1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <memory>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "memoryssa"
59 
60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
61                       true)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
64 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
65                     true)
66 
67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
68                       "Memory SSA Printer", false, false)
69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
71                     "Memory SSA Printer", false, false)
72 
73 static cl::opt<unsigned> MaxCheckLimit(
74     "memssa-check-limit", cl::Hidden, cl::init(100),
75     cl::desc("The maximum number of stores/phis MemorySSA"
76              "will consider trying to walk past (default = 100)"));
77 
78 // Always verify MemorySSA if expensive checking is enabled.
79 #ifdef EXPENSIVE_CHECKS
80 bool llvm::VerifyMemorySSA = true;
81 #else
82 bool llvm::VerifyMemorySSA = false;
83 #endif
84 static cl::opt<bool, true>
85     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
86                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
87 
88 namespace llvm {
89 
90 /// An assembly annotator class to print Memory SSA information in
91 /// comments.
92 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
93   friend class MemorySSA;
94 
95   const MemorySSA *MSSA;
96 
97 public:
98   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
99 
100   void emitBasicBlockStartAnnot(const BasicBlock *BB,
101                                 formatted_raw_ostream &OS) override {
102     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
103       OS << "; " << *MA << "\n";
104   }
105 
106   void emitInstructionAnnot(const Instruction *I,
107                             formatted_raw_ostream &OS) override {
108     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
109       OS << "; " << *MA << "\n";
110   }
111 };
112 
113 } // end namespace llvm
114 
115 namespace {
116 
117 /// Our current alias analysis API differentiates heavily between calls and
118 /// non-calls, and functions called on one usually assert on the other.
119 /// This class encapsulates the distinction to simplify other code that wants
120 /// "Memory affecting instructions and related data" to use as a key.
121 /// For example, this class is used as a densemap key in the use optimizer.
122 class MemoryLocOrCall {
123 public:
124   bool IsCall = false;
125 
126   MemoryLocOrCall(MemoryUseOrDef *MUD)
127       : MemoryLocOrCall(MUD->getMemoryInst()) {}
128   MemoryLocOrCall(const MemoryUseOrDef *MUD)
129       : MemoryLocOrCall(MUD->getMemoryInst()) {}
130 
131   MemoryLocOrCall(Instruction *Inst) {
132     if (auto *C = dyn_cast<CallBase>(Inst)) {
133       IsCall = true;
134       Call = C;
135     } else {
136       IsCall = false;
137       // There is no such thing as a memorylocation for a fence inst, and it is
138       // unique in that regard.
139       if (!isa<FenceInst>(Inst))
140         Loc = MemoryLocation::get(Inst);
141     }
142   }
143 
144   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
145 
146   const CallBase *getCall() const {
147     assert(IsCall);
148     return Call;
149   }
150 
151   MemoryLocation getLoc() const {
152     assert(!IsCall);
153     return Loc;
154   }
155 
156   bool operator==(const MemoryLocOrCall &Other) const {
157     if (IsCall != Other.IsCall)
158       return false;
159 
160     if (!IsCall)
161       return Loc == Other.Loc;
162 
163     if (Call->getCalledValue() != Other.Call->getCalledValue())
164       return false;
165 
166     return Call->arg_size() == Other.Call->arg_size() &&
167            std::equal(Call->arg_begin(), Call->arg_end(),
168                       Other.Call->arg_begin());
169   }
170 
171 private:
172   union {
173     const CallBase *Call;
174     MemoryLocation Loc;
175   };
176 };
177 
178 } // end anonymous namespace
179 
180 namespace llvm {
181 
182 template <> struct DenseMapInfo<MemoryLocOrCall> {
183   static inline MemoryLocOrCall getEmptyKey() {
184     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
185   }
186 
187   static inline MemoryLocOrCall getTombstoneKey() {
188     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
189   }
190 
191   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
192     if (!MLOC.IsCall)
193       return hash_combine(
194           MLOC.IsCall,
195           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
196 
197     hash_code hash =
198         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
199                                       MLOC.getCall()->getCalledValue()));
200 
201     for (const Value *Arg : MLOC.getCall()->args())
202       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
203     return hash;
204   }
205 
206   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
207     return LHS == RHS;
208   }
209 };
210 
211 } // end namespace llvm
212 
213 /// This does one-way checks to see if Use could theoretically be hoisted above
214 /// MayClobber. This will not check the other way around.
215 ///
216 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
217 /// MayClobber, with no potentially clobbering operations in between them.
218 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
219 static bool areLoadsReorderable(const LoadInst *Use,
220                                 const LoadInst *MayClobber) {
221   bool VolatileUse = Use->isVolatile();
222   bool VolatileClobber = MayClobber->isVolatile();
223   // Volatile operations may never be reordered with other volatile operations.
224   if (VolatileUse && VolatileClobber)
225     return false;
226   // Otherwise, volatile doesn't matter here. From the language reference:
227   // 'optimizers may change the order of volatile operations relative to
228   // non-volatile operations.'"
229 
230   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
231   // is weaker, it can be moved above other loads. We just need to be sure that
232   // MayClobber isn't an acquire load, because loads can't be moved above
233   // acquire loads.
234   //
235   // Note that this explicitly *does* allow the free reordering of monotonic (or
236   // weaker) loads of the same address.
237   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
238   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
239                                                      AtomicOrdering::Acquire);
240   return !(SeqCstUse || MayClobberIsAcquire);
241 }
242 
243 namespace {
244 
245 struct ClobberAlias {
246   bool IsClobber;
247   Optional<AliasResult> AR;
248 };
249 
250 } // end anonymous namespace
251 
252 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
253 // ignored if IsClobber = false.
254 static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
255                                              const MemoryLocation &UseLoc,
256                                              const Instruction *UseInst,
257                                              AliasAnalysis &AA) {
258   Instruction *DefInst = MD->getMemoryInst();
259   assert(DefInst && "Defining instruction not actually an instruction");
260   const auto *UseCall = dyn_cast<CallBase>(UseInst);
261   Optional<AliasResult> AR;
262 
263   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
264     // These intrinsics will show up as affecting memory, but they are just
265     // markers, mostly.
266     //
267     // FIXME: We probably don't actually want MemorySSA to model these at all
268     // (including creating MemoryAccesses for them): we just end up inventing
269     // clobbers where they don't really exist at all. Please see D43269 for
270     // context.
271     switch (II->getIntrinsicID()) {
272     case Intrinsic::lifetime_start:
273       if (UseCall)
274         return {false, NoAlias};
275       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
276       return {AR != NoAlias, AR};
277     case Intrinsic::lifetime_end:
278     case Intrinsic::invariant_start:
279     case Intrinsic::invariant_end:
280     case Intrinsic::assume:
281       return {false, NoAlias};
282     default:
283       break;
284     }
285   }
286 
287   if (UseCall) {
288     ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
289     AR = isMustSet(I) ? MustAlias : MayAlias;
290     return {isModOrRefSet(I), AR};
291   }
292 
293   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
294     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
295       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
296 
297   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
298   AR = isMustSet(I) ? MustAlias : MayAlias;
299   return {isModSet(I), AR};
300 }
301 
302 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
303                                              const MemoryUseOrDef *MU,
304                                              const MemoryLocOrCall &UseMLOC,
305                                              AliasAnalysis &AA) {
306   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
307   // to exist while MemoryLocOrCall is pushed through places.
308   if (UseMLOC.IsCall)
309     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
310                                     AA);
311   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
312                                   AA);
313 }
314 
315 // Return true when MD may alias MU, return false otherwise.
316 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
317                                         AliasAnalysis &AA) {
318   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
319 }
320 
321 namespace {
322 
323 struct UpwardsMemoryQuery {
324   // True if our original query started off as a call
325   bool IsCall = false;
326   // The pointer location we started the query with. This will be empty if
327   // IsCall is true.
328   MemoryLocation StartingLoc;
329   // This is the instruction we were querying about.
330   const Instruction *Inst = nullptr;
331   // The MemoryAccess we actually got called with, used to test local domination
332   const MemoryAccess *OriginalAccess = nullptr;
333   Optional<AliasResult> AR = MayAlias;
334   bool SkipSelfAccess = false;
335 
336   UpwardsMemoryQuery() = default;
337 
338   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
339       : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
340     if (!IsCall)
341       StartingLoc = MemoryLocation::get(Inst);
342   }
343 };
344 
345 } // end anonymous namespace
346 
347 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
348                            AliasAnalysis &AA) {
349   Instruction *Inst = MD->getMemoryInst();
350   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
351     switch (II->getIntrinsicID()) {
352     case Intrinsic::lifetime_end:
353       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
354     default:
355       return false;
356     }
357   }
358   return false;
359 }
360 
361 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
362                                                    const Instruction *I) {
363   // If the memory can't be changed, then loads of the memory can't be
364   // clobbered.
365   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
366                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
367                                                           getPointerOperand()));
368 }
369 
370 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
371 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
372 ///
373 /// This is meant to be as simple and self-contained as possible. Because it
374 /// uses no cache, etc., it can be relatively expensive.
375 ///
376 /// \param Start     The MemoryAccess that we want to walk from.
377 /// \param ClobberAt A clobber for Start.
378 /// \param StartLoc  The MemoryLocation for Start.
379 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
380 /// \param Query     The UpwardsMemoryQuery we used for our search.
381 /// \param AA        The AliasAnalysis we used for our search.
382 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
383 LLVM_ATTRIBUTE_UNUSED static void
384 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
385                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
386                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA,
387                    bool AllowImpreciseClobber = false) {
388   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
389 
390   if (MSSA.isLiveOnEntryDef(Start)) {
391     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
392            "liveOnEntry must clobber itself");
393     return;
394   }
395 
396   bool FoundClobber = false;
397   DenseSet<ConstMemoryAccessPair> VisitedPhis;
398   SmallVector<ConstMemoryAccessPair, 8> Worklist;
399   Worklist.emplace_back(Start, StartLoc);
400   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
401   // is found, complain.
402   while (!Worklist.empty()) {
403     auto MAP = Worklist.pop_back_val();
404     // All we care about is that nothing from Start to ClobberAt clobbers Start.
405     // We learn nothing from revisiting nodes.
406     if (!VisitedPhis.insert(MAP).second)
407       continue;
408 
409     for (const auto *MA : def_chain(MAP.first)) {
410       if (MA == ClobberAt) {
411         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
412           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
413           // since it won't let us short-circuit.
414           //
415           // Also, note that this can't be hoisted out of the `Worklist` loop,
416           // since MD may only act as a clobber for 1 of N MemoryLocations.
417           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
418           if (!FoundClobber) {
419             ClobberAlias CA =
420                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
421             if (CA.IsClobber) {
422               FoundClobber = true;
423               // Not used: CA.AR;
424             }
425           }
426         }
427         break;
428       }
429 
430       // We should never hit liveOnEntry, unless it's the clobber.
431       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
432 
433       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
434         // If Start is a Def, skip self.
435         if (MD == Start)
436           continue;
437 
438         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
439                     .IsClobber &&
440                "Found clobber before reaching ClobberAt!");
441         continue;
442       }
443 
444       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
445         (void)MU;
446         assert (MU == Start &&
447                 "Can only find use in def chain if Start is a use");
448         continue;
449       }
450 
451       assert(isa<MemoryPhi>(MA));
452       Worklist.append(
453           upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
454           upward_defs_end());
455     }
456   }
457 
458   // If the verify is done following an optimization, it's possible that
459   // ClobberAt was a conservative clobbering, that we can now infer is not a
460   // true clobbering access. Don't fail the verify if that's the case.
461   // We do have accesses that claim they're optimized, but could be optimized
462   // further. Updating all these can be expensive, so allow it for now (FIXME).
463   if (AllowImpreciseClobber)
464     return;
465 
466   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
467   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
468   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
469          "ClobberAt never acted as a clobber");
470 }
471 
472 namespace {
473 
474 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
475 /// in one class.
476 class ClobberWalker {
477   /// Save a few bytes by using unsigned instead of size_t.
478   using ListIndex = unsigned;
479 
480   /// Represents a span of contiguous MemoryDefs, potentially ending in a
481   /// MemoryPhi.
482   struct DefPath {
483     MemoryLocation Loc;
484     // Note that, because we always walk in reverse, Last will always dominate
485     // First. Also note that First and Last are inclusive.
486     MemoryAccess *First;
487     MemoryAccess *Last;
488     Optional<ListIndex> Previous;
489 
490     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
491             Optional<ListIndex> Previous)
492         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
493 
494     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
495             Optional<ListIndex> Previous)
496         : DefPath(Loc, Init, Init, Previous) {}
497   };
498 
499   const MemorySSA &MSSA;
500   AliasAnalysis &AA;
501   DominatorTree &DT;
502   UpwardsMemoryQuery *Query;
503 
504   // Phi optimization bookkeeping
505   SmallVector<DefPath, 32> Paths;
506   DenseSet<ConstMemoryAccessPair> VisitedPhis;
507 
508   /// Find the nearest def or phi that `From` can legally be optimized to.
509   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
510     assert(From->getNumOperands() && "Phi with no operands?");
511 
512     BasicBlock *BB = From->getBlock();
513     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
514     DomTreeNode *Node = DT.getNode(BB);
515     while ((Node = Node->getIDom())) {
516       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
517       if (Defs)
518         return &*Defs->rbegin();
519     }
520     return Result;
521   }
522 
523   /// Result of calling walkToPhiOrClobber.
524   struct UpwardsWalkResult {
525     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
526     /// both. Include alias info when clobber found.
527     MemoryAccess *Result;
528     bool IsKnownClobber;
529     Optional<AliasResult> AR;
530   };
531 
532   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
533   /// This will update Desc.Last as it walks. It will (optionally) also stop at
534   /// StopAt.
535   ///
536   /// This does not test for whether StopAt is a clobber
537   UpwardsWalkResult
538   walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
539                      const MemoryAccess *SkipStopAt = nullptr) const {
540     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
541 
542     for (MemoryAccess *Current : def_chain(Desc.Last)) {
543       Desc.Last = Current;
544       if (Current == StopAt || Current == SkipStopAt)
545         return {Current, false, MayAlias};
546 
547       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
548         if (MSSA.isLiveOnEntryDef(MD))
549           return {MD, true, MustAlias};
550         ClobberAlias CA =
551             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
552         if (CA.IsClobber)
553           return {MD, true, CA.AR};
554       }
555     }
556 
557     assert(isa<MemoryPhi>(Desc.Last) &&
558            "Ended at a non-clobber that's not a phi?");
559     return {Desc.Last, false, MayAlias};
560   }
561 
562   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
563                    ListIndex PriorNode) {
564     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
565                                  upward_defs_end());
566     for (const MemoryAccessPair &P : UpwardDefs) {
567       PausedSearches.push_back(Paths.size());
568       Paths.emplace_back(P.second, P.first, PriorNode);
569     }
570   }
571 
572   /// Represents a search that terminated after finding a clobber. This clobber
573   /// may or may not be present in the path of defs from LastNode..SearchStart,
574   /// since it may have been retrieved from cache.
575   struct TerminatedPath {
576     MemoryAccess *Clobber;
577     ListIndex LastNode;
578   };
579 
580   /// Get an access that keeps us from optimizing to the given phi.
581   ///
582   /// PausedSearches is an array of indices into the Paths array. Its incoming
583   /// value is the indices of searches that stopped at the last phi optimization
584   /// target. It's left in an unspecified state.
585   ///
586   /// If this returns None, NewPaused is a vector of searches that terminated
587   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
588   Optional<TerminatedPath>
589   getBlockingAccess(const MemoryAccess *StopWhere,
590                     SmallVectorImpl<ListIndex> &PausedSearches,
591                     SmallVectorImpl<ListIndex> &NewPaused,
592                     SmallVectorImpl<TerminatedPath> &Terminated) {
593     assert(!PausedSearches.empty() && "No searches to continue?");
594 
595     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
596     // PausedSearches as our stack.
597     while (!PausedSearches.empty()) {
598       ListIndex PathIndex = PausedSearches.pop_back_val();
599       DefPath &Node = Paths[PathIndex];
600 
601       // If we've already visited this path with this MemoryLocation, we don't
602       // need to do so again.
603       //
604       // NOTE: That we just drop these paths on the ground makes caching
605       // behavior sporadic. e.g. given a diamond:
606       //  A
607       // B C
608       //  D
609       //
610       // ...If we walk D, B, A, C, we'll only cache the result of phi
611       // optimization for A, B, and D; C will be skipped because it dies here.
612       // This arguably isn't the worst thing ever, since:
613       //   - We generally query things in a top-down order, so if we got below D
614       //     without needing cache entries for {C, MemLoc}, then chances are
615       //     that those cache entries would end up ultimately unused.
616       //   - We still cache things for A, so C only needs to walk up a bit.
617       // If this behavior becomes problematic, we can fix without a ton of extra
618       // work.
619       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
620         continue;
621 
622       const MemoryAccess *SkipStopWhere = nullptr;
623       if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
624         assert(isa<MemoryDef>(Query->OriginalAccess));
625         SkipStopWhere = Query->OriginalAccess;
626       }
627 
628       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere,
629                                                  /*SkipStopAt=*/SkipStopWhere);
630       if (Res.IsKnownClobber) {
631         assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
632         // If this wasn't a cache hit, we hit a clobber when walking. That's a
633         // failure.
634         TerminatedPath Term{Res.Result, PathIndex};
635         if (!MSSA.dominates(Res.Result, StopWhere))
636           return Term;
637 
638         // Otherwise, it's a valid thing to potentially optimize to.
639         Terminated.push_back(Term);
640         continue;
641       }
642 
643       if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
644         // We've hit our target. Save this path off for if we want to continue
645         // walking. If we are in the mode of skipping the OriginalAccess, and
646         // we've reached back to the OriginalAccess, do not save path, we've
647         // just looped back to self.
648         if (Res.Result != SkipStopWhere)
649           NewPaused.push_back(PathIndex);
650         continue;
651       }
652 
653       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
654       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
655     }
656 
657     return None;
658   }
659 
660   template <typename T, typename Walker>
661   struct generic_def_path_iterator
662       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
663                                     std::forward_iterator_tag, T *> {
664     generic_def_path_iterator() = default;
665     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
666 
667     T &operator*() const { return curNode(); }
668 
669     generic_def_path_iterator &operator++() {
670       N = curNode().Previous;
671       return *this;
672     }
673 
674     bool operator==(const generic_def_path_iterator &O) const {
675       if (N.hasValue() != O.N.hasValue())
676         return false;
677       return !N.hasValue() || *N == *O.N;
678     }
679 
680   private:
681     T &curNode() const { return W->Paths[*N]; }
682 
683     Walker *W = nullptr;
684     Optional<ListIndex> N = None;
685   };
686 
687   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
688   using const_def_path_iterator =
689       generic_def_path_iterator<const DefPath, const ClobberWalker>;
690 
691   iterator_range<def_path_iterator> def_path(ListIndex From) {
692     return make_range(def_path_iterator(this, From), def_path_iterator());
693   }
694 
695   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
696     return make_range(const_def_path_iterator(this, From),
697                       const_def_path_iterator());
698   }
699 
700   struct OptznResult {
701     /// The path that contains our result.
702     TerminatedPath PrimaryClobber;
703     /// The paths that we can legally cache back from, but that aren't
704     /// necessarily the result of the Phi optimization.
705     SmallVector<TerminatedPath, 4> OtherClobbers;
706   };
707 
708   ListIndex defPathIndex(const DefPath &N) const {
709     // The assert looks nicer if we don't need to do &N
710     const DefPath *NP = &N;
711     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
712            "Out of bounds DefPath!");
713     return NP - &Paths.front();
714   }
715 
716   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
717   /// that act as legal clobbers. Note that this won't return *all* clobbers.
718   ///
719   /// Phi optimization algorithm tl;dr:
720   ///   - Find the earliest def/phi, A, we can optimize to
721   ///   - Find if all paths from the starting memory access ultimately reach A
722   ///     - If not, optimization isn't possible.
723   ///     - Otherwise, walk from A to another clobber or phi, A'.
724   ///       - If A' is a def, we're done.
725   ///       - If A' is a phi, try to optimize it.
726   ///
727   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
728   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
729   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
730                              const MemoryLocation &Loc) {
731     assert(Paths.empty() && VisitedPhis.empty() &&
732            "Reset the optimization state.");
733 
734     Paths.emplace_back(Loc, Start, Phi, None);
735     // Stores how many "valid" optimization nodes we had prior to calling
736     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
737     auto PriorPathsSize = Paths.size();
738 
739     SmallVector<ListIndex, 16> PausedSearches;
740     SmallVector<ListIndex, 8> NewPaused;
741     SmallVector<TerminatedPath, 4> TerminatedPaths;
742 
743     addSearches(Phi, PausedSearches, 0);
744 
745     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
746     // Paths.
747     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
748       assert(!Paths.empty() && "Need a path to move");
749       auto Dom = Paths.begin();
750       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
751         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
752           Dom = I;
753       auto Last = Paths.end() - 1;
754       if (Last != Dom)
755         std::iter_swap(Last, Dom);
756     };
757 
758     MemoryPhi *Current = Phi;
759     while (true) {
760       assert(!MSSA.isLiveOnEntryDef(Current) &&
761              "liveOnEntry wasn't treated as a clobber?");
762 
763       const auto *Target = getWalkTarget(Current);
764       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
765       // optimization for the prior phi.
766       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
767         return MSSA.dominates(P.Clobber, Target);
768       }));
769 
770       // FIXME: This is broken, because the Blocker may be reported to be
771       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
772       // For the moment, this is fine, since we do nothing with blocker info.
773       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
774               Target, PausedSearches, NewPaused, TerminatedPaths)) {
775 
776         // Find the node we started at. We can't search based on N->Last, since
777         // we may have gone around a loop with a different MemoryLocation.
778         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
779           return defPathIndex(N) < PriorPathsSize;
780         });
781         assert(Iter != def_path_iterator());
782 
783         DefPath &CurNode = *Iter;
784         assert(CurNode.Last == Current);
785 
786         // Two things:
787         // A. We can't reliably cache all of NewPaused back. Consider a case
788         //    where we have two paths in NewPaused; one of which can't optimize
789         //    above this phi, whereas the other can. If we cache the second path
790         //    back, we'll end up with suboptimal cache entries. We can handle
791         //    cases like this a bit better when we either try to find all
792         //    clobbers that block phi optimization, or when our cache starts
793         //    supporting unfinished searches.
794         // B. We can't reliably cache TerminatedPaths back here without doing
795         //    extra checks; consider a case like:
796         //       T
797         //      / \
798         //     D   C
799         //      \ /
800         //       S
801         //    Where T is our target, C is a node with a clobber on it, D is a
802         //    diamond (with a clobber *only* on the left or right node, N), and
803         //    S is our start. Say we walk to D, through the node opposite N
804         //    (read: ignoring the clobber), and see a cache entry in the top
805         //    node of D. That cache entry gets put into TerminatedPaths. We then
806         //    walk up to C (N is later in our worklist), find the clobber, and
807         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
808         //    the bottom part of D to the cached clobber, ignoring the clobber
809         //    in N. Again, this problem goes away if we start tracking all
810         //    blockers for a given phi optimization.
811         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
812         return {Result, {}};
813       }
814 
815       // If there's nothing left to search, then all paths led to valid clobbers
816       // that we got from our cache; pick the nearest to the start, and allow
817       // the rest to be cached back.
818       if (NewPaused.empty()) {
819         MoveDominatedPathToEnd(TerminatedPaths);
820         TerminatedPath Result = TerminatedPaths.pop_back_val();
821         return {Result, std::move(TerminatedPaths)};
822       }
823 
824       MemoryAccess *DefChainEnd = nullptr;
825       SmallVector<TerminatedPath, 4> Clobbers;
826       for (ListIndex Paused : NewPaused) {
827         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
828         if (WR.IsKnownClobber)
829           Clobbers.push_back({WR.Result, Paused});
830         else
831           // Micro-opt: If we hit the end of the chain, save it.
832           DefChainEnd = WR.Result;
833       }
834 
835       if (!TerminatedPaths.empty()) {
836         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
837         // do it now.
838         if (!DefChainEnd)
839           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
840             DefChainEnd = MA;
841 
842         // If any of the terminated paths don't dominate the phi we'll try to
843         // optimize, we need to figure out what they are and quit.
844         const BasicBlock *ChainBB = DefChainEnd->getBlock();
845         for (const TerminatedPath &TP : TerminatedPaths) {
846           // Because we know that DefChainEnd is as "high" as we can go, we
847           // don't need local dominance checks; BB dominance is sufficient.
848           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
849             Clobbers.push_back(TP);
850         }
851       }
852 
853       // If we have clobbers in the def chain, find the one closest to Current
854       // and quit.
855       if (!Clobbers.empty()) {
856         MoveDominatedPathToEnd(Clobbers);
857         TerminatedPath Result = Clobbers.pop_back_val();
858         return {Result, std::move(Clobbers)};
859       }
860 
861       assert(all_of(NewPaused,
862                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
863 
864       // Because liveOnEntry is a clobber, this must be a phi.
865       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
866 
867       PriorPathsSize = Paths.size();
868       PausedSearches.clear();
869       for (ListIndex I : NewPaused)
870         addSearches(DefChainPhi, PausedSearches, I);
871       NewPaused.clear();
872 
873       Current = DefChainPhi;
874     }
875   }
876 
877   void verifyOptResult(const OptznResult &R) const {
878     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
879       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
880     }));
881   }
882 
883   void resetPhiOptznState() {
884     Paths.clear();
885     VisitedPhis.clear();
886   }
887 
888 public:
889   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
890       : MSSA(MSSA), AA(AA), DT(DT) {}
891 
892   /// Finds the nearest clobber for the given query, optimizing phis if
893   /// possible.
894   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
895     Query = &Q;
896 
897     MemoryAccess *Current = Start;
898     // This walker pretends uses don't exist. If we're handed one, silently grab
899     // its def. (This has the nice side-effect of ensuring we never cache uses)
900     if (auto *MU = dyn_cast<MemoryUse>(Start))
901       Current = MU->getDefiningAccess();
902 
903     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
904     // Fast path for the overly-common case (no crazy phi optimization
905     // necessary)
906     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
907     MemoryAccess *Result;
908     if (WalkResult.IsKnownClobber) {
909       Result = WalkResult.Result;
910       Q.AR = WalkResult.AR;
911     } else {
912       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
913                                           Current, Q.StartingLoc);
914       verifyOptResult(OptRes);
915       resetPhiOptznState();
916       Result = OptRes.PrimaryClobber.Clobber;
917     }
918 
919 #ifdef EXPENSIVE_CHECKS
920     if (!Q.SkipSelfAccess)
921       checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
922 #endif
923     return Result;
924   }
925 
926   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
927 };
928 
929 struct RenamePassData {
930   DomTreeNode *DTN;
931   DomTreeNode::const_iterator ChildIt;
932   MemoryAccess *IncomingVal;
933 
934   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
935                  MemoryAccess *M)
936       : DTN(D), ChildIt(It), IncomingVal(M) {}
937 
938   void swap(RenamePassData &RHS) {
939     std::swap(DTN, RHS.DTN);
940     std::swap(ChildIt, RHS.ChildIt);
941     std::swap(IncomingVal, RHS.IncomingVal);
942   }
943 };
944 
945 } // end anonymous namespace
946 
947 namespace llvm {
948 
949 class MemorySSA::ClobberWalkerBase {
950   ClobberWalker Walker;
951   MemorySSA *MSSA;
952 
953 public:
954   ClobberWalkerBase(MemorySSA *M, AliasAnalysis *A, DominatorTree *D)
955       : Walker(*M, *A, *D), MSSA(M) {}
956 
957   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
958                                               const MemoryLocation &);
959   // Second argument (bool), defines whether the clobber search should skip the
960   // original queried access. If true, there will be a follow-up query searching
961   // for a clobber access past "self". Note that the Optimized access is not
962   // updated if a new clobber is found by this SkipSelf search. If this
963   // additional query becomes heavily used we may decide to cache the result.
964   // Walker instantiations will decide how to set the SkipSelf bool.
965   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, bool);
966   void verify(const MemorySSA *MSSA) { Walker.verify(MSSA); }
967 };
968 
969 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
970 /// longer does caching on its own, but the name has been retained for the
971 /// moment.
972 class MemorySSA::CachingWalker final : public MemorySSAWalker {
973   ClobberWalkerBase *Walker;
974 
975 public:
976   CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
977       : MemorySSAWalker(M), Walker(W) {}
978   ~CachingWalker() override = default;
979 
980   using MemorySSAWalker::getClobberingMemoryAccess;
981 
982   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
983   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
984                                           const MemoryLocation &Loc) override;
985 
986   void invalidateInfo(MemoryAccess *MA) override {
987     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
988       MUD->resetOptimized();
989   }
990 
991   void verify(const MemorySSA *MSSA) override {
992     MemorySSAWalker::verify(MSSA);
993     Walker->verify(MSSA);
994   }
995 };
996 
997 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
998   ClobberWalkerBase *Walker;
999 
1000 public:
1001   SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W)
1002       : MemorySSAWalker(M), Walker(W) {}
1003   ~SkipSelfWalker() override = default;
1004 
1005   using MemorySSAWalker::getClobberingMemoryAccess;
1006 
1007   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
1008   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1009                                           const MemoryLocation &Loc) override;
1010 
1011   void invalidateInfo(MemoryAccess *MA) override {
1012     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1013       MUD->resetOptimized();
1014   }
1015 
1016   void verify(const MemorySSA *MSSA) override {
1017     MemorySSAWalker::verify(MSSA);
1018     Walker->verify(MSSA);
1019   }
1020 };
1021 
1022 } // end namespace llvm
1023 
1024 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1025                                     bool RenameAllUses) {
1026   // Pass through values to our successors
1027   for (const BasicBlock *S : successors(BB)) {
1028     auto It = PerBlockAccesses.find(S);
1029     // Rename the phi nodes in our successor block
1030     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1031       continue;
1032     AccessList *Accesses = It->second.get();
1033     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1034     if (RenameAllUses) {
1035       int PhiIndex = Phi->getBasicBlockIndex(BB);
1036       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
1037       Phi->setIncomingValue(PhiIndex, IncomingVal);
1038     } else
1039       Phi->addIncoming(IncomingVal, BB);
1040   }
1041 }
1042 
1043 /// Rename a single basic block into MemorySSA form.
1044 /// Uses the standard SSA renaming algorithm.
1045 /// \returns The new incoming value.
1046 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1047                                      bool RenameAllUses) {
1048   auto It = PerBlockAccesses.find(BB);
1049   // Skip most processing if the list is empty.
1050   if (It != PerBlockAccesses.end()) {
1051     AccessList *Accesses = It->second.get();
1052     for (MemoryAccess &L : *Accesses) {
1053       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1054         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1055           MUD->setDefiningAccess(IncomingVal);
1056         if (isa<MemoryDef>(&L))
1057           IncomingVal = &L;
1058       } else {
1059         IncomingVal = &L;
1060       }
1061     }
1062   }
1063   return IncomingVal;
1064 }
1065 
1066 /// This is the standard SSA renaming algorithm.
1067 ///
1068 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1069 /// in phi nodes in our successors.
1070 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1071                            SmallPtrSetImpl<BasicBlock *> &Visited,
1072                            bool SkipVisited, bool RenameAllUses) {
1073   SmallVector<RenamePassData, 32> WorkStack;
1074   // Skip everything if we already renamed this block and we are skipping.
1075   // Note: You can't sink this into the if, because we need it to occur
1076   // regardless of whether we skip blocks or not.
1077   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1078   if (SkipVisited && AlreadyVisited)
1079     return;
1080 
1081   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1082   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1083   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1084 
1085   while (!WorkStack.empty()) {
1086     DomTreeNode *Node = WorkStack.back().DTN;
1087     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1088     IncomingVal = WorkStack.back().IncomingVal;
1089 
1090     if (ChildIt == Node->end()) {
1091       WorkStack.pop_back();
1092     } else {
1093       DomTreeNode *Child = *ChildIt;
1094       ++WorkStack.back().ChildIt;
1095       BasicBlock *BB = Child->getBlock();
1096       // Note: You can't sink this into the if, because we need it to occur
1097       // regardless of whether we skip blocks or not.
1098       AlreadyVisited = !Visited.insert(BB).second;
1099       if (SkipVisited && AlreadyVisited) {
1100         // We already visited this during our renaming, which can happen when
1101         // being asked to rename multiple blocks. Figure out the incoming val,
1102         // which is the last def.
1103         // Incoming value can only change if there is a block def, and in that
1104         // case, it's the last block def in the list.
1105         if (auto *BlockDefs = getWritableBlockDefs(BB))
1106           IncomingVal = &*BlockDefs->rbegin();
1107       } else
1108         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1109       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1110       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1111     }
1112   }
1113 }
1114 
1115 /// This handles unreachable block accesses by deleting phi nodes in
1116 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1117 /// being uses of the live on entry definition.
1118 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1119   assert(!DT->isReachableFromEntry(BB) &&
1120          "Reachable block found while handling unreachable blocks");
1121 
1122   // Make sure phi nodes in our reachable successors end up with a
1123   // LiveOnEntryDef for our incoming edge, even though our block is forward
1124   // unreachable.  We could just disconnect these blocks from the CFG fully,
1125   // but we do not right now.
1126   for (const BasicBlock *S : successors(BB)) {
1127     if (!DT->isReachableFromEntry(S))
1128       continue;
1129     auto It = PerBlockAccesses.find(S);
1130     // Rename the phi nodes in our successor block
1131     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1132       continue;
1133     AccessList *Accesses = It->second.get();
1134     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1135     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1136   }
1137 
1138   auto It = PerBlockAccesses.find(BB);
1139   if (It == PerBlockAccesses.end())
1140     return;
1141 
1142   auto &Accesses = It->second;
1143   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1144     auto Next = std::next(AI);
1145     // If we have a phi, just remove it. We are going to replace all
1146     // users with live on entry.
1147     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1148       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1149     else
1150       Accesses->erase(AI);
1151     AI = Next;
1152   }
1153 }
1154 
1155 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1156     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1157       SkipWalker(nullptr), NextID(0) {
1158   buildMemorySSA();
1159 }
1160 
1161 MemorySSA::~MemorySSA() {
1162   // Drop all our references
1163   for (const auto &Pair : PerBlockAccesses)
1164     for (MemoryAccess &MA : *Pair.second)
1165       MA.dropAllReferences();
1166 }
1167 
1168 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1169   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1170 
1171   if (Res.second)
1172     Res.first->second = llvm::make_unique<AccessList>();
1173   return Res.first->second.get();
1174 }
1175 
1176 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1177   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1178 
1179   if (Res.second)
1180     Res.first->second = llvm::make_unique<DefsList>();
1181   return Res.first->second.get();
1182 }
1183 
1184 namespace llvm {
1185 
1186 /// This class is a batch walker of all MemoryUse's in the program, and points
1187 /// their defining access at the thing that actually clobbers them.  Because it
1188 /// is a batch walker that touches everything, it does not operate like the
1189 /// other walkers.  This walker is basically performing a top-down SSA renaming
1190 /// pass, where the version stack is used as the cache.  This enables it to be
1191 /// significantly more time and memory efficient than using the regular walker,
1192 /// which is walking bottom-up.
1193 class MemorySSA::OptimizeUses {
1194 public:
1195   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1196                DominatorTree *DT)
1197       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1198     Walker = MSSA->getWalker();
1199   }
1200 
1201   void optimizeUses();
1202 
1203 private:
1204   /// This represents where a given memorylocation is in the stack.
1205   struct MemlocStackInfo {
1206     // This essentially is keeping track of versions of the stack. Whenever
1207     // the stack changes due to pushes or pops, these versions increase.
1208     unsigned long StackEpoch;
1209     unsigned long PopEpoch;
1210     // This is the lower bound of places on the stack to check. It is equal to
1211     // the place the last stack walk ended.
1212     // Note: Correctness depends on this being initialized to 0, which densemap
1213     // does
1214     unsigned long LowerBound;
1215     const BasicBlock *LowerBoundBlock;
1216     // This is where the last walk for this memory location ended.
1217     unsigned long LastKill;
1218     bool LastKillValid;
1219     Optional<AliasResult> AR;
1220   };
1221 
1222   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1223                            SmallVectorImpl<MemoryAccess *> &,
1224                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1225 
1226   MemorySSA *MSSA;
1227   MemorySSAWalker *Walker;
1228   AliasAnalysis *AA;
1229   DominatorTree *DT;
1230 };
1231 
1232 } // end namespace llvm
1233 
1234 /// Optimize the uses in a given block This is basically the SSA renaming
1235 /// algorithm, with one caveat: We are able to use a single stack for all
1236 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1237 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1238 /// going to be some position in that stack of possible ones.
1239 ///
1240 /// We track the stack positions that each MemoryLocation needs
1241 /// to check, and last ended at.  This is because we only want to check the
1242 /// things that changed since last time.  The same MemoryLocation should
1243 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1244 /// things like this, and if they start, we can modify MemoryLocOrCall to
1245 /// include relevant data)
1246 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1247     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1248     SmallVectorImpl<MemoryAccess *> &VersionStack,
1249     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1250 
1251   /// If no accesses, nothing to do.
1252   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1253   if (Accesses == nullptr)
1254     return;
1255 
1256   // Pop everything that doesn't dominate the current block off the stack,
1257   // increment the PopEpoch to account for this.
1258   while (true) {
1259     assert(
1260         !VersionStack.empty() &&
1261         "Version stack should have liveOnEntry sentinel dominating everything");
1262     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1263     if (DT->dominates(BackBlock, BB))
1264       break;
1265     while (VersionStack.back()->getBlock() == BackBlock)
1266       VersionStack.pop_back();
1267     ++PopEpoch;
1268   }
1269 
1270   for (MemoryAccess &MA : *Accesses) {
1271     auto *MU = dyn_cast<MemoryUse>(&MA);
1272     if (!MU) {
1273       VersionStack.push_back(&MA);
1274       ++StackEpoch;
1275       continue;
1276     }
1277 
1278     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1279       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1280       continue;
1281     }
1282 
1283     MemoryLocOrCall UseMLOC(MU);
1284     auto &LocInfo = LocStackInfo[UseMLOC];
1285     // If the pop epoch changed, it means we've removed stuff from top of
1286     // stack due to changing blocks. We may have to reset the lower bound or
1287     // last kill info.
1288     if (LocInfo.PopEpoch != PopEpoch) {
1289       LocInfo.PopEpoch = PopEpoch;
1290       LocInfo.StackEpoch = StackEpoch;
1291       // If the lower bound was in something that no longer dominates us, we
1292       // have to reset it.
1293       // We can't simply track stack size, because the stack may have had
1294       // pushes/pops in the meantime.
1295       // XXX: This is non-optimal, but only is slower cases with heavily
1296       // branching dominator trees.  To get the optimal number of queries would
1297       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1298       // the top of that stack dominates us.  This does not seem worth it ATM.
1299       // A much cheaper optimization would be to always explore the deepest
1300       // branch of the dominator tree first. This will guarantee this resets on
1301       // the smallest set of blocks.
1302       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1303           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1304         // Reset the lower bound of things to check.
1305         // TODO: Some day we should be able to reset to last kill, rather than
1306         // 0.
1307         LocInfo.LowerBound = 0;
1308         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1309         LocInfo.LastKillValid = false;
1310       }
1311     } else if (LocInfo.StackEpoch != StackEpoch) {
1312       // If all that has changed is the StackEpoch, we only have to check the
1313       // new things on the stack, because we've checked everything before.  In
1314       // this case, the lower bound of things to check remains the same.
1315       LocInfo.PopEpoch = PopEpoch;
1316       LocInfo.StackEpoch = StackEpoch;
1317     }
1318     if (!LocInfo.LastKillValid) {
1319       LocInfo.LastKill = VersionStack.size() - 1;
1320       LocInfo.LastKillValid = true;
1321       LocInfo.AR = MayAlias;
1322     }
1323 
1324     // At this point, we should have corrected last kill and LowerBound to be
1325     // in bounds.
1326     assert(LocInfo.LowerBound < VersionStack.size() &&
1327            "Lower bound out of range");
1328     assert(LocInfo.LastKill < VersionStack.size() &&
1329            "Last kill info out of range");
1330     // In any case, the new upper bound is the top of the stack.
1331     unsigned long UpperBound = VersionStack.size() - 1;
1332 
1333     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1334       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1335                         << *(MU->getMemoryInst()) << ")"
1336                         << " because there are "
1337                         << UpperBound - LocInfo.LowerBound
1338                         << " stores to disambiguate\n");
1339       // Because we did not walk, LastKill is no longer valid, as this may
1340       // have been a kill.
1341       LocInfo.LastKillValid = false;
1342       continue;
1343     }
1344     bool FoundClobberResult = false;
1345     while (UpperBound > LocInfo.LowerBound) {
1346       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1347         // For phis, use the walker, see where we ended up, go there
1348         Instruction *UseInst = MU->getMemoryInst();
1349         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1350         // We are guaranteed to find it or something is wrong
1351         while (VersionStack[UpperBound] != Result) {
1352           assert(UpperBound != 0);
1353           --UpperBound;
1354         }
1355         FoundClobberResult = true;
1356         break;
1357       }
1358 
1359       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1360       // If the lifetime of the pointer ends at this instruction, it's live on
1361       // entry.
1362       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1363         // Reset UpperBound to liveOnEntryDef's place in the stack
1364         UpperBound = 0;
1365         FoundClobberResult = true;
1366         LocInfo.AR = MustAlias;
1367         break;
1368       }
1369       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1370       if (CA.IsClobber) {
1371         FoundClobberResult = true;
1372         LocInfo.AR = CA.AR;
1373         break;
1374       }
1375       --UpperBound;
1376     }
1377 
1378     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1379 
1380     // At the end of this loop, UpperBound is either a clobber, or lower bound
1381     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1382     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1383       // We were last killed now by where we got to
1384       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1385         LocInfo.AR = None;
1386       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1387       LocInfo.LastKill = UpperBound;
1388     } else {
1389       // Otherwise, we checked all the new ones, and now we know we can get to
1390       // LastKill.
1391       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1392     }
1393     LocInfo.LowerBound = VersionStack.size() - 1;
1394     LocInfo.LowerBoundBlock = BB;
1395   }
1396 }
1397 
1398 /// Optimize uses to point to their actual clobbering definitions.
1399 void MemorySSA::OptimizeUses::optimizeUses() {
1400   SmallVector<MemoryAccess *, 16> VersionStack;
1401   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1402   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1403 
1404   unsigned long StackEpoch = 1;
1405   unsigned long PopEpoch = 1;
1406   // We perform a non-recursive top-down dominator tree walk.
1407   for (const auto *DomNode : depth_first(DT->getRootNode()))
1408     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1409                         LocStackInfo);
1410 }
1411 
1412 void MemorySSA::placePHINodes(
1413     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1414   // Determine where our MemoryPhi's should go
1415   ForwardIDFCalculator IDFs(*DT);
1416   IDFs.setDefiningBlocks(DefiningBlocks);
1417   SmallVector<BasicBlock *, 32> IDFBlocks;
1418   IDFs.calculate(IDFBlocks);
1419 
1420   // Now place MemoryPhi nodes.
1421   for (auto &BB : IDFBlocks)
1422     createMemoryPhi(BB);
1423 }
1424 
1425 void MemorySSA::buildMemorySSA() {
1426   // We create an access to represent "live on entry", for things like
1427   // arguments or users of globals, where the memory they use is defined before
1428   // the beginning of the function. We do not actually insert it into the IR.
1429   // We do not define a live on exit for the immediate uses, and thus our
1430   // semantics do *not* imply that something with no immediate uses can simply
1431   // be removed.
1432   BasicBlock &StartingPoint = F.getEntryBlock();
1433   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1434                                      &StartingPoint, NextID++));
1435 
1436   // We maintain lists of memory accesses per-block, trading memory for time. We
1437   // could just look up the memory access for every possible instruction in the
1438   // stream.
1439   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1440   // Go through each block, figure out where defs occur, and chain together all
1441   // the accesses.
1442   for (BasicBlock &B : F) {
1443     bool InsertIntoDef = false;
1444     AccessList *Accesses = nullptr;
1445     DefsList *Defs = nullptr;
1446     for (Instruction &I : B) {
1447       MemoryUseOrDef *MUD = createNewAccess(&I);
1448       if (!MUD)
1449         continue;
1450 
1451       if (!Accesses)
1452         Accesses = getOrCreateAccessList(&B);
1453       Accesses->push_back(MUD);
1454       if (isa<MemoryDef>(MUD)) {
1455         InsertIntoDef = true;
1456         if (!Defs)
1457           Defs = getOrCreateDefsList(&B);
1458         Defs->push_back(*MUD);
1459       }
1460     }
1461     if (InsertIntoDef)
1462       DefiningBlocks.insert(&B);
1463   }
1464   placePHINodes(DefiningBlocks);
1465 
1466   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1467   // filled in with all blocks.
1468   SmallPtrSet<BasicBlock *, 16> Visited;
1469   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1470 
1471   CachingWalker *Walker = getWalkerImpl();
1472 
1473   OptimizeUses(this, Walker, AA, DT).optimizeUses();
1474 
1475   // Mark the uses in unreachable blocks as live on entry, so that they go
1476   // somewhere.
1477   for (auto &BB : F)
1478     if (!Visited.count(&BB))
1479       markUnreachableAsLiveOnEntry(&BB);
1480 }
1481 
1482 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1483 
1484 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1485   if (Walker)
1486     return Walker.get();
1487 
1488   if (!WalkerBase)
1489     WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1490 
1491   Walker = llvm::make_unique<CachingWalker>(this, WalkerBase.get());
1492   return Walker.get();
1493 }
1494 
1495 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1496   if (SkipWalker)
1497     return SkipWalker.get();
1498 
1499   if (!WalkerBase)
1500     WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1501 
1502   SkipWalker = llvm::make_unique<SkipSelfWalker>(this, WalkerBase.get());
1503   return SkipWalker.get();
1504  }
1505 
1506 
1507 // This is a helper function used by the creation routines. It places NewAccess
1508 // into the access and defs lists for a given basic block, at the given
1509 // insertion point.
1510 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1511                                         const BasicBlock *BB,
1512                                         InsertionPlace Point) {
1513   auto *Accesses = getOrCreateAccessList(BB);
1514   if (Point == Beginning) {
1515     // If it's a phi node, it goes first, otherwise, it goes after any phi
1516     // nodes.
1517     if (isa<MemoryPhi>(NewAccess)) {
1518       Accesses->push_front(NewAccess);
1519       auto *Defs = getOrCreateDefsList(BB);
1520       Defs->push_front(*NewAccess);
1521     } else {
1522       auto AI = find_if_not(
1523           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1524       Accesses->insert(AI, NewAccess);
1525       if (!isa<MemoryUse>(NewAccess)) {
1526         auto *Defs = getOrCreateDefsList(BB);
1527         auto DI = find_if_not(
1528             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1529         Defs->insert(DI, *NewAccess);
1530       }
1531     }
1532   } else {
1533     Accesses->push_back(NewAccess);
1534     if (!isa<MemoryUse>(NewAccess)) {
1535       auto *Defs = getOrCreateDefsList(BB);
1536       Defs->push_back(*NewAccess);
1537     }
1538   }
1539   BlockNumberingValid.erase(BB);
1540 }
1541 
1542 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1543                                       AccessList::iterator InsertPt) {
1544   auto *Accesses = getWritableBlockAccesses(BB);
1545   bool WasEnd = InsertPt == Accesses->end();
1546   Accesses->insert(AccessList::iterator(InsertPt), What);
1547   if (!isa<MemoryUse>(What)) {
1548     auto *Defs = getOrCreateDefsList(BB);
1549     // If we got asked to insert at the end, we have an easy job, just shove it
1550     // at the end. If we got asked to insert before an existing def, we also get
1551     // an iterator. If we got asked to insert before a use, we have to hunt for
1552     // the next def.
1553     if (WasEnd) {
1554       Defs->push_back(*What);
1555     } else if (isa<MemoryDef>(InsertPt)) {
1556       Defs->insert(InsertPt->getDefsIterator(), *What);
1557     } else {
1558       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1559         ++InsertPt;
1560       // Either we found a def, or we are inserting at the end
1561       if (InsertPt == Accesses->end())
1562         Defs->push_back(*What);
1563       else
1564         Defs->insert(InsertPt->getDefsIterator(), *What);
1565     }
1566   }
1567   BlockNumberingValid.erase(BB);
1568 }
1569 
1570 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1571   // Keep it in the lookup tables, remove from the lists
1572   removeFromLists(What, false);
1573 
1574   // Note that moving should implicitly invalidate the optimized state of a
1575   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1576   // MemoryDef.
1577   if (auto *MD = dyn_cast<MemoryDef>(What))
1578     MD->resetOptimized();
1579   What->setBlock(BB);
1580 }
1581 
1582 // Move What before Where in the IR.  The end result is that What will belong to
1583 // the right lists and have the right Block set, but will not otherwise be
1584 // correct. It will not have the right defining access, and if it is a def,
1585 // things below it will not properly be updated.
1586 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1587                        AccessList::iterator Where) {
1588   prepareForMoveTo(What, BB);
1589   insertIntoListsBefore(What, BB, Where);
1590 }
1591 
1592 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1593                        InsertionPlace Point) {
1594   if (isa<MemoryPhi>(What)) {
1595     assert(Point == Beginning &&
1596            "Can only move a Phi at the beginning of the block");
1597     // Update lookup table entry
1598     ValueToMemoryAccess.erase(What->getBlock());
1599     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1600     (void)Inserted;
1601     assert(Inserted && "Cannot move a Phi to a block that already has one");
1602   }
1603 
1604   prepareForMoveTo(What, BB);
1605   insertIntoListsForBlock(What, BB, Point);
1606 }
1607 
1608 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1609   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1610   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1611   // Phi's always are placed at the front of the block.
1612   insertIntoListsForBlock(Phi, BB, Beginning);
1613   ValueToMemoryAccess[BB] = Phi;
1614   return Phi;
1615 }
1616 
1617 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1618                                                MemoryAccess *Definition,
1619                                                const MemoryUseOrDef *Template) {
1620   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1621   MemoryUseOrDef *NewAccess = createNewAccess(I, Template);
1622   assert(
1623       NewAccess != nullptr &&
1624       "Tried to create a memory access for a non-memory touching instruction");
1625   NewAccess->setDefiningAccess(Definition);
1626   return NewAccess;
1627 }
1628 
1629 // Return true if the instruction has ordering constraints.
1630 // Note specifically that this only considers stores and loads
1631 // because others are still considered ModRef by getModRefInfo.
1632 static inline bool isOrdered(const Instruction *I) {
1633   if (auto *SI = dyn_cast<StoreInst>(I)) {
1634     if (!SI->isUnordered())
1635       return true;
1636   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1637     if (!LI->isUnordered())
1638       return true;
1639   }
1640   return false;
1641 }
1642 
1643 /// Helper function to create new memory accesses
1644 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1645                                            const MemoryUseOrDef *Template) {
1646   // The assume intrinsic has a control dependency which we model by claiming
1647   // that it writes arbitrarily. Ignore that fake memory dependency here.
1648   // FIXME: Replace this special casing with a more accurate modelling of
1649   // assume's control dependency.
1650   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1651     if (II->getIntrinsicID() == Intrinsic::assume)
1652       return nullptr;
1653 
1654   bool Def, Use;
1655   if (Template) {
1656     Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1657     Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1658 #if !defined(NDEBUG)
1659     ModRefInfo ModRef = AA->getModRefInfo(I, None);
1660     bool DefCheck, UseCheck;
1661     DefCheck = isModSet(ModRef) || isOrdered(I);
1662     UseCheck = isRefSet(ModRef);
1663     assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1664 #endif
1665   } else {
1666     // Find out what affect this instruction has on memory.
1667     ModRefInfo ModRef = AA->getModRefInfo(I, None);
1668     // The isOrdered check is used to ensure that volatiles end up as defs
1669     // (atomics end up as ModRef right now anyway).  Until we separate the
1670     // ordering chain from the memory chain, this enables people to see at least
1671     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1672     // will still give an answer that bypasses other volatile loads.  TODO:
1673     // Separate memory aliasing and ordering into two different chains so that
1674     // we can precisely represent both "what memory will this read/write/is
1675     // clobbered by" and "what instructions can I move this past".
1676     Def = isModSet(ModRef) || isOrdered(I);
1677     Use = isRefSet(ModRef);
1678   }
1679 
1680   // It's possible for an instruction to not modify memory at all. During
1681   // construction, we ignore them.
1682   if (!Def && !Use)
1683     return nullptr;
1684 
1685   MemoryUseOrDef *MUD;
1686   if (Def)
1687     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1688   else
1689     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1690   ValueToMemoryAccess[I] = MUD;
1691   return MUD;
1692 }
1693 
1694 /// Returns true if \p Replacer dominates \p Replacee .
1695 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1696                              const MemoryAccess *Replacee) const {
1697   if (isa<MemoryUseOrDef>(Replacee))
1698     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1699   const auto *MP = cast<MemoryPhi>(Replacee);
1700   // For a phi node, the use occurs in the predecessor block of the phi node.
1701   // Since we may occur multiple times in the phi node, we have to check each
1702   // operand to ensure Replacer dominates each operand where Replacee occurs.
1703   for (const Use &Arg : MP->operands()) {
1704     if (Arg.get() != Replacee &&
1705         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1706       return false;
1707   }
1708   return true;
1709 }
1710 
1711 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1712 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1713   assert(MA->use_empty() &&
1714          "Trying to remove memory access that still has uses");
1715   BlockNumbering.erase(MA);
1716   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1717     MUD->setDefiningAccess(nullptr);
1718   // Invalidate our walker's cache if necessary
1719   if (!isa<MemoryUse>(MA))
1720     Walker->invalidateInfo(MA);
1721 
1722   Value *MemoryInst;
1723   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1724     MemoryInst = MUD->getMemoryInst();
1725   else
1726     MemoryInst = MA->getBlock();
1727 
1728   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1729   if (VMA->second == MA)
1730     ValueToMemoryAccess.erase(VMA);
1731 }
1732 
1733 /// Properly remove \p MA from all of MemorySSA's lists.
1734 ///
1735 /// Because of the way the intrusive list and use lists work, it is important to
1736 /// do removal in the right order.
1737 /// ShouldDelete defaults to true, and will cause the memory access to also be
1738 /// deleted, not just removed.
1739 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1740   BasicBlock *BB = MA->getBlock();
1741   // The access list owns the reference, so we erase it from the non-owning list
1742   // first.
1743   if (!isa<MemoryUse>(MA)) {
1744     auto DefsIt = PerBlockDefs.find(BB);
1745     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1746     Defs->remove(*MA);
1747     if (Defs->empty())
1748       PerBlockDefs.erase(DefsIt);
1749   }
1750 
1751   // The erase call here will delete it. If we don't want it deleted, we call
1752   // remove instead.
1753   auto AccessIt = PerBlockAccesses.find(BB);
1754   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1755   if (ShouldDelete)
1756     Accesses->erase(MA);
1757   else
1758     Accesses->remove(MA);
1759 
1760   if (Accesses->empty()) {
1761     PerBlockAccesses.erase(AccessIt);
1762     BlockNumberingValid.erase(BB);
1763   }
1764 }
1765 
1766 void MemorySSA::print(raw_ostream &OS) const {
1767   MemorySSAAnnotatedWriter Writer(this);
1768   F.print(OS, &Writer);
1769 }
1770 
1771 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1772 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1773 #endif
1774 
1775 void MemorySSA::verifyMemorySSA() const {
1776   verifyDefUses(F);
1777   verifyDomination(F);
1778   verifyOrdering(F);
1779   verifyDominationNumbers(F);
1780   Walker->verify(this);
1781   // Previously, the verification used to also verify that the clobberingAccess
1782   // cached by MemorySSA is the same as the clobberingAccess found at a later
1783   // query to AA. This does not hold true in general due to the current fragility
1784   // of BasicAA which has arbitrary caps on the things it analyzes before giving
1785   // up. As a result, transformations that are correct, will lead to BasicAA
1786   // returning different Alias answers before and after that transformation.
1787   // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1788   // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1789   // every transformation, which defeats the purpose of using it. For such an
1790   // example, see test4 added in D51960.
1791 }
1792 
1793 /// Verify that all of the blocks we believe to have valid domination numbers
1794 /// actually have valid domination numbers.
1795 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1796 #ifndef NDEBUG
1797   if (BlockNumberingValid.empty())
1798     return;
1799 
1800   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1801   for (const BasicBlock &BB : F) {
1802     if (!ValidBlocks.count(&BB))
1803       continue;
1804 
1805     ValidBlocks.erase(&BB);
1806 
1807     const AccessList *Accesses = getBlockAccesses(&BB);
1808     // It's correct to say an empty block has valid numbering.
1809     if (!Accesses)
1810       continue;
1811 
1812     // Block numbering starts at 1.
1813     unsigned long LastNumber = 0;
1814     for (const MemoryAccess &MA : *Accesses) {
1815       auto ThisNumberIter = BlockNumbering.find(&MA);
1816       assert(ThisNumberIter != BlockNumbering.end() &&
1817              "MemoryAccess has no domination number in a valid block!");
1818 
1819       unsigned long ThisNumber = ThisNumberIter->second;
1820       assert(ThisNumber > LastNumber &&
1821              "Domination numbers should be strictly increasing!");
1822       LastNumber = ThisNumber;
1823     }
1824   }
1825 
1826   assert(ValidBlocks.empty() &&
1827          "All valid BasicBlocks should exist in F -- dangling pointers?");
1828 #endif
1829 }
1830 
1831 /// Verify that the order and existence of MemoryAccesses matches the
1832 /// order and existence of memory affecting instructions.
1833 void MemorySSA::verifyOrdering(Function &F) const {
1834 #ifndef NDEBUG
1835   // Walk all the blocks, comparing what the lookups think and what the access
1836   // lists think, as well as the order in the blocks vs the order in the access
1837   // lists.
1838   SmallVector<MemoryAccess *, 32> ActualAccesses;
1839   SmallVector<MemoryAccess *, 32> ActualDefs;
1840   for (BasicBlock &B : F) {
1841     const AccessList *AL = getBlockAccesses(&B);
1842     const auto *DL = getBlockDefs(&B);
1843     MemoryAccess *Phi = getMemoryAccess(&B);
1844     if (Phi) {
1845       ActualAccesses.push_back(Phi);
1846       ActualDefs.push_back(Phi);
1847     }
1848 
1849     for (Instruction &I : B) {
1850       MemoryAccess *MA = getMemoryAccess(&I);
1851       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1852              "We have memory affecting instructions "
1853              "in this block but they are not in the "
1854              "access list or defs list");
1855       if (MA) {
1856         ActualAccesses.push_back(MA);
1857         if (isa<MemoryDef>(MA))
1858           ActualDefs.push_back(MA);
1859       }
1860     }
1861     // Either we hit the assert, really have no accesses, or we have both
1862     // accesses and an access list.
1863     // Same with defs.
1864     if (!AL && !DL)
1865       continue;
1866     assert(AL->size() == ActualAccesses.size() &&
1867            "We don't have the same number of accesses in the block as on the "
1868            "access list");
1869     assert((DL || ActualDefs.size() == 0) &&
1870            "Either we should have a defs list, or we should have no defs");
1871     assert((!DL || DL->size() == ActualDefs.size()) &&
1872            "We don't have the same number of defs in the block as on the "
1873            "def list");
1874     auto ALI = AL->begin();
1875     auto AAI = ActualAccesses.begin();
1876     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1877       assert(&*ALI == *AAI && "Not the same accesses in the same order");
1878       ++ALI;
1879       ++AAI;
1880     }
1881     ActualAccesses.clear();
1882     if (DL) {
1883       auto DLI = DL->begin();
1884       auto ADI = ActualDefs.begin();
1885       while (DLI != DL->end() && ADI != ActualDefs.end()) {
1886         assert(&*DLI == *ADI && "Not the same defs in the same order");
1887         ++DLI;
1888         ++ADI;
1889       }
1890     }
1891     ActualDefs.clear();
1892   }
1893 #endif
1894 }
1895 
1896 /// Verify the domination properties of MemorySSA by checking that each
1897 /// definition dominates all of its uses.
1898 void MemorySSA::verifyDomination(Function &F) const {
1899 #ifndef NDEBUG
1900   for (BasicBlock &B : F) {
1901     // Phi nodes are attached to basic blocks
1902     if (MemoryPhi *MP = getMemoryAccess(&B))
1903       for (const Use &U : MP->uses())
1904         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1905 
1906     for (Instruction &I : B) {
1907       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1908       if (!MD)
1909         continue;
1910 
1911       for (const Use &U : MD->uses())
1912         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1913     }
1914   }
1915 #endif
1916 }
1917 
1918 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1919 /// appears in the use list of \p Def.
1920 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1921 #ifndef NDEBUG
1922   // The live on entry use may cause us to get a NULL def here
1923   if (!Def)
1924     assert(isLiveOnEntryDef(Use) &&
1925            "Null def but use not point to live on entry def");
1926   else
1927     assert(is_contained(Def->users(), Use) &&
1928            "Did not find use in def's use list");
1929 #endif
1930 }
1931 
1932 /// Verify the immediate use information, by walking all the memory
1933 /// accesses and verifying that, for each use, it appears in the
1934 /// appropriate def's use list
1935 void MemorySSA::verifyDefUses(Function &F) const {
1936 #ifndef NDEBUG
1937   for (BasicBlock &B : F) {
1938     // Phi nodes are attached to basic blocks
1939     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1940       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1941                                           pred_begin(&B), pred_end(&B))) &&
1942              "Incomplete MemoryPhi Node");
1943       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1944         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1945         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1946                    pred_end(&B) &&
1947                "Incoming phi block not a block predecessor");
1948       }
1949     }
1950 
1951     for (Instruction &I : B) {
1952       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1953         verifyUseInDefs(MA->getDefiningAccess(), MA);
1954       }
1955     }
1956   }
1957 #endif
1958 }
1959 
1960 /// Perform a local numbering on blocks so that instruction ordering can be
1961 /// determined in constant time.
1962 /// TODO: We currently just number in order.  If we numbered by N, we could
1963 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1964 /// log2(N) sequences of mixed before and after) without needing to invalidate
1965 /// the numbering.
1966 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1967   // The pre-increment ensures the numbers really start at 1.
1968   unsigned long CurrentNumber = 0;
1969   const AccessList *AL = getBlockAccesses(B);
1970   assert(AL != nullptr && "Asking to renumber an empty block");
1971   for (const auto &I : *AL)
1972     BlockNumbering[&I] = ++CurrentNumber;
1973   BlockNumberingValid.insert(B);
1974 }
1975 
1976 /// Determine, for two memory accesses in the same block,
1977 /// whether \p Dominator dominates \p Dominatee.
1978 /// \returns True if \p Dominator dominates \p Dominatee.
1979 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1980                                  const MemoryAccess *Dominatee) const {
1981   const BasicBlock *DominatorBlock = Dominator->getBlock();
1982 
1983   assert((DominatorBlock == Dominatee->getBlock()) &&
1984          "Asking for local domination when accesses are in different blocks!");
1985   // A node dominates itself.
1986   if (Dominatee == Dominator)
1987     return true;
1988 
1989   // When Dominatee is defined on function entry, it is not dominated by another
1990   // memory access.
1991   if (isLiveOnEntryDef(Dominatee))
1992     return false;
1993 
1994   // When Dominator is defined on function entry, it dominates the other memory
1995   // access.
1996   if (isLiveOnEntryDef(Dominator))
1997     return true;
1998 
1999   if (!BlockNumberingValid.count(DominatorBlock))
2000     renumberBlock(DominatorBlock);
2001 
2002   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2003   // All numbers start with 1
2004   assert(DominatorNum != 0 && "Block was not numbered properly");
2005   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2006   assert(DominateeNum != 0 && "Block was not numbered properly");
2007   return DominatorNum < DominateeNum;
2008 }
2009 
2010 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2011                           const MemoryAccess *Dominatee) const {
2012   if (Dominator == Dominatee)
2013     return true;
2014 
2015   if (isLiveOnEntryDef(Dominatee))
2016     return false;
2017 
2018   if (Dominator->getBlock() != Dominatee->getBlock())
2019     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2020   return locallyDominates(Dominator, Dominatee);
2021 }
2022 
2023 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2024                           const Use &Dominatee) const {
2025   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2026     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2027     // The def must dominate the incoming block of the phi.
2028     if (UseBB != Dominator->getBlock())
2029       return DT->dominates(Dominator->getBlock(), UseBB);
2030     // If the UseBB and the DefBB are the same, compare locally.
2031     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2032   }
2033   // If it's not a PHI node use, the normal dominates can already handle it.
2034   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2035 }
2036 
2037 const static char LiveOnEntryStr[] = "liveOnEntry";
2038 
2039 void MemoryAccess::print(raw_ostream &OS) const {
2040   switch (getValueID()) {
2041   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2042   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2043   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2044   }
2045   llvm_unreachable("invalid value id");
2046 }
2047 
2048 void MemoryDef::print(raw_ostream &OS) const {
2049   MemoryAccess *UO = getDefiningAccess();
2050 
2051   auto printID = [&OS](MemoryAccess *A) {
2052     if (A && A->getID())
2053       OS << A->getID();
2054     else
2055       OS << LiveOnEntryStr;
2056   };
2057 
2058   OS << getID() << " = MemoryDef(";
2059   printID(UO);
2060   OS << ")";
2061 
2062   if (isOptimized()) {
2063     OS << "->";
2064     printID(getOptimized());
2065 
2066     if (Optional<AliasResult> AR = getOptimizedAccessType())
2067       OS << " " << *AR;
2068   }
2069 }
2070 
2071 void MemoryPhi::print(raw_ostream &OS) const {
2072   bool First = true;
2073   OS << getID() << " = MemoryPhi(";
2074   for (const auto &Op : operands()) {
2075     BasicBlock *BB = getIncomingBlock(Op);
2076     MemoryAccess *MA = cast<MemoryAccess>(Op);
2077     if (!First)
2078       OS << ',';
2079     else
2080       First = false;
2081 
2082     OS << '{';
2083     if (BB->hasName())
2084       OS << BB->getName();
2085     else
2086       BB->printAsOperand(OS, false);
2087     OS << ',';
2088     if (unsigned ID = MA->getID())
2089       OS << ID;
2090     else
2091       OS << LiveOnEntryStr;
2092     OS << '}';
2093   }
2094   OS << ')';
2095 }
2096 
2097 void MemoryUse::print(raw_ostream &OS) const {
2098   MemoryAccess *UO = getDefiningAccess();
2099   OS << "MemoryUse(";
2100   if (UO && UO->getID())
2101     OS << UO->getID();
2102   else
2103     OS << LiveOnEntryStr;
2104   OS << ')';
2105 
2106   if (Optional<AliasResult> AR = getOptimizedAccessType())
2107     OS << " " << *AR;
2108 }
2109 
2110 void MemoryAccess::dump() const {
2111 // Cannot completely remove virtual function even in release mode.
2112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2113   print(dbgs());
2114   dbgs() << "\n";
2115 #endif
2116 }
2117 
2118 char MemorySSAPrinterLegacyPass::ID = 0;
2119 
2120 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2121   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2122 }
2123 
2124 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2125   AU.setPreservesAll();
2126   AU.addRequired<MemorySSAWrapperPass>();
2127 }
2128 
2129 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2130   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2131   MSSA.print(dbgs());
2132   if (VerifyMemorySSA)
2133     MSSA.verifyMemorySSA();
2134   return false;
2135 }
2136 
2137 AnalysisKey MemorySSAAnalysis::Key;
2138 
2139 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2140                                                  FunctionAnalysisManager &AM) {
2141   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2142   auto &AA = AM.getResult<AAManager>(F);
2143   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2144 }
2145 
2146 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2147                                             FunctionAnalysisManager &AM) {
2148   OS << "MemorySSA for function: " << F.getName() << "\n";
2149   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2150 
2151   return PreservedAnalyses::all();
2152 }
2153 
2154 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2155                                              FunctionAnalysisManager &AM) {
2156   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2157 
2158   return PreservedAnalyses::all();
2159 }
2160 
2161 char MemorySSAWrapperPass::ID = 0;
2162 
2163 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2164   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2165 }
2166 
2167 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2168 
2169 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2170   AU.setPreservesAll();
2171   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2172   AU.addRequiredTransitive<AAResultsWrapperPass>();
2173 }
2174 
2175 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2176   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2177   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2178   MSSA.reset(new MemorySSA(F, &AA, &DT));
2179   return false;
2180 }
2181 
2182 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2183 
2184 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2185   MSSA->print(OS);
2186 }
2187 
2188 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2189 
2190 /// Walk the use-def chains starting at \p StartingAccess and find
2191 /// the MemoryAccess that actually clobbers Loc.
2192 ///
2193 /// \returns our clobbering memory access
2194 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2195     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2196   if (isa<MemoryPhi>(StartingAccess))
2197     return StartingAccess;
2198 
2199   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2200   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2201     return StartingUseOrDef;
2202 
2203   Instruction *I = StartingUseOrDef->getMemoryInst();
2204 
2205   // Conservatively, fences are always clobbers, so don't perform the walk if we
2206   // hit a fence.
2207   if (!isa<CallBase>(I) && I->isFenceLike())
2208     return StartingUseOrDef;
2209 
2210   UpwardsMemoryQuery Q;
2211   Q.OriginalAccess = StartingUseOrDef;
2212   Q.StartingLoc = Loc;
2213   Q.Inst = I;
2214   Q.IsCall = false;
2215 
2216   // Unlike the other function, do not walk to the def of a def, because we are
2217   // handed something we already believe is the clobbering access.
2218   // We never set SkipSelf to true in Q in this method.
2219   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2220                                      ? StartingUseOrDef->getDefiningAccess()
2221                                      : StartingUseOrDef;
2222 
2223   MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q);
2224   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2225   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2226   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2227   LLVM_DEBUG(dbgs() << *Clobber << "\n");
2228   return Clobber;
2229 }
2230 
2231 MemoryAccess *
2232 MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(MemoryAccess *MA,
2233                                                             bool SkipSelf) {
2234   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2235   // If this is a MemoryPhi, we can't do anything.
2236   if (!StartingAccess)
2237     return MA;
2238 
2239   bool IsOptimized = false;
2240 
2241   // If this is an already optimized use or def, return the optimized result.
2242   // Note: Currently, we store the optimized def result in a separate field,
2243   // since we can't use the defining access.
2244   if (StartingAccess->isOptimized()) {
2245     if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2246       return StartingAccess->getOptimized();
2247     IsOptimized = true;
2248   }
2249 
2250   const Instruction *I = StartingAccess->getMemoryInst();
2251   // We can't sanely do anything with a fence, since they conservatively clobber
2252   // all memory, and have no locations to get pointers from to try to
2253   // disambiguate.
2254   if (!isa<CallBase>(I) && I->isFenceLike())
2255     return StartingAccess;
2256 
2257   UpwardsMemoryQuery Q(I, StartingAccess);
2258 
2259   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2260     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2261     StartingAccess->setOptimized(LiveOnEntry);
2262     StartingAccess->setOptimizedAccessType(None);
2263     return LiveOnEntry;
2264   }
2265 
2266   MemoryAccess *OptimizedAccess;
2267   if (!IsOptimized) {
2268     // Start with the thing we already think clobbers this location
2269     MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2270 
2271     // At this point, DefiningAccess may be the live on entry def.
2272     // If it is, we will not get a better result.
2273     if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2274       StartingAccess->setOptimized(DefiningAccess);
2275       StartingAccess->setOptimizedAccessType(None);
2276       return DefiningAccess;
2277     }
2278 
2279     OptimizedAccess = Walker.findClobber(DefiningAccess, Q);
2280     StartingAccess->setOptimized(OptimizedAccess);
2281     if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2282       StartingAccess->setOptimizedAccessType(None);
2283     else if (Q.AR == MustAlias)
2284       StartingAccess->setOptimizedAccessType(MustAlias);
2285   } else
2286     OptimizedAccess = StartingAccess->getOptimized();
2287 
2288   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2289   LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2290   LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2291   LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2292 
2293   MemoryAccess *Result;
2294   if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2295       isa<MemoryDef>(StartingAccess)) {
2296     assert(isa<MemoryDef>(Q.OriginalAccess));
2297     Q.SkipSelfAccess = true;
2298     Result = Walker.findClobber(OptimizedAccess, Q);
2299   } else
2300     Result = OptimizedAccess;
2301 
2302   LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2303   LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2304 
2305   return Result;
2306 }
2307 
2308 MemoryAccess *
2309 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2310   return Walker->getClobberingMemoryAccessBase(MA, false);
2311 }
2312 
2313 MemoryAccess *
2314 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2315                                                     const MemoryLocation &Loc) {
2316   return Walker->getClobberingMemoryAccessBase(MA, Loc);
2317 }
2318 
2319 MemoryAccess *
2320 MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2321   return Walker->getClobberingMemoryAccessBase(MA, true);
2322 }
2323 
2324 MemoryAccess *
2325 MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2326                                                     const MemoryLocation &Loc) {
2327   return Walker->getClobberingMemoryAccessBase(MA, Loc);
2328 }
2329 
2330 MemoryAccess *
2331 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2332   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2333     return Use->getDefiningAccess();
2334   return MA;
2335 }
2336 
2337 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2338     MemoryAccess *StartingAccess, const MemoryLocation &) {
2339   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2340     return Use->getDefiningAccess();
2341   return StartingAccess;
2342 }
2343 
2344 void MemoryPhi::deleteMe(DerivedUser *Self) {
2345   delete static_cast<MemoryPhi *>(Self);
2346 }
2347 
2348 void MemoryDef::deleteMe(DerivedUser *Self) {
2349   delete static_cast<MemoryDef *>(Self);
2350 }
2351 
2352 void MemoryUse::deleteMe(DerivedUser *Self) {
2353   delete static_cast<MemoryUse *>(Self);
2354 }
2355