1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdlib>
53 #include <iterator>
54 #include <memory>
55 #include <utility>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "memoryssa"
60 
61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
62                       true)
63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66                     true)
67 
68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69                       "Memory SSA Printer", false, false)
70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72                     "Memory SSA Printer", false, false)
73 
74 static cl::opt<unsigned> MaxCheckLimit(
75     "memssa-check-limit", cl::Hidden, cl::init(100),
76     cl::desc("The maximum number of stores/phis MemorySSA"
77              "will consider trying to walk past (default = 100)"));
78 
79 // Always verify MemorySSA if expensive checking is enabled.
80 #ifdef EXPENSIVE_CHECKS
81 bool llvm::VerifyMemorySSA = true;
82 #else
83 bool llvm::VerifyMemorySSA = false;
84 #endif
85 /// Enables memory ssa as a dependency for loop passes in legacy pass manager.
86 cl::opt<bool> llvm::EnableMSSALoopDependency(
87     "enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
88     cl::desc("Enable MemorySSA dependency for loop pass manager"));
89 
90 static cl::opt<bool, true>
91     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
92                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
93 
94 namespace llvm {
95 
96 /// An assembly annotator class to print Memory SSA information in
97 /// comments.
98 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
99   friend class MemorySSA;
100 
101   const MemorySSA *MSSA;
102 
103 public:
104   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
105 
106   void emitBasicBlockStartAnnot(const BasicBlock *BB,
107                                 formatted_raw_ostream &OS) override {
108     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
109       OS << "; " << *MA << "\n";
110   }
111 
112   void emitInstructionAnnot(const Instruction *I,
113                             formatted_raw_ostream &OS) override {
114     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
115       OS << "; " << *MA << "\n";
116   }
117 };
118 
119 } // end namespace llvm
120 
121 namespace {
122 
123 /// Our current alias analysis API differentiates heavily between calls and
124 /// non-calls, and functions called on one usually assert on the other.
125 /// This class encapsulates the distinction to simplify other code that wants
126 /// "Memory affecting instructions and related data" to use as a key.
127 /// For example, this class is used as a densemap key in the use optimizer.
128 class MemoryLocOrCall {
129 public:
130   bool IsCall = false;
131 
132   MemoryLocOrCall(MemoryUseOrDef *MUD)
133       : MemoryLocOrCall(MUD->getMemoryInst()) {}
134   MemoryLocOrCall(const MemoryUseOrDef *MUD)
135       : MemoryLocOrCall(MUD->getMemoryInst()) {}
136 
137   MemoryLocOrCall(Instruction *Inst) {
138     if (auto *C = dyn_cast<CallBase>(Inst)) {
139       IsCall = true;
140       Call = C;
141     } else {
142       IsCall = false;
143       // There is no such thing as a memorylocation for a fence inst, and it is
144       // unique in that regard.
145       if (!isa<FenceInst>(Inst))
146         Loc = MemoryLocation::get(Inst);
147     }
148   }
149 
150   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
151 
152   const CallBase *getCall() const {
153     assert(IsCall);
154     return Call;
155   }
156 
157   MemoryLocation getLoc() const {
158     assert(!IsCall);
159     return Loc;
160   }
161 
162   bool operator==(const MemoryLocOrCall &Other) const {
163     if (IsCall != Other.IsCall)
164       return false;
165 
166     if (!IsCall)
167       return Loc == Other.Loc;
168 
169     if (Call->getCalledValue() != Other.Call->getCalledValue())
170       return false;
171 
172     return Call->arg_size() == Other.Call->arg_size() &&
173            std::equal(Call->arg_begin(), Call->arg_end(),
174                       Other.Call->arg_begin());
175   }
176 
177 private:
178   union {
179     const CallBase *Call;
180     MemoryLocation Loc;
181   };
182 };
183 
184 } // end anonymous namespace
185 
186 namespace llvm {
187 
188 template <> struct DenseMapInfo<MemoryLocOrCall> {
189   static inline MemoryLocOrCall getEmptyKey() {
190     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
191   }
192 
193   static inline MemoryLocOrCall getTombstoneKey() {
194     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
195   }
196 
197   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
198     if (!MLOC.IsCall)
199       return hash_combine(
200           MLOC.IsCall,
201           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
202 
203     hash_code hash =
204         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
205                                       MLOC.getCall()->getCalledValue()));
206 
207     for (const Value *Arg : MLOC.getCall()->args())
208       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
209     return hash;
210   }
211 
212   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
213     return LHS == RHS;
214   }
215 };
216 
217 } // end namespace llvm
218 
219 /// This does one-way checks to see if Use could theoretically be hoisted above
220 /// MayClobber. This will not check the other way around.
221 ///
222 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
223 /// MayClobber, with no potentially clobbering operations in between them.
224 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
225 static bool areLoadsReorderable(const LoadInst *Use,
226                                 const LoadInst *MayClobber) {
227   bool VolatileUse = Use->isVolatile();
228   bool VolatileClobber = MayClobber->isVolatile();
229   // Volatile operations may never be reordered with other volatile operations.
230   if (VolatileUse && VolatileClobber)
231     return false;
232   // Otherwise, volatile doesn't matter here. From the language reference:
233   // 'optimizers may change the order of volatile operations relative to
234   // non-volatile operations.'"
235 
236   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
237   // is weaker, it can be moved above other loads. We just need to be sure that
238   // MayClobber isn't an acquire load, because loads can't be moved above
239   // acquire loads.
240   //
241   // Note that this explicitly *does* allow the free reordering of monotonic (or
242   // weaker) loads of the same address.
243   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
244   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
245                                                      AtomicOrdering::Acquire);
246   return !(SeqCstUse || MayClobberIsAcquire);
247 }
248 
249 namespace {
250 
251 struct ClobberAlias {
252   bool IsClobber;
253   Optional<AliasResult> AR;
254 };
255 
256 } // end anonymous namespace
257 
258 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
259 // ignored if IsClobber = false.
260 template <typename AliasAnalysisType>
261 static ClobberAlias
262 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
263                          const Instruction *UseInst, AliasAnalysisType &AA) {
264   Instruction *DefInst = MD->getMemoryInst();
265   assert(DefInst && "Defining instruction not actually an instruction");
266   const auto *UseCall = dyn_cast<CallBase>(UseInst);
267   Optional<AliasResult> AR;
268 
269   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
270     // These intrinsics will show up as affecting memory, but they are just
271     // markers, mostly.
272     //
273     // FIXME: We probably don't actually want MemorySSA to model these at all
274     // (including creating MemoryAccesses for them): we just end up inventing
275     // clobbers where they don't really exist at all. Please see D43269 for
276     // context.
277     switch (II->getIntrinsicID()) {
278     case Intrinsic::lifetime_start:
279       if (UseCall)
280         return {false, NoAlias};
281       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
282       return {AR != NoAlias, AR};
283     case Intrinsic::lifetime_end:
284     case Intrinsic::invariant_start:
285     case Intrinsic::invariant_end:
286     case Intrinsic::assume:
287       return {false, NoAlias};
288     case Intrinsic::dbg_addr:
289     case Intrinsic::dbg_declare:
290     case Intrinsic::dbg_label:
291     case Intrinsic::dbg_value:
292       llvm_unreachable("debuginfo shouldn't have associated defs!");
293     default:
294       break;
295     }
296   }
297 
298   if (UseCall) {
299     ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
300     AR = isMustSet(I) ? MustAlias : MayAlias;
301     return {isModOrRefSet(I), AR};
302   }
303 
304   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
305     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
306       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
307 
308   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
309   AR = isMustSet(I) ? MustAlias : MayAlias;
310   return {isModSet(I), AR};
311 }
312 
313 template <typename AliasAnalysisType>
314 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
315                                              const MemoryUseOrDef *MU,
316                                              const MemoryLocOrCall &UseMLOC,
317                                              AliasAnalysisType &AA) {
318   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
319   // to exist while MemoryLocOrCall is pushed through places.
320   if (UseMLOC.IsCall)
321     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
322                                     AA);
323   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
324                                   AA);
325 }
326 
327 // Return true when MD may alias MU, return false otherwise.
328 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
329                                         AliasAnalysis &AA) {
330   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
331 }
332 
333 namespace {
334 
335 struct UpwardsMemoryQuery {
336   // True if our original query started off as a call
337   bool IsCall = false;
338   // The pointer location we started the query with. This will be empty if
339   // IsCall is true.
340   MemoryLocation StartingLoc;
341   // This is the instruction we were querying about.
342   const Instruction *Inst = nullptr;
343   // The MemoryAccess we actually got called with, used to test local domination
344   const MemoryAccess *OriginalAccess = nullptr;
345   Optional<AliasResult> AR = MayAlias;
346   bool SkipSelfAccess = false;
347 
348   UpwardsMemoryQuery() = default;
349 
350   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
351       : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
352     if (!IsCall)
353       StartingLoc = MemoryLocation::get(Inst);
354   }
355 };
356 
357 } // end anonymous namespace
358 
359 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
360                            BatchAAResults &AA) {
361   Instruction *Inst = MD->getMemoryInst();
362   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
363     switch (II->getIntrinsicID()) {
364     case Intrinsic::lifetime_end:
365       return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
366     default:
367       return false;
368     }
369   }
370   return false;
371 }
372 
373 template <typename AliasAnalysisType>
374 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
375                                                    const Instruction *I) {
376   // If the memory can't be changed, then loads of the memory can't be
377   // clobbered.
378   return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) ||
379                               AA.pointsToConstantMemory(MemoryLocation(
380                                   cast<LoadInst>(I)->getPointerOperand())));
381 }
382 
383 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
384 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
385 ///
386 /// This is meant to be as simple and self-contained as possible. Because it
387 /// uses no cache, etc., it can be relatively expensive.
388 ///
389 /// \param Start     The MemoryAccess that we want to walk from.
390 /// \param ClobberAt A clobber for Start.
391 /// \param StartLoc  The MemoryLocation for Start.
392 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
393 /// \param Query     The UpwardsMemoryQuery we used for our search.
394 /// \param AA        The AliasAnalysis we used for our search.
395 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
396 
397 template <typename AliasAnalysisType>
398 LLVM_ATTRIBUTE_UNUSED static void
399 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
400                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
401                    const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
402                    bool AllowImpreciseClobber = false) {
403   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
404 
405   if (MSSA.isLiveOnEntryDef(Start)) {
406     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
407            "liveOnEntry must clobber itself");
408     return;
409   }
410 
411   bool FoundClobber = false;
412   DenseSet<ConstMemoryAccessPair> VisitedPhis;
413   SmallVector<ConstMemoryAccessPair, 8> Worklist;
414   Worklist.emplace_back(Start, StartLoc);
415   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
416   // is found, complain.
417   while (!Worklist.empty()) {
418     auto MAP = Worklist.pop_back_val();
419     // All we care about is that nothing from Start to ClobberAt clobbers Start.
420     // We learn nothing from revisiting nodes.
421     if (!VisitedPhis.insert(MAP).second)
422       continue;
423 
424     for (const auto *MA : def_chain(MAP.first)) {
425       if (MA == ClobberAt) {
426         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
427           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
428           // since it won't let us short-circuit.
429           //
430           // Also, note that this can't be hoisted out of the `Worklist` loop,
431           // since MD may only act as a clobber for 1 of N MemoryLocations.
432           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
433           if (!FoundClobber) {
434             ClobberAlias CA =
435                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
436             if (CA.IsClobber) {
437               FoundClobber = true;
438               // Not used: CA.AR;
439             }
440           }
441         }
442         break;
443       }
444 
445       // We should never hit liveOnEntry, unless it's the clobber.
446       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
447 
448       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
449         // If Start is a Def, skip self.
450         if (MD == Start)
451           continue;
452 
453         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
454                     .IsClobber &&
455                "Found clobber before reaching ClobberAt!");
456         continue;
457       }
458 
459       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
460         (void)MU;
461         assert (MU == Start &&
462                 "Can only find use in def chain if Start is a use");
463         continue;
464       }
465 
466       assert(isa<MemoryPhi>(MA));
467       Worklist.append(
468           upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
469           upward_defs_end());
470     }
471   }
472 
473   // If the verify is done following an optimization, it's possible that
474   // ClobberAt was a conservative clobbering, that we can now infer is not a
475   // true clobbering access. Don't fail the verify if that's the case.
476   // We do have accesses that claim they're optimized, but could be optimized
477   // further. Updating all these can be expensive, so allow it for now (FIXME).
478   if (AllowImpreciseClobber)
479     return;
480 
481   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
482   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
483   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
484          "ClobberAt never acted as a clobber");
485 }
486 
487 namespace {
488 
489 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
490 /// in one class.
491 template <class AliasAnalysisType> class ClobberWalker {
492   /// Save a few bytes by using unsigned instead of size_t.
493   using ListIndex = unsigned;
494 
495   /// Represents a span of contiguous MemoryDefs, potentially ending in a
496   /// MemoryPhi.
497   struct DefPath {
498     MemoryLocation Loc;
499     // Note that, because we always walk in reverse, Last will always dominate
500     // First. Also note that First and Last are inclusive.
501     MemoryAccess *First;
502     MemoryAccess *Last;
503     Optional<ListIndex> Previous;
504 
505     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
506             Optional<ListIndex> Previous)
507         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
508 
509     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
510             Optional<ListIndex> Previous)
511         : DefPath(Loc, Init, Init, Previous) {}
512   };
513 
514   const MemorySSA &MSSA;
515   AliasAnalysisType &AA;
516   DominatorTree &DT;
517   UpwardsMemoryQuery *Query;
518   unsigned *UpwardWalkLimit;
519 
520   // Phi optimization bookkeeping
521   SmallVector<DefPath, 32> Paths;
522   DenseSet<ConstMemoryAccessPair> VisitedPhis;
523 
524   /// Find the nearest def or phi that `From` can legally be optimized to.
525   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
526     assert(From->getNumOperands() && "Phi with no operands?");
527 
528     BasicBlock *BB = From->getBlock();
529     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
530     DomTreeNode *Node = DT.getNode(BB);
531     while ((Node = Node->getIDom())) {
532       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
533       if (Defs)
534         return &*Defs->rbegin();
535     }
536     return Result;
537   }
538 
539   /// Result of calling walkToPhiOrClobber.
540   struct UpwardsWalkResult {
541     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
542     /// both. Include alias info when clobber found.
543     MemoryAccess *Result;
544     bool IsKnownClobber;
545     Optional<AliasResult> AR;
546   };
547 
548   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
549   /// This will update Desc.Last as it walks. It will (optionally) also stop at
550   /// StopAt.
551   ///
552   /// This does not test for whether StopAt is a clobber
553   UpwardsWalkResult
554   walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
555                      const MemoryAccess *SkipStopAt = nullptr) const {
556     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
557     assert(UpwardWalkLimit && "Need a valid walk limit");
558     bool LimitAlreadyReached = false;
559     // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
560     // it to 1. This will not do any alias() calls. It either returns in the
561     // first iteration in the loop below, or is set back to 0 if all def chains
562     // are free of MemoryDefs.
563     if (!*UpwardWalkLimit) {
564       *UpwardWalkLimit = 1;
565       LimitAlreadyReached = true;
566     }
567 
568     for (MemoryAccess *Current : def_chain(Desc.Last)) {
569       Desc.Last = Current;
570       if (Current == StopAt || Current == SkipStopAt)
571         return {Current, false, MayAlias};
572 
573       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
574         if (MSSA.isLiveOnEntryDef(MD))
575           return {MD, true, MustAlias};
576 
577         if (!--*UpwardWalkLimit)
578           return {Current, true, MayAlias};
579 
580         ClobberAlias CA =
581             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
582         if (CA.IsClobber)
583           return {MD, true, CA.AR};
584       }
585     }
586 
587     if (LimitAlreadyReached)
588       *UpwardWalkLimit = 0;
589 
590     assert(isa<MemoryPhi>(Desc.Last) &&
591            "Ended at a non-clobber that's not a phi?");
592     return {Desc.Last, false, MayAlias};
593   }
594 
595   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
596                    ListIndex PriorNode) {
597     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
598                                  upward_defs_end());
599     for (const MemoryAccessPair &P : UpwardDefs) {
600       PausedSearches.push_back(Paths.size());
601       Paths.emplace_back(P.second, P.first, PriorNode);
602     }
603   }
604 
605   /// Represents a search that terminated after finding a clobber. This clobber
606   /// may or may not be present in the path of defs from LastNode..SearchStart,
607   /// since it may have been retrieved from cache.
608   struct TerminatedPath {
609     MemoryAccess *Clobber;
610     ListIndex LastNode;
611   };
612 
613   /// Get an access that keeps us from optimizing to the given phi.
614   ///
615   /// PausedSearches is an array of indices into the Paths array. Its incoming
616   /// value is the indices of searches that stopped at the last phi optimization
617   /// target. It's left in an unspecified state.
618   ///
619   /// If this returns None, NewPaused is a vector of searches that terminated
620   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
621   Optional<TerminatedPath>
622   getBlockingAccess(const MemoryAccess *StopWhere,
623                     SmallVectorImpl<ListIndex> &PausedSearches,
624                     SmallVectorImpl<ListIndex> &NewPaused,
625                     SmallVectorImpl<TerminatedPath> &Terminated) {
626     assert(!PausedSearches.empty() && "No searches to continue?");
627 
628     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
629     // PausedSearches as our stack.
630     while (!PausedSearches.empty()) {
631       ListIndex PathIndex = PausedSearches.pop_back_val();
632       DefPath &Node = Paths[PathIndex];
633 
634       // If we've already visited this path with this MemoryLocation, we don't
635       // need to do so again.
636       //
637       // NOTE: That we just drop these paths on the ground makes caching
638       // behavior sporadic. e.g. given a diamond:
639       //  A
640       // B C
641       //  D
642       //
643       // ...If we walk D, B, A, C, we'll only cache the result of phi
644       // optimization for A, B, and D; C will be skipped because it dies here.
645       // This arguably isn't the worst thing ever, since:
646       //   - We generally query things in a top-down order, so if we got below D
647       //     without needing cache entries for {C, MemLoc}, then chances are
648       //     that those cache entries would end up ultimately unused.
649       //   - We still cache things for A, so C only needs to walk up a bit.
650       // If this behavior becomes problematic, we can fix without a ton of extra
651       // work.
652       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
653         continue;
654 
655       const MemoryAccess *SkipStopWhere = nullptr;
656       if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
657         assert(isa<MemoryDef>(Query->OriginalAccess));
658         SkipStopWhere = Query->OriginalAccess;
659       }
660 
661       UpwardsWalkResult Res = walkToPhiOrClobber(Node,
662                                                  /*StopAt=*/StopWhere,
663                                                  /*SkipStopAt=*/SkipStopWhere);
664       if (Res.IsKnownClobber) {
665         assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
666 
667         // If this wasn't a cache hit, we hit a clobber when walking. That's a
668         // failure.
669         TerminatedPath Term{Res.Result, PathIndex};
670         if (!MSSA.dominates(Res.Result, StopWhere))
671           return Term;
672 
673         // Otherwise, it's a valid thing to potentially optimize to.
674         Terminated.push_back(Term);
675         continue;
676       }
677 
678       if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
679         // We've hit our target. Save this path off for if we want to continue
680         // walking. If we are in the mode of skipping the OriginalAccess, and
681         // we've reached back to the OriginalAccess, do not save path, we've
682         // just looped back to self.
683         if (Res.Result != SkipStopWhere)
684           NewPaused.push_back(PathIndex);
685         continue;
686       }
687 
688       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
689       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
690     }
691 
692     return None;
693   }
694 
695   template <typename T, typename Walker>
696   struct generic_def_path_iterator
697       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
698                                     std::forward_iterator_tag, T *> {
699     generic_def_path_iterator() {}
700     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
701 
702     T &operator*() const { return curNode(); }
703 
704     generic_def_path_iterator &operator++() {
705       N = curNode().Previous;
706       return *this;
707     }
708 
709     bool operator==(const generic_def_path_iterator &O) const {
710       if (N.hasValue() != O.N.hasValue())
711         return false;
712       return !N.hasValue() || *N == *O.N;
713     }
714 
715   private:
716     T &curNode() const { return W->Paths[*N]; }
717 
718     Walker *W = nullptr;
719     Optional<ListIndex> N = None;
720   };
721 
722   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
723   using const_def_path_iterator =
724       generic_def_path_iterator<const DefPath, const ClobberWalker>;
725 
726   iterator_range<def_path_iterator> def_path(ListIndex From) {
727     return make_range(def_path_iterator(this, From), def_path_iterator());
728   }
729 
730   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
731     return make_range(const_def_path_iterator(this, From),
732                       const_def_path_iterator());
733   }
734 
735   struct OptznResult {
736     /// The path that contains our result.
737     TerminatedPath PrimaryClobber;
738     /// The paths that we can legally cache back from, but that aren't
739     /// necessarily the result of the Phi optimization.
740     SmallVector<TerminatedPath, 4> OtherClobbers;
741   };
742 
743   ListIndex defPathIndex(const DefPath &N) const {
744     // The assert looks nicer if we don't need to do &N
745     const DefPath *NP = &N;
746     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
747            "Out of bounds DefPath!");
748     return NP - &Paths.front();
749   }
750 
751   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
752   /// that act as legal clobbers. Note that this won't return *all* clobbers.
753   ///
754   /// Phi optimization algorithm tl;dr:
755   ///   - Find the earliest def/phi, A, we can optimize to
756   ///   - Find if all paths from the starting memory access ultimately reach A
757   ///     - If not, optimization isn't possible.
758   ///     - Otherwise, walk from A to another clobber or phi, A'.
759   ///       - If A' is a def, we're done.
760   ///       - If A' is a phi, try to optimize it.
761   ///
762   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
763   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
764   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
765                              const MemoryLocation &Loc) {
766     assert(Paths.empty() && VisitedPhis.empty() &&
767            "Reset the optimization state.");
768 
769     Paths.emplace_back(Loc, Start, Phi, None);
770     // Stores how many "valid" optimization nodes we had prior to calling
771     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
772     auto PriorPathsSize = Paths.size();
773 
774     SmallVector<ListIndex, 16> PausedSearches;
775     SmallVector<ListIndex, 8> NewPaused;
776     SmallVector<TerminatedPath, 4> TerminatedPaths;
777 
778     addSearches(Phi, PausedSearches, 0);
779 
780     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
781     // Paths.
782     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
783       assert(!Paths.empty() && "Need a path to move");
784       auto Dom = Paths.begin();
785       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
786         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
787           Dom = I;
788       auto Last = Paths.end() - 1;
789       if (Last != Dom)
790         std::iter_swap(Last, Dom);
791     };
792 
793     MemoryPhi *Current = Phi;
794     while (true) {
795       assert(!MSSA.isLiveOnEntryDef(Current) &&
796              "liveOnEntry wasn't treated as a clobber?");
797 
798       const auto *Target = getWalkTarget(Current);
799       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
800       // optimization for the prior phi.
801       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
802         return MSSA.dominates(P.Clobber, Target);
803       }));
804 
805       // FIXME: This is broken, because the Blocker may be reported to be
806       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
807       // For the moment, this is fine, since we do nothing with blocker info.
808       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
809               Target, PausedSearches, NewPaused, TerminatedPaths)) {
810 
811         // Find the node we started at. We can't search based on N->Last, since
812         // we may have gone around a loop with a different MemoryLocation.
813         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
814           return defPathIndex(N) < PriorPathsSize;
815         });
816         assert(Iter != def_path_iterator());
817 
818         DefPath &CurNode = *Iter;
819         assert(CurNode.Last == Current);
820 
821         // Two things:
822         // A. We can't reliably cache all of NewPaused back. Consider a case
823         //    where we have two paths in NewPaused; one of which can't optimize
824         //    above this phi, whereas the other can. If we cache the second path
825         //    back, we'll end up with suboptimal cache entries. We can handle
826         //    cases like this a bit better when we either try to find all
827         //    clobbers that block phi optimization, or when our cache starts
828         //    supporting unfinished searches.
829         // B. We can't reliably cache TerminatedPaths back here without doing
830         //    extra checks; consider a case like:
831         //       T
832         //      / \
833         //     D   C
834         //      \ /
835         //       S
836         //    Where T is our target, C is a node with a clobber on it, D is a
837         //    diamond (with a clobber *only* on the left or right node, N), and
838         //    S is our start. Say we walk to D, through the node opposite N
839         //    (read: ignoring the clobber), and see a cache entry in the top
840         //    node of D. That cache entry gets put into TerminatedPaths. We then
841         //    walk up to C (N is later in our worklist), find the clobber, and
842         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
843         //    the bottom part of D to the cached clobber, ignoring the clobber
844         //    in N. Again, this problem goes away if we start tracking all
845         //    blockers for a given phi optimization.
846         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
847         return {Result, {}};
848       }
849 
850       // If there's nothing left to search, then all paths led to valid clobbers
851       // that we got from our cache; pick the nearest to the start, and allow
852       // the rest to be cached back.
853       if (NewPaused.empty()) {
854         MoveDominatedPathToEnd(TerminatedPaths);
855         TerminatedPath Result = TerminatedPaths.pop_back_val();
856         return {Result, std::move(TerminatedPaths)};
857       }
858 
859       MemoryAccess *DefChainEnd = nullptr;
860       SmallVector<TerminatedPath, 4> Clobbers;
861       for (ListIndex Paused : NewPaused) {
862         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
863         if (WR.IsKnownClobber)
864           Clobbers.push_back({WR.Result, Paused});
865         else
866           // Micro-opt: If we hit the end of the chain, save it.
867           DefChainEnd = WR.Result;
868       }
869 
870       if (!TerminatedPaths.empty()) {
871         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
872         // do it now.
873         if (!DefChainEnd)
874           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
875             DefChainEnd = MA;
876 
877         // If any of the terminated paths don't dominate the phi we'll try to
878         // optimize, we need to figure out what they are and quit.
879         const BasicBlock *ChainBB = DefChainEnd->getBlock();
880         for (const TerminatedPath &TP : TerminatedPaths) {
881           // Because we know that DefChainEnd is as "high" as we can go, we
882           // don't need local dominance checks; BB dominance is sufficient.
883           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
884             Clobbers.push_back(TP);
885         }
886       }
887 
888       // If we have clobbers in the def chain, find the one closest to Current
889       // and quit.
890       if (!Clobbers.empty()) {
891         MoveDominatedPathToEnd(Clobbers);
892         TerminatedPath Result = Clobbers.pop_back_val();
893         return {Result, std::move(Clobbers)};
894       }
895 
896       assert(all_of(NewPaused,
897                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
898 
899       // Because liveOnEntry is a clobber, this must be a phi.
900       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
901 
902       PriorPathsSize = Paths.size();
903       PausedSearches.clear();
904       for (ListIndex I : NewPaused)
905         addSearches(DefChainPhi, PausedSearches, I);
906       NewPaused.clear();
907 
908       Current = DefChainPhi;
909     }
910   }
911 
912   void verifyOptResult(const OptznResult &R) const {
913     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
914       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
915     }));
916   }
917 
918   void resetPhiOptznState() {
919     Paths.clear();
920     VisitedPhis.clear();
921   }
922 
923 public:
924   ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
925       : MSSA(MSSA), AA(AA), DT(DT) {}
926 
927   AliasAnalysisType *getAA() { return &AA; }
928   /// Finds the nearest clobber for the given query, optimizing phis if
929   /// possible.
930   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
931                             unsigned &UpWalkLimit) {
932     Query = &Q;
933     UpwardWalkLimit = &UpWalkLimit;
934     // Starting limit must be > 0.
935     if (!UpWalkLimit)
936       UpWalkLimit++;
937 
938     MemoryAccess *Current = Start;
939     // This walker pretends uses don't exist. If we're handed one, silently grab
940     // its def. (This has the nice side-effect of ensuring we never cache uses)
941     if (auto *MU = dyn_cast<MemoryUse>(Start))
942       Current = MU->getDefiningAccess();
943 
944     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
945     // Fast path for the overly-common case (no crazy phi optimization
946     // necessary)
947     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
948     MemoryAccess *Result;
949     if (WalkResult.IsKnownClobber) {
950       Result = WalkResult.Result;
951       Q.AR = WalkResult.AR;
952     } else {
953       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
954                                           Current, Q.StartingLoc);
955       verifyOptResult(OptRes);
956       resetPhiOptznState();
957       Result = OptRes.PrimaryClobber.Clobber;
958     }
959 
960 #ifdef EXPENSIVE_CHECKS
961     if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
962       checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
963 #endif
964     return Result;
965   }
966 };
967 
968 struct RenamePassData {
969   DomTreeNode *DTN;
970   DomTreeNode::const_iterator ChildIt;
971   MemoryAccess *IncomingVal;
972 
973   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
974                  MemoryAccess *M)
975       : DTN(D), ChildIt(It), IncomingVal(M) {}
976 
977   void swap(RenamePassData &RHS) {
978     std::swap(DTN, RHS.DTN);
979     std::swap(ChildIt, RHS.ChildIt);
980     std::swap(IncomingVal, RHS.IncomingVal);
981   }
982 };
983 
984 } // end anonymous namespace
985 
986 namespace llvm {
987 
988 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
989   ClobberWalker<AliasAnalysisType> Walker;
990   MemorySSA *MSSA;
991 
992 public:
993   ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
994       : Walker(*M, *A, *D), MSSA(M) {}
995 
996   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
997                                               const MemoryLocation &,
998                                               unsigned &);
999   // Third argument (bool), defines whether the clobber search should skip the
1000   // original queried access. If true, there will be a follow-up query searching
1001   // for a clobber access past "self". Note that the Optimized access is not
1002   // updated if a new clobber is found by this SkipSelf search. If this
1003   // additional query becomes heavily used we may decide to cache the result.
1004   // Walker instantiations will decide how to set the SkipSelf bool.
1005   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
1006 };
1007 
1008 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1009 /// longer does caching on its own, but the name has been retained for the
1010 /// moment.
1011 template <class AliasAnalysisType>
1012 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1013   ClobberWalkerBase<AliasAnalysisType> *Walker;
1014 
1015 public:
1016   CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1017       : MemorySSAWalker(M), Walker(W) {}
1018   ~CachingWalker() override = default;
1019 
1020   using MemorySSAWalker::getClobberingMemoryAccess;
1021 
1022   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1023     return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1024   }
1025   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1026                                           const MemoryLocation &Loc,
1027                                           unsigned &UWL) {
1028     return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1029   }
1030 
1031   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1032     unsigned UpwardWalkLimit = MaxCheckLimit;
1033     return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1034   }
1035   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1036                                           const MemoryLocation &Loc) override {
1037     unsigned UpwardWalkLimit = MaxCheckLimit;
1038     return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1039   }
1040 
1041   void invalidateInfo(MemoryAccess *MA) override {
1042     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1043       MUD->resetOptimized();
1044   }
1045 };
1046 
1047 template <class AliasAnalysisType>
1048 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1049   ClobberWalkerBase<AliasAnalysisType> *Walker;
1050 
1051 public:
1052   SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1053       : MemorySSAWalker(M), Walker(W) {}
1054   ~SkipSelfWalker() override = default;
1055 
1056   using MemorySSAWalker::getClobberingMemoryAccess;
1057 
1058   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1059     return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1060   }
1061   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1062                                           const MemoryLocation &Loc,
1063                                           unsigned &UWL) {
1064     return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1065   }
1066 
1067   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1068     unsigned UpwardWalkLimit = MaxCheckLimit;
1069     return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1070   }
1071   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1072                                           const MemoryLocation &Loc) override {
1073     unsigned UpwardWalkLimit = MaxCheckLimit;
1074     return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1075   }
1076 
1077   void invalidateInfo(MemoryAccess *MA) override {
1078     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1079       MUD->resetOptimized();
1080   }
1081 };
1082 
1083 } // end namespace llvm
1084 
1085 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1086                                     bool RenameAllUses) {
1087   // Pass through values to our successors
1088   for (const BasicBlock *S : successors(BB)) {
1089     auto It = PerBlockAccesses.find(S);
1090     // Rename the phi nodes in our successor block
1091     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1092       continue;
1093     AccessList *Accesses = It->second.get();
1094     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1095     if (RenameAllUses) {
1096       bool ReplacementDone = false;
1097       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1098         if (Phi->getIncomingBlock(I) == BB) {
1099           Phi->setIncomingValue(I, IncomingVal);
1100           ReplacementDone = true;
1101         }
1102       (void) ReplacementDone;
1103       assert(ReplacementDone && "Incomplete phi during partial rename");
1104     } else
1105       Phi->addIncoming(IncomingVal, BB);
1106   }
1107 }
1108 
1109 /// Rename a single basic block into MemorySSA form.
1110 /// Uses the standard SSA renaming algorithm.
1111 /// \returns The new incoming value.
1112 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1113                                      bool RenameAllUses) {
1114   auto It = PerBlockAccesses.find(BB);
1115   // Skip most processing if the list is empty.
1116   if (It != PerBlockAccesses.end()) {
1117     AccessList *Accesses = It->second.get();
1118     for (MemoryAccess &L : *Accesses) {
1119       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1120         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1121           MUD->setDefiningAccess(IncomingVal);
1122         if (isa<MemoryDef>(&L))
1123           IncomingVal = &L;
1124       } else {
1125         IncomingVal = &L;
1126       }
1127     }
1128   }
1129   return IncomingVal;
1130 }
1131 
1132 /// This is the standard SSA renaming algorithm.
1133 ///
1134 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1135 /// in phi nodes in our successors.
1136 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1137                            SmallPtrSetImpl<BasicBlock *> &Visited,
1138                            bool SkipVisited, bool RenameAllUses) {
1139   assert(Root && "Trying to rename accesses in an unreachable block");
1140 
1141   SmallVector<RenamePassData, 32> WorkStack;
1142   // Skip everything if we already renamed this block and we are skipping.
1143   // Note: You can't sink this into the if, because we need it to occur
1144   // regardless of whether we skip blocks or not.
1145   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1146   if (SkipVisited && AlreadyVisited)
1147     return;
1148 
1149   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1150   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1151   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1152 
1153   while (!WorkStack.empty()) {
1154     DomTreeNode *Node = WorkStack.back().DTN;
1155     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1156     IncomingVal = WorkStack.back().IncomingVal;
1157 
1158     if (ChildIt == Node->end()) {
1159       WorkStack.pop_back();
1160     } else {
1161       DomTreeNode *Child = *ChildIt;
1162       ++WorkStack.back().ChildIt;
1163       BasicBlock *BB = Child->getBlock();
1164       // Note: You can't sink this into the if, because we need it to occur
1165       // regardless of whether we skip blocks or not.
1166       AlreadyVisited = !Visited.insert(BB).second;
1167       if (SkipVisited && AlreadyVisited) {
1168         // We already visited this during our renaming, which can happen when
1169         // being asked to rename multiple blocks. Figure out the incoming val,
1170         // which is the last def.
1171         // Incoming value can only change if there is a block def, and in that
1172         // case, it's the last block def in the list.
1173         if (auto *BlockDefs = getWritableBlockDefs(BB))
1174           IncomingVal = &*BlockDefs->rbegin();
1175       } else
1176         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1177       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1178       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1179     }
1180   }
1181 }
1182 
1183 /// This handles unreachable block accesses by deleting phi nodes in
1184 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1185 /// being uses of the live on entry definition.
1186 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1187   assert(!DT->isReachableFromEntry(BB) &&
1188          "Reachable block found while handling unreachable blocks");
1189 
1190   // Make sure phi nodes in our reachable successors end up with a
1191   // LiveOnEntryDef for our incoming edge, even though our block is forward
1192   // unreachable.  We could just disconnect these blocks from the CFG fully,
1193   // but we do not right now.
1194   for (const BasicBlock *S : successors(BB)) {
1195     if (!DT->isReachableFromEntry(S))
1196       continue;
1197     auto It = PerBlockAccesses.find(S);
1198     // Rename the phi nodes in our successor block
1199     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1200       continue;
1201     AccessList *Accesses = It->second.get();
1202     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1203     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1204   }
1205 
1206   auto It = PerBlockAccesses.find(BB);
1207   if (It == PerBlockAccesses.end())
1208     return;
1209 
1210   auto &Accesses = It->second;
1211   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1212     auto Next = std::next(AI);
1213     // If we have a phi, just remove it. We are going to replace all
1214     // users with live on entry.
1215     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1216       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1217     else
1218       Accesses->erase(AI);
1219     AI = Next;
1220   }
1221 }
1222 
1223 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1224     : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1225       SkipWalker(nullptr), NextID(0) {
1226   // Build MemorySSA using a batch alias analysis. This reuses the internal
1227   // state that AA collects during an alias()/getModRefInfo() call. This is
1228   // safe because there are no CFG changes while building MemorySSA and can
1229   // significantly reduce the time spent by the compiler in AA, because we will
1230   // make queries about all the instructions in the Function.
1231   BatchAAResults BatchAA(*AA);
1232   buildMemorySSA(BatchAA);
1233   // Intentionally leave AA to nullptr while building so we don't accidently
1234   // use non-batch AliasAnalysis.
1235   this->AA = AA;
1236   // Also create the walker here.
1237   getWalker();
1238 }
1239 
1240 MemorySSA::~MemorySSA() {
1241   // Drop all our references
1242   for (const auto &Pair : PerBlockAccesses)
1243     for (MemoryAccess &MA : *Pair.second)
1244       MA.dropAllReferences();
1245 }
1246 
1247 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1248   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1249 
1250   if (Res.second)
1251     Res.first->second = std::make_unique<AccessList>();
1252   return Res.first->second.get();
1253 }
1254 
1255 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1256   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1257 
1258   if (Res.second)
1259     Res.first->second = std::make_unique<DefsList>();
1260   return Res.first->second.get();
1261 }
1262 
1263 namespace llvm {
1264 
1265 /// This class is a batch walker of all MemoryUse's in the program, and points
1266 /// their defining access at the thing that actually clobbers them.  Because it
1267 /// is a batch walker that touches everything, it does not operate like the
1268 /// other walkers.  This walker is basically performing a top-down SSA renaming
1269 /// pass, where the version stack is used as the cache.  This enables it to be
1270 /// significantly more time and memory efficient than using the regular walker,
1271 /// which is walking bottom-up.
1272 class MemorySSA::OptimizeUses {
1273 public:
1274   OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1275                BatchAAResults *BAA, DominatorTree *DT)
1276       : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1277 
1278   void optimizeUses();
1279 
1280 private:
1281   /// This represents where a given memorylocation is in the stack.
1282   struct MemlocStackInfo {
1283     // This essentially is keeping track of versions of the stack. Whenever
1284     // the stack changes due to pushes or pops, these versions increase.
1285     unsigned long StackEpoch;
1286     unsigned long PopEpoch;
1287     // This is the lower bound of places on the stack to check. It is equal to
1288     // the place the last stack walk ended.
1289     // Note: Correctness depends on this being initialized to 0, which densemap
1290     // does
1291     unsigned long LowerBound;
1292     const BasicBlock *LowerBoundBlock;
1293     // This is where the last walk for this memory location ended.
1294     unsigned long LastKill;
1295     bool LastKillValid;
1296     Optional<AliasResult> AR;
1297   };
1298 
1299   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1300                            SmallVectorImpl<MemoryAccess *> &,
1301                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1302 
1303   MemorySSA *MSSA;
1304   CachingWalker<BatchAAResults> *Walker;
1305   BatchAAResults *AA;
1306   DominatorTree *DT;
1307 };
1308 
1309 } // end namespace llvm
1310 
1311 /// Optimize the uses in a given block This is basically the SSA renaming
1312 /// algorithm, with one caveat: We are able to use a single stack for all
1313 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1314 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1315 /// going to be some position in that stack of possible ones.
1316 ///
1317 /// We track the stack positions that each MemoryLocation needs
1318 /// to check, and last ended at.  This is because we only want to check the
1319 /// things that changed since last time.  The same MemoryLocation should
1320 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1321 /// things like this, and if they start, we can modify MemoryLocOrCall to
1322 /// include relevant data)
1323 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1324     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1325     SmallVectorImpl<MemoryAccess *> &VersionStack,
1326     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1327 
1328   /// If no accesses, nothing to do.
1329   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1330   if (Accesses == nullptr)
1331     return;
1332 
1333   // Pop everything that doesn't dominate the current block off the stack,
1334   // increment the PopEpoch to account for this.
1335   while (true) {
1336     assert(
1337         !VersionStack.empty() &&
1338         "Version stack should have liveOnEntry sentinel dominating everything");
1339     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1340     if (DT->dominates(BackBlock, BB))
1341       break;
1342     while (VersionStack.back()->getBlock() == BackBlock)
1343       VersionStack.pop_back();
1344     ++PopEpoch;
1345   }
1346 
1347   for (MemoryAccess &MA : *Accesses) {
1348     auto *MU = dyn_cast<MemoryUse>(&MA);
1349     if (!MU) {
1350       VersionStack.push_back(&MA);
1351       ++StackEpoch;
1352       continue;
1353     }
1354 
1355     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1356       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1357       continue;
1358     }
1359 
1360     MemoryLocOrCall UseMLOC(MU);
1361     auto &LocInfo = LocStackInfo[UseMLOC];
1362     // If the pop epoch changed, it means we've removed stuff from top of
1363     // stack due to changing blocks. We may have to reset the lower bound or
1364     // last kill info.
1365     if (LocInfo.PopEpoch != PopEpoch) {
1366       LocInfo.PopEpoch = PopEpoch;
1367       LocInfo.StackEpoch = StackEpoch;
1368       // If the lower bound was in something that no longer dominates us, we
1369       // have to reset it.
1370       // We can't simply track stack size, because the stack may have had
1371       // pushes/pops in the meantime.
1372       // XXX: This is non-optimal, but only is slower cases with heavily
1373       // branching dominator trees.  To get the optimal number of queries would
1374       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1375       // the top of that stack dominates us.  This does not seem worth it ATM.
1376       // A much cheaper optimization would be to always explore the deepest
1377       // branch of the dominator tree first. This will guarantee this resets on
1378       // the smallest set of blocks.
1379       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1380           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1381         // Reset the lower bound of things to check.
1382         // TODO: Some day we should be able to reset to last kill, rather than
1383         // 0.
1384         LocInfo.LowerBound = 0;
1385         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1386         LocInfo.LastKillValid = false;
1387       }
1388     } else if (LocInfo.StackEpoch != StackEpoch) {
1389       // If all that has changed is the StackEpoch, we only have to check the
1390       // new things on the stack, because we've checked everything before.  In
1391       // this case, the lower bound of things to check remains the same.
1392       LocInfo.PopEpoch = PopEpoch;
1393       LocInfo.StackEpoch = StackEpoch;
1394     }
1395     if (!LocInfo.LastKillValid) {
1396       LocInfo.LastKill = VersionStack.size() - 1;
1397       LocInfo.LastKillValid = true;
1398       LocInfo.AR = MayAlias;
1399     }
1400 
1401     // At this point, we should have corrected last kill and LowerBound to be
1402     // in bounds.
1403     assert(LocInfo.LowerBound < VersionStack.size() &&
1404            "Lower bound out of range");
1405     assert(LocInfo.LastKill < VersionStack.size() &&
1406            "Last kill info out of range");
1407     // In any case, the new upper bound is the top of the stack.
1408     unsigned long UpperBound = VersionStack.size() - 1;
1409 
1410     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1411       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1412                         << *(MU->getMemoryInst()) << ")"
1413                         << " because there are "
1414                         << UpperBound - LocInfo.LowerBound
1415                         << " stores to disambiguate\n");
1416       // Because we did not walk, LastKill is no longer valid, as this may
1417       // have been a kill.
1418       LocInfo.LastKillValid = false;
1419       continue;
1420     }
1421     bool FoundClobberResult = false;
1422     unsigned UpwardWalkLimit = MaxCheckLimit;
1423     while (UpperBound > LocInfo.LowerBound) {
1424       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1425         // For phis, use the walker, see where we ended up, go there
1426         MemoryAccess *Result =
1427             Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
1428         // We are guaranteed to find it or something is wrong
1429         while (VersionStack[UpperBound] != Result) {
1430           assert(UpperBound != 0);
1431           --UpperBound;
1432         }
1433         FoundClobberResult = true;
1434         break;
1435       }
1436 
1437       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1438       // If the lifetime of the pointer ends at this instruction, it's live on
1439       // entry.
1440       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1441         // Reset UpperBound to liveOnEntryDef's place in the stack
1442         UpperBound = 0;
1443         FoundClobberResult = true;
1444         LocInfo.AR = MustAlias;
1445         break;
1446       }
1447       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1448       if (CA.IsClobber) {
1449         FoundClobberResult = true;
1450         LocInfo.AR = CA.AR;
1451         break;
1452       }
1453       --UpperBound;
1454     }
1455 
1456     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1457 
1458     // At the end of this loop, UpperBound is either a clobber, or lower bound
1459     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1460     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1461       // We were last killed now by where we got to
1462       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1463         LocInfo.AR = None;
1464       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1465       LocInfo.LastKill = UpperBound;
1466     } else {
1467       // Otherwise, we checked all the new ones, and now we know we can get to
1468       // LastKill.
1469       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1470     }
1471     LocInfo.LowerBound = VersionStack.size() - 1;
1472     LocInfo.LowerBoundBlock = BB;
1473   }
1474 }
1475 
1476 /// Optimize uses to point to their actual clobbering definitions.
1477 void MemorySSA::OptimizeUses::optimizeUses() {
1478   SmallVector<MemoryAccess *, 16> VersionStack;
1479   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1480   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1481 
1482   unsigned long StackEpoch = 1;
1483   unsigned long PopEpoch = 1;
1484   // We perform a non-recursive top-down dominator tree walk.
1485   for (const auto *DomNode : depth_first(DT->getRootNode()))
1486     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1487                         LocStackInfo);
1488 }
1489 
1490 void MemorySSA::placePHINodes(
1491     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1492   // Determine where our MemoryPhi's should go
1493   ForwardIDFCalculator IDFs(*DT);
1494   IDFs.setDefiningBlocks(DefiningBlocks);
1495   SmallVector<BasicBlock *, 32> IDFBlocks;
1496   IDFs.calculate(IDFBlocks);
1497 
1498   // Now place MemoryPhi nodes.
1499   for (auto &BB : IDFBlocks)
1500     createMemoryPhi(BB);
1501 }
1502 
1503 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1504   // We create an access to represent "live on entry", for things like
1505   // arguments or users of globals, where the memory they use is defined before
1506   // the beginning of the function. We do not actually insert it into the IR.
1507   // We do not define a live on exit for the immediate uses, and thus our
1508   // semantics do *not* imply that something with no immediate uses can simply
1509   // be removed.
1510   BasicBlock &StartingPoint = F.getEntryBlock();
1511   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1512                                      &StartingPoint, NextID++));
1513 
1514   // We maintain lists of memory accesses per-block, trading memory for time. We
1515   // could just look up the memory access for every possible instruction in the
1516   // stream.
1517   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1518   // Go through each block, figure out where defs occur, and chain together all
1519   // the accesses.
1520   for (BasicBlock &B : F) {
1521     bool InsertIntoDef = false;
1522     AccessList *Accesses = nullptr;
1523     DefsList *Defs = nullptr;
1524     for (Instruction &I : B) {
1525       MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1526       if (!MUD)
1527         continue;
1528 
1529       if (!Accesses)
1530         Accesses = getOrCreateAccessList(&B);
1531       Accesses->push_back(MUD);
1532       if (isa<MemoryDef>(MUD)) {
1533         InsertIntoDef = true;
1534         if (!Defs)
1535           Defs = getOrCreateDefsList(&B);
1536         Defs->push_back(*MUD);
1537       }
1538     }
1539     if (InsertIntoDef)
1540       DefiningBlocks.insert(&B);
1541   }
1542   placePHINodes(DefiningBlocks);
1543 
1544   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1545   // filled in with all blocks.
1546   SmallPtrSet<BasicBlock *, 16> Visited;
1547   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1548 
1549   ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
1550   CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
1551   OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
1552 
1553   // Mark the uses in unreachable blocks as live on entry, so that they go
1554   // somewhere.
1555   for (auto &BB : F)
1556     if (!Visited.count(&BB))
1557       markUnreachableAsLiveOnEntry(&BB);
1558 }
1559 
1560 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1561 
1562 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1563   if (Walker)
1564     return Walker.get();
1565 
1566   if (!WalkerBase)
1567     WalkerBase =
1568         std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1569 
1570   Walker =
1571       std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1572   return Walker.get();
1573 }
1574 
1575 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1576   if (SkipWalker)
1577     return SkipWalker.get();
1578 
1579   if (!WalkerBase)
1580     WalkerBase =
1581         std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1582 
1583   SkipWalker =
1584       std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
1585   return SkipWalker.get();
1586  }
1587 
1588 
1589 // This is a helper function used by the creation routines. It places NewAccess
1590 // into the access and defs lists for a given basic block, at the given
1591 // insertion point.
1592 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1593                                         const BasicBlock *BB,
1594                                         InsertionPlace Point) {
1595   auto *Accesses = getOrCreateAccessList(BB);
1596   if (Point == Beginning) {
1597     // If it's a phi node, it goes first, otherwise, it goes after any phi
1598     // nodes.
1599     if (isa<MemoryPhi>(NewAccess)) {
1600       Accesses->push_front(NewAccess);
1601       auto *Defs = getOrCreateDefsList(BB);
1602       Defs->push_front(*NewAccess);
1603     } else {
1604       auto AI = find_if_not(
1605           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1606       Accesses->insert(AI, NewAccess);
1607       if (!isa<MemoryUse>(NewAccess)) {
1608         auto *Defs = getOrCreateDefsList(BB);
1609         auto DI = find_if_not(
1610             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1611         Defs->insert(DI, *NewAccess);
1612       }
1613     }
1614   } else {
1615     Accesses->push_back(NewAccess);
1616     if (!isa<MemoryUse>(NewAccess)) {
1617       auto *Defs = getOrCreateDefsList(BB);
1618       Defs->push_back(*NewAccess);
1619     }
1620   }
1621   BlockNumberingValid.erase(BB);
1622 }
1623 
1624 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1625                                       AccessList::iterator InsertPt) {
1626   auto *Accesses = getWritableBlockAccesses(BB);
1627   bool WasEnd = InsertPt == Accesses->end();
1628   Accesses->insert(AccessList::iterator(InsertPt), What);
1629   if (!isa<MemoryUse>(What)) {
1630     auto *Defs = getOrCreateDefsList(BB);
1631     // If we got asked to insert at the end, we have an easy job, just shove it
1632     // at the end. If we got asked to insert before an existing def, we also get
1633     // an iterator. If we got asked to insert before a use, we have to hunt for
1634     // the next def.
1635     if (WasEnd) {
1636       Defs->push_back(*What);
1637     } else if (isa<MemoryDef>(InsertPt)) {
1638       Defs->insert(InsertPt->getDefsIterator(), *What);
1639     } else {
1640       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1641         ++InsertPt;
1642       // Either we found a def, or we are inserting at the end
1643       if (InsertPt == Accesses->end())
1644         Defs->push_back(*What);
1645       else
1646         Defs->insert(InsertPt->getDefsIterator(), *What);
1647     }
1648   }
1649   BlockNumberingValid.erase(BB);
1650 }
1651 
1652 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1653   // Keep it in the lookup tables, remove from the lists
1654   removeFromLists(What, false);
1655 
1656   // Note that moving should implicitly invalidate the optimized state of a
1657   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1658   // MemoryDef.
1659   if (auto *MD = dyn_cast<MemoryDef>(What))
1660     MD->resetOptimized();
1661   What->setBlock(BB);
1662 }
1663 
1664 // Move What before Where in the IR.  The end result is that What will belong to
1665 // the right lists and have the right Block set, but will not otherwise be
1666 // correct. It will not have the right defining access, and if it is a def,
1667 // things below it will not properly be updated.
1668 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1669                        AccessList::iterator Where) {
1670   prepareForMoveTo(What, BB);
1671   insertIntoListsBefore(What, BB, Where);
1672 }
1673 
1674 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1675                        InsertionPlace Point) {
1676   if (isa<MemoryPhi>(What)) {
1677     assert(Point == Beginning &&
1678            "Can only move a Phi at the beginning of the block");
1679     // Update lookup table entry
1680     ValueToMemoryAccess.erase(What->getBlock());
1681     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1682     (void)Inserted;
1683     assert(Inserted && "Cannot move a Phi to a block that already has one");
1684   }
1685 
1686   prepareForMoveTo(What, BB);
1687   insertIntoListsForBlock(What, BB, Point);
1688 }
1689 
1690 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1691   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1692   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1693   // Phi's always are placed at the front of the block.
1694   insertIntoListsForBlock(Phi, BB, Beginning);
1695   ValueToMemoryAccess[BB] = Phi;
1696   return Phi;
1697 }
1698 
1699 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1700                                                MemoryAccess *Definition,
1701                                                const MemoryUseOrDef *Template,
1702                                                bool CreationMustSucceed) {
1703   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1704   MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1705   if (CreationMustSucceed)
1706     assert(NewAccess != nullptr && "Tried to create a memory access for a "
1707                                    "non-memory touching instruction");
1708   if (NewAccess)
1709     NewAccess->setDefiningAccess(Definition);
1710   return NewAccess;
1711 }
1712 
1713 // Return true if the instruction has ordering constraints.
1714 // Note specifically that this only considers stores and loads
1715 // because others are still considered ModRef by getModRefInfo.
1716 static inline bool isOrdered(const Instruction *I) {
1717   if (auto *SI = dyn_cast<StoreInst>(I)) {
1718     if (!SI->isUnordered())
1719       return true;
1720   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1721     if (!LI->isUnordered())
1722       return true;
1723   }
1724   return false;
1725 }
1726 
1727 /// Helper function to create new memory accesses
1728 template <typename AliasAnalysisType>
1729 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1730                                            AliasAnalysisType *AAP,
1731                                            const MemoryUseOrDef *Template) {
1732   // The assume intrinsic has a control dependency which we model by claiming
1733   // that it writes arbitrarily. Debuginfo intrinsics may be considered
1734   // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1735   // dependencies here.
1736   // FIXME: Replace this special casing with a more accurate modelling of
1737   // assume's control dependency.
1738   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1739     if (II->getIntrinsicID() == Intrinsic::assume)
1740       return nullptr;
1741 
1742   // Using a nonstandard AA pipelines might leave us with unexpected modref
1743   // results for I, so add a check to not model instructions that may not read
1744   // from or write to memory. This is necessary for correctness.
1745   if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1746     return nullptr;
1747 
1748   bool Def, Use;
1749   if (Template) {
1750     Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1751     Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1752 #if !defined(NDEBUG)
1753     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1754     bool DefCheck, UseCheck;
1755     DefCheck = isModSet(ModRef) || isOrdered(I);
1756     UseCheck = isRefSet(ModRef);
1757     assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1758 #endif
1759   } else {
1760     // Find out what affect this instruction has on memory.
1761     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1762     // The isOrdered check is used to ensure that volatiles end up as defs
1763     // (atomics end up as ModRef right now anyway).  Until we separate the
1764     // ordering chain from the memory chain, this enables people to see at least
1765     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1766     // will still give an answer that bypasses other volatile loads.  TODO:
1767     // Separate memory aliasing and ordering into two different chains so that
1768     // we can precisely represent both "what memory will this read/write/is
1769     // clobbered by" and "what instructions can I move this past".
1770     Def = isModSet(ModRef) || isOrdered(I);
1771     Use = isRefSet(ModRef);
1772   }
1773 
1774   // It's possible for an instruction to not modify memory at all. During
1775   // construction, we ignore them.
1776   if (!Def && !Use)
1777     return nullptr;
1778 
1779   MemoryUseOrDef *MUD;
1780   if (Def)
1781     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1782   else
1783     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1784   ValueToMemoryAccess[I] = MUD;
1785   return MUD;
1786 }
1787 
1788 /// Returns true if \p Replacer dominates \p Replacee .
1789 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1790                              const MemoryAccess *Replacee) const {
1791   if (isa<MemoryUseOrDef>(Replacee))
1792     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1793   const auto *MP = cast<MemoryPhi>(Replacee);
1794   // For a phi node, the use occurs in the predecessor block of the phi node.
1795   // Since we may occur multiple times in the phi node, we have to check each
1796   // operand to ensure Replacer dominates each operand where Replacee occurs.
1797   for (const Use &Arg : MP->operands()) {
1798     if (Arg.get() != Replacee &&
1799         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1800       return false;
1801   }
1802   return true;
1803 }
1804 
1805 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1806 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1807   assert(MA->use_empty() &&
1808          "Trying to remove memory access that still has uses");
1809   BlockNumbering.erase(MA);
1810   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1811     MUD->setDefiningAccess(nullptr);
1812   // Invalidate our walker's cache if necessary
1813   if (!isa<MemoryUse>(MA))
1814     getWalker()->invalidateInfo(MA);
1815 
1816   Value *MemoryInst;
1817   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1818     MemoryInst = MUD->getMemoryInst();
1819   else
1820     MemoryInst = MA->getBlock();
1821 
1822   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1823   if (VMA->second == MA)
1824     ValueToMemoryAccess.erase(VMA);
1825 }
1826 
1827 /// Properly remove \p MA from all of MemorySSA's lists.
1828 ///
1829 /// Because of the way the intrusive list and use lists work, it is important to
1830 /// do removal in the right order.
1831 /// ShouldDelete defaults to true, and will cause the memory access to also be
1832 /// deleted, not just removed.
1833 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1834   BasicBlock *BB = MA->getBlock();
1835   // The access list owns the reference, so we erase it from the non-owning list
1836   // first.
1837   if (!isa<MemoryUse>(MA)) {
1838     auto DefsIt = PerBlockDefs.find(BB);
1839     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1840     Defs->remove(*MA);
1841     if (Defs->empty())
1842       PerBlockDefs.erase(DefsIt);
1843   }
1844 
1845   // The erase call here will delete it. If we don't want it deleted, we call
1846   // remove instead.
1847   auto AccessIt = PerBlockAccesses.find(BB);
1848   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1849   if (ShouldDelete)
1850     Accesses->erase(MA);
1851   else
1852     Accesses->remove(MA);
1853 
1854   if (Accesses->empty()) {
1855     PerBlockAccesses.erase(AccessIt);
1856     BlockNumberingValid.erase(BB);
1857   }
1858 }
1859 
1860 void MemorySSA::print(raw_ostream &OS) const {
1861   MemorySSAAnnotatedWriter Writer(this);
1862   F.print(OS, &Writer);
1863 }
1864 
1865 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1866 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1867 #endif
1868 
1869 void MemorySSA::verifyMemorySSA() const {
1870   verifyDefUses(F);
1871   verifyDomination(F);
1872   verifyOrdering(F);
1873   verifyDominationNumbers(F);
1874   verifyPrevDefInPhis(F);
1875   // Previously, the verification used to also verify that the clobberingAccess
1876   // cached by MemorySSA is the same as the clobberingAccess found at a later
1877   // query to AA. This does not hold true in general due to the current fragility
1878   // of BasicAA which has arbitrary caps on the things it analyzes before giving
1879   // up. As a result, transformations that are correct, will lead to BasicAA
1880   // returning different Alias answers before and after that transformation.
1881   // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1882   // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1883   // every transformation, which defeats the purpose of using it. For such an
1884   // example, see test4 added in D51960.
1885 }
1886 
1887 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1888 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1889   for (const BasicBlock &BB : F) {
1890     if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1891       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1892         auto *Pred = Phi->getIncomingBlock(I);
1893         auto *IncAcc = Phi->getIncomingValue(I);
1894         // If Pred has no unreachable predecessors, get last def looking at
1895         // IDoms. If, while walkings IDoms, any of these has an unreachable
1896         // predecessor, then the incoming def can be any access.
1897         if (auto *DTNode = DT->getNode(Pred)) {
1898           while (DTNode) {
1899             if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1900               auto *LastAcc = &*(--DefList->end());
1901               assert(LastAcc == IncAcc &&
1902                      "Incorrect incoming access into phi.");
1903               break;
1904             }
1905             DTNode = DTNode->getIDom();
1906           }
1907         } else {
1908           // If Pred has unreachable predecessors, but has at least a Def, the
1909           // incoming access can be the last Def in Pred, or it could have been
1910           // optimized to LoE. After an update, though, the LoE may have been
1911           // replaced by another access, so IncAcc may be any access.
1912           // If Pred has unreachable predecessors and no Defs, incoming access
1913           // should be LoE; However, after an update, it may be any access.
1914         }
1915       }
1916     }
1917   }
1918 #endif
1919 }
1920 
1921 /// Verify that all of the blocks we believe to have valid domination numbers
1922 /// actually have valid domination numbers.
1923 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1924 #ifndef NDEBUG
1925   if (BlockNumberingValid.empty())
1926     return;
1927 
1928   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1929   for (const BasicBlock &BB : F) {
1930     if (!ValidBlocks.count(&BB))
1931       continue;
1932 
1933     ValidBlocks.erase(&BB);
1934 
1935     const AccessList *Accesses = getBlockAccesses(&BB);
1936     // It's correct to say an empty block has valid numbering.
1937     if (!Accesses)
1938       continue;
1939 
1940     // Block numbering starts at 1.
1941     unsigned long LastNumber = 0;
1942     for (const MemoryAccess &MA : *Accesses) {
1943       auto ThisNumberIter = BlockNumbering.find(&MA);
1944       assert(ThisNumberIter != BlockNumbering.end() &&
1945              "MemoryAccess has no domination number in a valid block!");
1946 
1947       unsigned long ThisNumber = ThisNumberIter->second;
1948       assert(ThisNumber > LastNumber &&
1949              "Domination numbers should be strictly increasing!");
1950       LastNumber = ThisNumber;
1951     }
1952   }
1953 
1954   assert(ValidBlocks.empty() &&
1955          "All valid BasicBlocks should exist in F -- dangling pointers?");
1956 #endif
1957 }
1958 
1959 /// Verify that the order and existence of MemoryAccesses matches the
1960 /// order and existence of memory affecting instructions.
1961 void MemorySSA::verifyOrdering(Function &F) const {
1962 #ifndef NDEBUG
1963   // Walk all the blocks, comparing what the lookups think and what the access
1964   // lists think, as well as the order in the blocks vs the order in the access
1965   // lists.
1966   SmallVector<MemoryAccess *, 32> ActualAccesses;
1967   SmallVector<MemoryAccess *, 32> ActualDefs;
1968   for (BasicBlock &B : F) {
1969     const AccessList *AL = getBlockAccesses(&B);
1970     const auto *DL = getBlockDefs(&B);
1971     MemoryAccess *Phi = getMemoryAccess(&B);
1972     if (Phi) {
1973       ActualAccesses.push_back(Phi);
1974       ActualDefs.push_back(Phi);
1975     }
1976 
1977     for (Instruction &I : B) {
1978       MemoryAccess *MA = getMemoryAccess(&I);
1979       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1980              "We have memory affecting instructions "
1981              "in this block but they are not in the "
1982              "access list or defs list");
1983       if (MA) {
1984         ActualAccesses.push_back(MA);
1985         if (isa<MemoryDef>(MA))
1986           ActualDefs.push_back(MA);
1987       }
1988     }
1989     // Either we hit the assert, really have no accesses, or we have both
1990     // accesses and an access list.
1991     // Same with defs.
1992     if (!AL && !DL)
1993       continue;
1994     assert(AL->size() == ActualAccesses.size() &&
1995            "We don't have the same number of accesses in the block as on the "
1996            "access list");
1997     assert((DL || ActualDefs.size() == 0) &&
1998            "Either we should have a defs list, or we should have no defs");
1999     assert((!DL || DL->size() == ActualDefs.size()) &&
2000            "We don't have the same number of defs in the block as on the "
2001            "def list");
2002     auto ALI = AL->begin();
2003     auto AAI = ActualAccesses.begin();
2004     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2005       assert(&*ALI == *AAI && "Not the same accesses in the same order");
2006       ++ALI;
2007       ++AAI;
2008     }
2009     ActualAccesses.clear();
2010     if (DL) {
2011       auto DLI = DL->begin();
2012       auto ADI = ActualDefs.begin();
2013       while (DLI != DL->end() && ADI != ActualDefs.end()) {
2014         assert(&*DLI == *ADI && "Not the same defs in the same order");
2015         ++DLI;
2016         ++ADI;
2017       }
2018     }
2019     ActualDefs.clear();
2020   }
2021 #endif
2022 }
2023 
2024 /// Verify the domination properties of MemorySSA by checking that each
2025 /// definition dominates all of its uses.
2026 void MemorySSA::verifyDomination(Function &F) const {
2027 #ifndef NDEBUG
2028   for (BasicBlock &B : F) {
2029     // Phi nodes are attached to basic blocks
2030     if (MemoryPhi *MP = getMemoryAccess(&B))
2031       for (const Use &U : MP->uses())
2032         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
2033 
2034     for (Instruction &I : B) {
2035       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
2036       if (!MD)
2037         continue;
2038 
2039       for (const Use &U : MD->uses())
2040         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
2041     }
2042   }
2043 #endif
2044 }
2045 
2046 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2047 /// appears in the use list of \p Def.
2048 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2049 #ifndef NDEBUG
2050   // The live on entry use may cause us to get a NULL def here
2051   if (!Def)
2052     assert(isLiveOnEntryDef(Use) &&
2053            "Null def but use not point to live on entry def");
2054   else
2055     assert(is_contained(Def->users(), Use) &&
2056            "Did not find use in def's use list");
2057 #endif
2058 }
2059 
2060 /// Verify the immediate use information, by walking all the memory
2061 /// accesses and verifying that, for each use, it appears in the
2062 /// appropriate def's use list
2063 void MemorySSA::verifyDefUses(Function &F) const {
2064 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
2065   for (BasicBlock &B : F) {
2066     // Phi nodes are attached to basic blocks
2067     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
2068       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
2069                                           pred_begin(&B), pred_end(&B))) &&
2070              "Incomplete MemoryPhi Node");
2071       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
2072         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
2073         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
2074                    pred_end(&B) &&
2075                "Incoming phi block not a block predecessor");
2076       }
2077     }
2078 
2079     for (Instruction &I : B) {
2080       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
2081         verifyUseInDefs(MA->getDefiningAccess(), MA);
2082       }
2083     }
2084   }
2085 #endif
2086 }
2087 
2088 /// Perform a local numbering on blocks so that instruction ordering can be
2089 /// determined in constant time.
2090 /// TODO: We currently just number in order.  If we numbered by N, we could
2091 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2092 /// log2(N) sequences of mixed before and after) without needing to invalidate
2093 /// the numbering.
2094 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2095   // The pre-increment ensures the numbers really start at 1.
2096   unsigned long CurrentNumber = 0;
2097   const AccessList *AL = getBlockAccesses(B);
2098   assert(AL != nullptr && "Asking to renumber an empty block");
2099   for (const auto &I : *AL)
2100     BlockNumbering[&I] = ++CurrentNumber;
2101   BlockNumberingValid.insert(B);
2102 }
2103 
2104 /// Determine, for two memory accesses in the same block,
2105 /// whether \p Dominator dominates \p Dominatee.
2106 /// \returns True if \p Dominator dominates \p Dominatee.
2107 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2108                                  const MemoryAccess *Dominatee) const {
2109   const BasicBlock *DominatorBlock = Dominator->getBlock();
2110 
2111   assert((DominatorBlock == Dominatee->getBlock()) &&
2112          "Asking for local domination when accesses are in different blocks!");
2113   // A node dominates itself.
2114   if (Dominatee == Dominator)
2115     return true;
2116 
2117   // When Dominatee is defined on function entry, it is not dominated by another
2118   // memory access.
2119   if (isLiveOnEntryDef(Dominatee))
2120     return false;
2121 
2122   // When Dominator is defined on function entry, it dominates the other memory
2123   // access.
2124   if (isLiveOnEntryDef(Dominator))
2125     return true;
2126 
2127   if (!BlockNumberingValid.count(DominatorBlock))
2128     renumberBlock(DominatorBlock);
2129 
2130   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2131   // All numbers start with 1
2132   assert(DominatorNum != 0 && "Block was not numbered properly");
2133   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2134   assert(DominateeNum != 0 && "Block was not numbered properly");
2135   return DominatorNum < DominateeNum;
2136 }
2137 
2138 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2139                           const MemoryAccess *Dominatee) const {
2140   if (Dominator == Dominatee)
2141     return true;
2142 
2143   if (isLiveOnEntryDef(Dominatee))
2144     return false;
2145 
2146   if (Dominator->getBlock() != Dominatee->getBlock())
2147     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2148   return locallyDominates(Dominator, Dominatee);
2149 }
2150 
2151 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2152                           const Use &Dominatee) const {
2153   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2154     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2155     // The def must dominate the incoming block of the phi.
2156     if (UseBB != Dominator->getBlock())
2157       return DT->dominates(Dominator->getBlock(), UseBB);
2158     // If the UseBB and the DefBB are the same, compare locally.
2159     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2160   }
2161   // If it's not a PHI node use, the normal dominates can already handle it.
2162   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2163 }
2164 
2165 const static char LiveOnEntryStr[] = "liveOnEntry";
2166 
2167 void MemoryAccess::print(raw_ostream &OS) const {
2168   switch (getValueID()) {
2169   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2170   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2171   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2172   }
2173   llvm_unreachable("invalid value id");
2174 }
2175 
2176 void MemoryDef::print(raw_ostream &OS) const {
2177   MemoryAccess *UO = getDefiningAccess();
2178 
2179   auto printID = [&OS](MemoryAccess *A) {
2180     if (A && A->getID())
2181       OS << A->getID();
2182     else
2183       OS << LiveOnEntryStr;
2184   };
2185 
2186   OS << getID() << " = MemoryDef(";
2187   printID(UO);
2188   OS << ")";
2189 
2190   if (isOptimized()) {
2191     OS << "->";
2192     printID(getOptimized());
2193 
2194     if (Optional<AliasResult> AR = getOptimizedAccessType())
2195       OS << " " << *AR;
2196   }
2197 }
2198 
2199 void MemoryPhi::print(raw_ostream &OS) const {
2200   bool First = true;
2201   OS << getID() << " = MemoryPhi(";
2202   for (const auto &Op : operands()) {
2203     BasicBlock *BB = getIncomingBlock(Op);
2204     MemoryAccess *MA = cast<MemoryAccess>(Op);
2205     if (!First)
2206       OS << ',';
2207     else
2208       First = false;
2209 
2210     OS << '{';
2211     if (BB->hasName())
2212       OS << BB->getName();
2213     else
2214       BB->printAsOperand(OS, false);
2215     OS << ',';
2216     if (unsigned ID = MA->getID())
2217       OS << ID;
2218     else
2219       OS << LiveOnEntryStr;
2220     OS << '}';
2221   }
2222   OS << ')';
2223 }
2224 
2225 void MemoryUse::print(raw_ostream &OS) const {
2226   MemoryAccess *UO = getDefiningAccess();
2227   OS << "MemoryUse(";
2228   if (UO && UO->getID())
2229     OS << UO->getID();
2230   else
2231     OS << LiveOnEntryStr;
2232   OS << ')';
2233 
2234   if (Optional<AliasResult> AR = getOptimizedAccessType())
2235     OS << " " << *AR;
2236 }
2237 
2238 void MemoryAccess::dump() const {
2239 // Cannot completely remove virtual function even in release mode.
2240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2241   print(dbgs());
2242   dbgs() << "\n";
2243 #endif
2244 }
2245 
2246 char MemorySSAPrinterLegacyPass::ID = 0;
2247 
2248 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2249   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2250 }
2251 
2252 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2253   AU.setPreservesAll();
2254   AU.addRequired<MemorySSAWrapperPass>();
2255 }
2256 
2257 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2258   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2259   MSSA.print(dbgs());
2260   if (VerifyMemorySSA)
2261     MSSA.verifyMemorySSA();
2262   return false;
2263 }
2264 
2265 AnalysisKey MemorySSAAnalysis::Key;
2266 
2267 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2268                                                  FunctionAnalysisManager &AM) {
2269   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2270   auto &AA = AM.getResult<AAManager>(F);
2271   return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2272 }
2273 
2274 bool MemorySSAAnalysis::Result::invalidate(
2275     Function &F, const PreservedAnalyses &PA,
2276     FunctionAnalysisManager::Invalidator &Inv) {
2277   auto PAC = PA.getChecker<MemorySSAAnalysis>();
2278   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2279          Inv.invalidate<AAManager>(F, PA) ||
2280          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2281 }
2282 
2283 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2284                                             FunctionAnalysisManager &AM) {
2285   OS << "MemorySSA for function: " << F.getName() << "\n";
2286   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2287 
2288   return PreservedAnalyses::all();
2289 }
2290 
2291 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2292                                              FunctionAnalysisManager &AM) {
2293   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2294 
2295   return PreservedAnalyses::all();
2296 }
2297 
2298 char MemorySSAWrapperPass::ID = 0;
2299 
2300 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2301   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2302 }
2303 
2304 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2305 
2306 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2307   AU.setPreservesAll();
2308   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2309   AU.addRequiredTransitive<AAResultsWrapperPass>();
2310 }
2311 
2312 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2313   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2314   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2315   MSSA.reset(new MemorySSA(F, &AA, &DT));
2316   return false;
2317 }
2318 
2319 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2320 
2321 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2322   MSSA->print(OS);
2323 }
2324 
2325 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2326 
2327 /// Walk the use-def chains starting at \p StartingAccess and find
2328 /// the MemoryAccess that actually clobbers Loc.
2329 ///
2330 /// \returns our clobbering memory access
2331 template <typename AliasAnalysisType>
2332 MemoryAccess *
2333 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2334     MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2335     unsigned &UpwardWalkLimit) {
2336   if (isa<MemoryPhi>(StartingAccess))
2337     return StartingAccess;
2338 
2339   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2340   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2341     return StartingUseOrDef;
2342 
2343   Instruction *I = StartingUseOrDef->getMemoryInst();
2344 
2345   // Conservatively, fences are always clobbers, so don't perform the walk if we
2346   // hit a fence.
2347   if (!isa<CallBase>(I) && I->isFenceLike())
2348     return StartingUseOrDef;
2349 
2350   UpwardsMemoryQuery Q;
2351   Q.OriginalAccess = StartingUseOrDef;
2352   Q.StartingLoc = Loc;
2353   Q.Inst = I;
2354   Q.IsCall = false;
2355 
2356   // Unlike the other function, do not walk to the def of a def, because we are
2357   // handed something we already believe is the clobbering access.
2358   // We never set SkipSelf to true in Q in this method.
2359   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2360                                      ? StartingUseOrDef->getDefiningAccess()
2361                                      : StartingUseOrDef;
2362 
2363   MemoryAccess *Clobber =
2364       Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2365   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2366   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2367   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2368   LLVM_DEBUG(dbgs() << *Clobber << "\n");
2369   return Clobber;
2370 }
2371 
2372 template <typename AliasAnalysisType>
2373 MemoryAccess *
2374 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2375     MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
2376   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2377   // If this is a MemoryPhi, we can't do anything.
2378   if (!StartingAccess)
2379     return MA;
2380 
2381   bool IsOptimized = false;
2382 
2383   // If this is an already optimized use or def, return the optimized result.
2384   // Note: Currently, we store the optimized def result in a separate field,
2385   // since we can't use the defining access.
2386   if (StartingAccess->isOptimized()) {
2387     if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2388       return StartingAccess->getOptimized();
2389     IsOptimized = true;
2390   }
2391 
2392   const Instruction *I = StartingAccess->getMemoryInst();
2393   // We can't sanely do anything with a fence, since they conservatively clobber
2394   // all memory, and have no locations to get pointers from to try to
2395   // disambiguate.
2396   if (!isa<CallBase>(I) && I->isFenceLike())
2397     return StartingAccess;
2398 
2399   UpwardsMemoryQuery Q(I, StartingAccess);
2400 
2401   if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2402     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2403     StartingAccess->setOptimized(LiveOnEntry);
2404     StartingAccess->setOptimizedAccessType(None);
2405     return LiveOnEntry;
2406   }
2407 
2408   MemoryAccess *OptimizedAccess;
2409   if (!IsOptimized) {
2410     // Start with the thing we already think clobbers this location
2411     MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2412 
2413     // At this point, DefiningAccess may be the live on entry def.
2414     // If it is, we will not get a better result.
2415     if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2416       StartingAccess->setOptimized(DefiningAccess);
2417       StartingAccess->setOptimizedAccessType(None);
2418       return DefiningAccess;
2419     }
2420 
2421     OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2422     StartingAccess->setOptimized(OptimizedAccess);
2423     if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2424       StartingAccess->setOptimizedAccessType(None);
2425     else if (Q.AR == MustAlias)
2426       StartingAccess->setOptimizedAccessType(MustAlias);
2427   } else
2428     OptimizedAccess = StartingAccess->getOptimized();
2429 
2430   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2431   LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2432   LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2433   LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2434 
2435   MemoryAccess *Result;
2436   if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2437       isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2438     assert(isa<MemoryDef>(Q.OriginalAccess));
2439     Q.SkipSelfAccess = true;
2440     Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
2441   } else
2442     Result = OptimizedAccess;
2443 
2444   LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2445   LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2446 
2447   return Result;
2448 }
2449 
2450 MemoryAccess *
2451 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2452   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2453     return Use->getDefiningAccess();
2454   return MA;
2455 }
2456 
2457 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2458     MemoryAccess *StartingAccess, const MemoryLocation &) {
2459   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2460     return Use->getDefiningAccess();
2461   return StartingAccess;
2462 }
2463 
2464 void MemoryPhi::deleteMe(DerivedUser *Self) {
2465   delete static_cast<MemoryPhi *>(Self);
2466 }
2467 
2468 void MemoryDef::deleteMe(DerivedUser *Self) {
2469   delete static_cast<MemoryDef *>(Self);
2470 }
2471 
2472 void MemoryUse::deleteMe(DerivedUser *Self) {
2473   delete static_cast<MemoryUse *>(Self);
2474 }
2475