454 upward_defs_end()); 455 } 456 } 457 458 // If the verify is done following an optimization, it's possible that 459 // ClobberAt was a conservative clobbering, that we can now infer is not a 460 // true clobbering access. Don't fail the verify if that's the case. 461 // We do have accesses that claim they're optimized, but could be optimized 462 // further. Updating all these can be expensive, so allow it for now (FIXME). 463 if (AllowImpreciseClobber) 464 return; 465 466 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 467 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 468 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 469 "ClobberAt never acted as a clobber"); 470 } 471 472 namespace { 473 474 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 475 /// in one class. 476 class ClobberWalker { 477 /// Save a few bytes by using unsigned instead of size_t. 478 using ListIndex = unsigned; 479 480 /// Represents a span of contiguous MemoryDefs, potentially ending in a 481 /// MemoryPhi. 482 struct DefPath { 483 MemoryLocation Loc; 484 // Note that, because we always walk in reverse, Last will always dominate 485 // First. Also note that First and Last are inclusive. 486 MemoryAccess *First; 487 MemoryAccess *Last; 488 Optional<ListIndex> Previous; 489 490 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 491 Optional<ListIndex> Previous) 492 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 493 494 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 495 Optional<ListIndex> Previous) 496 : DefPath(Loc, Init, Init, Previous) {} 497 }; 498 499 const MemorySSA &MSSA; 500 AliasAnalysis &AA; 501 DominatorTree &DT; 502 UpwardsMemoryQuery *Query; 503 504 // Phi optimization bookkeeping 505 SmallVector<DefPath, 32> Paths; 506 DenseSet<ConstMemoryAccessPair> VisitedPhis; 507 508 /// Find the nearest def or phi that `From` can legally be optimized to. 509 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 510 assert(From->getNumOperands() && "Phi with no operands?"); 511 512 BasicBlock *BB = From->getBlock(); 513 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 514 DomTreeNode *Node = DT.getNode(BB); 515 while ((Node = Node->getIDom())) { 516 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 517 if (Defs) 518 return &*Defs->rbegin(); 519 } 520 return Result; 521 } 522 523 /// Result of calling walkToPhiOrClobber. 524 struct UpwardsWalkResult { 525 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 526 /// both. Include alias info when clobber found. 527 MemoryAccess *Result; 528 bool IsKnownClobber; 529 Optional<AliasResult> AR; 530 }; 531 532 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 533 /// This will update Desc.Last as it walks. It will (optionally) also stop at 534 /// StopAt. 535 /// 536 /// This does not test for whether StopAt is a clobber 537 UpwardsWalkResult 538 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 539 const MemoryAccess *SkipStopAt = nullptr) const { 540 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 541 542 for (MemoryAccess *Current : def_chain(Desc.Last)) { 543 Desc.Last = Current; 544 if (Current == StopAt || Current == SkipStopAt) 545 return {Current, false, MayAlias}; 546 547 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 548 if (MSSA.isLiveOnEntryDef(MD)) 549 return {MD, true, MustAlias}; 550 ClobberAlias CA = 551 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 552 if (CA.IsClobber) 553 return {MD, true, CA.AR}; 554 } 555 } 556 557 assert(isa<MemoryPhi>(Desc.Last) && 558 "Ended at a non-clobber that's not a phi?"); 559 return {Desc.Last, false, MayAlias}; 560 } 561 562 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 563 ListIndex PriorNode) { 564 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 565 upward_defs_end()); 566 for (const MemoryAccessPair &P : UpwardDefs) { 567 PausedSearches.push_back(Paths.size()); 568 Paths.emplace_back(P.second, P.first, PriorNode); 569 } 570 } 571 572 /// Represents a search that terminated after finding a clobber. This clobber 573 /// may or may not be present in the path of defs from LastNode..SearchStart, 574 /// since it may have been retrieved from cache. 575 struct TerminatedPath { 576 MemoryAccess *Clobber; 577 ListIndex LastNode; 578 }; 579 580 /// Get an access that keeps us from optimizing to the given phi. 581 /// 582 /// PausedSearches is an array of indices into the Paths array. Its incoming 583 /// value is the indices of searches that stopped at the last phi optimization 584 /// target. It's left in an unspecified state. 585 /// 586 /// If this returns None, NewPaused is a vector of searches that terminated 587 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 588 Optional<TerminatedPath> 589 getBlockingAccess(const MemoryAccess *StopWhere, 590 SmallVectorImpl<ListIndex> &PausedSearches, 591 SmallVectorImpl<ListIndex> &NewPaused, 592 SmallVectorImpl<TerminatedPath> &Terminated) { 593 assert(!PausedSearches.empty() && "No searches to continue?"); 594 595 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 596 // PausedSearches as our stack. 597 while (!PausedSearches.empty()) { 598 ListIndex PathIndex = PausedSearches.pop_back_val(); 599 DefPath &Node = Paths[PathIndex]; 600 601 // If we've already visited this path with this MemoryLocation, we don't 602 // need to do so again. 603 // 604 // NOTE: That we just drop these paths on the ground makes caching 605 // behavior sporadic. e.g. given a diamond: 606 // A 607 // B C 608 // D 609 // 610 // ...If we walk D, B, A, C, we'll only cache the result of phi 611 // optimization for A, B, and D; C will be skipped because it dies here. 612 // This arguably isn't the worst thing ever, since: 613 // - We generally query things in a top-down order, so if we got below D 614 // without needing cache entries for {C, MemLoc}, then chances are 615 // that those cache entries would end up ultimately unused. 616 // - We still cache things for A, so C only needs to walk up a bit. 617 // If this behavior becomes problematic, we can fix without a ton of extra 618 // work. 619 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 620 continue; 621 622 const MemoryAccess *SkipStopWhere = nullptr; 623 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 624 assert(isa<MemoryDef>(Query->OriginalAccess)); 625 SkipStopWhere = Query->OriginalAccess; 626 } 627 628 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere, 629 /*SkipStopAt=*/SkipStopWhere); 630 if (Res.IsKnownClobber) { 631 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 632 // If this wasn't a cache hit, we hit a clobber when walking. That's a 633 // failure. 634 TerminatedPath Term{Res.Result, PathIndex}; 635 if (!MSSA.dominates(Res.Result, StopWhere)) 636 return Term; 637 638 // Otherwise, it's a valid thing to potentially optimize to. 639 Terminated.push_back(Term); 640 continue; 641 } 642 643 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 644 // We've hit our target. Save this path off for if we want to continue 645 // walking. If we are in the mode of skipping the OriginalAccess, and 646 // we've reached back to the OriginalAccess, do not save path, we've 647 // just looped back to self. 648 if (Res.Result != SkipStopWhere) 649 NewPaused.push_back(PathIndex); 650 continue; 651 } 652 653 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 654 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 655 } 656 657 return None; 658 } 659 660 template <typename T, typename Walker> 661 struct generic_def_path_iterator 662 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 663 std::forward_iterator_tag, T *> { 664 generic_def_path_iterator() = default; 665 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 666 667 T &operator*() const { return curNode(); } 668 669 generic_def_path_iterator &operator++() { 670 N = curNode().Previous; 671 return *this; 672 } 673 674 bool operator==(const generic_def_path_iterator &O) const { 675 if (N.hasValue() != O.N.hasValue()) 676 return false; 677 return !N.hasValue() || *N == *O.N; 678 } 679 680 private: 681 T &curNode() const { return W->Paths[*N]; } 682 683 Walker *W = nullptr; 684 Optional<ListIndex> N = None; 685 }; 686 687 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 688 using const_def_path_iterator = 689 generic_def_path_iterator<const DefPath, const ClobberWalker>; 690 691 iterator_range<def_path_iterator> def_path(ListIndex From) { 692 return make_range(def_path_iterator(this, From), def_path_iterator()); 693 } 694 695 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 696 return make_range(const_def_path_iterator(this, From), 697 const_def_path_iterator()); 698 } 699 700 struct OptznResult { 701 /// The path that contains our result. 702 TerminatedPath PrimaryClobber; 703 /// The paths that we can legally cache back from, but that aren't 704 /// necessarily the result of the Phi optimization. 705 SmallVector<TerminatedPath, 4> OtherClobbers; 706 }; 707 708 ListIndex defPathIndex(const DefPath &N) const { 709 // The assert looks nicer if we don't need to do &N 710 const DefPath *NP = &N; 711 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 712 "Out of bounds DefPath!"); 713 return NP - &Paths.front(); 714 } 715 716 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 717 /// that act as legal clobbers. Note that this won't return *all* clobbers. 718 /// 719 /// Phi optimization algorithm tl;dr: 720 /// - Find the earliest def/phi, A, we can optimize to 721 /// - Find if all paths from the starting memory access ultimately reach A 722 /// - If not, optimization isn't possible. 723 /// - Otherwise, walk from A to another clobber or phi, A'. 724 /// - If A' is a def, we're done. 725 /// - If A' is a phi, try to optimize it. 726 /// 727 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 728 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 729 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 730 const MemoryLocation &Loc) { 731 assert(Paths.empty() && VisitedPhis.empty() && 732 "Reset the optimization state."); 733 734 Paths.emplace_back(Loc, Start, Phi, None); 735 // Stores how many "valid" optimization nodes we had prior to calling 736 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 737 auto PriorPathsSize = Paths.size(); 738 739 SmallVector<ListIndex, 16> PausedSearches; 740 SmallVector<ListIndex, 8> NewPaused; 741 SmallVector<TerminatedPath, 4> TerminatedPaths; 742 743 addSearches(Phi, PausedSearches, 0); 744 745 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 746 // Paths. 747 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 748 assert(!Paths.empty() && "Need a path to move"); 749 auto Dom = Paths.begin(); 750 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 751 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 752 Dom = I; 753 auto Last = Paths.end() - 1; 754 if (Last != Dom) 755 std::iter_swap(Last, Dom); 756 }; 757 758 MemoryPhi *Current = Phi; 759 while (true) { 760 assert(!MSSA.isLiveOnEntryDef(Current) && 761 "liveOnEntry wasn't treated as a clobber?"); 762 763 const auto *Target = getWalkTarget(Current); 764 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 765 // optimization for the prior phi. 766 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 767 return MSSA.dominates(P.Clobber, Target); 768 })); 769 770 // FIXME: This is broken, because the Blocker may be reported to be 771 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 772 // For the moment, this is fine, since we do nothing with blocker info. 773 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 774 Target, PausedSearches, NewPaused, TerminatedPaths)) { 775 776 // Find the node we started at. We can't search based on N->Last, since 777 // we may have gone around a loop with a different MemoryLocation. 778 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 779 return defPathIndex(N) < PriorPathsSize; 780 }); 781 assert(Iter != def_path_iterator()); 782 783 DefPath &CurNode = *Iter; 784 assert(CurNode.Last == Current); 785 786 // Two things: 787 // A. We can't reliably cache all of NewPaused back. Consider a case 788 // where we have two paths in NewPaused; one of which can't optimize 789 // above this phi, whereas the other can. If we cache the second path 790 // back, we'll end up with suboptimal cache entries. We can handle 791 // cases like this a bit better when we either try to find all 792 // clobbers that block phi optimization, or when our cache starts 793 // supporting unfinished searches. 794 // B. We can't reliably cache TerminatedPaths back here without doing 795 // extra checks; consider a case like: 796 // T 797 // / \ 798 // D C 799 // \ / 800 // S 801 // Where T is our target, C is a node with a clobber on it, D is a 802 // diamond (with a clobber *only* on the left or right node, N), and 803 // S is our start. Say we walk to D, through the node opposite N 804 // (read: ignoring the clobber), and see a cache entry in the top 805 // node of D. That cache entry gets put into TerminatedPaths. We then 806 // walk up to C (N is later in our worklist), find the clobber, and 807 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 808 // the bottom part of D to the cached clobber, ignoring the clobber 809 // in N. Again, this problem goes away if we start tracking all 810 // blockers for a given phi optimization. 811 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 812 return {Result, {}}; 813 } 814 815 // If there's nothing left to search, then all paths led to valid clobbers 816 // that we got from our cache; pick the nearest to the start, and allow 817 // the rest to be cached back. 818 if (NewPaused.empty()) { 819 MoveDominatedPathToEnd(TerminatedPaths); 820 TerminatedPath Result = TerminatedPaths.pop_back_val(); 821 return {Result, std::move(TerminatedPaths)}; 822 } 823 824 MemoryAccess *DefChainEnd = nullptr; 825 SmallVector<TerminatedPath, 4> Clobbers; 826 for (ListIndex Paused : NewPaused) { 827 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 828 if (WR.IsKnownClobber) 829 Clobbers.push_back({WR.Result, Paused}); 830 else 831 // Micro-opt: If we hit the end of the chain, save it. 832 DefChainEnd = WR.Result; 833 } 834 835 if (!TerminatedPaths.empty()) { 836 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 837 // do it now. 838 if (!DefChainEnd) 839 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 840 DefChainEnd = MA; 841 842 // If any of the terminated paths don't dominate the phi we'll try to 843 // optimize, we need to figure out what they are and quit. 844 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 845 for (const TerminatedPath &TP : TerminatedPaths) { 846 // Because we know that DefChainEnd is as "high" as we can go, we 847 // don't need local dominance checks; BB dominance is sufficient. 848 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 849 Clobbers.push_back(TP); 850 } 851 } 852 853 // If we have clobbers in the def chain, find the one closest to Current 854 // and quit. 855 if (!Clobbers.empty()) { 856 MoveDominatedPathToEnd(Clobbers); 857 TerminatedPath Result = Clobbers.pop_back_val(); 858 return {Result, std::move(Clobbers)}; 859 } 860 861 assert(all_of(NewPaused, 862 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 863 864 // Because liveOnEntry is a clobber, this must be a phi. 865 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 866 867 PriorPathsSize = Paths.size(); 868 PausedSearches.clear(); 869 for (ListIndex I : NewPaused) 870 addSearches(DefChainPhi, PausedSearches, I); 871 NewPaused.clear(); 872 873 Current = DefChainPhi; 874 } 875 } 876 877 void verifyOptResult(const OptznResult &R) const { 878 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 879 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 880 })); 881 } 882 883 void resetPhiOptznState() { 884 Paths.clear(); 885 VisitedPhis.clear(); 886 } 887 888 public: 889 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) 890 : MSSA(MSSA), AA(AA), DT(DT) {} 891 892 /// Finds the nearest clobber for the given query, optimizing phis if 893 /// possible. 894 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { 895 Query = &Q; 896 897 MemoryAccess *Current = Start; 898 // This walker pretends uses don't exist. If we're handed one, silently grab 899 // its def. (This has the nice side-effect of ensuring we never cache uses) 900 if (auto *MU = dyn_cast<MemoryUse>(Start)) 901 Current = MU->getDefiningAccess(); 902 903 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 904 // Fast path for the overly-common case (no crazy phi optimization 905 // necessary) 906 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 907 MemoryAccess *Result; 908 if (WalkResult.IsKnownClobber) { 909 Result = WalkResult.Result; 910 Q.AR = WalkResult.AR; 911 } else { 912 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 913 Current, Q.StartingLoc); 914 verifyOptResult(OptRes); 915 resetPhiOptznState(); 916 Result = OptRes.PrimaryClobber.Clobber; 917 } 918 919 #ifdef EXPENSIVE_CHECKS 920 if (!Q.SkipSelfAccess) 921 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 922 #endif 923 return Result; 924 } 925 926 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } 927 }; 928 929 struct RenamePassData { 930 DomTreeNode *DTN; 931 DomTreeNode::const_iterator ChildIt; 932 MemoryAccess *IncomingVal; 933 934 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 935 MemoryAccess *M) 936 : DTN(D), ChildIt(It), IncomingVal(M) {} 937 938 void swap(RenamePassData &RHS) { 939 std::swap(DTN, RHS.DTN); 940 std::swap(ChildIt, RHS.ChildIt); 941 std::swap(IncomingVal, RHS.IncomingVal); 942 } 943 }; 944 945 } // end anonymous namespace 946 947 namespace llvm { 948 949 class MemorySSA::ClobberWalkerBase { 950 ClobberWalker Walker; 951 MemorySSA *MSSA; 952 953 public: 954 ClobberWalkerBase(MemorySSA *M, AliasAnalysis *A, DominatorTree *D) 955 : Walker(*M, *A, *D), MSSA(M) {} 956 957 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 958 const MemoryLocation &); 959 // Second argument (bool), defines whether the clobber search should skip the 960 // original queried access. If true, there will be a follow-up query searching 961 // for a clobber access past "self". Note that the Optimized access is not 962 // updated if a new clobber is found by this SkipSelf search. If this 963 // additional query becomes heavily used we may decide to cache the result. 964 // Walker instantiations will decide how to set the SkipSelf bool. 965 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, bool); 966 void verify(const MemorySSA *MSSA) { Walker.verify(MSSA); } 967 }; 968 969 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 970 /// longer does caching on its own, but the name has been retained for the 971 /// moment. 972 class MemorySSA::CachingWalker final : public MemorySSAWalker { 973 ClobberWalkerBase *Walker; 974 975 public: 976 CachingWalker(MemorySSA *M, ClobberWalkerBase *W) 977 : MemorySSAWalker(M), Walker(W) {} 978 ~CachingWalker() override = default; 979 980 using MemorySSAWalker::getClobberingMemoryAccess; 981 982 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override; 983 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 984 const MemoryLocation &Loc) override; 985 986 void invalidateInfo(MemoryAccess *MA) override { 987 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 988 MUD->resetOptimized(); 989 } 990 991 void verify(const MemorySSA *MSSA) override { 992 MemorySSAWalker::verify(MSSA); 993 Walker->verify(MSSA); 994 } 995 }; 996 997 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 998 ClobberWalkerBase *Walker; 999 1000 public: 1001 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W) 1002 : MemorySSAWalker(M), Walker(W) {} 1003 ~SkipSelfWalker() override = default; 1004 1005 using MemorySSAWalker::getClobberingMemoryAccess; 1006 1007 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override; 1008 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1009 const MemoryLocation &Loc) override; 1010 1011 void invalidateInfo(MemoryAccess *MA) override { 1012 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1013 MUD->resetOptimized(); 1014 } 1015 1016 void verify(const MemorySSA *MSSA) override { 1017 MemorySSAWalker::verify(MSSA); 1018 Walker->verify(MSSA); 1019 } 1020 }; 1021 1022 } // end namespace llvm 1023 1024 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1025 bool RenameAllUses) { 1026 // Pass through values to our successors 1027 for (const BasicBlock *S : successors(BB)) { 1028 auto It = PerBlockAccesses.find(S); 1029 // Rename the phi nodes in our successor block 1030 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1031 continue; 1032 AccessList *Accesses = It->second.get(); 1033 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1034 if (RenameAllUses) { 1035 int PhiIndex = Phi->getBasicBlockIndex(BB); 1036 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 1037 Phi->setIncomingValue(PhiIndex, IncomingVal); 1038 } else 1039 Phi->addIncoming(IncomingVal, BB); 1040 } 1041 } 1042 1043 /// Rename a single basic block into MemorySSA form. 1044 /// Uses the standard SSA renaming algorithm. 1045 /// \returns The new incoming value. 1046 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1047 bool RenameAllUses) { 1048 auto It = PerBlockAccesses.find(BB); 1049 // Skip most processing if the list is empty. 1050 if (It != PerBlockAccesses.end()) { 1051 AccessList *Accesses = It->second.get(); 1052 for (MemoryAccess &L : *Accesses) { 1053 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1054 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1055 MUD->setDefiningAccess(IncomingVal); 1056 if (isa<MemoryDef>(&L)) 1057 IncomingVal = &L; 1058 } else { 1059 IncomingVal = &L; 1060 } 1061 } 1062 } 1063 return IncomingVal; 1064 } 1065 1066 /// This is the standard SSA renaming algorithm. 1067 /// 1068 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1069 /// in phi nodes in our successors. 1070 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1071 SmallPtrSetImpl<BasicBlock *> &Visited, 1072 bool SkipVisited, bool RenameAllUses) { 1073 SmallVector<RenamePassData, 32> WorkStack; 1074 // Skip everything if we already renamed this block and we are skipping. 1075 // Note: You can't sink this into the if, because we need it to occur 1076 // regardless of whether we skip blocks or not. 1077 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1078 if (SkipVisited && AlreadyVisited) 1079 return; 1080 1081 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1082 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1083 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1084 1085 while (!WorkStack.empty()) { 1086 DomTreeNode *Node = WorkStack.back().DTN; 1087 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1088 IncomingVal = WorkStack.back().IncomingVal; 1089 1090 if (ChildIt == Node->end()) { 1091 WorkStack.pop_back(); 1092 } else { 1093 DomTreeNode *Child = *ChildIt; 1094 ++WorkStack.back().ChildIt; 1095 BasicBlock *BB = Child->getBlock(); 1096 // Note: You can't sink this into the if, because we need it to occur 1097 // regardless of whether we skip blocks or not. 1098 AlreadyVisited = !Visited.insert(BB).second; 1099 if (SkipVisited && AlreadyVisited) { 1100 // We already visited this during our renaming, which can happen when 1101 // being asked to rename multiple blocks. Figure out the incoming val, 1102 // which is the last def. 1103 // Incoming value can only change if there is a block def, and in that 1104 // case, it's the last block def in the list. 1105 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1106 IncomingVal = &*BlockDefs->rbegin(); 1107 } else 1108 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1109 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1110 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1111 } 1112 } 1113 } 1114 1115 /// This handles unreachable block accesses by deleting phi nodes in 1116 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1117 /// being uses of the live on entry definition. 1118 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1119 assert(!DT->isReachableFromEntry(BB) && 1120 "Reachable block found while handling unreachable blocks"); 1121 1122 // Make sure phi nodes in our reachable successors end up with a 1123 // LiveOnEntryDef for our incoming edge, even though our block is forward 1124 // unreachable. We could just disconnect these blocks from the CFG fully, 1125 // but we do not right now. 1126 for (const BasicBlock *S : successors(BB)) { 1127 if (!DT->isReachableFromEntry(S)) 1128 continue; 1129 auto It = PerBlockAccesses.find(S); 1130 // Rename the phi nodes in our successor block 1131 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1132 continue; 1133 AccessList *Accesses = It->second.get(); 1134 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1135 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1136 } 1137 1138 auto It = PerBlockAccesses.find(BB); 1139 if (It == PerBlockAccesses.end()) 1140 return; 1141 1142 auto &Accesses = It->second; 1143 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1144 auto Next = std::next(AI); 1145 // If we have a phi, just remove it. We are going to replace all 1146 // users with live on entry. 1147 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1148 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1149 else 1150 Accesses->erase(AI); 1151 AI = Next; 1152 } 1153 } 1154 1155 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1156 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1157 SkipWalker(nullptr), NextID(0) { 1158 buildMemorySSA(); 1159 } 1160 1161 MemorySSA::~MemorySSA() { 1162 // Drop all our references 1163 for (const auto &Pair : PerBlockAccesses) 1164 for (MemoryAccess &MA : *Pair.second) 1165 MA.dropAllReferences(); 1166 } 1167 1168 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1169 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1170 1171 if (Res.second) 1172 Res.first->second = llvm::make_unique<AccessList>(); 1173 return Res.first->second.get(); 1174 } 1175 1176 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1177 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1178 1179 if (Res.second) 1180 Res.first->second = llvm::make_unique<DefsList>(); 1181 return Res.first->second.get(); 1182 } 1183 1184 namespace llvm { 1185 1186 /// This class is a batch walker of all MemoryUse's in the program, and points 1187 /// their defining access at the thing that actually clobbers them. Because it 1188 /// is a batch walker that touches everything, it does not operate like the 1189 /// other walkers. This walker is basically performing a top-down SSA renaming 1190 /// pass, where the version stack is used as the cache. This enables it to be 1191 /// significantly more time and memory efficient than using the regular walker, 1192 /// which is walking bottom-up. 1193 class MemorySSA::OptimizeUses { 1194 public: 1195 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, 1196 DominatorTree *DT) 1197 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { 1198 Walker = MSSA->getWalker(); 1199 } 1200 1201 void optimizeUses(); 1202 1203 private: 1204 /// This represents where a given memorylocation is in the stack. 1205 struct MemlocStackInfo { 1206 // This essentially is keeping track of versions of the stack. Whenever 1207 // the stack changes due to pushes or pops, these versions increase. 1208 unsigned long StackEpoch; 1209 unsigned long PopEpoch; 1210 // This is the lower bound of places on the stack to check. It is equal to 1211 // the place the last stack walk ended. 1212 // Note: Correctness depends on this being initialized to 0, which densemap 1213 // does 1214 unsigned long LowerBound; 1215 const BasicBlock *LowerBoundBlock; 1216 // This is where the last walk for this memory location ended. 1217 unsigned long LastKill; 1218 bool LastKillValid; 1219 Optional<AliasResult> AR; 1220 }; 1221 1222 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1223 SmallVectorImpl<MemoryAccess *> &, 1224 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1225 1226 MemorySSA *MSSA; 1227 MemorySSAWalker *Walker; 1228 AliasAnalysis *AA; 1229 DominatorTree *DT; 1230 }; 1231 1232 } // end namespace llvm 1233 1234 /// Optimize the uses in a given block This is basically the SSA renaming 1235 /// algorithm, with one caveat: We are able to use a single stack for all 1236 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1237 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1238 /// going to be some position in that stack of possible ones. 1239 /// 1240 /// We track the stack positions that each MemoryLocation needs 1241 /// to check, and last ended at. This is because we only want to check the 1242 /// things that changed since last time. The same MemoryLocation should 1243 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1244 /// things like this, and if they start, we can modify MemoryLocOrCall to 1245 /// include relevant data) 1246 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1247 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1248 SmallVectorImpl<MemoryAccess *> &VersionStack, 1249 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1250 1251 /// If no accesses, nothing to do. 1252 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1253 if (Accesses == nullptr) 1254 return; 1255 1256 // Pop everything that doesn't dominate the current block off the stack, 1257 // increment the PopEpoch to account for this. 1258 while (true) { 1259 assert( 1260 !VersionStack.empty() && 1261 "Version stack should have liveOnEntry sentinel dominating everything"); 1262 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1263 if (DT->dominates(BackBlock, BB)) 1264 break; 1265 while (VersionStack.back()->getBlock() == BackBlock) 1266 VersionStack.pop_back(); 1267 ++PopEpoch; 1268 } 1269 1270 for (MemoryAccess &MA : *Accesses) { 1271 auto *MU = dyn_cast<MemoryUse>(&MA); 1272 if (!MU) { 1273 VersionStack.push_back(&MA); 1274 ++StackEpoch; 1275 continue; 1276 } 1277 1278 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1279 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1280 continue; 1281 } 1282 1283 MemoryLocOrCall UseMLOC(MU); 1284 auto &LocInfo = LocStackInfo[UseMLOC]; 1285 // If the pop epoch changed, it means we've removed stuff from top of 1286 // stack due to changing blocks. We may have to reset the lower bound or 1287 // last kill info. 1288 if (LocInfo.PopEpoch != PopEpoch) { 1289 LocInfo.PopEpoch = PopEpoch; 1290 LocInfo.StackEpoch = StackEpoch; 1291 // If the lower bound was in something that no longer dominates us, we 1292 // have to reset it. 1293 // We can't simply track stack size, because the stack may have had 1294 // pushes/pops in the meantime. 1295 // XXX: This is non-optimal, but only is slower cases with heavily 1296 // branching dominator trees. To get the optimal number of queries would 1297 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1298 // the top of that stack dominates us. This does not seem worth it ATM. 1299 // A much cheaper optimization would be to always explore the deepest 1300 // branch of the dominator tree first. This will guarantee this resets on 1301 // the smallest set of blocks. 1302 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1303 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1304 // Reset the lower bound of things to check. 1305 // TODO: Some day we should be able to reset to last kill, rather than 1306 // 0. 1307 LocInfo.LowerBound = 0; 1308 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1309 LocInfo.LastKillValid = false; 1310 } 1311 } else if (LocInfo.StackEpoch != StackEpoch) { 1312 // If all that has changed is the StackEpoch, we only have to check the 1313 // new things on the stack, because we've checked everything before. In 1314 // this case, the lower bound of things to check remains the same. 1315 LocInfo.PopEpoch = PopEpoch; 1316 LocInfo.StackEpoch = StackEpoch; 1317 } 1318 if (!LocInfo.LastKillValid) { 1319 LocInfo.LastKill = VersionStack.size() - 1; 1320 LocInfo.LastKillValid = true; 1321 LocInfo.AR = MayAlias; 1322 } 1323 1324 // At this point, we should have corrected last kill and LowerBound to be 1325 // in bounds. 1326 assert(LocInfo.LowerBound < VersionStack.size() && 1327 "Lower bound out of range"); 1328 assert(LocInfo.LastKill < VersionStack.size() && 1329 "Last kill info out of range"); 1330 // In any case, the new upper bound is the top of the stack. 1331 unsigned long UpperBound = VersionStack.size() - 1; 1332 1333 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1334 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1335 << *(MU->getMemoryInst()) << ")" 1336 << " because there are " 1337 << UpperBound - LocInfo.LowerBound 1338 << " stores to disambiguate\n"); 1339 // Because we did not walk, LastKill is no longer valid, as this may 1340 // have been a kill. 1341 LocInfo.LastKillValid = false; 1342 continue; 1343 } 1344 bool FoundClobberResult = false; 1345 while (UpperBound > LocInfo.LowerBound) { 1346 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1347 // For phis, use the walker, see where we ended up, go there 1348 Instruction *UseInst = MU->getMemoryInst(); 1349 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); 1350 // We are guaranteed to find it or something is wrong 1351 while (VersionStack[UpperBound] != Result) { 1352 assert(UpperBound != 0); 1353 --UpperBound; 1354 } 1355 FoundClobberResult = true; 1356 break; 1357 } 1358 1359 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1360 // If the lifetime of the pointer ends at this instruction, it's live on 1361 // entry. 1362 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1363 // Reset UpperBound to liveOnEntryDef's place in the stack 1364 UpperBound = 0; 1365 FoundClobberResult = true; 1366 LocInfo.AR = MustAlias; 1367 break; 1368 } 1369 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1370 if (CA.IsClobber) { 1371 FoundClobberResult = true; 1372 LocInfo.AR = CA.AR; 1373 break; 1374 } 1375 --UpperBound; 1376 } 1377 1378 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1379 1380 // At the end of this loop, UpperBound is either a clobber, or lower bound 1381 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1382 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1383 // We were last killed now by where we got to 1384 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1385 LocInfo.AR = None; 1386 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1387 LocInfo.LastKill = UpperBound; 1388 } else { 1389 // Otherwise, we checked all the new ones, and now we know we can get to 1390 // LastKill. 1391 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1392 } 1393 LocInfo.LowerBound = VersionStack.size() - 1; 1394 LocInfo.LowerBoundBlock = BB; 1395 } 1396 } 1397 1398 /// Optimize uses to point to their actual clobbering definitions. 1399 void MemorySSA::OptimizeUses::optimizeUses() { 1400 SmallVector<MemoryAccess *, 16> VersionStack; 1401 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1402 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1403 1404 unsigned long StackEpoch = 1; 1405 unsigned long PopEpoch = 1; 1406 // We perform a non-recursive top-down dominator tree walk. 1407 for (const auto *DomNode : depth_first(DT->getRootNode())) 1408 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1409 LocStackInfo); 1410 } 1411 1412 void MemorySSA::placePHINodes( 1413 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1414 // Determine where our MemoryPhi's should go 1415 ForwardIDFCalculator IDFs(*DT); 1416 IDFs.setDefiningBlocks(DefiningBlocks); 1417 SmallVector<BasicBlock *, 32> IDFBlocks; 1418 IDFs.calculate(IDFBlocks); 1419 1420 // Now place MemoryPhi nodes. 1421 for (auto &BB : IDFBlocks) 1422 createMemoryPhi(BB); 1423 } 1424 1425 void MemorySSA::buildMemorySSA() { 1426 // We create an access to represent "live on entry", for things like 1427 // arguments or users of globals, where the memory they use is defined before 1428 // the beginning of the function. We do not actually insert it into the IR. 1429 // We do not define a live on exit for the immediate uses, and thus our 1430 // semantics do *not* imply that something with no immediate uses can simply 1431 // be removed. 1432 BasicBlock &StartingPoint = F.getEntryBlock(); 1433 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1434 &StartingPoint, NextID++)); 1435 1436 // We maintain lists of memory accesses per-block, trading memory for time. We 1437 // could just look up the memory access for every possible instruction in the 1438 // stream. 1439 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1440 // Go through each block, figure out where defs occur, and chain together all 1441 // the accesses. 1442 for (BasicBlock &B : F) { 1443 bool InsertIntoDef = false; 1444 AccessList *Accesses = nullptr; 1445 DefsList *Defs = nullptr; 1446 for (Instruction &I : B) { 1447 MemoryUseOrDef *MUD = createNewAccess(&I); 1448 if (!MUD) 1449 continue; 1450 1451 if (!Accesses) 1452 Accesses = getOrCreateAccessList(&B); 1453 Accesses->push_back(MUD); 1454 if (isa<MemoryDef>(MUD)) { 1455 InsertIntoDef = true; 1456 if (!Defs) 1457 Defs = getOrCreateDefsList(&B); 1458 Defs->push_back(*MUD); 1459 } 1460 } 1461 if (InsertIntoDef) 1462 DefiningBlocks.insert(&B); 1463 } 1464 placePHINodes(DefiningBlocks); 1465 1466 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1467 // filled in with all blocks. 1468 SmallPtrSet<BasicBlock *, 16> Visited; 1469 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1470 1471 CachingWalker *Walker = getWalkerImpl(); 1472 1473 OptimizeUses(this, Walker, AA, DT).optimizeUses(); 1474 1475 // Mark the uses in unreachable blocks as live on entry, so that they go 1476 // somewhere. 1477 for (auto &BB : F) 1478 if (!Visited.count(&BB)) 1479 markUnreachableAsLiveOnEntry(&BB); 1480 } 1481 1482 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1483 1484 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1485 if (Walker) 1486 return Walker.get(); 1487 1488 if (!WalkerBase) 1489 WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT); 1490 1491 Walker = llvm::make_unique<CachingWalker>(this, WalkerBase.get()); 1492 return Walker.get(); 1493 } 1494 1495 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1496 if (SkipWalker) 1497 return SkipWalker.get(); 1498 1499 if (!WalkerBase) 1500 WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT); 1501 1502 SkipWalker = llvm::make_unique<SkipSelfWalker>(this, WalkerBase.get()); 1503 return SkipWalker.get(); 1504 } 1505 1506 1507 // This is a helper function used by the creation routines. It places NewAccess 1508 // into the access and defs lists for a given basic block, at the given 1509 // insertion point. 1510 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1511 const BasicBlock *BB, 1512 InsertionPlace Point) { 1513 auto *Accesses = getOrCreateAccessList(BB); 1514 if (Point == Beginning) { 1515 // If it's a phi node, it goes first, otherwise, it goes after any phi 1516 // nodes. 1517 if (isa<MemoryPhi>(NewAccess)) { 1518 Accesses->push_front(NewAccess); 1519 auto *Defs = getOrCreateDefsList(BB); 1520 Defs->push_front(*NewAccess); 1521 } else { 1522 auto AI = find_if_not( 1523 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1524 Accesses->insert(AI, NewAccess); 1525 if (!isa<MemoryUse>(NewAccess)) { 1526 auto *Defs = getOrCreateDefsList(BB); 1527 auto DI = find_if_not( 1528 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1529 Defs->insert(DI, *NewAccess); 1530 } 1531 } 1532 } else { 1533 Accesses->push_back(NewAccess); 1534 if (!isa<MemoryUse>(NewAccess)) { 1535 auto *Defs = getOrCreateDefsList(BB); 1536 Defs->push_back(*NewAccess); 1537 } 1538 } 1539 BlockNumberingValid.erase(BB); 1540 } 1541 1542 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1543 AccessList::iterator InsertPt) { 1544 auto *Accesses = getWritableBlockAccesses(BB); 1545 bool WasEnd = InsertPt == Accesses->end(); 1546 Accesses->insert(AccessList::iterator(InsertPt), What); 1547 if (!isa<MemoryUse>(What)) { 1548 auto *Defs = getOrCreateDefsList(BB); 1549 // If we got asked to insert at the end, we have an easy job, just shove it 1550 // at the end. If we got asked to insert before an existing def, we also get 1551 // an iterator. If we got asked to insert before a use, we have to hunt for 1552 // the next def. 1553 if (WasEnd) { 1554 Defs->push_back(*What); 1555 } else if (isa<MemoryDef>(InsertPt)) { 1556 Defs->insert(InsertPt->getDefsIterator(), *What); 1557 } else { 1558 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1559 ++InsertPt; 1560 // Either we found a def, or we are inserting at the end 1561 if (InsertPt == Accesses->end()) 1562 Defs->push_back(*What); 1563 else 1564 Defs->insert(InsertPt->getDefsIterator(), *What); 1565 } 1566 } 1567 BlockNumberingValid.erase(BB); 1568 } 1569 1570 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1571 // Keep it in the lookup tables, remove from the lists 1572 removeFromLists(What, false); 1573 1574 // Note that moving should implicitly invalidate the optimized state of a 1575 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1576 // MemoryDef. 1577 if (auto *MD = dyn_cast<MemoryDef>(What)) 1578 MD->resetOptimized(); 1579 What->setBlock(BB); 1580 } 1581 1582 // Move What before Where in the IR. The end result is that What will belong to 1583 // the right lists and have the right Block set, but will not otherwise be 1584 // correct. It will not have the right defining access, and if it is a def, 1585 // things below it will not properly be updated. 1586 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1587 AccessList::iterator Where) { 1588 prepareForMoveTo(What, BB); 1589 insertIntoListsBefore(What, BB, Where); 1590 } 1591 1592 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1593 InsertionPlace Point) { 1594 if (isa<MemoryPhi>(What)) { 1595 assert(Point == Beginning && 1596 "Can only move a Phi at the beginning of the block"); 1597 // Update lookup table entry 1598 ValueToMemoryAccess.erase(What->getBlock()); 1599 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1600 (void)Inserted; 1601 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1602 } 1603 1604 prepareForMoveTo(What, BB); 1605 insertIntoListsForBlock(What, BB, Point); 1606 } 1607 1608 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1609 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1610 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1611 // Phi's always are placed at the front of the block. 1612 insertIntoListsForBlock(Phi, BB, Beginning); 1613 ValueToMemoryAccess[BB] = Phi; 1614 return Phi; 1615 } 1616 1617 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1618 MemoryAccess *Definition, 1619 const MemoryUseOrDef *Template) { 1620 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1621 MemoryUseOrDef *NewAccess = createNewAccess(I, Template); 1622 assert( 1623 NewAccess != nullptr && 1624 "Tried to create a memory access for a non-memory touching instruction"); 1625 NewAccess->setDefiningAccess(Definition); 1626 return NewAccess; 1627 } 1628 1629 // Return true if the instruction has ordering constraints. 1630 // Note specifically that this only considers stores and loads 1631 // because others are still considered ModRef by getModRefInfo. 1632 static inline bool isOrdered(const Instruction *I) { 1633 if (auto *SI = dyn_cast<StoreInst>(I)) { 1634 if (!SI->isUnordered()) 1635 return true; 1636 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1637 if (!LI->isUnordered()) 1638 return true; 1639 } 1640 return false; 1641 } 1642 1643 /// Helper function to create new memory accesses 1644 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1645 const MemoryUseOrDef *Template) { 1646 // The assume intrinsic has a control dependency which we model by claiming 1647 // that it writes arbitrarily. Ignore that fake memory dependency here. 1648 // FIXME: Replace this special casing with a more accurate modelling of 1649 // assume's control dependency. 1650 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1651 if (II->getIntrinsicID() == Intrinsic::assume) 1652 return nullptr; 1653 1654 bool Def, Use; 1655 if (Template) { 1656 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1657 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1658 #if !defined(NDEBUG) 1659 ModRefInfo ModRef = AA->getModRefInfo(I, None); 1660 bool DefCheck, UseCheck; 1661 DefCheck = isModSet(ModRef) || isOrdered(I); 1662 UseCheck = isRefSet(ModRef); 1663 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1664 #endif 1665 } else { 1666 // Find out what affect this instruction has on memory. 1667 ModRefInfo ModRef = AA->getModRefInfo(I, None); 1668 // The isOrdered check is used to ensure that volatiles end up as defs 1669 // (atomics end up as ModRef right now anyway). Until we separate the 1670 // ordering chain from the memory chain, this enables people to see at least 1671 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1672 // will still give an answer that bypasses other volatile loads. TODO: 1673 // Separate memory aliasing and ordering into two different chains so that 1674 // we can precisely represent both "what memory will this read/write/is 1675 // clobbered by" and "what instructions can I move this past". 1676 Def = isModSet(ModRef) || isOrdered(I); 1677 Use = isRefSet(ModRef); 1678 } 1679 1680 // It's possible for an instruction to not modify memory at all. During 1681 // construction, we ignore them. 1682 if (!Def && !Use) 1683 return nullptr; 1684 1685 MemoryUseOrDef *MUD; 1686 if (Def) 1687 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1688 else 1689 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1690 ValueToMemoryAccess[I] = MUD; 1691 return MUD; 1692 } 1693 1694 /// Returns true if \p Replacer dominates \p Replacee . 1695 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1696 const MemoryAccess *Replacee) const { 1697 if (isa<MemoryUseOrDef>(Replacee)) 1698 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1699 const auto *MP = cast<MemoryPhi>(Replacee); 1700 // For a phi node, the use occurs in the predecessor block of the phi node. 1701 // Since we may occur multiple times in the phi node, we have to check each 1702 // operand to ensure Replacer dominates each operand where Replacee occurs. 1703 for (const Use &Arg : MP->operands()) { 1704 if (Arg.get() != Replacee && 1705 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1706 return false; 1707 } 1708 return true; 1709 } 1710 1711 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1712 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1713 assert(MA->use_empty() && 1714 "Trying to remove memory access that still has uses"); 1715 BlockNumbering.erase(MA); 1716 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1717 MUD->setDefiningAccess(nullptr); 1718 // Invalidate our walker's cache if necessary 1719 if (!isa<MemoryUse>(MA)) 1720 Walker->invalidateInfo(MA); 1721 1722 Value *MemoryInst; 1723 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1724 MemoryInst = MUD->getMemoryInst(); 1725 else 1726 MemoryInst = MA->getBlock(); 1727 1728 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1729 if (VMA->second == MA) 1730 ValueToMemoryAccess.erase(VMA); 1731 } 1732 1733 /// Properly remove \p MA from all of MemorySSA's lists. 1734 /// 1735 /// Because of the way the intrusive list and use lists work, it is important to 1736 /// do removal in the right order. 1737 /// ShouldDelete defaults to true, and will cause the memory access to also be 1738 /// deleted, not just removed. 1739 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1740 BasicBlock *BB = MA->getBlock(); 1741 // The access list owns the reference, so we erase it from the non-owning list 1742 // first. 1743 if (!isa<MemoryUse>(MA)) { 1744 auto DefsIt = PerBlockDefs.find(BB); 1745 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1746 Defs->remove(*MA); 1747 if (Defs->empty()) 1748 PerBlockDefs.erase(DefsIt); 1749 } 1750 1751 // The erase call here will delete it. If we don't want it deleted, we call 1752 // remove instead. 1753 auto AccessIt = PerBlockAccesses.find(BB); 1754 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1755 if (ShouldDelete) 1756 Accesses->erase(MA); 1757 else 1758 Accesses->remove(MA); 1759 1760 if (Accesses->empty()) { 1761 PerBlockAccesses.erase(AccessIt); 1762 BlockNumberingValid.erase(BB); 1763 } 1764 } 1765 1766 void MemorySSA::print(raw_ostream &OS) const { 1767 MemorySSAAnnotatedWriter Writer(this); 1768 F.print(OS, &Writer); 1769 } 1770 1771 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1772 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1773 #endif 1774 1775 void MemorySSA::verifyMemorySSA() const { 1776 verifyDefUses(F); 1777 verifyDomination(F); 1778 verifyOrdering(F); 1779 verifyDominationNumbers(F); 1780 Walker->verify(this); 1781 // Previously, the verification used to also verify that the clobberingAccess 1782 // cached by MemorySSA is the same as the clobberingAccess found at a later 1783 // query to AA. This does not hold true in general due to the current fragility 1784 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1785 // up. As a result, transformations that are correct, will lead to BasicAA 1786 // returning different Alias answers before and after that transformation. 1787 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1788 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1789 // every transformation, which defeats the purpose of using it. For such an 1790 // example, see test4 added in D51960. 1791 } 1792 1793 /// Verify that all of the blocks we believe to have valid domination numbers 1794 /// actually have valid domination numbers. 1795 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1796 #ifndef NDEBUG 1797 if (BlockNumberingValid.empty()) 1798 return; 1799 1800 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1801 for (const BasicBlock &BB : F) { 1802 if (!ValidBlocks.count(&BB)) 1803 continue; 1804 1805 ValidBlocks.erase(&BB); 1806 1807 const AccessList *Accesses = getBlockAccesses(&BB); 1808 // It's correct to say an empty block has valid numbering. 1809 if (!Accesses) 1810 continue; 1811 1812 // Block numbering starts at 1. 1813 unsigned long LastNumber = 0; 1814 for (const MemoryAccess &MA : *Accesses) { 1815 auto ThisNumberIter = BlockNumbering.find(&MA); 1816 assert(ThisNumberIter != BlockNumbering.end() && 1817 "MemoryAccess has no domination number in a valid block!"); 1818 1819 unsigned long ThisNumber = ThisNumberIter->second; 1820 assert(ThisNumber > LastNumber && 1821 "Domination numbers should be strictly increasing!"); 1822 LastNumber = ThisNumber; 1823 } 1824 } 1825 1826 assert(ValidBlocks.empty() && 1827 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1828 #endif 1829 } 1830 1831 /// Verify that the order and existence of MemoryAccesses matches the 1832 /// order and existence of memory affecting instructions. 1833 void MemorySSA::verifyOrdering(Function &F) const { 1834 #ifndef NDEBUG 1835 // Walk all the blocks, comparing what the lookups think and what the access 1836 // lists think, as well as the order in the blocks vs the order in the access 1837 // lists. 1838 SmallVector<MemoryAccess *, 32> ActualAccesses; 1839 SmallVector<MemoryAccess *, 32> ActualDefs; 1840 for (BasicBlock &B : F) { 1841 const AccessList *AL = getBlockAccesses(&B); 1842 const auto *DL = getBlockDefs(&B); 1843 MemoryAccess *Phi = getMemoryAccess(&B); 1844 if (Phi) { 1845 ActualAccesses.push_back(Phi); 1846 ActualDefs.push_back(Phi); 1847 } 1848 1849 for (Instruction &I : B) { 1850 MemoryAccess *MA = getMemoryAccess(&I); 1851 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1852 "We have memory affecting instructions " 1853 "in this block but they are not in the " 1854 "access list or defs list"); 1855 if (MA) { 1856 ActualAccesses.push_back(MA); 1857 if (isa<MemoryDef>(MA)) 1858 ActualDefs.push_back(MA); 1859 } 1860 } 1861 // Either we hit the assert, really have no accesses, or we have both 1862 // accesses and an access list. 1863 // Same with defs. 1864 if (!AL && !DL) 1865 continue; 1866 assert(AL->size() == ActualAccesses.size() && 1867 "We don't have the same number of accesses in the block as on the " 1868 "access list"); 1869 assert((DL || ActualDefs.size() == 0) && 1870 "Either we should have a defs list, or we should have no defs"); 1871 assert((!DL || DL->size() == ActualDefs.size()) && 1872 "We don't have the same number of defs in the block as on the " 1873 "def list"); 1874 auto ALI = AL->begin(); 1875 auto AAI = ActualAccesses.begin(); 1876 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1877 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1878 ++ALI; 1879 ++AAI; 1880 } 1881 ActualAccesses.clear(); 1882 if (DL) { 1883 auto DLI = DL->begin(); 1884 auto ADI = ActualDefs.begin(); 1885 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1886 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1887 ++DLI; 1888 ++ADI; 1889 } 1890 } 1891 ActualDefs.clear(); 1892 } 1893 #endif 1894 } 1895 1896 /// Verify the domination properties of MemorySSA by checking that each 1897 /// definition dominates all of its uses. 1898 void MemorySSA::verifyDomination(Function &F) const { 1899 #ifndef NDEBUG 1900 for (BasicBlock &B : F) { 1901 // Phi nodes are attached to basic blocks 1902 if (MemoryPhi *MP = getMemoryAccess(&B)) 1903 for (const Use &U : MP->uses()) 1904 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1905 1906 for (Instruction &I : B) { 1907 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1908 if (!MD) 1909 continue; 1910 1911 for (const Use &U : MD->uses()) 1912 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1913 } 1914 } 1915 #endif 1916 } 1917 1918 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 1919 /// appears in the use list of \p Def. 1920 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1921 #ifndef NDEBUG 1922 // The live on entry use may cause us to get a NULL def here 1923 if (!Def) 1924 assert(isLiveOnEntryDef(Use) && 1925 "Null def but use not point to live on entry def"); 1926 else 1927 assert(is_contained(Def->users(), Use) && 1928 "Did not find use in def's use list"); 1929 #endif 1930 } 1931 1932 /// Verify the immediate use information, by walking all the memory 1933 /// accesses and verifying that, for each use, it appears in the 1934 /// appropriate def's use list 1935 void MemorySSA::verifyDefUses(Function &F) const { 1936 #ifndef NDEBUG 1937 for (BasicBlock &B : F) { 1938 // Phi nodes are attached to basic blocks 1939 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 1940 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1941 pred_begin(&B), pred_end(&B))) && 1942 "Incomplete MemoryPhi Node"); 1943 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1944 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1945 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 1946 pred_end(&B) && 1947 "Incoming phi block not a block predecessor"); 1948 } 1949 } 1950 1951 for (Instruction &I : B) { 1952 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 1953 verifyUseInDefs(MA->getDefiningAccess(), MA); 1954 } 1955 } 1956 } 1957 #endif 1958 } 1959 1960 /// Perform a local numbering on blocks so that instruction ordering can be 1961 /// determined in constant time. 1962 /// TODO: We currently just number in order. If we numbered by N, we could 1963 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 1964 /// log2(N) sequences of mixed before and after) without needing to invalidate 1965 /// the numbering. 1966 void MemorySSA::renumberBlock(const BasicBlock *B) const { 1967 // The pre-increment ensures the numbers really start at 1. 1968 unsigned long CurrentNumber = 0; 1969 const AccessList *AL = getBlockAccesses(B); 1970 assert(AL != nullptr && "Asking to renumber an empty block"); 1971 for (const auto &I : *AL) 1972 BlockNumbering[&I] = ++CurrentNumber; 1973 BlockNumberingValid.insert(B); 1974 } 1975 1976 /// Determine, for two memory accesses in the same block, 1977 /// whether \p Dominator dominates \p Dominatee. 1978 /// \returns True if \p Dominator dominates \p Dominatee. 1979 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 1980 const MemoryAccess *Dominatee) const { 1981 const BasicBlock *DominatorBlock = Dominator->getBlock(); 1982 1983 assert((DominatorBlock == Dominatee->getBlock()) && 1984 "Asking for local domination when accesses are in different blocks!"); 1985 // A node dominates itself. 1986 if (Dominatee == Dominator) 1987 return true; 1988 1989 // When Dominatee is defined on function entry, it is not dominated by another 1990 // memory access. 1991 if (isLiveOnEntryDef(Dominatee)) 1992 return false; 1993 1994 // When Dominator is defined on function entry, it dominates the other memory 1995 // access. 1996 if (isLiveOnEntryDef(Dominator)) 1997 return true; 1998 1999 if (!BlockNumberingValid.count(DominatorBlock)) 2000 renumberBlock(DominatorBlock); 2001 2002 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2003 // All numbers start with 1 2004 assert(DominatorNum != 0 && "Block was not numbered properly"); 2005 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2006 assert(DominateeNum != 0 && "Block was not numbered properly"); 2007 return DominatorNum < DominateeNum; 2008 } 2009 2010 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2011 const MemoryAccess *Dominatee) const { 2012 if (Dominator == Dominatee) 2013 return true; 2014 2015 if (isLiveOnEntryDef(Dominatee)) 2016 return false; 2017 2018 if (Dominator->getBlock() != Dominatee->getBlock()) 2019 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2020 return locallyDominates(Dominator, Dominatee); 2021 } 2022 2023 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2024 const Use &Dominatee) const { 2025 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2026 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2027 // The def must dominate the incoming block of the phi. 2028 if (UseBB != Dominator->getBlock()) 2029 return DT->dominates(Dominator->getBlock(), UseBB); 2030 // If the UseBB and the DefBB are the same, compare locally. 2031 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2032 } 2033 // If it's not a PHI node use, the normal dominates can already handle it. 2034 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2035 } 2036 2037 const static char LiveOnEntryStr[] = "liveOnEntry"; 2038 2039 void MemoryAccess::print(raw_ostream &OS) const { 2040 switch (getValueID()) { 2041 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2042 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2043 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2044 } 2045 llvm_unreachable("invalid value id"); 2046 } 2047 2048 void MemoryDef::print(raw_ostream &OS) const { 2049 MemoryAccess *UO = getDefiningAccess(); 2050 2051 auto printID = [&OS](MemoryAccess *A) { 2052 if (A && A->getID()) 2053 OS << A->getID(); 2054 else 2055 OS << LiveOnEntryStr; 2056 }; 2057 2058 OS << getID() << " = MemoryDef("; 2059 printID(UO); 2060 OS << ")"; 2061 2062 if (isOptimized()) { 2063 OS << "->"; 2064 printID(getOptimized()); 2065 2066 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2067 OS << " " << *AR; 2068 } 2069 } 2070 2071 void MemoryPhi::print(raw_ostream &OS) const { 2072 bool First = true; 2073 OS << getID() << " = MemoryPhi("; 2074 for (const auto &Op : operands()) { 2075 BasicBlock *BB = getIncomingBlock(Op); 2076 MemoryAccess *MA = cast<MemoryAccess>(Op); 2077 if (!First) 2078 OS << ','; 2079 else 2080 First = false; 2081 2082 OS << '{'; 2083 if (BB->hasName()) 2084 OS << BB->getName(); 2085 else 2086 BB->printAsOperand(OS, false); 2087 OS << ','; 2088 if (unsigned ID = MA->getID()) 2089 OS << ID; 2090 else 2091 OS << LiveOnEntryStr; 2092 OS << '}'; 2093 } 2094 OS << ')'; 2095 } 2096 2097 void MemoryUse::print(raw_ostream &OS) const { 2098 MemoryAccess *UO = getDefiningAccess(); 2099 OS << "MemoryUse("; 2100 if (UO && UO->getID()) 2101 OS << UO->getID(); 2102 else 2103 OS << LiveOnEntryStr; 2104 OS << ')'; 2105 2106 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2107 OS << " " << *AR; 2108 } 2109 2110 void MemoryAccess::dump() const { 2111 // Cannot completely remove virtual function even in release mode. 2112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2113 print(dbgs()); 2114 dbgs() << "\n"; 2115 #endif 2116 } 2117 2118 char MemorySSAPrinterLegacyPass::ID = 0; 2119 2120 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2121 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2122 } 2123 2124 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2125 AU.setPreservesAll(); 2126 AU.addRequired<MemorySSAWrapperPass>(); 2127 } 2128 2129 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2130 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2131 MSSA.print(dbgs()); 2132 if (VerifyMemorySSA) 2133 MSSA.verifyMemorySSA(); 2134 return false; 2135 } 2136 2137 AnalysisKey MemorySSAAnalysis::Key; 2138 2139 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2140 FunctionAnalysisManager &AM) { 2141 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2142 auto &AA = AM.getResult<AAManager>(F); 2143 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 2144 } 2145 2146 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2147 FunctionAnalysisManager &AM) { 2148 OS << "MemorySSA for function: " << F.getName() << "\n"; 2149 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2150 2151 return PreservedAnalyses::all(); 2152 } 2153 2154 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2155 FunctionAnalysisManager &AM) { 2156 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2157 2158 return PreservedAnalyses::all(); 2159 } 2160 2161 char MemorySSAWrapperPass::ID = 0; 2162 2163 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2164 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2165 } 2166 2167 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2168 2169 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2170 AU.setPreservesAll(); 2171 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2172 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2173 } 2174 2175 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2176 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2177 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2178 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2179 return false; 2180 } 2181 2182 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2183 2184 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2185 MSSA->print(OS); 2186 } 2187 2188 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2189 2190 /// Walk the use-def chains starting at \p StartingAccess and find 2191 /// the MemoryAccess that actually clobbers Loc. 2192 /// 2193 /// \returns our clobbering memory access 2194 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( 2195 MemoryAccess *StartingAccess, const MemoryLocation &Loc) { 2196 if (isa<MemoryPhi>(StartingAccess)) 2197 return StartingAccess; 2198 2199 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2200 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2201 return StartingUseOrDef; 2202 2203 Instruction *I = StartingUseOrDef->getMemoryInst(); 2204 2205 // Conservatively, fences are always clobbers, so don't perform the walk if we 2206 // hit a fence. 2207 if (!isa<CallBase>(I) && I->isFenceLike()) 2208 return StartingUseOrDef; 2209 2210 UpwardsMemoryQuery Q; 2211 Q.OriginalAccess = StartingUseOrDef; 2212 Q.StartingLoc = Loc; 2213 Q.Inst = I; 2214 Q.IsCall = false; 2215 2216 // Unlike the other function, do not walk to the def of a def, because we are 2217 // handed something we already believe is the clobbering access. 2218 // We never set SkipSelf to true in Q in this method. 2219 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2220 ? StartingUseOrDef->getDefiningAccess() 2221 : StartingUseOrDef; 2222 2223 MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q); 2224 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2225 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2226 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2227 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2228 return Clobber; 2229 } 2230 2231 MemoryAccess * 2232 MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(MemoryAccess *MA, 2233 bool SkipSelf) { 2234 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2235 // If this is a MemoryPhi, we can't do anything. 2236 if (!StartingAccess) 2237 return MA; 2238 2239 bool IsOptimized = false; 2240 2241 // If this is an already optimized use or def, return the optimized result. 2242 // Note: Currently, we store the optimized def result in a separate field, 2243 // since we can't use the defining access. 2244 if (StartingAccess->isOptimized()) { 2245 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2246 return StartingAccess->getOptimized(); 2247 IsOptimized = true; 2248 } 2249 2250 const Instruction *I = StartingAccess->getMemoryInst(); 2251 // We can't sanely do anything with a fence, since they conservatively clobber 2252 // all memory, and have no locations to get pointers from to try to 2253 // disambiguate. 2254 if (!isa<CallBase>(I) && I->isFenceLike()) 2255 return StartingAccess; 2256 2257 UpwardsMemoryQuery Q(I, StartingAccess); 2258 2259 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { 2260 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2261 StartingAccess->setOptimized(LiveOnEntry); 2262 StartingAccess->setOptimizedAccessType(None); 2263 return LiveOnEntry; 2264 } 2265 2266 MemoryAccess *OptimizedAccess; 2267 if (!IsOptimized) { 2268 // Start with the thing we already think clobbers this location 2269 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2270 2271 // At this point, DefiningAccess may be the live on entry def. 2272 // If it is, we will not get a better result. 2273 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2274 StartingAccess->setOptimized(DefiningAccess); 2275 StartingAccess->setOptimizedAccessType(None); 2276 return DefiningAccess; 2277 } 2278 2279 OptimizedAccess = Walker.findClobber(DefiningAccess, Q); 2280 StartingAccess->setOptimized(OptimizedAccess); 2281 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2282 StartingAccess->setOptimizedAccessType(None); 2283 else if (Q.AR == MustAlias) 2284 StartingAccess->setOptimizedAccessType(MustAlias); 2285 } else 2286 OptimizedAccess = StartingAccess->getOptimized(); 2287 2288 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2289 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2290 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2291 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2292 2293 MemoryAccess *Result; 2294 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2295 isa<MemoryDef>(StartingAccess)) { 2296 assert(isa<MemoryDef>(Q.OriginalAccess)); 2297 Q.SkipSelfAccess = true; 2298 Result = Walker.findClobber(OptimizedAccess, Q); 2299 } else 2300 Result = OptimizedAccess; 2301 2302 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2303 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2304 2305 return Result; 2306 } 2307 2308 MemoryAccess * 2309 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2310 return Walker->getClobberingMemoryAccessBase(MA, false); 2311 } 2312 2313 MemoryAccess * 2314 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA, 2315 const MemoryLocation &Loc) { 2316 return Walker->getClobberingMemoryAccessBase(MA, Loc); 2317 } 2318 2319 MemoryAccess * 2320 MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2321 return Walker->getClobberingMemoryAccessBase(MA, true); 2322 } 2323 2324 MemoryAccess * 2325 MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA, 2326 const MemoryLocation &Loc) { 2327 return Walker->getClobberingMemoryAccessBase(MA, Loc); 2328 } 2329 2330 MemoryAccess * 2331 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2332 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2333 return Use->getDefiningAccess(); 2334 return MA; 2335 } 2336 2337 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2338 MemoryAccess *StartingAccess, const MemoryLocation &) { 2339 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2340 return Use->getDefiningAccess(); 2341 return StartingAccess; 2342 } 2343 2344 void MemoryPhi::deleteMe(DerivedUser *Self) { 2345 delete static_cast<MemoryPhi *>(Self); 2346 } 2347 2348 void MemoryDef::deleteMe(DerivedUser *Self) { 2349 delete static_cast<MemoryDef *>(Self); 2350 } 2351 2352 void MemoryUse::deleteMe(DerivedUser *Self) { 2353 delete static_cast<MemoryUse *>(Self); 2354 } 2355