1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdlib> 54 #include <iterator> 55 #include <memory> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "memoryssa" 61 62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 63 true) 64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 67 true) 68 69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 70 "Memory SSA Printer", false, false) 71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 73 "Memory SSA Printer", false, false) 74 75 static cl::opt<unsigned> MaxCheckLimit( 76 "memssa-check-limit", cl::Hidden, cl::init(100), 77 cl::desc("The maximum number of stores/phis MemorySSA" 78 "will consider trying to walk past (default = 100)")); 79 80 // Always verify MemorySSA if expensive checking is enabled. 81 #ifdef EXPENSIVE_CHECKS 82 bool llvm::VerifyMemorySSA = true; 83 #else 84 bool llvm::VerifyMemorySSA = false; 85 #endif 86 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 87 cl::opt<bool> llvm::EnableMSSALoopDependency( 88 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 89 cl::desc("Enable MemorySSA dependency for loop pass manager")); 90 91 static cl::opt<bool, true> 92 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 93 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 94 95 namespace llvm { 96 97 /// An assembly annotator class to print Memory SSA information in 98 /// comments. 99 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 100 friend class MemorySSA; 101 102 const MemorySSA *MSSA; 103 104 public: 105 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 106 107 void emitBasicBlockStartAnnot(const BasicBlock *BB, 108 formatted_raw_ostream &OS) override { 109 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 110 OS << "; " << *MA << "\n"; 111 } 112 113 void emitInstructionAnnot(const Instruction *I, 114 formatted_raw_ostream &OS) override { 115 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 116 OS << "; " << *MA << "\n"; 117 } 118 }; 119 120 } // end namespace llvm 121 122 namespace { 123 124 /// Our current alias analysis API differentiates heavily between calls and 125 /// non-calls, and functions called on one usually assert on the other. 126 /// This class encapsulates the distinction to simplify other code that wants 127 /// "Memory affecting instructions and related data" to use as a key. 128 /// For example, this class is used as a densemap key in the use optimizer. 129 class MemoryLocOrCall { 130 public: 131 bool IsCall = false; 132 133 MemoryLocOrCall(MemoryUseOrDef *MUD) 134 : MemoryLocOrCall(MUD->getMemoryInst()) {} 135 MemoryLocOrCall(const MemoryUseOrDef *MUD) 136 : MemoryLocOrCall(MUD->getMemoryInst()) {} 137 138 MemoryLocOrCall(Instruction *Inst) { 139 if (auto *C = dyn_cast<CallBase>(Inst)) { 140 IsCall = true; 141 Call = C; 142 } else { 143 IsCall = false; 144 // There is no such thing as a memorylocation for a fence inst, and it is 145 // unique in that regard. 146 if (!isa<FenceInst>(Inst)) 147 Loc = MemoryLocation::get(Inst); 148 } 149 } 150 151 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 152 153 const CallBase *getCall() const { 154 assert(IsCall); 155 return Call; 156 } 157 158 MemoryLocation getLoc() const { 159 assert(!IsCall); 160 return Loc; 161 } 162 163 bool operator==(const MemoryLocOrCall &Other) const { 164 if (IsCall != Other.IsCall) 165 return false; 166 167 if (!IsCall) 168 return Loc == Other.Loc; 169 170 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 171 return false; 172 173 return Call->arg_size() == Other.Call->arg_size() && 174 std::equal(Call->arg_begin(), Call->arg_end(), 175 Other.Call->arg_begin()); 176 } 177 178 private: 179 union { 180 const CallBase *Call; 181 MemoryLocation Loc; 182 }; 183 }; 184 185 } // end anonymous namespace 186 187 namespace llvm { 188 189 template <> struct DenseMapInfo<MemoryLocOrCall> { 190 static inline MemoryLocOrCall getEmptyKey() { 191 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 192 } 193 194 static inline MemoryLocOrCall getTombstoneKey() { 195 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 196 } 197 198 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 199 if (!MLOC.IsCall) 200 return hash_combine( 201 MLOC.IsCall, 202 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 203 204 hash_code hash = 205 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 206 MLOC.getCall()->getCalledOperand())); 207 208 for (const Value *Arg : MLOC.getCall()->args()) 209 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 210 return hash; 211 } 212 213 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 214 return LHS == RHS; 215 } 216 }; 217 218 } // end namespace llvm 219 220 /// This does one-way checks to see if Use could theoretically be hoisted above 221 /// MayClobber. This will not check the other way around. 222 /// 223 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 224 /// MayClobber, with no potentially clobbering operations in between them. 225 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 226 static bool areLoadsReorderable(const LoadInst *Use, 227 const LoadInst *MayClobber) { 228 bool VolatileUse = Use->isVolatile(); 229 bool VolatileClobber = MayClobber->isVolatile(); 230 // Volatile operations may never be reordered with other volatile operations. 231 if (VolatileUse && VolatileClobber) 232 return false; 233 // Otherwise, volatile doesn't matter here. From the language reference: 234 // 'optimizers may change the order of volatile operations relative to 235 // non-volatile operations.'" 236 237 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 238 // is weaker, it can be moved above other loads. We just need to be sure that 239 // MayClobber isn't an acquire load, because loads can't be moved above 240 // acquire loads. 241 // 242 // Note that this explicitly *does* allow the free reordering of monotonic (or 243 // weaker) loads of the same address. 244 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 245 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 246 AtomicOrdering::Acquire); 247 return !(SeqCstUse || MayClobberIsAcquire); 248 } 249 250 namespace { 251 252 struct ClobberAlias { 253 bool IsClobber; 254 Optional<AliasResult> AR; 255 }; 256 257 } // end anonymous namespace 258 259 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 260 // ignored if IsClobber = false. 261 template <typename AliasAnalysisType> 262 static ClobberAlias 263 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 264 const Instruction *UseInst, AliasAnalysisType &AA) { 265 Instruction *DefInst = MD->getMemoryInst(); 266 assert(DefInst && "Defining instruction not actually an instruction"); 267 const auto *UseCall = dyn_cast<CallBase>(UseInst); 268 Optional<AliasResult> AR; 269 270 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 271 // These intrinsics will show up as affecting memory, but they are just 272 // markers, mostly. 273 // 274 // FIXME: We probably don't actually want MemorySSA to model these at all 275 // (including creating MemoryAccesses for them): we just end up inventing 276 // clobbers where they don't really exist at all. Please see D43269 for 277 // context. 278 switch (II->getIntrinsicID()) { 279 case Intrinsic::lifetime_start: 280 if (UseCall) 281 return {false, NoAlias}; 282 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 283 return {AR != NoAlias, AR}; 284 case Intrinsic::lifetime_end: 285 case Intrinsic::invariant_start: 286 case Intrinsic::invariant_end: 287 case Intrinsic::assume: 288 return {false, NoAlias}; 289 case Intrinsic::dbg_addr: 290 case Intrinsic::dbg_declare: 291 case Intrinsic::dbg_label: 292 case Intrinsic::dbg_value: 293 llvm_unreachable("debuginfo shouldn't have associated defs!"); 294 default: 295 break; 296 } 297 } 298 299 if (UseCall) { 300 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 301 AR = isMustSet(I) ? MustAlias : MayAlias; 302 return {isModOrRefSet(I), AR}; 303 } 304 305 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 306 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 307 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 308 309 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 310 AR = isMustSet(I) ? MustAlias : MayAlias; 311 return {isModSet(I), AR}; 312 } 313 314 template <typename AliasAnalysisType> 315 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 316 const MemoryUseOrDef *MU, 317 const MemoryLocOrCall &UseMLOC, 318 AliasAnalysisType &AA) { 319 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 320 // to exist while MemoryLocOrCall is pushed through places. 321 if (UseMLOC.IsCall) 322 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 323 AA); 324 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 325 AA); 326 } 327 328 // Return true when MD may alias MU, return false otherwise. 329 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 330 AliasAnalysis &AA) { 331 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 332 } 333 334 namespace { 335 336 struct UpwardsMemoryQuery { 337 // True if our original query started off as a call 338 bool IsCall = false; 339 // The pointer location we started the query with. This will be empty if 340 // IsCall is true. 341 MemoryLocation StartingLoc; 342 // This is the instruction we were querying about. 343 const Instruction *Inst = nullptr; 344 // The MemoryAccess we actually got called with, used to test local domination 345 const MemoryAccess *OriginalAccess = nullptr; 346 Optional<AliasResult> AR = MayAlias; 347 bool SkipSelfAccess = false; 348 349 UpwardsMemoryQuery() = default; 350 351 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 352 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 353 if (!IsCall) 354 StartingLoc = MemoryLocation::get(Inst); 355 } 356 }; 357 358 } // end anonymous namespace 359 360 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 361 BatchAAResults &AA) { 362 Instruction *Inst = MD->getMemoryInst(); 363 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 364 switch (II->getIntrinsicID()) { 365 case Intrinsic::lifetime_end: 366 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 367 default: 368 return false; 369 } 370 } 371 return false; 372 } 373 374 template <typename AliasAnalysisType> 375 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 376 const Instruction *I) { 377 // If the memory can't be changed, then loads of the memory can't be 378 // clobbered. 379 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) || 380 AA.pointsToConstantMemory(MemoryLocation( 381 cast<LoadInst>(I)->getPointerOperand()))); 382 } 383 384 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 385 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 386 /// 387 /// This is meant to be as simple and self-contained as possible. Because it 388 /// uses no cache, etc., it can be relatively expensive. 389 /// 390 /// \param Start The MemoryAccess that we want to walk from. 391 /// \param ClobberAt A clobber for Start. 392 /// \param StartLoc The MemoryLocation for Start. 393 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 394 /// \param Query The UpwardsMemoryQuery we used for our search. 395 /// \param AA The AliasAnalysis we used for our search. 396 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 397 398 template <typename AliasAnalysisType> 399 LLVM_ATTRIBUTE_UNUSED static void 400 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 401 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 402 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 403 bool AllowImpreciseClobber = false) { 404 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 405 406 if (MSSA.isLiveOnEntryDef(Start)) { 407 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 408 "liveOnEntry must clobber itself"); 409 return; 410 } 411 412 bool FoundClobber = false; 413 DenseSet<ConstMemoryAccessPair> VisitedPhis; 414 SmallVector<ConstMemoryAccessPair, 8> Worklist; 415 Worklist.emplace_back(Start, StartLoc); 416 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 417 // is found, complain. 418 while (!Worklist.empty()) { 419 auto MAP = Worklist.pop_back_val(); 420 // All we care about is that nothing from Start to ClobberAt clobbers Start. 421 // We learn nothing from revisiting nodes. 422 if (!VisitedPhis.insert(MAP).second) 423 continue; 424 425 for (const auto *MA : def_chain(MAP.first)) { 426 if (MA == ClobberAt) { 427 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 428 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 429 // since it won't let us short-circuit. 430 // 431 // Also, note that this can't be hoisted out of the `Worklist` loop, 432 // since MD may only act as a clobber for 1 of N MemoryLocations. 433 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 434 if (!FoundClobber) { 435 ClobberAlias CA = 436 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 437 if (CA.IsClobber) { 438 FoundClobber = true; 439 // Not used: CA.AR; 440 } 441 } 442 } 443 break; 444 } 445 446 // We should never hit liveOnEntry, unless it's the clobber. 447 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 448 449 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 450 // If Start is a Def, skip self. 451 if (MD == Start) 452 continue; 453 454 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 455 .IsClobber && 456 "Found clobber before reaching ClobberAt!"); 457 continue; 458 } 459 460 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 461 (void)MU; 462 assert (MU == Start && 463 "Can only find use in def chain if Start is a use"); 464 continue; 465 } 466 467 assert(isa<MemoryPhi>(MA)); 468 469 // Add reachable phi predecessors 470 for (auto ItB = upward_defs_begin( 471 {const_cast<MemoryAccess *>(MA), MAP.second}, 472 MSSA.getDomTree()), 473 ItE = upward_defs_end(); 474 ItB != ItE; ++ItB) 475 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 476 Worklist.emplace_back(*ItB); 477 } 478 } 479 480 // If the verify is done following an optimization, it's possible that 481 // ClobberAt was a conservative clobbering, that we can now infer is not a 482 // true clobbering access. Don't fail the verify if that's the case. 483 // We do have accesses that claim they're optimized, but could be optimized 484 // further. Updating all these can be expensive, so allow it for now (FIXME). 485 if (AllowImpreciseClobber) 486 return; 487 488 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 489 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 490 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 491 "ClobberAt never acted as a clobber"); 492 } 493 494 namespace { 495 496 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 497 /// in one class. 498 template <class AliasAnalysisType> class ClobberWalker { 499 /// Save a few bytes by using unsigned instead of size_t. 500 using ListIndex = unsigned; 501 502 /// Represents a span of contiguous MemoryDefs, potentially ending in a 503 /// MemoryPhi. 504 struct DefPath { 505 MemoryLocation Loc; 506 // Note that, because we always walk in reverse, Last will always dominate 507 // First. Also note that First and Last are inclusive. 508 MemoryAccess *First; 509 MemoryAccess *Last; 510 Optional<ListIndex> Previous; 511 512 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 513 Optional<ListIndex> Previous) 514 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 515 516 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 517 Optional<ListIndex> Previous) 518 : DefPath(Loc, Init, Init, Previous) {} 519 }; 520 521 const MemorySSA &MSSA; 522 AliasAnalysisType &AA; 523 DominatorTree &DT; 524 UpwardsMemoryQuery *Query; 525 unsigned *UpwardWalkLimit; 526 527 // Phi optimization bookkeeping: 528 // List of DefPath to process during the current phi optimization walk. 529 SmallVector<DefPath, 32> Paths; 530 // List of visited <Access, Location> pairs; we can skip paths already 531 // visited with the same memory location. 532 DenseSet<ConstMemoryAccessPair> VisitedPhis; 533 // Record if phi translation has been performed during the current phi 534 // optimization walk, as merging alias results after phi translation can 535 // yield incorrect results. Context in PR46156. 536 bool PerformedPhiTranslation = false; 537 538 /// Find the nearest def or phi that `From` can legally be optimized to. 539 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 540 assert(From->getNumOperands() && "Phi with no operands?"); 541 542 BasicBlock *BB = From->getBlock(); 543 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 544 DomTreeNode *Node = DT.getNode(BB); 545 while ((Node = Node->getIDom())) { 546 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 547 if (Defs) 548 return &*Defs->rbegin(); 549 } 550 return Result; 551 } 552 553 /// Result of calling walkToPhiOrClobber. 554 struct UpwardsWalkResult { 555 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 556 /// both. Include alias info when clobber found. 557 MemoryAccess *Result; 558 bool IsKnownClobber; 559 Optional<AliasResult> AR; 560 }; 561 562 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 563 /// This will update Desc.Last as it walks. It will (optionally) also stop at 564 /// StopAt. 565 /// 566 /// This does not test for whether StopAt is a clobber 567 UpwardsWalkResult 568 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 569 const MemoryAccess *SkipStopAt = nullptr) const { 570 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 571 assert(UpwardWalkLimit && "Need a valid walk limit"); 572 bool LimitAlreadyReached = false; 573 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 574 // it to 1. This will not do any alias() calls. It either returns in the 575 // first iteration in the loop below, or is set back to 0 if all def chains 576 // are free of MemoryDefs. 577 if (!*UpwardWalkLimit) { 578 *UpwardWalkLimit = 1; 579 LimitAlreadyReached = true; 580 } 581 582 for (MemoryAccess *Current : def_chain(Desc.Last)) { 583 Desc.Last = Current; 584 if (Current == StopAt || Current == SkipStopAt) 585 return {Current, false, MayAlias}; 586 587 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 588 if (MSSA.isLiveOnEntryDef(MD)) 589 return {MD, true, MustAlias}; 590 591 if (!--*UpwardWalkLimit) 592 return {Current, true, MayAlias}; 593 594 ClobberAlias CA = 595 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 596 if (CA.IsClobber) 597 return {MD, true, CA.AR}; 598 } 599 } 600 601 if (LimitAlreadyReached) 602 *UpwardWalkLimit = 0; 603 604 assert(isa<MemoryPhi>(Desc.Last) && 605 "Ended at a non-clobber that's not a phi?"); 606 return {Desc.Last, false, MayAlias}; 607 } 608 609 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 610 ListIndex PriorNode) { 611 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 612 &PerformedPhiTranslation); 613 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 614 for (const MemoryAccessPair &P : UpwardDefs) { 615 PausedSearches.push_back(Paths.size()); 616 Paths.emplace_back(P.second, P.first, PriorNode); 617 } 618 } 619 620 /// Represents a search that terminated after finding a clobber. This clobber 621 /// may or may not be present in the path of defs from LastNode..SearchStart, 622 /// since it may have been retrieved from cache. 623 struct TerminatedPath { 624 MemoryAccess *Clobber; 625 ListIndex LastNode; 626 }; 627 628 /// Get an access that keeps us from optimizing to the given phi. 629 /// 630 /// PausedSearches is an array of indices into the Paths array. Its incoming 631 /// value is the indices of searches that stopped at the last phi optimization 632 /// target. It's left in an unspecified state. 633 /// 634 /// If this returns None, NewPaused is a vector of searches that terminated 635 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 636 Optional<TerminatedPath> 637 getBlockingAccess(const MemoryAccess *StopWhere, 638 SmallVectorImpl<ListIndex> &PausedSearches, 639 SmallVectorImpl<ListIndex> &NewPaused, 640 SmallVectorImpl<TerminatedPath> &Terminated) { 641 assert(!PausedSearches.empty() && "No searches to continue?"); 642 643 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 644 // PausedSearches as our stack. 645 while (!PausedSearches.empty()) { 646 ListIndex PathIndex = PausedSearches.pop_back_val(); 647 DefPath &Node = Paths[PathIndex]; 648 649 // If we've already visited this path with this MemoryLocation, we don't 650 // need to do so again. 651 // 652 // NOTE: That we just drop these paths on the ground makes caching 653 // behavior sporadic. e.g. given a diamond: 654 // A 655 // B C 656 // D 657 // 658 // ...If we walk D, B, A, C, we'll only cache the result of phi 659 // optimization for A, B, and D; C will be skipped because it dies here. 660 // This arguably isn't the worst thing ever, since: 661 // - We generally query things in a top-down order, so if we got below D 662 // without needing cache entries for {C, MemLoc}, then chances are 663 // that those cache entries would end up ultimately unused. 664 // - We still cache things for A, so C only needs to walk up a bit. 665 // If this behavior becomes problematic, we can fix without a ton of extra 666 // work. 667 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 668 if (PerformedPhiTranslation) { 669 // If visiting this path performed Phi translation, don't continue, 670 // since it may not be correct to merge results from two paths if one 671 // relies on the phi translation. 672 TerminatedPath Term{Node.Last, PathIndex}; 673 return Term; 674 } 675 continue; 676 } 677 678 const MemoryAccess *SkipStopWhere = nullptr; 679 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 680 assert(isa<MemoryDef>(Query->OriginalAccess)); 681 SkipStopWhere = Query->OriginalAccess; 682 } 683 684 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 685 /*StopAt=*/StopWhere, 686 /*SkipStopAt=*/SkipStopWhere); 687 if (Res.IsKnownClobber) { 688 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 689 690 // If this wasn't a cache hit, we hit a clobber when walking. That's a 691 // failure. 692 TerminatedPath Term{Res.Result, PathIndex}; 693 if (!MSSA.dominates(Res.Result, StopWhere)) 694 return Term; 695 696 // Otherwise, it's a valid thing to potentially optimize to. 697 Terminated.push_back(Term); 698 continue; 699 } 700 701 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 702 // We've hit our target. Save this path off for if we want to continue 703 // walking. If we are in the mode of skipping the OriginalAccess, and 704 // we've reached back to the OriginalAccess, do not save path, we've 705 // just looped back to self. 706 if (Res.Result != SkipStopWhere) 707 NewPaused.push_back(PathIndex); 708 continue; 709 } 710 711 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 712 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 713 } 714 715 return None; 716 } 717 718 template <typename T, typename Walker> 719 struct generic_def_path_iterator 720 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 721 std::forward_iterator_tag, T *> { 722 generic_def_path_iterator() {} 723 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 724 725 T &operator*() const { return curNode(); } 726 727 generic_def_path_iterator &operator++() { 728 N = curNode().Previous; 729 return *this; 730 } 731 732 bool operator==(const generic_def_path_iterator &O) const { 733 if (N.hasValue() != O.N.hasValue()) 734 return false; 735 return !N.hasValue() || *N == *O.N; 736 } 737 738 private: 739 T &curNode() const { return W->Paths[*N]; } 740 741 Walker *W = nullptr; 742 Optional<ListIndex> N = None; 743 }; 744 745 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 746 using const_def_path_iterator = 747 generic_def_path_iterator<const DefPath, const ClobberWalker>; 748 749 iterator_range<def_path_iterator> def_path(ListIndex From) { 750 return make_range(def_path_iterator(this, From), def_path_iterator()); 751 } 752 753 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 754 return make_range(const_def_path_iterator(this, From), 755 const_def_path_iterator()); 756 } 757 758 struct OptznResult { 759 /// The path that contains our result. 760 TerminatedPath PrimaryClobber; 761 /// The paths that we can legally cache back from, but that aren't 762 /// necessarily the result of the Phi optimization. 763 SmallVector<TerminatedPath, 4> OtherClobbers; 764 }; 765 766 ListIndex defPathIndex(const DefPath &N) const { 767 // The assert looks nicer if we don't need to do &N 768 const DefPath *NP = &N; 769 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 770 "Out of bounds DefPath!"); 771 return NP - &Paths.front(); 772 } 773 774 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 775 /// that act as legal clobbers. Note that this won't return *all* clobbers. 776 /// 777 /// Phi optimization algorithm tl;dr: 778 /// - Find the earliest def/phi, A, we can optimize to 779 /// - Find if all paths from the starting memory access ultimately reach A 780 /// - If not, optimization isn't possible. 781 /// - Otherwise, walk from A to another clobber or phi, A'. 782 /// - If A' is a def, we're done. 783 /// - If A' is a phi, try to optimize it. 784 /// 785 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 786 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 787 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 788 const MemoryLocation &Loc) { 789 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 790 "Reset the optimization state."); 791 792 Paths.emplace_back(Loc, Start, Phi, None); 793 // Stores how many "valid" optimization nodes we had prior to calling 794 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 795 auto PriorPathsSize = Paths.size(); 796 797 SmallVector<ListIndex, 16> PausedSearches; 798 SmallVector<ListIndex, 8> NewPaused; 799 SmallVector<TerminatedPath, 4> TerminatedPaths; 800 801 addSearches(Phi, PausedSearches, 0); 802 803 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 804 // Paths. 805 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 806 assert(!Paths.empty() && "Need a path to move"); 807 auto Dom = Paths.begin(); 808 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 809 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 810 Dom = I; 811 auto Last = Paths.end() - 1; 812 if (Last != Dom) 813 std::iter_swap(Last, Dom); 814 }; 815 816 MemoryPhi *Current = Phi; 817 while (true) { 818 assert(!MSSA.isLiveOnEntryDef(Current) && 819 "liveOnEntry wasn't treated as a clobber?"); 820 821 const auto *Target = getWalkTarget(Current); 822 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 823 // optimization for the prior phi. 824 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 825 return MSSA.dominates(P.Clobber, Target); 826 })); 827 828 // FIXME: This is broken, because the Blocker may be reported to be 829 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 830 // For the moment, this is fine, since we do nothing with blocker info. 831 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 832 Target, PausedSearches, NewPaused, TerminatedPaths)) { 833 834 // Find the node we started at. We can't search based on N->Last, since 835 // we may have gone around a loop with a different MemoryLocation. 836 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 837 return defPathIndex(N) < PriorPathsSize; 838 }); 839 assert(Iter != def_path_iterator()); 840 841 DefPath &CurNode = *Iter; 842 assert(CurNode.Last == Current); 843 844 // Two things: 845 // A. We can't reliably cache all of NewPaused back. Consider a case 846 // where we have two paths in NewPaused; one of which can't optimize 847 // above this phi, whereas the other can. If we cache the second path 848 // back, we'll end up with suboptimal cache entries. We can handle 849 // cases like this a bit better when we either try to find all 850 // clobbers that block phi optimization, or when our cache starts 851 // supporting unfinished searches. 852 // B. We can't reliably cache TerminatedPaths back here without doing 853 // extra checks; consider a case like: 854 // T 855 // / \ 856 // D C 857 // \ / 858 // S 859 // Where T is our target, C is a node with a clobber on it, D is a 860 // diamond (with a clobber *only* on the left or right node, N), and 861 // S is our start. Say we walk to D, through the node opposite N 862 // (read: ignoring the clobber), and see a cache entry in the top 863 // node of D. That cache entry gets put into TerminatedPaths. We then 864 // walk up to C (N is later in our worklist), find the clobber, and 865 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 866 // the bottom part of D to the cached clobber, ignoring the clobber 867 // in N. Again, this problem goes away if we start tracking all 868 // blockers for a given phi optimization. 869 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 870 return {Result, {}}; 871 } 872 873 // If there's nothing left to search, then all paths led to valid clobbers 874 // that we got from our cache; pick the nearest to the start, and allow 875 // the rest to be cached back. 876 if (NewPaused.empty()) { 877 MoveDominatedPathToEnd(TerminatedPaths); 878 TerminatedPath Result = TerminatedPaths.pop_back_val(); 879 return {Result, std::move(TerminatedPaths)}; 880 } 881 882 MemoryAccess *DefChainEnd = nullptr; 883 SmallVector<TerminatedPath, 4> Clobbers; 884 for (ListIndex Paused : NewPaused) { 885 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 886 if (WR.IsKnownClobber) 887 Clobbers.push_back({WR.Result, Paused}); 888 else 889 // Micro-opt: If we hit the end of the chain, save it. 890 DefChainEnd = WR.Result; 891 } 892 893 if (!TerminatedPaths.empty()) { 894 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 895 // do it now. 896 if (!DefChainEnd) 897 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 898 DefChainEnd = MA; 899 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 900 901 // If any of the terminated paths don't dominate the phi we'll try to 902 // optimize, we need to figure out what they are and quit. 903 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 904 for (const TerminatedPath &TP : TerminatedPaths) { 905 // Because we know that DefChainEnd is as "high" as we can go, we 906 // don't need local dominance checks; BB dominance is sufficient. 907 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 908 Clobbers.push_back(TP); 909 } 910 } 911 912 // If we have clobbers in the def chain, find the one closest to Current 913 // and quit. 914 if (!Clobbers.empty()) { 915 MoveDominatedPathToEnd(Clobbers); 916 TerminatedPath Result = Clobbers.pop_back_val(); 917 return {Result, std::move(Clobbers)}; 918 } 919 920 assert(all_of(NewPaused, 921 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 922 923 // Because liveOnEntry is a clobber, this must be a phi. 924 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 925 926 PriorPathsSize = Paths.size(); 927 PausedSearches.clear(); 928 for (ListIndex I : NewPaused) 929 addSearches(DefChainPhi, PausedSearches, I); 930 NewPaused.clear(); 931 932 Current = DefChainPhi; 933 } 934 } 935 936 void verifyOptResult(const OptznResult &R) const { 937 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 938 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 939 })); 940 } 941 942 void resetPhiOptznState() { 943 Paths.clear(); 944 VisitedPhis.clear(); 945 PerformedPhiTranslation = false; 946 } 947 948 public: 949 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 950 : MSSA(MSSA), AA(AA), DT(DT) {} 951 952 AliasAnalysisType *getAA() { return &AA; } 953 /// Finds the nearest clobber for the given query, optimizing phis if 954 /// possible. 955 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 956 unsigned &UpWalkLimit) { 957 Query = &Q; 958 UpwardWalkLimit = &UpWalkLimit; 959 // Starting limit must be > 0. 960 if (!UpWalkLimit) 961 UpWalkLimit++; 962 963 MemoryAccess *Current = Start; 964 // This walker pretends uses don't exist. If we're handed one, silently grab 965 // its def. (This has the nice side-effect of ensuring we never cache uses) 966 if (auto *MU = dyn_cast<MemoryUse>(Start)) 967 Current = MU->getDefiningAccess(); 968 969 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 970 // Fast path for the overly-common case (no crazy phi optimization 971 // necessary) 972 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 973 MemoryAccess *Result; 974 if (WalkResult.IsKnownClobber) { 975 Result = WalkResult.Result; 976 Q.AR = WalkResult.AR; 977 } else { 978 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 979 Current, Q.StartingLoc); 980 verifyOptResult(OptRes); 981 resetPhiOptznState(); 982 Result = OptRes.PrimaryClobber.Clobber; 983 } 984 985 #ifdef EXPENSIVE_CHECKS 986 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 987 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 988 #endif 989 return Result; 990 } 991 }; 992 993 struct RenamePassData { 994 DomTreeNode *DTN; 995 DomTreeNode::const_iterator ChildIt; 996 MemoryAccess *IncomingVal; 997 998 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 999 MemoryAccess *M) 1000 : DTN(D), ChildIt(It), IncomingVal(M) {} 1001 1002 void swap(RenamePassData &RHS) { 1003 std::swap(DTN, RHS.DTN); 1004 std::swap(ChildIt, RHS.ChildIt); 1005 std::swap(IncomingVal, RHS.IncomingVal); 1006 } 1007 }; 1008 1009 } // end anonymous namespace 1010 1011 namespace llvm { 1012 1013 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1014 ClobberWalker<AliasAnalysisType> Walker; 1015 MemorySSA *MSSA; 1016 1017 public: 1018 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1019 : Walker(*M, *A, *D), MSSA(M) {} 1020 1021 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1022 const MemoryLocation &, 1023 unsigned &); 1024 // Third argument (bool), defines whether the clobber search should skip the 1025 // original queried access. If true, there will be a follow-up query searching 1026 // for a clobber access past "self". Note that the Optimized access is not 1027 // updated if a new clobber is found by this SkipSelf search. If this 1028 // additional query becomes heavily used we may decide to cache the result. 1029 // Walker instantiations will decide how to set the SkipSelf bool. 1030 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1031 }; 1032 1033 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1034 /// longer does caching on its own, but the name has been retained for the 1035 /// moment. 1036 template <class AliasAnalysisType> 1037 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1038 ClobberWalkerBase<AliasAnalysisType> *Walker; 1039 1040 public: 1041 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1042 : MemorySSAWalker(M), Walker(W) {} 1043 ~CachingWalker() override = default; 1044 1045 using MemorySSAWalker::getClobberingMemoryAccess; 1046 1047 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1048 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1049 } 1050 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1051 const MemoryLocation &Loc, 1052 unsigned &UWL) { 1053 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1054 } 1055 1056 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1057 unsigned UpwardWalkLimit = MaxCheckLimit; 1058 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1059 } 1060 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1061 const MemoryLocation &Loc) override { 1062 unsigned UpwardWalkLimit = MaxCheckLimit; 1063 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1064 } 1065 1066 void invalidateInfo(MemoryAccess *MA) override { 1067 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1068 MUD->resetOptimized(); 1069 } 1070 }; 1071 1072 template <class AliasAnalysisType> 1073 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1074 ClobberWalkerBase<AliasAnalysisType> *Walker; 1075 1076 public: 1077 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1078 : MemorySSAWalker(M), Walker(W) {} 1079 ~SkipSelfWalker() override = default; 1080 1081 using MemorySSAWalker::getClobberingMemoryAccess; 1082 1083 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1084 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1085 } 1086 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1087 const MemoryLocation &Loc, 1088 unsigned &UWL) { 1089 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1090 } 1091 1092 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1093 unsigned UpwardWalkLimit = MaxCheckLimit; 1094 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1095 } 1096 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1097 const MemoryLocation &Loc) override { 1098 unsigned UpwardWalkLimit = MaxCheckLimit; 1099 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1100 } 1101 1102 void invalidateInfo(MemoryAccess *MA) override { 1103 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1104 MUD->resetOptimized(); 1105 } 1106 }; 1107 1108 } // end namespace llvm 1109 1110 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1111 bool RenameAllUses) { 1112 // Pass through values to our successors 1113 for (const BasicBlock *S : successors(BB)) { 1114 auto It = PerBlockAccesses.find(S); 1115 // Rename the phi nodes in our successor block 1116 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1117 continue; 1118 AccessList *Accesses = It->second.get(); 1119 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1120 if (RenameAllUses) { 1121 bool ReplacementDone = false; 1122 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1123 if (Phi->getIncomingBlock(I) == BB) { 1124 Phi->setIncomingValue(I, IncomingVal); 1125 ReplacementDone = true; 1126 } 1127 (void) ReplacementDone; 1128 assert(ReplacementDone && "Incomplete phi during partial rename"); 1129 } else 1130 Phi->addIncoming(IncomingVal, BB); 1131 } 1132 } 1133 1134 /// Rename a single basic block into MemorySSA form. 1135 /// Uses the standard SSA renaming algorithm. 1136 /// \returns The new incoming value. 1137 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1138 bool RenameAllUses) { 1139 auto It = PerBlockAccesses.find(BB); 1140 // Skip most processing if the list is empty. 1141 if (It != PerBlockAccesses.end()) { 1142 AccessList *Accesses = It->second.get(); 1143 for (MemoryAccess &L : *Accesses) { 1144 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1145 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1146 MUD->setDefiningAccess(IncomingVal); 1147 if (isa<MemoryDef>(&L)) 1148 IncomingVal = &L; 1149 } else { 1150 IncomingVal = &L; 1151 } 1152 } 1153 } 1154 return IncomingVal; 1155 } 1156 1157 /// This is the standard SSA renaming algorithm. 1158 /// 1159 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1160 /// in phi nodes in our successors. 1161 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1162 SmallPtrSetImpl<BasicBlock *> &Visited, 1163 bool SkipVisited, bool RenameAllUses) { 1164 assert(Root && "Trying to rename accesses in an unreachable block"); 1165 1166 SmallVector<RenamePassData, 32> WorkStack; 1167 // Skip everything if we already renamed this block and we are skipping. 1168 // Note: You can't sink this into the if, because we need it to occur 1169 // regardless of whether we skip blocks or not. 1170 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1171 if (SkipVisited && AlreadyVisited) 1172 return; 1173 1174 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1175 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1176 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1177 1178 while (!WorkStack.empty()) { 1179 DomTreeNode *Node = WorkStack.back().DTN; 1180 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1181 IncomingVal = WorkStack.back().IncomingVal; 1182 1183 if (ChildIt == Node->end()) { 1184 WorkStack.pop_back(); 1185 } else { 1186 DomTreeNode *Child = *ChildIt; 1187 ++WorkStack.back().ChildIt; 1188 BasicBlock *BB = Child->getBlock(); 1189 // Note: You can't sink this into the if, because we need it to occur 1190 // regardless of whether we skip blocks or not. 1191 AlreadyVisited = !Visited.insert(BB).second; 1192 if (SkipVisited && AlreadyVisited) { 1193 // We already visited this during our renaming, which can happen when 1194 // being asked to rename multiple blocks. Figure out the incoming val, 1195 // which is the last def. 1196 // Incoming value can only change if there is a block def, and in that 1197 // case, it's the last block def in the list. 1198 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1199 IncomingVal = &*BlockDefs->rbegin(); 1200 } else 1201 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1202 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1203 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1204 } 1205 } 1206 } 1207 1208 /// This handles unreachable block accesses by deleting phi nodes in 1209 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1210 /// being uses of the live on entry definition. 1211 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1212 assert(!DT->isReachableFromEntry(BB) && 1213 "Reachable block found while handling unreachable blocks"); 1214 1215 // Make sure phi nodes in our reachable successors end up with a 1216 // LiveOnEntryDef for our incoming edge, even though our block is forward 1217 // unreachable. We could just disconnect these blocks from the CFG fully, 1218 // but we do not right now. 1219 for (const BasicBlock *S : successors(BB)) { 1220 if (!DT->isReachableFromEntry(S)) 1221 continue; 1222 auto It = PerBlockAccesses.find(S); 1223 // Rename the phi nodes in our successor block 1224 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1225 continue; 1226 AccessList *Accesses = It->second.get(); 1227 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1228 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1229 } 1230 1231 auto It = PerBlockAccesses.find(BB); 1232 if (It == PerBlockAccesses.end()) 1233 return; 1234 1235 auto &Accesses = It->second; 1236 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1237 auto Next = std::next(AI); 1238 // If we have a phi, just remove it. We are going to replace all 1239 // users with live on entry. 1240 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1241 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1242 else 1243 Accesses->erase(AI); 1244 AI = Next; 1245 } 1246 } 1247 1248 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1249 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1250 SkipWalker(nullptr), NextID(0) { 1251 // Build MemorySSA using a batch alias analysis. This reuses the internal 1252 // state that AA collects during an alias()/getModRefInfo() call. This is 1253 // safe because there are no CFG changes while building MemorySSA and can 1254 // significantly reduce the time spent by the compiler in AA, because we will 1255 // make queries about all the instructions in the Function. 1256 assert(AA && "No alias analysis?"); 1257 BatchAAResults BatchAA(*AA); 1258 buildMemorySSA(BatchAA); 1259 // Intentionally leave AA to nullptr while building so we don't accidently 1260 // use non-batch AliasAnalysis. 1261 this->AA = AA; 1262 // Also create the walker here. 1263 getWalker(); 1264 } 1265 1266 MemorySSA::~MemorySSA() { 1267 // Drop all our references 1268 for (const auto &Pair : PerBlockAccesses) 1269 for (MemoryAccess &MA : *Pair.second) 1270 MA.dropAllReferences(); 1271 } 1272 1273 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1274 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1275 1276 if (Res.second) 1277 Res.first->second = std::make_unique<AccessList>(); 1278 return Res.first->second.get(); 1279 } 1280 1281 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1282 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1283 1284 if (Res.second) 1285 Res.first->second = std::make_unique<DefsList>(); 1286 return Res.first->second.get(); 1287 } 1288 1289 namespace llvm { 1290 1291 /// This class is a batch walker of all MemoryUse's in the program, and points 1292 /// their defining access at the thing that actually clobbers them. Because it 1293 /// is a batch walker that touches everything, it does not operate like the 1294 /// other walkers. This walker is basically performing a top-down SSA renaming 1295 /// pass, where the version stack is used as the cache. This enables it to be 1296 /// significantly more time and memory efficient than using the regular walker, 1297 /// which is walking bottom-up. 1298 class MemorySSA::OptimizeUses { 1299 public: 1300 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1301 BatchAAResults *BAA, DominatorTree *DT) 1302 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1303 1304 void optimizeUses(); 1305 1306 private: 1307 /// This represents where a given memorylocation is in the stack. 1308 struct MemlocStackInfo { 1309 // This essentially is keeping track of versions of the stack. Whenever 1310 // the stack changes due to pushes or pops, these versions increase. 1311 unsigned long StackEpoch; 1312 unsigned long PopEpoch; 1313 // This is the lower bound of places on the stack to check. It is equal to 1314 // the place the last stack walk ended. 1315 // Note: Correctness depends on this being initialized to 0, which densemap 1316 // does 1317 unsigned long LowerBound; 1318 const BasicBlock *LowerBoundBlock; 1319 // This is where the last walk for this memory location ended. 1320 unsigned long LastKill; 1321 bool LastKillValid; 1322 Optional<AliasResult> AR; 1323 }; 1324 1325 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1326 SmallVectorImpl<MemoryAccess *> &, 1327 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1328 1329 MemorySSA *MSSA; 1330 CachingWalker<BatchAAResults> *Walker; 1331 BatchAAResults *AA; 1332 DominatorTree *DT; 1333 }; 1334 1335 } // end namespace llvm 1336 1337 /// Optimize the uses in a given block This is basically the SSA renaming 1338 /// algorithm, with one caveat: We are able to use a single stack for all 1339 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1340 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1341 /// going to be some position in that stack of possible ones. 1342 /// 1343 /// We track the stack positions that each MemoryLocation needs 1344 /// to check, and last ended at. This is because we only want to check the 1345 /// things that changed since last time. The same MemoryLocation should 1346 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1347 /// things like this, and if they start, we can modify MemoryLocOrCall to 1348 /// include relevant data) 1349 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1350 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1351 SmallVectorImpl<MemoryAccess *> &VersionStack, 1352 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1353 1354 /// If no accesses, nothing to do. 1355 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1356 if (Accesses == nullptr) 1357 return; 1358 1359 // Pop everything that doesn't dominate the current block off the stack, 1360 // increment the PopEpoch to account for this. 1361 while (true) { 1362 assert( 1363 !VersionStack.empty() && 1364 "Version stack should have liveOnEntry sentinel dominating everything"); 1365 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1366 if (DT->dominates(BackBlock, BB)) 1367 break; 1368 while (VersionStack.back()->getBlock() == BackBlock) 1369 VersionStack.pop_back(); 1370 ++PopEpoch; 1371 } 1372 1373 for (MemoryAccess &MA : *Accesses) { 1374 auto *MU = dyn_cast<MemoryUse>(&MA); 1375 if (!MU) { 1376 VersionStack.push_back(&MA); 1377 ++StackEpoch; 1378 continue; 1379 } 1380 1381 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1382 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1383 continue; 1384 } 1385 1386 MemoryLocOrCall UseMLOC(MU); 1387 auto &LocInfo = LocStackInfo[UseMLOC]; 1388 // If the pop epoch changed, it means we've removed stuff from top of 1389 // stack due to changing blocks. We may have to reset the lower bound or 1390 // last kill info. 1391 if (LocInfo.PopEpoch != PopEpoch) { 1392 LocInfo.PopEpoch = PopEpoch; 1393 LocInfo.StackEpoch = StackEpoch; 1394 // If the lower bound was in something that no longer dominates us, we 1395 // have to reset it. 1396 // We can't simply track stack size, because the stack may have had 1397 // pushes/pops in the meantime. 1398 // XXX: This is non-optimal, but only is slower cases with heavily 1399 // branching dominator trees. To get the optimal number of queries would 1400 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1401 // the top of that stack dominates us. This does not seem worth it ATM. 1402 // A much cheaper optimization would be to always explore the deepest 1403 // branch of the dominator tree first. This will guarantee this resets on 1404 // the smallest set of blocks. 1405 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1406 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1407 // Reset the lower bound of things to check. 1408 // TODO: Some day we should be able to reset to last kill, rather than 1409 // 0. 1410 LocInfo.LowerBound = 0; 1411 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1412 LocInfo.LastKillValid = false; 1413 } 1414 } else if (LocInfo.StackEpoch != StackEpoch) { 1415 // If all that has changed is the StackEpoch, we only have to check the 1416 // new things on the stack, because we've checked everything before. In 1417 // this case, the lower bound of things to check remains the same. 1418 LocInfo.PopEpoch = PopEpoch; 1419 LocInfo.StackEpoch = StackEpoch; 1420 } 1421 if (!LocInfo.LastKillValid) { 1422 LocInfo.LastKill = VersionStack.size() - 1; 1423 LocInfo.LastKillValid = true; 1424 LocInfo.AR = MayAlias; 1425 } 1426 1427 // At this point, we should have corrected last kill and LowerBound to be 1428 // in bounds. 1429 assert(LocInfo.LowerBound < VersionStack.size() && 1430 "Lower bound out of range"); 1431 assert(LocInfo.LastKill < VersionStack.size() && 1432 "Last kill info out of range"); 1433 // In any case, the new upper bound is the top of the stack. 1434 unsigned long UpperBound = VersionStack.size() - 1; 1435 1436 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1437 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1438 << *(MU->getMemoryInst()) << ")" 1439 << " because there are " 1440 << UpperBound - LocInfo.LowerBound 1441 << " stores to disambiguate\n"); 1442 // Because we did not walk, LastKill is no longer valid, as this may 1443 // have been a kill. 1444 LocInfo.LastKillValid = false; 1445 continue; 1446 } 1447 bool FoundClobberResult = false; 1448 unsigned UpwardWalkLimit = MaxCheckLimit; 1449 while (UpperBound > LocInfo.LowerBound) { 1450 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1451 // For phis, use the walker, see where we ended up, go there 1452 MemoryAccess *Result = 1453 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1454 // We are guaranteed to find it or something is wrong 1455 while (VersionStack[UpperBound] != Result) { 1456 assert(UpperBound != 0); 1457 --UpperBound; 1458 } 1459 FoundClobberResult = true; 1460 break; 1461 } 1462 1463 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1464 // If the lifetime of the pointer ends at this instruction, it's live on 1465 // entry. 1466 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1467 // Reset UpperBound to liveOnEntryDef's place in the stack 1468 UpperBound = 0; 1469 FoundClobberResult = true; 1470 LocInfo.AR = MustAlias; 1471 break; 1472 } 1473 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1474 if (CA.IsClobber) { 1475 FoundClobberResult = true; 1476 LocInfo.AR = CA.AR; 1477 break; 1478 } 1479 --UpperBound; 1480 } 1481 1482 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1483 1484 // At the end of this loop, UpperBound is either a clobber, or lower bound 1485 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1486 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1487 // We were last killed now by where we got to 1488 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1489 LocInfo.AR = None; 1490 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1491 LocInfo.LastKill = UpperBound; 1492 } else { 1493 // Otherwise, we checked all the new ones, and now we know we can get to 1494 // LastKill. 1495 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1496 } 1497 LocInfo.LowerBound = VersionStack.size() - 1; 1498 LocInfo.LowerBoundBlock = BB; 1499 } 1500 } 1501 1502 /// Optimize uses to point to their actual clobbering definitions. 1503 void MemorySSA::OptimizeUses::optimizeUses() { 1504 SmallVector<MemoryAccess *, 16> VersionStack; 1505 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1506 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1507 1508 unsigned long StackEpoch = 1; 1509 unsigned long PopEpoch = 1; 1510 // We perform a non-recursive top-down dominator tree walk. 1511 for (const auto *DomNode : depth_first(DT->getRootNode())) 1512 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1513 LocStackInfo); 1514 } 1515 1516 void MemorySSA::placePHINodes( 1517 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1518 // Determine where our MemoryPhi's should go 1519 ForwardIDFCalculator IDFs(*DT); 1520 IDFs.setDefiningBlocks(DefiningBlocks); 1521 SmallVector<BasicBlock *, 32> IDFBlocks; 1522 IDFs.calculate(IDFBlocks); 1523 1524 // Now place MemoryPhi nodes. 1525 for (auto &BB : IDFBlocks) 1526 createMemoryPhi(BB); 1527 } 1528 1529 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1530 // We create an access to represent "live on entry", for things like 1531 // arguments or users of globals, where the memory they use is defined before 1532 // the beginning of the function. We do not actually insert it into the IR. 1533 // We do not define a live on exit for the immediate uses, and thus our 1534 // semantics do *not* imply that something with no immediate uses can simply 1535 // be removed. 1536 BasicBlock &StartingPoint = F.getEntryBlock(); 1537 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1538 &StartingPoint, NextID++)); 1539 1540 // We maintain lists of memory accesses per-block, trading memory for time. We 1541 // could just look up the memory access for every possible instruction in the 1542 // stream. 1543 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1544 // Go through each block, figure out where defs occur, and chain together all 1545 // the accesses. 1546 for (BasicBlock &B : F) { 1547 bool InsertIntoDef = false; 1548 AccessList *Accesses = nullptr; 1549 DefsList *Defs = nullptr; 1550 for (Instruction &I : B) { 1551 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1552 if (!MUD) 1553 continue; 1554 1555 if (!Accesses) 1556 Accesses = getOrCreateAccessList(&B); 1557 Accesses->push_back(MUD); 1558 if (isa<MemoryDef>(MUD)) { 1559 InsertIntoDef = true; 1560 if (!Defs) 1561 Defs = getOrCreateDefsList(&B); 1562 Defs->push_back(*MUD); 1563 } 1564 } 1565 if (InsertIntoDef) 1566 DefiningBlocks.insert(&B); 1567 } 1568 placePHINodes(DefiningBlocks); 1569 1570 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1571 // filled in with all blocks. 1572 SmallPtrSet<BasicBlock *, 16> Visited; 1573 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1574 1575 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1576 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1577 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1578 1579 // Mark the uses in unreachable blocks as live on entry, so that they go 1580 // somewhere. 1581 for (auto &BB : F) 1582 if (!Visited.count(&BB)) 1583 markUnreachableAsLiveOnEntry(&BB); 1584 } 1585 1586 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1587 1588 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1589 if (Walker) 1590 return Walker.get(); 1591 1592 if (!WalkerBase) 1593 WalkerBase = 1594 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1595 1596 Walker = 1597 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1598 return Walker.get(); 1599 } 1600 1601 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1602 if (SkipWalker) 1603 return SkipWalker.get(); 1604 1605 if (!WalkerBase) 1606 WalkerBase = 1607 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1608 1609 SkipWalker = 1610 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1611 return SkipWalker.get(); 1612 } 1613 1614 1615 // This is a helper function used by the creation routines. It places NewAccess 1616 // into the access and defs lists for a given basic block, at the given 1617 // insertion point. 1618 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1619 const BasicBlock *BB, 1620 InsertionPlace Point) { 1621 auto *Accesses = getOrCreateAccessList(BB); 1622 if (Point == Beginning) { 1623 // If it's a phi node, it goes first, otherwise, it goes after any phi 1624 // nodes. 1625 if (isa<MemoryPhi>(NewAccess)) { 1626 Accesses->push_front(NewAccess); 1627 auto *Defs = getOrCreateDefsList(BB); 1628 Defs->push_front(*NewAccess); 1629 } else { 1630 auto AI = find_if_not( 1631 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1632 Accesses->insert(AI, NewAccess); 1633 if (!isa<MemoryUse>(NewAccess)) { 1634 auto *Defs = getOrCreateDefsList(BB); 1635 auto DI = find_if_not( 1636 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1637 Defs->insert(DI, *NewAccess); 1638 } 1639 } 1640 } else { 1641 Accesses->push_back(NewAccess); 1642 if (!isa<MemoryUse>(NewAccess)) { 1643 auto *Defs = getOrCreateDefsList(BB); 1644 Defs->push_back(*NewAccess); 1645 } 1646 } 1647 BlockNumberingValid.erase(BB); 1648 } 1649 1650 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1651 AccessList::iterator InsertPt) { 1652 auto *Accesses = getWritableBlockAccesses(BB); 1653 bool WasEnd = InsertPt == Accesses->end(); 1654 Accesses->insert(AccessList::iterator(InsertPt), What); 1655 if (!isa<MemoryUse>(What)) { 1656 auto *Defs = getOrCreateDefsList(BB); 1657 // If we got asked to insert at the end, we have an easy job, just shove it 1658 // at the end. If we got asked to insert before an existing def, we also get 1659 // an iterator. If we got asked to insert before a use, we have to hunt for 1660 // the next def. 1661 if (WasEnd) { 1662 Defs->push_back(*What); 1663 } else if (isa<MemoryDef>(InsertPt)) { 1664 Defs->insert(InsertPt->getDefsIterator(), *What); 1665 } else { 1666 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1667 ++InsertPt; 1668 // Either we found a def, or we are inserting at the end 1669 if (InsertPt == Accesses->end()) 1670 Defs->push_back(*What); 1671 else 1672 Defs->insert(InsertPt->getDefsIterator(), *What); 1673 } 1674 } 1675 BlockNumberingValid.erase(BB); 1676 } 1677 1678 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1679 // Keep it in the lookup tables, remove from the lists 1680 removeFromLists(What, false); 1681 1682 // Note that moving should implicitly invalidate the optimized state of a 1683 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1684 // MemoryDef. 1685 if (auto *MD = dyn_cast<MemoryDef>(What)) 1686 MD->resetOptimized(); 1687 What->setBlock(BB); 1688 } 1689 1690 // Move What before Where in the IR. The end result is that What will belong to 1691 // the right lists and have the right Block set, but will not otherwise be 1692 // correct. It will not have the right defining access, and if it is a def, 1693 // things below it will not properly be updated. 1694 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1695 AccessList::iterator Where) { 1696 prepareForMoveTo(What, BB); 1697 insertIntoListsBefore(What, BB, Where); 1698 } 1699 1700 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1701 InsertionPlace Point) { 1702 if (isa<MemoryPhi>(What)) { 1703 assert(Point == Beginning && 1704 "Can only move a Phi at the beginning of the block"); 1705 // Update lookup table entry 1706 ValueToMemoryAccess.erase(What->getBlock()); 1707 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1708 (void)Inserted; 1709 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1710 } 1711 1712 prepareForMoveTo(What, BB); 1713 insertIntoListsForBlock(What, BB, Point); 1714 } 1715 1716 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1717 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1718 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1719 // Phi's always are placed at the front of the block. 1720 insertIntoListsForBlock(Phi, BB, Beginning); 1721 ValueToMemoryAccess[BB] = Phi; 1722 return Phi; 1723 } 1724 1725 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1726 MemoryAccess *Definition, 1727 const MemoryUseOrDef *Template, 1728 bool CreationMustSucceed) { 1729 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1730 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1731 if (CreationMustSucceed) 1732 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1733 "non-memory touching instruction"); 1734 if (NewAccess) { 1735 assert((!Definition || !isa<MemoryUse>(Definition)) && 1736 "A use cannot be a defining access"); 1737 NewAccess->setDefiningAccess(Definition); 1738 } 1739 return NewAccess; 1740 } 1741 1742 // Return true if the instruction has ordering constraints. 1743 // Note specifically that this only considers stores and loads 1744 // because others are still considered ModRef by getModRefInfo. 1745 static inline bool isOrdered(const Instruction *I) { 1746 if (auto *SI = dyn_cast<StoreInst>(I)) { 1747 if (!SI->isUnordered()) 1748 return true; 1749 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1750 if (!LI->isUnordered()) 1751 return true; 1752 } 1753 return false; 1754 } 1755 1756 /// Helper function to create new memory accesses 1757 template <typename AliasAnalysisType> 1758 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1759 AliasAnalysisType *AAP, 1760 const MemoryUseOrDef *Template) { 1761 // The assume intrinsic has a control dependency which we model by claiming 1762 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1763 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1764 // dependencies here. 1765 // FIXME: Replace this special casing with a more accurate modelling of 1766 // assume's control dependency. 1767 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1768 if (II->getIntrinsicID() == Intrinsic::assume) 1769 return nullptr; 1770 1771 // Using a nonstandard AA pipelines might leave us with unexpected modref 1772 // results for I, so add a check to not model instructions that may not read 1773 // from or write to memory. This is necessary for correctness. 1774 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1775 return nullptr; 1776 1777 bool Def, Use; 1778 if (Template) { 1779 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1780 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1781 #if !defined(NDEBUG) 1782 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1783 bool DefCheck, UseCheck; 1784 DefCheck = isModSet(ModRef) || isOrdered(I); 1785 UseCheck = isRefSet(ModRef); 1786 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1787 #endif 1788 } else { 1789 // Find out what affect this instruction has on memory. 1790 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1791 // The isOrdered check is used to ensure that volatiles end up as defs 1792 // (atomics end up as ModRef right now anyway). Until we separate the 1793 // ordering chain from the memory chain, this enables people to see at least 1794 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1795 // will still give an answer that bypasses other volatile loads. TODO: 1796 // Separate memory aliasing and ordering into two different chains so that 1797 // we can precisely represent both "what memory will this read/write/is 1798 // clobbered by" and "what instructions can I move this past". 1799 Def = isModSet(ModRef) || isOrdered(I); 1800 Use = isRefSet(ModRef); 1801 } 1802 1803 // It's possible for an instruction to not modify memory at all. During 1804 // construction, we ignore them. 1805 if (!Def && !Use) 1806 return nullptr; 1807 1808 MemoryUseOrDef *MUD; 1809 if (Def) 1810 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1811 else 1812 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1813 ValueToMemoryAccess[I] = MUD; 1814 return MUD; 1815 } 1816 1817 /// Returns true if \p Replacer dominates \p Replacee . 1818 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1819 const MemoryAccess *Replacee) const { 1820 if (isa<MemoryUseOrDef>(Replacee)) 1821 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1822 const auto *MP = cast<MemoryPhi>(Replacee); 1823 // For a phi node, the use occurs in the predecessor block of the phi node. 1824 // Since we may occur multiple times in the phi node, we have to check each 1825 // operand to ensure Replacer dominates each operand where Replacee occurs. 1826 for (const Use &Arg : MP->operands()) { 1827 if (Arg.get() != Replacee && 1828 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1829 return false; 1830 } 1831 return true; 1832 } 1833 1834 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1835 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1836 assert(MA->use_empty() && 1837 "Trying to remove memory access that still has uses"); 1838 BlockNumbering.erase(MA); 1839 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1840 MUD->setDefiningAccess(nullptr); 1841 // Invalidate our walker's cache if necessary 1842 if (!isa<MemoryUse>(MA)) 1843 getWalker()->invalidateInfo(MA); 1844 1845 Value *MemoryInst; 1846 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1847 MemoryInst = MUD->getMemoryInst(); 1848 else 1849 MemoryInst = MA->getBlock(); 1850 1851 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1852 if (VMA->second == MA) 1853 ValueToMemoryAccess.erase(VMA); 1854 } 1855 1856 /// Properly remove \p MA from all of MemorySSA's lists. 1857 /// 1858 /// Because of the way the intrusive list and use lists work, it is important to 1859 /// do removal in the right order. 1860 /// ShouldDelete defaults to true, and will cause the memory access to also be 1861 /// deleted, not just removed. 1862 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1863 BasicBlock *BB = MA->getBlock(); 1864 // The access list owns the reference, so we erase it from the non-owning list 1865 // first. 1866 if (!isa<MemoryUse>(MA)) { 1867 auto DefsIt = PerBlockDefs.find(BB); 1868 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1869 Defs->remove(*MA); 1870 if (Defs->empty()) 1871 PerBlockDefs.erase(DefsIt); 1872 } 1873 1874 // The erase call here will delete it. If we don't want it deleted, we call 1875 // remove instead. 1876 auto AccessIt = PerBlockAccesses.find(BB); 1877 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1878 if (ShouldDelete) 1879 Accesses->erase(MA); 1880 else 1881 Accesses->remove(MA); 1882 1883 if (Accesses->empty()) { 1884 PerBlockAccesses.erase(AccessIt); 1885 BlockNumberingValid.erase(BB); 1886 } 1887 } 1888 1889 void MemorySSA::print(raw_ostream &OS) const { 1890 MemorySSAAnnotatedWriter Writer(this); 1891 F.print(OS, &Writer); 1892 } 1893 1894 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1895 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1896 #endif 1897 1898 void MemorySSA::verifyMemorySSA() const { 1899 verifyOrderingDominationAndDefUses(F); 1900 verifyDominationNumbers(F); 1901 verifyPrevDefInPhis(F); 1902 // Previously, the verification used to also verify that the clobberingAccess 1903 // cached by MemorySSA is the same as the clobberingAccess found at a later 1904 // query to AA. This does not hold true in general due to the current fragility 1905 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1906 // up. As a result, transformations that are correct, will lead to BasicAA 1907 // returning different Alias answers before and after that transformation. 1908 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1909 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1910 // every transformation, which defeats the purpose of using it. For such an 1911 // example, see test4 added in D51960. 1912 } 1913 1914 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1915 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1916 for (const BasicBlock &BB : F) { 1917 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1918 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1919 auto *Pred = Phi->getIncomingBlock(I); 1920 auto *IncAcc = Phi->getIncomingValue(I); 1921 // If Pred has no unreachable predecessors, get last def looking at 1922 // IDoms. If, while walkings IDoms, any of these has an unreachable 1923 // predecessor, then the incoming def can be any access. 1924 if (auto *DTNode = DT->getNode(Pred)) { 1925 while (DTNode) { 1926 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1927 auto *LastAcc = &*(--DefList->end()); 1928 assert(LastAcc == IncAcc && 1929 "Incorrect incoming access into phi."); 1930 break; 1931 } 1932 DTNode = DTNode->getIDom(); 1933 } 1934 } else { 1935 // If Pred has unreachable predecessors, but has at least a Def, the 1936 // incoming access can be the last Def in Pred, or it could have been 1937 // optimized to LoE. After an update, though, the LoE may have been 1938 // replaced by another access, so IncAcc may be any access. 1939 // If Pred has unreachable predecessors and no Defs, incoming access 1940 // should be LoE; However, after an update, it may be any access. 1941 } 1942 } 1943 } 1944 } 1945 #endif 1946 } 1947 1948 /// Verify that all of the blocks we believe to have valid domination numbers 1949 /// actually have valid domination numbers. 1950 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1951 #ifndef NDEBUG 1952 if (BlockNumberingValid.empty()) 1953 return; 1954 1955 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1956 for (const BasicBlock &BB : F) { 1957 if (!ValidBlocks.count(&BB)) 1958 continue; 1959 1960 ValidBlocks.erase(&BB); 1961 1962 const AccessList *Accesses = getBlockAccesses(&BB); 1963 // It's correct to say an empty block has valid numbering. 1964 if (!Accesses) 1965 continue; 1966 1967 // Block numbering starts at 1. 1968 unsigned long LastNumber = 0; 1969 for (const MemoryAccess &MA : *Accesses) { 1970 auto ThisNumberIter = BlockNumbering.find(&MA); 1971 assert(ThisNumberIter != BlockNumbering.end() && 1972 "MemoryAccess has no domination number in a valid block!"); 1973 1974 unsigned long ThisNumber = ThisNumberIter->second; 1975 assert(ThisNumber > LastNumber && 1976 "Domination numbers should be strictly increasing!"); 1977 LastNumber = ThisNumber; 1978 } 1979 } 1980 1981 assert(ValidBlocks.empty() && 1982 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1983 #endif 1984 } 1985 1986 /// Verify ordering: the order and existence of MemoryAccesses matches the 1987 /// order and existence of memory affecting instructions. 1988 /// Verify domination: each definition dominates all of its uses. 1989 /// Verify def-uses: the immediate use information - walk all the memory 1990 /// accesses and verifying that, for each use, it appears in the appropriate 1991 /// def's use list 1992 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1993 #if !defined(NDEBUG) 1994 // Walk all the blocks, comparing what the lookups think and what the access 1995 // lists think, as well as the order in the blocks vs the order in the access 1996 // lists. 1997 SmallVector<MemoryAccess *, 32> ActualAccesses; 1998 SmallVector<MemoryAccess *, 32> ActualDefs; 1999 for (BasicBlock &B : F) { 2000 const AccessList *AL = getBlockAccesses(&B); 2001 const auto *DL = getBlockDefs(&B); 2002 MemoryPhi *Phi = getMemoryAccess(&B); 2003 if (Phi) { 2004 // Verify ordering. 2005 ActualAccesses.push_back(Phi); 2006 ActualDefs.push_back(Phi); 2007 // Verify domination 2008 for (const Use &U : Phi->uses()) 2009 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2010 #if defined(EXPENSIVE_CHECKS) 2011 // Verify def-uses. 2012 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2013 pred_begin(&B), pred_end(&B))) && 2014 "Incomplete MemoryPhi Node"); 2015 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2016 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2017 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2018 pred_end(&B) && 2019 "Incoming phi block not a block predecessor"); 2020 } 2021 #endif 2022 } 2023 2024 for (Instruction &I : B) { 2025 MemoryUseOrDef *MA = getMemoryAccess(&I); 2026 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2027 "We have memory affecting instructions " 2028 "in this block but they are not in the " 2029 "access list or defs list"); 2030 if (MA) { 2031 // Verify ordering. 2032 ActualAccesses.push_back(MA); 2033 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2034 // Verify ordering. 2035 ActualDefs.push_back(MA); 2036 // Verify domination. 2037 for (const Use &U : MD->uses()) 2038 assert(dominates(MD, U) && 2039 "Memory Def does not dominate it's uses"); 2040 } 2041 #if defined(EXPENSIVE_CHECKS) 2042 // Verify def-uses. 2043 verifyUseInDefs(MA->getDefiningAccess(), MA); 2044 #endif 2045 } 2046 } 2047 // Either we hit the assert, really have no accesses, or we have both 2048 // accesses and an access list. Same with defs. 2049 if (!AL && !DL) 2050 continue; 2051 // Verify ordering. 2052 assert(AL->size() == ActualAccesses.size() && 2053 "We don't have the same number of accesses in the block as on the " 2054 "access list"); 2055 assert((DL || ActualDefs.size() == 0) && 2056 "Either we should have a defs list, or we should have no defs"); 2057 assert((!DL || DL->size() == ActualDefs.size()) && 2058 "We don't have the same number of defs in the block as on the " 2059 "def list"); 2060 auto ALI = AL->begin(); 2061 auto AAI = ActualAccesses.begin(); 2062 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2063 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2064 ++ALI; 2065 ++AAI; 2066 } 2067 ActualAccesses.clear(); 2068 if (DL) { 2069 auto DLI = DL->begin(); 2070 auto ADI = ActualDefs.begin(); 2071 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2072 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2073 ++DLI; 2074 ++ADI; 2075 } 2076 } 2077 ActualDefs.clear(); 2078 } 2079 #endif 2080 } 2081 2082 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2083 /// appears in the use list of \p Def. 2084 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2085 #ifndef NDEBUG 2086 // The live on entry use may cause us to get a NULL def here 2087 if (!Def) 2088 assert(isLiveOnEntryDef(Use) && 2089 "Null def but use not point to live on entry def"); 2090 else 2091 assert(is_contained(Def->users(), Use) && 2092 "Did not find use in def's use list"); 2093 #endif 2094 } 2095 2096 /// Perform a local numbering on blocks so that instruction ordering can be 2097 /// determined in constant time. 2098 /// TODO: We currently just number in order. If we numbered by N, we could 2099 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2100 /// log2(N) sequences of mixed before and after) without needing to invalidate 2101 /// the numbering. 2102 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2103 // The pre-increment ensures the numbers really start at 1. 2104 unsigned long CurrentNumber = 0; 2105 const AccessList *AL = getBlockAccesses(B); 2106 assert(AL != nullptr && "Asking to renumber an empty block"); 2107 for (const auto &I : *AL) 2108 BlockNumbering[&I] = ++CurrentNumber; 2109 BlockNumberingValid.insert(B); 2110 } 2111 2112 /// Determine, for two memory accesses in the same block, 2113 /// whether \p Dominator dominates \p Dominatee. 2114 /// \returns True if \p Dominator dominates \p Dominatee. 2115 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2116 const MemoryAccess *Dominatee) const { 2117 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2118 2119 assert((DominatorBlock == Dominatee->getBlock()) && 2120 "Asking for local domination when accesses are in different blocks!"); 2121 // A node dominates itself. 2122 if (Dominatee == Dominator) 2123 return true; 2124 2125 // When Dominatee is defined on function entry, it is not dominated by another 2126 // memory access. 2127 if (isLiveOnEntryDef(Dominatee)) 2128 return false; 2129 2130 // When Dominator is defined on function entry, it dominates the other memory 2131 // access. 2132 if (isLiveOnEntryDef(Dominator)) 2133 return true; 2134 2135 if (!BlockNumberingValid.count(DominatorBlock)) 2136 renumberBlock(DominatorBlock); 2137 2138 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2139 // All numbers start with 1 2140 assert(DominatorNum != 0 && "Block was not numbered properly"); 2141 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2142 assert(DominateeNum != 0 && "Block was not numbered properly"); 2143 return DominatorNum < DominateeNum; 2144 } 2145 2146 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2147 const MemoryAccess *Dominatee) const { 2148 if (Dominator == Dominatee) 2149 return true; 2150 2151 if (isLiveOnEntryDef(Dominatee)) 2152 return false; 2153 2154 if (Dominator->getBlock() != Dominatee->getBlock()) 2155 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2156 return locallyDominates(Dominator, Dominatee); 2157 } 2158 2159 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2160 const Use &Dominatee) const { 2161 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2162 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2163 // The def must dominate the incoming block of the phi. 2164 if (UseBB != Dominator->getBlock()) 2165 return DT->dominates(Dominator->getBlock(), UseBB); 2166 // If the UseBB and the DefBB are the same, compare locally. 2167 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2168 } 2169 // If it's not a PHI node use, the normal dominates can already handle it. 2170 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2171 } 2172 2173 const static char LiveOnEntryStr[] = "liveOnEntry"; 2174 2175 void MemoryAccess::print(raw_ostream &OS) const { 2176 switch (getValueID()) { 2177 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2178 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2179 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2180 } 2181 llvm_unreachable("invalid value id"); 2182 } 2183 2184 void MemoryDef::print(raw_ostream &OS) const { 2185 MemoryAccess *UO = getDefiningAccess(); 2186 2187 auto printID = [&OS](MemoryAccess *A) { 2188 if (A && A->getID()) 2189 OS << A->getID(); 2190 else 2191 OS << LiveOnEntryStr; 2192 }; 2193 2194 OS << getID() << " = MemoryDef("; 2195 printID(UO); 2196 OS << ")"; 2197 2198 if (isOptimized()) { 2199 OS << "->"; 2200 printID(getOptimized()); 2201 2202 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2203 OS << " " << *AR; 2204 } 2205 } 2206 2207 void MemoryPhi::print(raw_ostream &OS) const { 2208 bool First = true; 2209 OS << getID() << " = MemoryPhi("; 2210 for (const auto &Op : operands()) { 2211 BasicBlock *BB = getIncomingBlock(Op); 2212 MemoryAccess *MA = cast<MemoryAccess>(Op); 2213 if (!First) 2214 OS << ','; 2215 else 2216 First = false; 2217 2218 OS << '{'; 2219 if (BB->hasName()) 2220 OS << BB->getName(); 2221 else 2222 BB->printAsOperand(OS, false); 2223 OS << ','; 2224 if (unsigned ID = MA->getID()) 2225 OS << ID; 2226 else 2227 OS << LiveOnEntryStr; 2228 OS << '}'; 2229 } 2230 OS << ')'; 2231 } 2232 2233 void MemoryUse::print(raw_ostream &OS) const { 2234 MemoryAccess *UO = getDefiningAccess(); 2235 OS << "MemoryUse("; 2236 if (UO && UO->getID()) 2237 OS << UO->getID(); 2238 else 2239 OS << LiveOnEntryStr; 2240 OS << ')'; 2241 2242 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2243 OS << " " << *AR; 2244 } 2245 2246 void MemoryAccess::dump() const { 2247 // Cannot completely remove virtual function even in release mode. 2248 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2249 print(dbgs()); 2250 dbgs() << "\n"; 2251 #endif 2252 } 2253 2254 char MemorySSAPrinterLegacyPass::ID = 0; 2255 2256 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2257 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2258 } 2259 2260 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2261 AU.setPreservesAll(); 2262 AU.addRequired<MemorySSAWrapperPass>(); 2263 } 2264 2265 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2266 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2267 MSSA.print(dbgs()); 2268 if (VerifyMemorySSA) 2269 MSSA.verifyMemorySSA(); 2270 return false; 2271 } 2272 2273 AnalysisKey MemorySSAAnalysis::Key; 2274 2275 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2276 FunctionAnalysisManager &AM) { 2277 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2278 auto &AA = AM.getResult<AAManager>(F); 2279 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2280 } 2281 2282 bool MemorySSAAnalysis::Result::invalidate( 2283 Function &F, const PreservedAnalyses &PA, 2284 FunctionAnalysisManager::Invalidator &Inv) { 2285 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2286 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2287 Inv.invalidate<AAManager>(F, PA) || 2288 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2289 } 2290 2291 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2292 FunctionAnalysisManager &AM) { 2293 OS << "MemorySSA for function: " << F.getName() << "\n"; 2294 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2295 2296 return PreservedAnalyses::all(); 2297 } 2298 2299 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2300 FunctionAnalysisManager &AM) { 2301 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2302 2303 return PreservedAnalyses::all(); 2304 } 2305 2306 char MemorySSAWrapperPass::ID = 0; 2307 2308 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2309 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2310 } 2311 2312 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2313 2314 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2315 AU.setPreservesAll(); 2316 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2317 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2318 } 2319 2320 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2321 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2322 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2323 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2324 return false; 2325 } 2326 2327 void MemorySSAWrapperPass::verifyAnalysis() const { 2328 if (VerifyMemorySSA) 2329 MSSA->verifyMemorySSA(); 2330 } 2331 2332 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2333 MSSA->print(OS); 2334 } 2335 2336 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2337 2338 /// Walk the use-def chains starting at \p StartingAccess and find 2339 /// the MemoryAccess that actually clobbers Loc. 2340 /// 2341 /// \returns our clobbering memory access 2342 template <typename AliasAnalysisType> 2343 MemoryAccess * 2344 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2345 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2346 unsigned &UpwardWalkLimit) { 2347 if (isa<MemoryPhi>(StartingAccess)) 2348 return StartingAccess; 2349 2350 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2351 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2352 return StartingUseOrDef; 2353 2354 Instruction *I = StartingUseOrDef->getMemoryInst(); 2355 2356 // Conservatively, fences are always clobbers, so don't perform the walk if we 2357 // hit a fence. 2358 if (!isa<CallBase>(I) && I->isFenceLike()) 2359 return StartingUseOrDef; 2360 2361 UpwardsMemoryQuery Q; 2362 Q.OriginalAccess = StartingUseOrDef; 2363 Q.StartingLoc = Loc; 2364 Q.Inst = I; 2365 Q.IsCall = false; 2366 2367 // Unlike the other function, do not walk to the def of a def, because we are 2368 // handed something we already believe is the clobbering access. 2369 // We never set SkipSelf to true in Q in this method. 2370 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2371 ? StartingUseOrDef->getDefiningAccess() 2372 : StartingUseOrDef; 2373 2374 MemoryAccess *Clobber = 2375 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2376 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2377 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2378 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2379 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2380 return Clobber; 2381 } 2382 2383 template <typename AliasAnalysisType> 2384 MemoryAccess * 2385 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2386 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2387 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2388 // If this is a MemoryPhi, we can't do anything. 2389 if (!StartingAccess) 2390 return MA; 2391 2392 bool IsOptimized = false; 2393 2394 // If this is an already optimized use or def, return the optimized result. 2395 // Note: Currently, we store the optimized def result in a separate field, 2396 // since we can't use the defining access. 2397 if (StartingAccess->isOptimized()) { 2398 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2399 return StartingAccess->getOptimized(); 2400 IsOptimized = true; 2401 } 2402 2403 const Instruction *I = StartingAccess->getMemoryInst(); 2404 // We can't sanely do anything with a fence, since they conservatively clobber 2405 // all memory, and have no locations to get pointers from to try to 2406 // disambiguate. 2407 if (!isa<CallBase>(I) && I->isFenceLike()) 2408 return StartingAccess; 2409 2410 UpwardsMemoryQuery Q(I, StartingAccess); 2411 2412 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2413 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2414 StartingAccess->setOptimized(LiveOnEntry); 2415 StartingAccess->setOptimizedAccessType(None); 2416 return LiveOnEntry; 2417 } 2418 2419 MemoryAccess *OptimizedAccess; 2420 if (!IsOptimized) { 2421 // Start with the thing we already think clobbers this location 2422 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2423 2424 // At this point, DefiningAccess may be the live on entry def. 2425 // If it is, we will not get a better result. 2426 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2427 StartingAccess->setOptimized(DefiningAccess); 2428 StartingAccess->setOptimizedAccessType(None); 2429 return DefiningAccess; 2430 } 2431 2432 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2433 StartingAccess->setOptimized(OptimizedAccess); 2434 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2435 StartingAccess->setOptimizedAccessType(None); 2436 else if (Q.AR == MustAlias) 2437 StartingAccess->setOptimizedAccessType(MustAlias); 2438 } else 2439 OptimizedAccess = StartingAccess->getOptimized(); 2440 2441 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2442 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2443 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2444 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2445 2446 MemoryAccess *Result; 2447 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2448 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2449 assert(isa<MemoryDef>(Q.OriginalAccess)); 2450 Q.SkipSelfAccess = true; 2451 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2452 } else 2453 Result = OptimizedAccess; 2454 2455 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2456 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2457 2458 return Result; 2459 } 2460 2461 MemoryAccess * 2462 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2463 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2464 return Use->getDefiningAccess(); 2465 return MA; 2466 } 2467 2468 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2469 MemoryAccess *StartingAccess, const MemoryLocation &) { 2470 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2471 return Use->getDefiningAccess(); 2472 return StartingAccess; 2473 } 2474 2475 void MemoryPhi::deleteMe(DerivedUser *Self) { 2476 delete static_cast<MemoryPhi *>(Self); 2477 } 2478 2479 void MemoryDef::deleteMe(DerivedUser *Self) { 2480 delete static_cast<MemoryDef *>(Self); 2481 } 2482 2483 void MemoryUse::deleteMe(DerivedUser *Self) { 2484 delete static_cast<MemoryUse *>(Self); 2485 } 2486