1bb1b2d09SEugene Zelenko //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2554dcd8cSDaniel Berlin //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6554dcd8cSDaniel Berlin //
7bb1b2d09SEugene Zelenko //===----------------------------------------------------------------------===//
8554dcd8cSDaniel Berlin //
9554dcd8cSDaniel Berlin // This file implements the MemorySSA class.
10554dcd8cSDaniel Berlin //
11bb1b2d09SEugene Zelenko //===----------------------------------------------------------------------===//
12bb1b2d09SEugene Zelenko 
13554dcd8cSDaniel Berlin #include "llvm/Analysis/MemorySSA.h"
14554dcd8cSDaniel Berlin #include "llvm/ADT/DenseMap.h"
15bb1b2d09SEugene Zelenko #include "llvm/ADT/DenseMapInfo.h"
16554dcd8cSDaniel Berlin #include "llvm/ADT/DenseSet.h"
17554dcd8cSDaniel Berlin #include "llvm/ADT/DepthFirstIterator.h"
18bb1b2d09SEugene Zelenko #include "llvm/ADT/Hashing.h"
19bb1b2d09SEugene Zelenko #include "llvm/ADT/None.h"
20bb1b2d09SEugene Zelenko #include "llvm/ADT/Optional.h"
21554dcd8cSDaniel Berlin #include "llvm/ADT/STLExtras.h"
22554dcd8cSDaniel Berlin #include "llvm/ADT/SmallPtrSet.h"
23bb1b2d09SEugene Zelenko #include "llvm/ADT/SmallVector.h"
24657f5b97SKazu Hirata #include "llvm/ADT/StringExtras.h"
25bb1b2d09SEugene Zelenko #include "llvm/ADT/iterator.h"
26bb1b2d09SEugene Zelenko #include "llvm/ADT/iterator_range.h"
27554dcd8cSDaniel Berlin #include "llvm/Analysis/AliasAnalysis.h"
285f672fefSJamie Schmeiser #include "llvm/Analysis/CFGPrinter.h"
29554dcd8cSDaniel Berlin #include "llvm/Analysis/IteratedDominanceFrontier.h"
30554dcd8cSDaniel Berlin #include "llvm/Analysis/MemoryLocation.h"
31432a3883SNico Weber #include "llvm/Config/llvm-config.h"
32554dcd8cSDaniel Berlin #include "llvm/IR/AssemblyAnnotationWriter.h"
33bb1b2d09SEugene Zelenko #include "llvm/IR/BasicBlock.h"
34554dcd8cSDaniel Berlin #include "llvm/IR/Dominators.h"
35bb1b2d09SEugene Zelenko #include "llvm/IR/Function.h"
36bb1b2d09SEugene Zelenko #include "llvm/IR/Instruction.h"
37bb1b2d09SEugene Zelenko #include "llvm/IR/Instructions.h"
38554dcd8cSDaniel Berlin #include "llvm/IR/IntrinsicInst.h"
39554dcd8cSDaniel Berlin #include "llvm/IR/LLVMContext.h"
40c6f0940dSBill Wendling #include "llvm/IR/Operator.h"
41bb1b2d09SEugene Zelenko #include "llvm/IR/PassManager.h"
42bb1b2d09SEugene Zelenko #include "llvm/IR/Use.h"
4305da2fe5SReid Kleckner #include "llvm/InitializePasses.h"
44bb1b2d09SEugene Zelenko #include "llvm/Pass.h"
45bb1b2d09SEugene Zelenko #include "llvm/Support/AtomicOrdering.h"
46bb1b2d09SEugene Zelenko #include "llvm/Support/Casting.h"
47bb1b2d09SEugene Zelenko #include "llvm/Support/CommandLine.h"
48bb1b2d09SEugene Zelenko #include "llvm/Support/Compiler.h"
49554dcd8cSDaniel Berlin #include "llvm/Support/Debug.h"
50bb1b2d09SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
51554dcd8cSDaniel Berlin #include "llvm/Support/FormattedStream.h"
5271c3a551Sserge-sans-paille #include "llvm/Support/GraphWriter.h"
53bb1b2d09SEugene Zelenko #include "llvm/Support/raw_ostream.h"
54554dcd8cSDaniel Berlin #include <algorithm>
55bb1b2d09SEugene Zelenko #include <cassert>
56bb1b2d09SEugene Zelenko #include <iterator>
57bb1b2d09SEugene Zelenko #include <memory>
58bb1b2d09SEugene Zelenko #include <utility>
59bb1b2d09SEugene Zelenko 
60bb1b2d09SEugene Zelenko using namespace llvm;
61554dcd8cSDaniel Berlin 
62554dcd8cSDaniel Berlin #define DEBUG_TYPE "memoryssa"
63bb1b2d09SEugene Zelenko 
645f672fefSJamie Schmeiser static cl::opt<std::string>
655f672fefSJamie Schmeiser     DotCFGMSSA("dot-cfg-mssa",
665f672fefSJamie Schmeiser                cl::value_desc("file name for generated dot file"),
675f672fefSJamie Schmeiser                cl::desc("file name for generated dot file"), cl::init(""));
685f672fefSJamie Schmeiser 
69554dcd8cSDaniel Berlin INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
70554dcd8cSDaniel Berlin                       true)
71554dcd8cSDaniel Berlin INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
72554dcd8cSDaniel Berlin INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
73554dcd8cSDaniel Berlin INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
74554dcd8cSDaniel Berlin                     true)
75554dcd8cSDaniel Berlin 
76554dcd8cSDaniel Berlin INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
77554dcd8cSDaniel Berlin                       "Memory SSA Printer", false, false)
78554dcd8cSDaniel Berlin INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
79554dcd8cSDaniel Berlin INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
80554dcd8cSDaniel Berlin                     "Memory SSA Printer", false, false)
81554dcd8cSDaniel Berlin 
82554dcd8cSDaniel Berlin static cl::opt<unsigned> MaxCheckLimit(
83554dcd8cSDaniel Berlin     "memssa-check-limit", cl::Hidden, cl::init(100),
84554dcd8cSDaniel Berlin     cl::desc("The maximum number of stores/phis MemorySSA"
85554dcd8cSDaniel Berlin              "will consider trying to walk past (default = 100)"));
86554dcd8cSDaniel Berlin 
87cc2e8cccSAlina Sbirlea // Always verify MemorySSA if expensive checking is enabled.
88cc2e8cccSAlina Sbirlea #ifdef EXPENSIVE_CHECKS
89cc2e8cccSAlina Sbirlea bool llvm::VerifyMemorySSA = true;
90cc2e8cccSAlina Sbirlea #else
91cc2e8cccSAlina Sbirlea bool llvm::VerifyMemorySSA = false;
92cc2e8cccSAlina Sbirlea #endif
934fd1f266SAlina Sbirlea 
94cc2e8cccSAlina Sbirlea static cl::opt<bool, true>
95cc2e8cccSAlina Sbirlea     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
96cc2e8cccSAlina Sbirlea                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
97554dcd8cSDaniel Berlin 
98813a7f1aSArthur Eubanks const static char LiveOnEntryStr[] = "liveOnEntry";
99813a7f1aSArthur Eubanks 
1007b08d9daSArthur Eubanks namespace {
101bb1b2d09SEugene Zelenko 
1025f8f34e4SAdrian Prantl /// An assembly annotator class to print Memory SSA information in
103554dcd8cSDaniel Berlin /// comments.
104554dcd8cSDaniel Berlin class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
105554dcd8cSDaniel Berlin   const MemorySSA *MSSA;
106554dcd8cSDaniel Berlin 
107554dcd8cSDaniel Berlin public:
MemorySSAAnnotatedWriter(const MemorySSA * M)108554dcd8cSDaniel Berlin   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
109554dcd8cSDaniel Berlin 
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)110bb1b2d09SEugene Zelenko   void emitBasicBlockStartAnnot(const BasicBlock *BB,
111bb1b2d09SEugene Zelenko                                 formatted_raw_ostream &OS) override {
112554dcd8cSDaniel Berlin     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
113554dcd8cSDaniel Berlin       OS << "; " << *MA << "\n";
114554dcd8cSDaniel Berlin   }
115554dcd8cSDaniel Berlin 
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)116bb1b2d09SEugene Zelenko   void emitInstructionAnnot(const Instruction *I,
117bb1b2d09SEugene Zelenko                             formatted_raw_ostream &OS) override {
118554dcd8cSDaniel Berlin     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
119554dcd8cSDaniel Berlin       OS << "; " << *MA << "\n";
120554dcd8cSDaniel Berlin   }
121554dcd8cSDaniel Berlin };
122bb1b2d09SEugene Zelenko 
1237b08d9daSArthur Eubanks /// An assembly annotator class to print Memory SSA information in
1247b08d9daSArthur Eubanks /// comments.
1257b08d9daSArthur Eubanks class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter {
1267b08d9daSArthur Eubanks   MemorySSA *MSSA;
1277b08d9daSArthur Eubanks   MemorySSAWalker *Walker;
1287b08d9daSArthur Eubanks 
1297b08d9daSArthur Eubanks public:
MemorySSAWalkerAnnotatedWriter(MemorySSA * M)1307b08d9daSArthur Eubanks   MemorySSAWalkerAnnotatedWriter(MemorySSA *M)
1317b08d9daSArthur Eubanks       : MSSA(M), Walker(M->getWalker()) {}
1327b08d9daSArthur Eubanks 
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)13350d41f3eSAlina Sbirlea   void emitBasicBlockStartAnnot(const BasicBlock *BB,
13450d41f3eSAlina Sbirlea                                 formatted_raw_ostream &OS) override {
13550d41f3eSAlina Sbirlea     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
13650d41f3eSAlina Sbirlea       OS << "; " << *MA << "\n";
13750d41f3eSAlina Sbirlea   }
13850d41f3eSAlina Sbirlea 
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)1397b08d9daSArthur Eubanks   void emitInstructionAnnot(const Instruction *I,
1407b08d9daSArthur Eubanks                             formatted_raw_ostream &OS) override {
1417b08d9daSArthur Eubanks     if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
1427b08d9daSArthur Eubanks       MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA);
1437b08d9daSArthur Eubanks       OS << "; " << *MA;
144813a7f1aSArthur Eubanks       if (Clobber) {
145813a7f1aSArthur Eubanks         OS << " - clobbered by ";
146813a7f1aSArthur Eubanks         if (MSSA->isLiveOnEntryDef(Clobber))
147813a7f1aSArthur Eubanks           OS << LiveOnEntryStr;
148813a7f1aSArthur Eubanks         else
149813a7f1aSArthur Eubanks           OS << *Clobber;
150813a7f1aSArthur Eubanks       }
1517b08d9daSArthur Eubanks       OS << "\n";
1527b08d9daSArthur Eubanks     }
1537b08d9daSArthur Eubanks   }
1547b08d9daSArthur Eubanks };
1557b08d9daSArthur Eubanks 
1567b08d9daSArthur Eubanks } // namespace
157554dcd8cSDaniel Berlin 
158554dcd8cSDaniel Berlin namespace {
159bb1b2d09SEugene Zelenko 
160554dcd8cSDaniel Berlin /// Our current alias analysis API differentiates heavily between calls and
161554dcd8cSDaniel Berlin /// non-calls, and functions called on one usually assert on the other.
162554dcd8cSDaniel Berlin /// This class encapsulates the distinction to simplify other code that wants
163554dcd8cSDaniel Berlin /// "Memory affecting instructions and related data" to use as a key.
164554dcd8cSDaniel Berlin /// For example, this class is used as a densemap key in the use optimizer.
165554dcd8cSDaniel Berlin class MemoryLocOrCall {
166554dcd8cSDaniel Berlin public:
167bb1b2d09SEugene Zelenko   bool IsCall = false;
168bb1b2d09SEugene Zelenko 
MemoryLocOrCall(MemoryUseOrDef * MUD)169554dcd8cSDaniel Berlin   MemoryLocOrCall(MemoryUseOrDef *MUD)
170554dcd8cSDaniel Berlin       : MemoryLocOrCall(MUD->getMemoryInst()) {}
MemoryLocOrCall(const MemoryUseOrDef * MUD)171554dcd8cSDaniel Berlin   MemoryLocOrCall(const MemoryUseOrDef *MUD)
172554dcd8cSDaniel Berlin       : MemoryLocOrCall(MUD->getMemoryInst()) {}
173554dcd8cSDaniel Berlin 
MemoryLocOrCall(Instruction * Inst)174554dcd8cSDaniel Berlin   MemoryLocOrCall(Instruction *Inst) {
175363ac683SChandler Carruth     if (auto *C = dyn_cast<CallBase>(Inst)) {
176554dcd8cSDaniel Berlin       IsCall = true;
177363ac683SChandler Carruth       Call = C;
178554dcd8cSDaniel Berlin     } else {
179554dcd8cSDaniel Berlin       IsCall = false;
180554dcd8cSDaniel Berlin       // There is no such thing as a memorylocation for a fence inst, and it is
181554dcd8cSDaniel Berlin       // unique in that regard.
182554dcd8cSDaniel Berlin       if (!isa<FenceInst>(Inst))
183554dcd8cSDaniel Berlin         Loc = MemoryLocation::get(Inst);
184554dcd8cSDaniel Berlin     }
185554dcd8cSDaniel Berlin   }
186554dcd8cSDaniel Berlin 
MemoryLocOrCall(const MemoryLocation & Loc)187bb1b2d09SEugene Zelenko   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
188554dcd8cSDaniel Berlin 
getCall() const189363ac683SChandler Carruth   const CallBase *getCall() const {
190554dcd8cSDaniel Berlin     assert(IsCall);
191363ac683SChandler Carruth     return Call;
192554dcd8cSDaniel Berlin   }
193bb1b2d09SEugene Zelenko 
getLoc() const194554dcd8cSDaniel Berlin   MemoryLocation getLoc() const {
195554dcd8cSDaniel Berlin     assert(!IsCall);
196554dcd8cSDaniel Berlin     return Loc;
197554dcd8cSDaniel Berlin   }
198554dcd8cSDaniel Berlin 
operator ==(const MemoryLocOrCall & Other) const199554dcd8cSDaniel Berlin   bool operator==(const MemoryLocOrCall &Other) const {
200554dcd8cSDaniel Berlin     if (IsCall != Other.IsCall)
201554dcd8cSDaniel Berlin       return false;
202554dcd8cSDaniel Berlin 
2033588fd48SGeorge Burgess IV     if (!IsCall)
204554dcd8cSDaniel Berlin       return Loc == Other.Loc;
2053588fd48SGeorge Burgess IV 
206a58b62b4SCraig Topper     if (Call->getCalledOperand() != Other.Call->getCalledOperand())
2073588fd48SGeorge Burgess IV       return false;
2083588fd48SGeorge Burgess IV 
209363ac683SChandler Carruth     return Call->arg_size() == Other.Call->arg_size() &&
210363ac683SChandler Carruth            std::equal(Call->arg_begin(), Call->arg_end(),
211363ac683SChandler Carruth                       Other.Call->arg_begin());
212554dcd8cSDaniel Berlin   }
213554dcd8cSDaniel Berlin 
214554dcd8cSDaniel Berlin private:
215554dcd8cSDaniel Berlin   union {
216363ac683SChandler Carruth     const CallBase *Call;
217554dcd8cSDaniel Berlin     MemoryLocation Loc;
218554dcd8cSDaniel Berlin   };
219554dcd8cSDaniel Berlin };
220bb1b2d09SEugene Zelenko 
221bb1b2d09SEugene Zelenko } // end anonymous namespace
222554dcd8cSDaniel Berlin 
223554dcd8cSDaniel Berlin namespace llvm {
224bb1b2d09SEugene Zelenko 
225554dcd8cSDaniel Berlin template <> struct DenseMapInfo<MemoryLocOrCall> {
getEmptyKeyllvm::DenseMapInfo226554dcd8cSDaniel Berlin   static inline MemoryLocOrCall getEmptyKey() {
227554dcd8cSDaniel Berlin     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
228554dcd8cSDaniel Berlin   }
229bb1b2d09SEugene Zelenko 
getTombstoneKeyllvm::DenseMapInfo230554dcd8cSDaniel Berlin   static inline MemoryLocOrCall getTombstoneKey() {
231554dcd8cSDaniel Berlin     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
232554dcd8cSDaniel Berlin   }
233bb1b2d09SEugene Zelenko 
getHashValuellvm::DenseMapInfo234554dcd8cSDaniel Berlin   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
2353588fd48SGeorge Burgess IV     if (!MLOC.IsCall)
236554dcd8cSDaniel Berlin       return hash_combine(
2373588fd48SGeorge Burgess IV           MLOC.IsCall,
2383588fd48SGeorge Burgess IV           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
2393588fd48SGeorge Burgess IV 
2403588fd48SGeorge Burgess IV     hash_code hash =
2413588fd48SGeorge Burgess IV         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
242a58b62b4SCraig Topper                                       MLOC.getCall()->getCalledOperand()));
2433588fd48SGeorge Burgess IV 
244363ac683SChandler Carruth     for (const Value *Arg : MLOC.getCall()->args())
2453588fd48SGeorge Burgess IV       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
2463588fd48SGeorge Burgess IV     return hash;
247554dcd8cSDaniel Berlin   }
248bb1b2d09SEugene Zelenko 
isEqualllvm::DenseMapInfo249554dcd8cSDaniel Berlin   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
250554dcd8cSDaniel Berlin     return LHS == RHS;
251554dcd8cSDaniel Berlin   }
252554dcd8cSDaniel Berlin };
253554dcd8cSDaniel Berlin 
254bb1b2d09SEugene Zelenko } // end namespace llvm
255bb1b2d09SEugene Zelenko 
256554dcd8cSDaniel Berlin /// This does one-way checks to see if Use could theoretically be hoisted above
257554dcd8cSDaniel Berlin /// MayClobber. This will not check the other way around.
258554dcd8cSDaniel Berlin ///
259554dcd8cSDaniel Berlin /// This assumes that, for the purposes of MemorySSA, Use comes directly after
260554dcd8cSDaniel Berlin /// MayClobber, with no potentially clobbering operations in between them.
261554dcd8cSDaniel Berlin /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
areLoadsReorderable(const LoadInst * Use,const LoadInst * MayClobber)262ca741a87SAlina Sbirlea static bool areLoadsReorderable(const LoadInst *Use,
263554dcd8cSDaniel Berlin                                 const LoadInst *MayClobber) {
264554dcd8cSDaniel Berlin   bool VolatileUse = Use->isVolatile();
265554dcd8cSDaniel Berlin   bool VolatileClobber = MayClobber->isVolatile();
266554dcd8cSDaniel Berlin   // Volatile operations may never be reordered with other volatile operations.
267554dcd8cSDaniel Berlin   if (VolatileUse && VolatileClobber)
268ca741a87SAlina Sbirlea     return false;
269ca741a87SAlina Sbirlea   // Otherwise, volatile doesn't matter here. From the language reference:
270ca741a87SAlina Sbirlea   // 'optimizers may change the order of volatile operations relative to
271ca741a87SAlina Sbirlea   // non-volatile operations.'"
272554dcd8cSDaniel Berlin 
273554dcd8cSDaniel Berlin   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
274554dcd8cSDaniel Berlin   // is weaker, it can be moved above other loads. We just need to be sure that
275554dcd8cSDaniel Berlin   // MayClobber isn't an acquire load, because loads can't be moved above
276554dcd8cSDaniel Berlin   // acquire loads.
277554dcd8cSDaniel Berlin   //
278554dcd8cSDaniel Berlin   // Note that this explicitly *does* allow the free reordering of monotonic (or
279554dcd8cSDaniel Berlin   // weaker) loads of the same address.
280554dcd8cSDaniel Berlin   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
281554dcd8cSDaniel Berlin   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
282554dcd8cSDaniel Berlin                                                      AtomicOrdering::Acquire);
283ca741a87SAlina Sbirlea   return !(SeqCstUse || MayClobberIsAcquire);
284554dcd8cSDaniel Berlin }
285554dcd8cSDaniel Berlin 
286d90c9f4aSAlina Sbirlea namespace {
287d90c9f4aSAlina Sbirlea 
288d90c9f4aSAlina Sbirlea struct ClobberAlias {
289d90c9f4aSAlina Sbirlea   bool IsClobber;
290d90c9f4aSAlina Sbirlea   Optional<AliasResult> AR;
291d90c9f4aSAlina Sbirlea };
292d90c9f4aSAlina Sbirlea 
293d90c9f4aSAlina Sbirlea } // end anonymous namespace
294d90c9f4aSAlina Sbirlea 
295d90c9f4aSAlina Sbirlea // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
296d90c9f4aSAlina Sbirlea // ignored if IsClobber = false.
297bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
298bfc779e4SAlina Sbirlea static ClobberAlias
instructionClobbersQuery(const MemoryDef * MD,const MemoryLocation & UseLoc,const Instruction * UseInst,AliasAnalysisType & AA)299bfc779e4SAlina Sbirlea instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
300bfc779e4SAlina Sbirlea                          const Instruction *UseInst, AliasAnalysisType &AA) {
301554dcd8cSDaniel Berlin   Instruction *DefInst = MD->getMemoryInst();
302554dcd8cSDaniel Berlin   assert(DefInst && "Defining instruction not actually an instruction");
303d90c9f4aSAlina Sbirlea   Optional<AliasResult> AR;
304554dcd8cSDaniel Berlin 
305554dcd8cSDaniel Berlin   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
306554dcd8cSDaniel Berlin     // These intrinsics will show up as affecting memory, but they are just
307ff08c80eSGeorge Burgess IV     // markers, mostly.
308ff08c80eSGeorge Burgess IV     //
309ff08c80eSGeorge Burgess IV     // FIXME: We probably don't actually want MemorySSA to model these at all
310ff08c80eSGeorge Burgess IV     // (including creating MemoryAccesses for them): we just end up inventing
311ff08c80eSGeorge Burgess IV     // clobbers where they don't really exist at all. Please see D43269 for
312ff08c80eSGeorge Burgess IV     // context.
313554dcd8cSDaniel Berlin     switch (II->getIntrinsicID()) {
314554dcd8cSDaniel Berlin     case Intrinsic::invariant_start:
315554dcd8cSDaniel Berlin     case Intrinsic::invariant_end:
316554dcd8cSDaniel Berlin     case Intrinsic::assume:
317121cac01SJeroen Dobbelaere     case Intrinsic::experimental_noalias_scope_decl:
318098a0d8fSHongtao Yu     case Intrinsic::pseudoprobe:
319c1a88e00Sdfukalov       return {false, AliasResult(AliasResult::NoAlias)};
320f7b4022dSAlina Sbirlea     case Intrinsic::dbg_addr:
321f7b4022dSAlina Sbirlea     case Intrinsic::dbg_declare:
322f7b4022dSAlina Sbirlea     case Intrinsic::dbg_label:
323f7b4022dSAlina Sbirlea     case Intrinsic::dbg_value:
324f7b4022dSAlina Sbirlea       llvm_unreachable("debuginfo shouldn't have associated defs!");
325554dcd8cSDaniel Berlin     default:
326554dcd8cSDaniel Berlin       break;
327554dcd8cSDaniel Berlin     }
328554dcd8cSDaniel Berlin   }
329554dcd8cSDaniel Berlin 
33052b86d35SNikita Popov   if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
33152b86d35SNikita Popov     ModRefInfo I = AA.getModRefInfo(DefInst, CB);
332d0660797Sdfukalov     AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
333d90c9f4aSAlina Sbirlea     return {isModOrRefSet(I), AR};
33470e22d12SHans Wennborg   }
335554dcd8cSDaniel Berlin 
336ca741a87SAlina Sbirlea   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
33752b86d35SNikita Popov     if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
338c1a88e00Sdfukalov       return {!areLoadsReorderable(UseLoad, DefLoad),
339c1a88e00Sdfukalov               AliasResult(AliasResult::MayAlias)};
340554dcd8cSDaniel Berlin 
341d90c9f4aSAlina Sbirlea   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
342d0660797Sdfukalov   AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
343d90c9f4aSAlina Sbirlea   return {isModSet(I), AR};
344554dcd8cSDaniel Berlin }
345554dcd8cSDaniel Berlin 
346bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
instructionClobbersQuery(MemoryDef * MD,const MemoryUseOrDef * MU,const MemoryLocOrCall & UseMLOC,AliasAnalysisType & AA)347d90c9f4aSAlina Sbirlea static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
348d90c9f4aSAlina Sbirlea                                              const MemoryUseOrDef *MU,
349554dcd8cSDaniel Berlin                                              const MemoryLocOrCall &UseMLOC,
350bfc779e4SAlina Sbirlea                                              AliasAnalysisType &AA) {
351554dcd8cSDaniel Berlin   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
352554dcd8cSDaniel Berlin   // to exist while MemoryLocOrCall is pushed through places.
353554dcd8cSDaniel Berlin   if (UseMLOC.IsCall)
354554dcd8cSDaniel Berlin     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
355554dcd8cSDaniel Berlin                                     AA);
356554dcd8cSDaniel Berlin   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
357554dcd8cSDaniel Berlin                                   AA);
358554dcd8cSDaniel Berlin }
359554dcd8cSDaniel Berlin 
360554dcd8cSDaniel Berlin // Return true when MD may alias MU, return false otherwise.
defClobbersUseOrDef(MemoryDef * MD,const MemoryUseOrDef * MU,AliasAnalysis & AA)361554dcd8cSDaniel Berlin bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
362554dcd8cSDaniel Berlin                                         AliasAnalysis &AA) {
363d90c9f4aSAlina Sbirlea   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
364554dcd8cSDaniel Berlin }
365554dcd8cSDaniel Berlin 
366554dcd8cSDaniel Berlin namespace {
367bb1b2d09SEugene Zelenko 
368554dcd8cSDaniel Berlin struct UpwardsMemoryQuery {
369554dcd8cSDaniel Berlin   // True if our original query started off as a call
370bb1b2d09SEugene Zelenko   bool IsCall = false;
371554dcd8cSDaniel Berlin   // The pointer location we started the query with. This will be empty if
372554dcd8cSDaniel Berlin   // IsCall is true.
373554dcd8cSDaniel Berlin   MemoryLocation StartingLoc;
374554dcd8cSDaniel Berlin   // This is the instruction we were querying about.
375bb1b2d09SEugene Zelenko   const Instruction *Inst = nullptr;
376554dcd8cSDaniel Berlin   // The MemoryAccess we actually got called with, used to test local domination
377bb1b2d09SEugene Zelenko   const MemoryAccess *OriginalAccess = nullptr;
378c1a88e00Sdfukalov   Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias);
379f7230204SAlina Sbirlea   bool SkipSelfAccess = false;
380554dcd8cSDaniel Berlin 
381bb1b2d09SEugene Zelenko   UpwardsMemoryQuery() = default;
382554dcd8cSDaniel Berlin 
UpwardsMemoryQuery__anonca596e530511::UpwardsMemoryQuery383554dcd8cSDaniel Berlin   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
384363ac683SChandler Carruth       : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
385554dcd8cSDaniel Berlin     if (!IsCall)
386554dcd8cSDaniel Berlin       StartingLoc = MemoryLocation::get(Inst);
387554dcd8cSDaniel Berlin   }
388554dcd8cSDaniel Berlin };
389554dcd8cSDaniel Berlin 
390bb1b2d09SEugene Zelenko } // end anonymous namespace
391bb1b2d09SEugene Zelenko 
392bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType & AA,const Instruction * I)393bfc779e4SAlina Sbirlea static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
394554dcd8cSDaniel Berlin                                                    const Instruction *I) {
395554dcd8cSDaniel Berlin   // If the memory can't be changed, then loads of the memory can't be
396554dcd8cSDaniel Berlin   // clobbered.
397393b9e9dSNikita Popov   if (auto *LI = dyn_cast<LoadInst>(I))
398393b9e9dSNikita Popov     return I->hasMetadata(LLVMContext::MD_invariant_load) ||
399393b9e9dSNikita Popov            AA.pointsToConstantMemory(MemoryLocation::get(LI));
400393b9e9dSNikita Popov   return false;
401554dcd8cSDaniel Berlin }
402554dcd8cSDaniel Berlin 
403554dcd8cSDaniel Berlin /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
404554dcd8cSDaniel Berlin /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
405554dcd8cSDaniel Berlin ///
406554dcd8cSDaniel Berlin /// This is meant to be as simple and self-contained as possible. Because it
407554dcd8cSDaniel Berlin /// uses no cache, etc., it can be relatively expensive.
408554dcd8cSDaniel Berlin ///
409554dcd8cSDaniel Berlin /// \param Start     The MemoryAccess that we want to walk from.
410554dcd8cSDaniel Berlin /// \param ClobberAt A clobber for Start.
411554dcd8cSDaniel Berlin /// \param StartLoc  The MemoryLocation for Start.
412f5403d83SAlina Sbirlea /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
413554dcd8cSDaniel Berlin /// \param Query     The UpwardsMemoryQuery we used for our search.
414554dcd8cSDaniel Berlin /// \param AA        The AliasAnalysis we used for our search.
41565f385daSAlina Sbirlea /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
416bfc779e4SAlina Sbirlea 
417bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
418d77edc00SAlina Sbirlea LLVM_ATTRIBUTE_UNUSED static void
checkClobberSanity(const MemoryAccess * Start,MemoryAccess * ClobberAt,const MemoryLocation & StartLoc,const MemorySSA & MSSA,const UpwardsMemoryQuery & Query,AliasAnalysisType & AA,bool AllowImpreciseClobber=false)419f5403d83SAlina Sbirlea checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
420554dcd8cSDaniel Berlin                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
421bfc779e4SAlina Sbirlea                    const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
42265f385daSAlina Sbirlea                    bool AllowImpreciseClobber = false) {
423554dcd8cSDaniel Berlin   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
424554dcd8cSDaniel Berlin 
425554dcd8cSDaniel Berlin   if (MSSA.isLiveOnEntryDef(Start)) {
426554dcd8cSDaniel Berlin     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
427554dcd8cSDaniel Berlin            "liveOnEntry must clobber itself");
428554dcd8cSDaniel Berlin     return;
429554dcd8cSDaniel Berlin   }
430554dcd8cSDaniel Berlin 
431554dcd8cSDaniel Berlin   bool FoundClobber = false;
432f5403d83SAlina Sbirlea   DenseSet<ConstMemoryAccessPair> VisitedPhis;
433f5403d83SAlina Sbirlea   SmallVector<ConstMemoryAccessPair, 8> Worklist;
434554dcd8cSDaniel Berlin   Worklist.emplace_back(Start, StartLoc);
435554dcd8cSDaniel Berlin   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
436554dcd8cSDaniel Berlin   // is found, complain.
437554dcd8cSDaniel Berlin   while (!Worklist.empty()) {
438f5403d83SAlina Sbirlea     auto MAP = Worklist.pop_back_val();
439554dcd8cSDaniel Berlin     // All we care about is that nothing from Start to ClobberAt clobbers Start.
440554dcd8cSDaniel Berlin     // We learn nothing from revisiting nodes.
441554dcd8cSDaniel Berlin     if (!VisitedPhis.insert(MAP).second)
442554dcd8cSDaniel Berlin       continue;
443554dcd8cSDaniel Berlin 
444f5403d83SAlina Sbirlea     for (const auto *MA : def_chain(MAP.first)) {
445554dcd8cSDaniel Berlin       if (MA == ClobberAt) {
446f5403d83SAlina Sbirlea         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
447554dcd8cSDaniel Berlin           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
448554dcd8cSDaniel Berlin           // since it won't let us short-circuit.
449554dcd8cSDaniel Berlin           //
450554dcd8cSDaniel Berlin           // Also, note that this can't be hoisted out of the `Worklist` loop,
451554dcd8cSDaniel Berlin           // since MD may only act as a clobber for 1 of N MemoryLocations.
452d90c9f4aSAlina Sbirlea           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
453d90c9f4aSAlina Sbirlea           if (!FoundClobber) {
454d90c9f4aSAlina Sbirlea             ClobberAlias CA =
455554dcd8cSDaniel Berlin                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
456d90c9f4aSAlina Sbirlea             if (CA.IsClobber) {
457d90c9f4aSAlina Sbirlea               FoundClobber = true;
458d90c9f4aSAlina Sbirlea               // Not used: CA.AR;
459d90c9f4aSAlina Sbirlea             }
460d90c9f4aSAlina Sbirlea           }
461554dcd8cSDaniel Berlin         }
462554dcd8cSDaniel Berlin         break;
463554dcd8cSDaniel Berlin       }
464554dcd8cSDaniel Berlin 
465554dcd8cSDaniel Berlin       // We should never hit liveOnEntry, unless it's the clobber.
466554dcd8cSDaniel Berlin       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
467554dcd8cSDaniel Berlin 
4685bce4d5aSAlina Sbirlea       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
469f5403d83SAlina Sbirlea         // If Start is a Def, skip self.
4705bce4d5aSAlina Sbirlea         if (MD == Start)
471f5403d83SAlina Sbirlea           continue;
472f5403d83SAlina Sbirlea 
473d90c9f4aSAlina Sbirlea         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
474d90c9f4aSAlina Sbirlea                     .IsClobber &&
475554dcd8cSDaniel Berlin                "Found clobber before reaching ClobberAt!");
476554dcd8cSDaniel Berlin         continue;
477554dcd8cSDaniel Berlin       }
478554dcd8cSDaniel Berlin 
4795bce4d5aSAlina Sbirlea       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
4806edcc9eeSAlina Sbirlea         (void)MU;
4815bce4d5aSAlina Sbirlea         assert (MU == Start &&
4825bce4d5aSAlina Sbirlea                 "Can only find use in def chain if Start is a use");
4835bce4d5aSAlina Sbirlea         continue;
4845bce4d5aSAlina Sbirlea       }
4855bce4d5aSAlina Sbirlea 
486554dcd8cSDaniel Berlin       assert(isa<MemoryPhi>(MA));
487dc971381SAlina Sbirlea 
488dc971381SAlina Sbirlea       // Add reachable phi predecessors
489dc971381SAlina Sbirlea       for (auto ItB = upward_defs_begin(
490dc971381SAlina Sbirlea                     {const_cast<MemoryAccess *>(MA), MAP.second},
491161ccfe5SAlina Sbirlea                     MSSA.getDomTree()),
492dc971381SAlina Sbirlea                 ItE = upward_defs_end();
493dc971381SAlina Sbirlea            ItB != ItE; ++ItB)
494dc971381SAlina Sbirlea         if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
495dc971381SAlina Sbirlea           Worklist.emplace_back(*ItB);
496554dcd8cSDaniel Berlin     }
497554dcd8cSDaniel Berlin   }
498554dcd8cSDaniel Berlin 
49965f385daSAlina Sbirlea   // If the verify is done following an optimization, it's possible that
50065f385daSAlina Sbirlea   // ClobberAt was a conservative clobbering, that we can now infer is not a
50165f385daSAlina Sbirlea   // true clobbering access. Don't fail the verify if that's the case.
50265f385daSAlina Sbirlea   // We do have accesses that claim they're optimized, but could be optimized
50365f385daSAlina Sbirlea   // further. Updating all these can be expensive, so allow it for now (FIXME).
50465f385daSAlina Sbirlea   if (AllowImpreciseClobber)
50565f385daSAlina Sbirlea     return;
50665f385daSAlina Sbirlea 
507554dcd8cSDaniel Berlin   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
508554dcd8cSDaniel Berlin   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
509554dcd8cSDaniel Berlin   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
510554dcd8cSDaniel Berlin          "ClobberAt never acted as a clobber");
511554dcd8cSDaniel Berlin }
512554dcd8cSDaniel Berlin 
513bb1b2d09SEugene Zelenko namespace {
514bb1b2d09SEugene Zelenko 
515554dcd8cSDaniel Berlin /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
516554dcd8cSDaniel Berlin /// in one class.
517bfc779e4SAlina Sbirlea template <class AliasAnalysisType> class ClobberWalker {
518554dcd8cSDaniel Berlin   /// Save a few bytes by using unsigned instead of size_t.
519554dcd8cSDaniel Berlin   using ListIndex = unsigned;
520554dcd8cSDaniel Berlin 
521554dcd8cSDaniel Berlin   /// Represents a span of contiguous MemoryDefs, potentially ending in a
522554dcd8cSDaniel Berlin   /// MemoryPhi.
523554dcd8cSDaniel Berlin   struct DefPath {
524554dcd8cSDaniel Berlin     MemoryLocation Loc;
525554dcd8cSDaniel Berlin     // Note that, because we always walk in reverse, Last will always dominate
526554dcd8cSDaniel Berlin     // First. Also note that First and Last are inclusive.
527554dcd8cSDaniel Berlin     MemoryAccess *First;
528554dcd8cSDaniel Berlin     MemoryAccess *Last;
529554dcd8cSDaniel Berlin     Optional<ListIndex> Previous;
530554dcd8cSDaniel Berlin 
DefPath__anonca596e530611::ClobberWalker::DefPath531554dcd8cSDaniel Berlin     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
532554dcd8cSDaniel Berlin             Optional<ListIndex> Previous)
533554dcd8cSDaniel Berlin         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
534554dcd8cSDaniel Berlin 
DefPath__anonca596e530611::ClobberWalker::DefPath535554dcd8cSDaniel Berlin     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
536554dcd8cSDaniel Berlin             Optional<ListIndex> Previous)
537554dcd8cSDaniel Berlin         : DefPath(Loc, Init, Init, Previous) {}
538554dcd8cSDaniel Berlin   };
539554dcd8cSDaniel Berlin 
540554dcd8cSDaniel Berlin   const MemorySSA &MSSA;
541bfc779e4SAlina Sbirlea   AliasAnalysisType &AA;
542554dcd8cSDaniel Berlin   DominatorTree &DT;
543554dcd8cSDaniel Berlin   UpwardsMemoryQuery *Query;
544f085cc5aSAlina Sbirlea   unsigned *UpwardWalkLimit;
545554dcd8cSDaniel Berlin 
5461ce82015SAlina Sbirlea   // Phi optimization bookkeeping:
5471ce82015SAlina Sbirlea   // List of DefPath to process during the current phi optimization walk.
548554dcd8cSDaniel Berlin   SmallVector<DefPath, 32> Paths;
5491ce82015SAlina Sbirlea   // List of visited <Access, Location> pairs; we can skip paths already
5501ce82015SAlina Sbirlea   // visited with the same memory location.
551554dcd8cSDaniel Berlin   DenseSet<ConstMemoryAccessPair> VisitedPhis;
5521ce82015SAlina Sbirlea   // Record if phi translation has been performed during the current phi
5531ce82015SAlina Sbirlea   // optimization walk, as merging alias results after phi translation can
5541ce82015SAlina Sbirlea   // yield incorrect results. Context in PR46156.
5551ce82015SAlina Sbirlea   bool PerformedPhiTranslation = false;
556554dcd8cSDaniel Berlin 
557554dcd8cSDaniel Berlin   /// Find the nearest def or phi that `From` can legally be optimized to.
getWalkTarget(const MemoryPhi * From) const558554dcd8cSDaniel Berlin   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
559554dcd8cSDaniel Berlin     assert(From->getNumOperands() && "Phi with no operands?");
560554dcd8cSDaniel Berlin 
561554dcd8cSDaniel Berlin     BasicBlock *BB = From->getBlock();
562554dcd8cSDaniel Berlin     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
563554dcd8cSDaniel Berlin     DomTreeNode *Node = DT.getNode(BB);
564554dcd8cSDaniel Berlin     while ((Node = Node->getIDom())) {
565554dcd8cSDaniel Berlin       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
566554dcd8cSDaniel Berlin       if (Defs)
567554dcd8cSDaniel Berlin         return &*Defs->rbegin();
568554dcd8cSDaniel Berlin     }
569554dcd8cSDaniel Berlin     return Result;
570554dcd8cSDaniel Berlin   }
571554dcd8cSDaniel Berlin 
572554dcd8cSDaniel Berlin   /// Result of calling walkToPhiOrClobber.
573554dcd8cSDaniel Berlin   struct UpwardsWalkResult {
574554dcd8cSDaniel Berlin     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
575d90c9f4aSAlina Sbirlea     /// both. Include alias info when clobber found.
576554dcd8cSDaniel Berlin     MemoryAccess *Result;
577554dcd8cSDaniel Berlin     bool IsKnownClobber;
578d90c9f4aSAlina Sbirlea     Optional<AliasResult> AR;
579554dcd8cSDaniel Berlin   };
580554dcd8cSDaniel Berlin 
581554dcd8cSDaniel Berlin   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
582554dcd8cSDaniel Berlin   /// This will update Desc.Last as it walks. It will (optionally) also stop at
583554dcd8cSDaniel Berlin   /// StopAt.
584554dcd8cSDaniel Berlin   ///
585554dcd8cSDaniel Berlin   /// This does not test for whether StopAt is a clobber
586554dcd8cSDaniel Berlin   UpwardsWalkResult
walkToPhiOrClobber(DefPath & Desc,const MemoryAccess * StopAt=nullptr,const MemoryAccess * SkipStopAt=nullptr) const587f7230204SAlina Sbirlea   walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
588f7230204SAlina Sbirlea                      const MemoryAccess *SkipStopAt = nullptr) const {
589554dcd8cSDaniel Berlin     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
590c8d6e049SAlina Sbirlea     assert(UpwardWalkLimit && "Need a valid walk limit");
59157769382SAlina Sbirlea     bool LimitAlreadyReached = false;
59257769382SAlina Sbirlea     // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
59357769382SAlina Sbirlea     // it to 1. This will not do any alias() calls. It either returns in the
59457769382SAlina Sbirlea     // first iteration in the loop below, or is set back to 0 if all def chains
59557769382SAlina Sbirlea     // are free of MemoryDefs.
59657769382SAlina Sbirlea     if (!*UpwardWalkLimit) {
59757769382SAlina Sbirlea       *UpwardWalkLimit = 1;
59857769382SAlina Sbirlea       LimitAlreadyReached = true;
59957769382SAlina Sbirlea     }
600554dcd8cSDaniel Berlin 
601554dcd8cSDaniel Berlin     for (MemoryAccess *Current : def_chain(Desc.Last)) {
602554dcd8cSDaniel Berlin       Desc.Last = Current;
603f7230204SAlina Sbirlea       if (Current == StopAt || Current == SkipStopAt)
604c1a88e00Sdfukalov         return {Current, false, AliasResult(AliasResult::MayAlias)};
605554dcd8cSDaniel Berlin 
606d90c9f4aSAlina Sbirlea       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
607d90c9f4aSAlina Sbirlea         if (MSSA.isLiveOnEntryDef(MD))
608c1a88e00Sdfukalov           return {MD, true, AliasResult(AliasResult::MustAlias)};
609f085cc5aSAlina Sbirlea 
610f085cc5aSAlina Sbirlea         if (!--*UpwardWalkLimit)
611c1a88e00Sdfukalov           return {Current, true, AliasResult(AliasResult::MayAlias)};
612f085cc5aSAlina Sbirlea 
613d90c9f4aSAlina Sbirlea         ClobberAlias CA =
614d90c9f4aSAlina Sbirlea             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
615d90c9f4aSAlina Sbirlea         if (CA.IsClobber)
616d90c9f4aSAlina Sbirlea           return {MD, true, CA.AR};
617d90c9f4aSAlina Sbirlea       }
618554dcd8cSDaniel Berlin     }
619554dcd8cSDaniel Berlin 
62057769382SAlina Sbirlea     if (LimitAlreadyReached)
62157769382SAlina Sbirlea       *UpwardWalkLimit = 0;
62257769382SAlina Sbirlea 
623554dcd8cSDaniel Berlin     assert(isa<MemoryPhi>(Desc.Last) &&
624554dcd8cSDaniel Berlin            "Ended at a non-clobber that's not a phi?");
625c1a88e00Sdfukalov     return {Desc.Last, false, AliasResult(AliasResult::MayAlias)};
626554dcd8cSDaniel Berlin   }
627554dcd8cSDaniel Berlin 
addSearches(MemoryPhi * Phi,SmallVectorImpl<ListIndex> & PausedSearches,ListIndex PriorNode)628554dcd8cSDaniel Berlin   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
629554dcd8cSDaniel Berlin                    ListIndex PriorNode) {
630c4f1b314SFlorian Hahn     auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT,
631c4f1b314SFlorian Hahn                                              &PerformedPhiTranslation);
6321ce82015SAlina Sbirlea     auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
633554dcd8cSDaniel Berlin     for (const MemoryAccessPair &P : UpwardDefs) {
634554dcd8cSDaniel Berlin       PausedSearches.push_back(Paths.size());
635554dcd8cSDaniel Berlin       Paths.emplace_back(P.second, P.first, PriorNode);
636554dcd8cSDaniel Berlin     }
637554dcd8cSDaniel Berlin   }
638554dcd8cSDaniel Berlin 
639554dcd8cSDaniel Berlin   /// Represents a search that terminated after finding a clobber. This clobber
640554dcd8cSDaniel Berlin   /// may or may not be present in the path of defs from LastNode..SearchStart,
641554dcd8cSDaniel Berlin   /// since it may have been retrieved from cache.
642554dcd8cSDaniel Berlin   struct TerminatedPath {
643554dcd8cSDaniel Berlin     MemoryAccess *Clobber;
644554dcd8cSDaniel Berlin     ListIndex LastNode;
645554dcd8cSDaniel Berlin   };
646554dcd8cSDaniel Berlin 
647554dcd8cSDaniel Berlin   /// Get an access that keeps us from optimizing to the given phi.
648554dcd8cSDaniel Berlin   ///
649554dcd8cSDaniel Berlin   /// PausedSearches is an array of indices into the Paths array. Its incoming
650554dcd8cSDaniel Berlin   /// value is the indices of searches that stopped at the last phi optimization
651554dcd8cSDaniel Berlin   /// target. It's left in an unspecified state.
652554dcd8cSDaniel Berlin   ///
653554dcd8cSDaniel Berlin   /// If this returns None, NewPaused is a vector of searches that terminated
654554dcd8cSDaniel Berlin   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
655554dcd8cSDaniel Berlin   Optional<TerminatedPath>
getBlockingAccess(const MemoryAccess * StopWhere,SmallVectorImpl<ListIndex> & PausedSearches,SmallVectorImpl<ListIndex> & NewPaused,SmallVectorImpl<TerminatedPath> & Terminated)656554dcd8cSDaniel Berlin   getBlockingAccess(const MemoryAccess *StopWhere,
657554dcd8cSDaniel Berlin                     SmallVectorImpl<ListIndex> &PausedSearches,
658554dcd8cSDaniel Berlin                     SmallVectorImpl<ListIndex> &NewPaused,
659554dcd8cSDaniel Berlin                     SmallVectorImpl<TerminatedPath> &Terminated) {
660554dcd8cSDaniel Berlin     assert(!PausedSearches.empty() && "No searches to continue?");
661554dcd8cSDaniel Berlin 
662554dcd8cSDaniel Berlin     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
663554dcd8cSDaniel Berlin     // PausedSearches as our stack.
664554dcd8cSDaniel Berlin     while (!PausedSearches.empty()) {
665554dcd8cSDaniel Berlin       ListIndex PathIndex = PausedSearches.pop_back_val();
666554dcd8cSDaniel Berlin       DefPath &Node = Paths[PathIndex];
667554dcd8cSDaniel Berlin 
668554dcd8cSDaniel Berlin       // If we've already visited this path with this MemoryLocation, we don't
669554dcd8cSDaniel Berlin       // need to do so again.
670554dcd8cSDaniel Berlin       //
671554dcd8cSDaniel Berlin       // NOTE: That we just drop these paths on the ground makes caching
672554dcd8cSDaniel Berlin       // behavior sporadic. e.g. given a diamond:
673554dcd8cSDaniel Berlin       //  A
674554dcd8cSDaniel Berlin       // B C
675554dcd8cSDaniel Berlin       //  D
676554dcd8cSDaniel Berlin       //
677554dcd8cSDaniel Berlin       // ...If we walk D, B, A, C, we'll only cache the result of phi
678554dcd8cSDaniel Berlin       // optimization for A, B, and D; C will be skipped because it dies here.
679554dcd8cSDaniel Berlin       // This arguably isn't the worst thing ever, since:
680554dcd8cSDaniel Berlin       //   - We generally query things in a top-down order, so if we got below D
681554dcd8cSDaniel Berlin       //     without needing cache entries for {C, MemLoc}, then chances are
682554dcd8cSDaniel Berlin       //     that those cache entries would end up ultimately unused.
683554dcd8cSDaniel Berlin       //   - We still cache things for A, so C only needs to walk up a bit.
684554dcd8cSDaniel Berlin       // If this behavior becomes problematic, we can fix without a ton of extra
685554dcd8cSDaniel Berlin       // work.
6861ce82015SAlina Sbirlea       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) {
6871ce82015SAlina Sbirlea         if (PerformedPhiTranslation) {
6881ce82015SAlina Sbirlea           // If visiting this path performed Phi translation, don't continue,
6891ce82015SAlina Sbirlea           // since it may not be correct to merge results from two paths if one
6901ce82015SAlina Sbirlea           // relies on the phi translation.
6911ce82015SAlina Sbirlea           TerminatedPath Term{Node.Last, PathIndex};
6921ce82015SAlina Sbirlea           return Term;
6931ce82015SAlina Sbirlea         }
694554dcd8cSDaniel Berlin         continue;
6951ce82015SAlina Sbirlea       }
696554dcd8cSDaniel Berlin 
697f7230204SAlina Sbirlea       const MemoryAccess *SkipStopWhere = nullptr;
698f7230204SAlina Sbirlea       if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
699f7230204SAlina Sbirlea         assert(isa<MemoryDef>(Query->OriginalAccess));
700f7230204SAlina Sbirlea         SkipStopWhere = Query->OriginalAccess;
701f7230204SAlina Sbirlea       }
702f7230204SAlina Sbirlea 
703f085cc5aSAlina Sbirlea       UpwardsWalkResult Res = walkToPhiOrClobber(Node,
704f085cc5aSAlina Sbirlea                                                  /*StopAt=*/StopWhere,
705f7230204SAlina Sbirlea                                                  /*SkipStopAt=*/SkipStopWhere);
706554dcd8cSDaniel Berlin       if (Res.IsKnownClobber) {
707f7230204SAlina Sbirlea         assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
708f085cc5aSAlina Sbirlea 
709554dcd8cSDaniel Berlin         // If this wasn't a cache hit, we hit a clobber when walking. That's a
710554dcd8cSDaniel Berlin         // failure.
711554dcd8cSDaniel Berlin         TerminatedPath Term{Res.Result, PathIndex};
712554dcd8cSDaniel Berlin         if (!MSSA.dominates(Res.Result, StopWhere))
713554dcd8cSDaniel Berlin           return Term;
714554dcd8cSDaniel Berlin 
715554dcd8cSDaniel Berlin         // Otherwise, it's a valid thing to potentially optimize to.
716554dcd8cSDaniel Berlin         Terminated.push_back(Term);
717554dcd8cSDaniel Berlin         continue;
718554dcd8cSDaniel Berlin       }
719554dcd8cSDaniel Berlin 
720f7230204SAlina Sbirlea       if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
721554dcd8cSDaniel Berlin         // We've hit our target. Save this path off for if we want to continue
722f7230204SAlina Sbirlea         // walking. If we are in the mode of skipping the OriginalAccess, and
723f7230204SAlina Sbirlea         // we've reached back to the OriginalAccess, do not save path, we've
724f7230204SAlina Sbirlea         // just looped back to self.
725f7230204SAlina Sbirlea         if (Res.Result != SkipStopWhere)
726554dcd8cSDaniel Berlin           NewPaused.push_back(PathIndex);
727554dcd8cSDaniel Berlin         continue;
728554dcd8cSDaniel Berlin       }
729554dcd8cSDaniel Berlin 
730554dcd8cSDaniel Berlin       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
731554dcd8cSDaniel Berlin       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
732554dcd8cSDaniel Berlin     }
733554dcd8cSDaniel Berlin 
734554dcd8cSDaniel Berlin     return None;
735554dcd8cSDaniel Berlin   }
736554dcd8cSDaniel Berlin 
737554dcd8cSDaniel Berlin   template <typename T, typename Walker>
738554dcd8cSDaniel Berlin   struct generic_def_path_iterator
739554dcd8cSDaniel Berlin       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
740554dcd8cSDaniel Berlin                                     std::forward_iterator_tag, T *> {
7413a3cb929SKazu Hirata     generic_def_path_iterator() = default;
generic_def_path_iterator__anonca596e530611::ClobberWalker::generic_def_path_iterator742554dcd8cSDaniel Berlin     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
743554dcd8cSDaniel Berlin 
operator *__anonca596e530611::ClobberWalker::generic_def_path_iterator744554dcd8cSDaniel Berlin     T &operator*() const { return curNode(); }
745554dcd8cSDaniel Berlin 
operator ++__anonca596e530611::ClobberWalker::generic_def_path_iterator746554dcd8cSDaniel Berlin     generic_def_path_iterator &operator++() {
747554dcd8cSDaniel Berlin       N = curNode().Previous;
748554dcd8cSDaniel Berlin       return *this;
749554dcd8cSDaniel Berlin     }
750554dcd8cSDaniel Berlin 
operator ==__anonca596e530611::ClobberWalker::generic_def_path_iterator751554dcd8cSDaniel Berlin     bool operator==(const generic_def_path_iterator &O) const {
752*a81b64a1SKazu Hirata       if (N.has_value() != O.N.has_value())
753554dcd8cSDaniel Berlin         return false;
754a7938c74SKazu Hirata       return !N || *N == *O.N;
755554dcd8cSDaniel Berlin     }
756554dcd8cSDaniel Berlin 
757554dcd8cSDaniel Berlin   private:
curNode__anonca596e530611::ClobberWalker::generic_def_path_iterator758554dcd8cSDaniel Berlin     T &curNode() const { return W->Paths[*N]; }
759554dcd8cSDaniel Berlin 
760bb1b2d09SEugene Zelenko     Walker *W = nullptr;
761bb1b2d09SEugene Zelenko     Optional<ListIndex> N = None;
762554dcd8cSDaniel Berlin   };
763554dcd8cSDaniel Berlin 
764554dcd8cSDaniel Berlin   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
765554dcd8cSDaniel Berlin   using const_def_path_iterator =
766554dcd8cSDaniel Berlin       generic_def_path_iterator<const DefPath, const ClobberWalker>;
767554dcd8cSDaniel Berlin 
def_path(ListIndex From)768554dcd8cSDaniel Berlin   iterator_range<def_path_iterator> def_path(ListIndex From) {
769554dcd8cSDaniel Berlin     return make_range(def_path_iterator(this, From), def_path_iterator());
770554dcd8cSDaniel Berlin   }
771554dcd8cSDaniel Berlin 
const_def_path(ListIndex From) const772554dcd8cSDaniel Berlin   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
773554dcd8cSDaniel Berlin     return make_range(const_def_path_iterator(this, From),
774554dcd8cSDaniel Berlin                       const_def_path_iterator());
775554dcd8cSDaniel Berlin   }
776554dcd8cSDaniel Berlin 
777554dcd8cSDaniel Berlin   struct OptznResult {
778554dcd8cSDaniel Berlin     /// The path that contains our result.
779554dcd8cSDaniel Berlin     TerminatedPath PrimaryClobber;
780554dcd8cSDaniel Berlin     /// The paths that we can legally cache back from, but that aren't
781554dcd8cSDaniel Berlin     /// necessarily the result of the Phi optimization.
782554dcd8cSDaniel Berlin     SmallVector<TerminatedPath, 4> OtherClobbers;
783554dcd8cSDaniel Berlin   };
784554dcd8cSDaniel Berlin 
defPathIndex(const DefPath & N) const785554dcd8cSDaniel Berlin   ListIndex defPathIndex(const DefPath &N) const {
786554dcd8cSDaniel Berlin     // The assert looks nicer if we don't need to do &N
787554dcd8cSDaniel Berlin     const DefPath *NP = &N;
788554dcd8cSDaniel Berlin     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
789554dcd8cSDaniel Berlin            "Out of bounds DefPath!");
790554dcd8cSDaniel Berlin     return NP - &Paths.front();
791554dcd8cSDaniel Berlin   }
792554dcd8cSDaniel Berlin 
793554dcd8cSDaniel Berlin   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
794554dcd8cSDaniel Berlin   /// that act as legal clobbers. Note that this won't return *all* clobbers.
795554dcd8cSDaniel Berlin   ///
796554dcd8cSDaniel Berlin   /// Phi optimization algorithm tl;dr:
797554dcd8cSDaniel Berlin   ///   - Find the earliest def/phi, A, we can optimize to
798554dcd8cSDaniel Berlin   ///   - Find if all paths from the starting memory access ultimately reach A
799554dcd8cSDaniel Berlin   ///     - If not, optimization isn't possible.
800554dcd8cSDaniel Berlin   ///     - Otherwise, walk from A to another clobber or phi, A'.
801554dcd8cSDaniel Berlin   ///       - If A' is a def, we're done.
802554dcd8cSDaniel Berlin   ///       - If A' is a phi, try to optimize it.
803554dcd8cSDaniel Berlin   ///
804554dcd8cSDaniel Berlin   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
805554dcd8cSDaniel Berlin   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
tryOptimizePhi(MemoryPhi * Phi,MemoryAccess * Start,const MemoryLocation & Loc)806554dcd8cSDaniel Berlin   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
807554dcd8cSDaniel Berlin                              const MemoryLocation &Loc) {
8081ce82015SAlina Sbirlea     assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation &&
809554dcd8cSDaniel Berlin            "Reset the optimization state.");
810554dcd8cSDaniel Berlin 
811554dcd8cSDaniel Berlin     Paths.emplace_back(Loc, Start, Phi, None);
812554dcd8cSDaniel Berlin     // Stores how many "valid" optimization nodes we had prior to calling
813554dcd8cSDaniel Berlin     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
814554dcd8cSDaniel Berlin     auto PriorPathsSize = Paths.size();
815554dcd8cSDaniel Berlin 
816554dcd8cSDaniel Berlin     SmallVector<ListIndex, 16> PausedSearches;
817554dcd8cSDaniel Berlin     SmallVector<ListIndex, 8> NewPaused;
818554dcd8cSDaniel Berlin     SmallVector<TerminatedPath, 4> TerminatedPaths;
819554dcd8cSDaniel Berlin 
820554dcd8cSDaniel Berlin     addSearches(Phi, PausedSearches, 0);
821554dcd8cSDaniel Berlin 
822554dcd8cSDaniel Berlin     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
823554dcd8cSDaniel Berlin     // Paths.
824554dcd8cSDaniel Berlin     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
825554dcd8cSDaniel Berlin       assert(!Paths.empty() && "Need a path to move");
826554dcd8cSDaniel Berlin       auto Dom = Paths.begin();
827554dcd8cSDaniel Berlin       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
828554dcd8cSDaniel Berlin         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
829554dcd8cSDaniel Berlin           Dom = I;
830554dcd8cSDaniel Berlin       auto Last = Paths.end() - 1;
831554dcd8cSDaniel Berlin       if (Last != Dom)
832554dcd8cSDaniel Berlin         std::iter_swap(Last, Dom);
833554dcd8cSDaniel Berlin     };
834554dcd8cSDaniel Berlin 
835554dcd8cSDaniel Berlin     MemoryPhi *Current = Phi;
836bb1b2d09SEugene Zelenko     while (true) {
837554dcd8cSDaniel Berlin       assert(!MSSA.isLiveOnEntryDef(Current) &&
838554dcd8cSDaniel Berlin              "liveOnEntry wasn't treated as a clobber?");
839554dcd8cSDaniel Berlin 
840554dcd8cSDaniel Berlin       const auto *Target = getWalkTarget(Current);
841554dcd8cSDaniel Berlin       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
842554dcd8cSDaniel Berlin       // optimization for the prior phi.
843554dcd8cSDaniel Berlin       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
844554dcd8cSDaniel Berlin         return MSSA.dominates(P.Clobber, Target);
845554dcd8cSDaniel Berlin       }));
846554dcd8cSDaniel Berlin 
847554dcd8cSDaniel Berlin       // FIXME: This is broken, because the Blocker may be reported to be
848554dcd8cSDaniel Berlin       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
849554dcd8cSDaniel Berlin       // For the moment, this is fine, since we do nothing with blocker info.
850554dcd8cSDaniel Berlin       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
851554dcd8cSDaniel Berlin               Target, PausedSearches, NewPaused, TerminatedPaths)) {
852554dcd8cSDaniel Berlin 
853554dcd8cSDaniel Berlin         // Find the node we started at. We can't search based on N->Last, since
854554dcd8cSDaniel Berlin         // we may have gone around a loop with a different MemoryLocation.
855554dcd8cSDaniel Berlin         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
856554dcd8cSDaniel Berlin           return defPathIndex(N) < PriorPathsSize;
857554dcd8cSDaniel Berlin         });
858554dcd8cSDaniel Berlin         assert(Iter != def_path_iterator());
859554dcd8cSDaniel Berlin 
860554dcd8cSDaniel Berlin         DefPath &CurNode = *Iter;
861554dcd8cSDaniel Berlin         assert(CurNode.Last == Current);
862554dcd8cSDaniel Berlin 
863554dcd8cSDaniel Berlin         // Two things:
864554dcd8cSDaniel Berlin         // A. We can't reliably cache all of NewPaused back. Consider a case
865554dcd8cSDaniel Berlin         //    where we have two paths in NewPaused; one of which can't optimize
866554dcd8cSDaniel Berlin         //    above this phi, whereas the other can. If we cache the second path
867554dcd8cSDaniel Berlin         //    back, we'll end up with suboptimal cache entries. We can handle
868554dcd8cSDaniel Berlin         //    cases like this a bit better when we either try to find all
869554dcd8cSDaniel Berlin         //    clobbers that block phi optimization, or when our cache starts
870554dcd8cSDaniel Berlin         //    supporting unfinished searches.
871554dcd8cSDaniel Berlin         // B. We can't reliably cache TerminatedPaths back here without doing
872554dcd8cSDaniel Berlin         //    extra checks; consider a case like:
873554dcd8cSDaniel Berlin         //       T
874554dcd8cSDaniel Berlin         //      / \
875554dcd8cSDaniel Berlin         //     D   C
876554dcd8cSDaniel Berlin         //      \ /
877554dcd8cSDaniel Berlin         //       S
878554dcd8cSDaniel Berlin         //    Where T is our target, C is a node with a clobber on it, D is a
879554dcd8cSDaniel Berlin         //    diamond (with a clobber *only* on the left or right node, N), and
880554dcd8cSDaniel Berlin         //    S is our start. Say we walk to D, through the node opposite N
881554dcd8cSDaniel Berlin         //    (read: ignoring the clobber), and see a cache entry in the top
882554dcd8cSDaniel Berlin         //    node of D. That cache entry gets put into TerminatedPaths. We then
883554dcd8cSDaniel Berlin         //    walk up to C (N is later in our worklist), find the clobber, and
884554dcd8cSDaniel Berlin         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
885554dcd8cSDaniel Berlin         //    the bottom part of D to the cached clobber, ignoring the clobber
886554dcd8cSDaniel Berlin         //    in N. Again, this problem goes away if we start tracking all
887554dcd8cSDaniel Berlin         //    blockers for a given phi optimization.
888554dcd8cSDaniel Berlin         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
889554dcd8cSDaniel Berlin         return {Result, {}};
890554dcd8cSDaniel Berlin       }
891554dcd8cSDaniel Berlin 
892554dcd8cSDaniel Berlin       // If there's nothing left to search, then all paths led to valid clobbers
893554dcd8cSDaniel Berlin       // that we got from our cache; pick the nearest to the start, and allow
894554dcd8cSDaniel Berlin       // the rest to be cached back.
895554dcd8cSDaniel Berlin       if (NewPaused.empty()) {
896554dcd8cSDaniel Berlin         MoveDominatedPathToEnd(TerminatedPaths);
897554dcd8cSDaniel Berlin         TerminatedPath Result = TerminatedPaths.pop_back_val();
898554dcd8cSDaniel Berlin         return {Result, std::move(TerminatedPaths)};
899554dcd8cSDaniel Berlin       }
900554dcd8cSDaniel Berlin 
901554dcd8cSDaniel Berlin       MemoryAccess *DefChainEnd = nullptr;
902554dcd8cSDaniel Berlin       SmallVector<TerminatedPath, 4> Clobbers;
903554dcd8cSDaniel Berlin       for (ListIndex Paused : NewPaused) {
904554dcd8cSDaniel Berlin         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
905554dcd8cSDaniel Berlin         if (WR.IsKnownClobber)
906554dcd8cSDaniel Berlin           Clobbers.push_back({WR.Result, Paused});
907554dcd8cSDaniel Berlin         else
908554dcd8cSDaniel Berlin           // Micro-opt: If we hit the end of the chain, save it.
909554dcd8cSDaniel Berlin           DefChainEnd = WR.Result;
910554dcd8cSDaniel Berlin       }
911554dcd8cSDaniel Berlin 
912554dcd8cSDaniel Berlin       if (!TerminatedPaths.empty()) {
913554dcd8cSDaniel Berlin         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
914554dcd8cSDaniel Berlin         // do it now.
915554dcd8cSDaniel Berlin         if (!DefChainEnd)
916554dcd8cSDaniel Berlin           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
917554dcd8cSDaniel Berlin             DefChainEnd = MA;
91865e11509SSimon Pilgrim         assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
919554dcd8cSDaniel Berlin 
920554dcd8cSDaniel Berlin         // If any of the terminated paths don't dominate the phi we'll try to
921554dcd8cSDaniel Berlin         // optimize, we need to figure out what they are and quit.
922554dcd8cSDaniel Berlin         const BasicBlock *ChainBB = DefChainEnd->getBlock();
923554dcd8cSDaniel Berlin         for (const TerminatedPath &TP : TerminatedPaths) {
924554dcd8cSDaniel Berlin           // Because we know that DefChainEnd is as "high" as we can go, we
925554dcd8cSDaniel Berlin           // don't need local dominance checks; BB dominance is sufficient.
926554dcd8cSDaniel Berlin           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
927554dcd8cSDaniel Berlin             Clobbers.push_back(TP);
928554dcd8cSDaniel Berlin         }
929554dcd8cSDaniel Berlin       }
930554dcd8cSDaniel Berlin 
931554dcd8cSDaniel Berlin       // If we have clobbers in the def chain, find the one closest to Current
932554dcd8cSDaniel Berlin       // and quit.
933554dcd8cSDaniel Berlin       if (!Clobbers.empty()) {
934554dcd8cSDaniel Berlin         MoveDominatedPathToEnd(Clobbers);
935554dcd8cSDaniel Berlin         TerminatedPath Result = Clobbers.pop_back_val();
936554dcd8cSDaniel Berlin         return {Result, std::move(Clobbers)};
937554dcd8cSDaniel Berlin       }
938554dcd8cSDaniel Berlin 
939554dcd8cSDaniel Berlin       assert(all_of(NewPaused,
940554dcd8cSDaniel Berlin                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
941554dcd8cSDaniel Berlin 
942554dcd8cSDaniel Berlin       // Because liveOnEntry is a clobber, this must be a phi.
943554dcd8cSDaniel Berlin       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
944554dcd8cSDaniel Berlin 
945554dcd8cSDaniel Berlin       PriorPathsSize = Paths.size();
946554dcd8cSDaniel Berlin       PausedSearches.clear();
947554dcd8cSDaniel Berlin       for (ListIndex I : NewPaused)
948554dcd8cSDaniel Berlin         addSearches(DefChainPhi, PausedSearches, I);
949554dcd8cSDaniel Berlin       NewPaused.clear();
950554dcd8cSDaniel Berlin 
951554dcd8cSDaniel Berlin       Current = DefChainPhi;
952554dcd8cSDaniel Berlin     }
953554dcd8cSDaniel Berlin   }
954554dcd8cSDaniel Berlin 
verifyOptResult(const OptznResult & R) const955554dcd8cSDaniel Berlin   void verifyOptResult(const OptznResult &R) const {
956554dcd8cSDaniel Berlin     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
957554dcd8cSDaniel Berlin       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
958554dcd8cSDaniel Berlin     }));
959554dcd8cSDaniel Berlin   }
960554dcd8cSDaniel Berlin 
resetPhiOptznState()961554dcd8cSDaniel Berlin   void resetPhiOptznState() {
962554dcd8cSDaniel Berlin     Paths.clear();
963554dcd8cSDaniel Berlin     VisitedPhis.clear();
9641ce82015SAlina Sbirlea     PerformedPhiTranslation = false;
965554dcd8cSDaniel Berlin   }
966554dcd8cSDaniel Berlin 
967554dcd8cSDaniel Berlin public:
ClobberWalker(const MemorySSA & MSSA,AliasAnalysisType & AA,DominatorTree & DT)968bfc779e4SAlina Sbirlea   ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
969554dcd8cSDaniel Berlin       : MSSA(MSSA), AA(AA), DT(DT) {}
970554dcd8cSDaniel Berlin 
getAA()971bfc779e4SAlina Sbirlea   AliasAnalysisType *getAA() { return &AA; }
972554dcd8cSDaniel Berlin   /// Finds the nearest clobber for the given query, optimizing phis if
973554dcd8cSDaniel Berlin   /// possible.
findClobber(MemoryAccess * Start,UpwardsMemoryQuery & Q,unsigned & UpWalkLimit)974f085cc5aSAlina Sbirlea   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
975f085cc5aSAlina Sbirlea                             unsigned &UpWalkLimit) {
976554dcd8cSDaniel Berlin     Query = &Q;
977f085cc5aSAlina Sbirlea     UpwardWalkLimit = &UpWalkLimit;
978f085cc5aSAlina Sbirlea     // Starting limit must be > 0.
979f085cc5aSAlina Sbirlea     if (!UpWalkLimit)
980f085cc5aSAlina Sbirlea       UpWalkLimit++;
981554dcd8cSDaniel Berlin 
982554dcd8cSDaniel Berlin     MemoryAccess *Current = Start;
983554dcd8cSDaniel Berlin     // This walker pretends uses don't exist. If we're handed one, silently grab
984554dcd8cSDaniel Berlin     // its def. (This has the nice side-effect of ensuring we never cache uses)
985554dcd8cSDaniel Berlin     if (auto *MU = dyn_cast<MemoryUse>(Start))
986554dcd8cSDaniel Berlin       Current = MU->getDefiningAccess();
987554dcd8cSDaniel Berlin 
988554dcd8cSDaniel Berlin     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
989554dcd8cSDaniel Berlin     // Fast path for the overly-common case (no crazy phi optimization
990554dcd8cSDaniel Berlin     // necessary)
991554dcd8cSDaniel Berlin     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
992554dcd8cSDaniel Berlin     MemoryAccess *Result;
993554dcd8cSDaniel Berlin     if (WalkResult.IsKnownClobber) {
994554dcd8cSDaniel Berlin       Result = WalkResult.Result;
995d90c9f4aSAlina Sbirlea       Q.AR = WalkResult.AR;
996554dcd8cSDaniel Berlin     } else {
997554dcd8cSDaniel Berlin       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
998554dcd8cSDaniel Berlin                                           Current, Q.StartingLoc);
999554dcd8cSDaniel Berlin       verifyOptResult(OptRes);
1000554dcd8cSDaniel Berlin       resetPhiOptznState();
1001554dcd8cSDaniel Berlin       Result = OptRes.PrimaryClobber.Clobber;
1002554dcd8cSDaniel Berlin     }
1003554dcd8cSDaniel Berlin 
1004554dcd8cSDaniel Berlin #ifdef EXPENSIVE_CHECKS
1005f085cc5aSAlina Sbirlea     if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
1006554dcd8cSDaniel Berlin       checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
1007554dcd8cSDaniel Berlin #endif
1008554dcd8cSDaniel Berlin     return Result;
1009554dcd8cSDaniel Berlin   }
1010554dcd8cSDaniel Berlin };
1011554dcd8cSDaniel Berlin 
1012554dcd8cSDaniel Berlin struct RenamePassData {
1013554dcd8cSDaniel Berlin   DomTreeNode *DTN;
1014554dcd8cSDaniel Berlin   DomTreeNode::const_iterator ChildIt;
1015554dcd8cSDaniel Berlin   MemoryAccess *IncomingVal;
1016554dcd8cSDaniel Berlin 
RenamePassData__anonca596e530611::RenamePassData1017554dcd8cSDaniel Berlin   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
1018554dcd8cSDaniel Berlin                  MemoryAccess *M)
1019554dcd8cSDaniel Berlin       : DTN(D), ChildIt(It), IncomingVal(M) {}
1020bb1b2d09SEugene Zelenko 
swap__anonca596e530611::RenamePassData1021554dcd8cSDaniel Berlin   void swap(RenamePassData &RHS) {
1022554dcd8cSDaniel Berlin     std::swap(DTN, RHS.DTN);
1023554dcd8cSDaniel Berlin     std::swap(ChildIt, RHS.ChildIt);
1024554dcd8cSDaniel Berlin     std::swap(IncomingVal, RHS.IncomingVal);
1025554dcd8cSDaniel Berlin   }
1026554dcd8cSDaniel Berlin };
1027bb1b2d09SEugene Zelenko 
1028bb1b2d09SEugene Zelenko } // end anonymous namespace
1029554dcd8cSDaniel Berlin 
1030554dcd8cSDaniel Berlin namespace llvm {
1031bb1b2d09SEugene Zelenko 
1032bfc779e4SAlina Sbirlea template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
1033bfc779e4SAlina Sbirlea   ClobberWalker<AliasAnalysisType> Walker;
1034bc8aa24cSAlina Sbirlea   MemorySSA *MSSA;
1035bc8aa24cSAlina Sbirlea 
1036bc8aa24cSAlina Sbirlea public:
ClobberWalkerBase(MemorySSA * M,AliasAnalysisType * A,DominatorTree * D)1037bfc779e4SAlina Sbirlea   ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
1038bc8aa24cSAlina Sbirlea       : Walker(*M, *A, *D), MSSA(M) {}
1039bc8aa24cSAlina Sbirlea 
1040bc8aa24cSAlina Sbirlea   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
1041f085cc5aSAlina Sbirlea                                               const MemoryLocation &,
1042f085cc5aSAlina Sbirlea                                               unsigned &);
1043f085cc5aSAlina Sbirlea   // Third argument (bool), defines whether the clobber search should skip the
1044bc8aa24cSAlina Sbirlea   // original queried access. If true, there will be a follow-up query searching
1045bc8aa24cSAlina Sbirlea   // for a clobber access past "self". Note that the Optimized access is not
1046bc8aa24cSAlina Sbirlea   // updated if a new clobber is found by this SkipSelf search. If this
1047bc8aa24cSAlina Sbirlea   // additional query becomes heavily used we may decide to cache the result.
1048bc8aa24cSAlina Sbirlea   // Walker instantiations will decide how to set the SkipSelf bool.
1049b493124aSArthur Eubanks   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool,
1050b493124aSArthur Eubanks                                               bool UseInvariantGroup = true);
1051bc8aa24cSAlina Sbirlea };
1052bc8aa24cSAlina Sbirlea 
10535f8f34e4SAdrian Prantl /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
105445f263ddSGeorge Burgess IV /// longer does caching on its own, but the name has been retained for the
105545f263ddSGeorge Burgess IV /// moment.
1056bfc779e4SAlina Sbirlea template <class AliasAnalysisType>
1057554dcd8cSDaniel Berlin class MemorySSA::CachingWalker final : public MemorySSAWalker {
1058bfc779e4SAlina Sbirlea   ClobberWalkerBase<AliasAnalysisType> *Walker;
1059554dcd8cSDaniel Berlin 
1060554dcd8cSDaniel Berlin public:
CachingWalker(MemorySSA * M,ClobberWalkerBase<AliasAnalysisType> * W)1061bfc779e4SAlina Sbirlea   CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1062bc8aa24cSAlina Sbirlea       : MemorySSAWalker(M), Walker(W) {}
1063bb1b2d09SEugene Zelenko   ~CachingWalker() override = default;
1064554dcd8cSDaniel Berlin 
1065554dcd8cSDaniel Berlin   using MemorySSAWalker::getClobberingMemoryAccess;
1066bb1b2d09SEugene Zelenko 
getClobberingMemoryAccess(MemoryAccess * MA,unsigned & UWL)1067f085cc5aSAlina Sbirlea   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1068f085cc5aSAlina Sbirlea     return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1069f085cc5aSAlina Sbirlea   }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc,unsigned & UWL)1070f085cc5aSAlina Sbirlea   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1071f085cc5aSAlina Sbirlea                                           const MemoryLocation &Loc,
1072f085cc5aSAlina Sbirlea                                           unsigned &UWL) {
1073f085cc5aSAlina Sbirlea     return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1074f085cc5aSAlina Sbirlea   }
1075b493124aSArthur Eubanks   // This method is not accessible outside of this file.
getClobberingMemoryAccessWithoutInvariantGroup(MemoryAccess * MA,unsigned & UWL)1076b493124aSArthur Eubanks   MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(MemoryAccess *MA,
1077b493124aSArthur Eubanks                                                                unsigned &UWL) {
1078b493124aSArthur Eubanks     return Walker->getClobberingMemoryAccessBase(MA, UWL, false, false);
1079b493124aSArthur Eubanks   }
1080f085cc5aSAlina Sbirlea 
getClobberingMemoryAccess(MemoryAccess * MA)1081bfc779e4SAlina Sbirlea   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1082f085cc5aSAlina Sbirlea     unsigned UpwardWalkLimit = MaxCheckLimit;
1083f085cc5aSAlina Sbirlea     return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1084bfc779e4SAlina Sbirlea   }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc)1085bc8aa24cSAlina Sbirlea   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1086bfc779e4SAlina Sbirlea                                           const MemoryLocation &Loc) override {
1087f085cc5aSAlina Sbirlea     unsigned UpwardWalkLimit = MaxCheckLimit;
1088f085cc5aSAlina Sbirlea     return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1089bfc779e4SAlina Sbirlea   }
1090bc8aa24cSAlina Sbirlea 
invalidateInfo(MemoryAccess * MA)1091bc8aa24cSAlina Sbirlea   void invalidateInfo(MemoryAccess *MA) override {
1092bc8aa24cSAlina Sbirlea     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1093bc8aa24cSAlina Sbirlea       MUD->resetOptimized();
1094bc8aa24cSAlina Sbirlea   }
1095554dcd8cSDaniel Berlin };
1096554dcd8cSDaniel Berlin 
1097bfc779e4SAlina Sbirlea template <class AliasAnalysisType>
109812bbb4feSAlina Sbirlea class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1099bfc779e4SAlina Sbirlea   ClobberWalkerBase<AliasAnalysisType> *Walker;
110012bbb4feSAlina Sbirlea 
110112bbb4feSAlina Sbirlea public:
SkipSelfWalker(MemorySSA * M,ClobberWalkerBase<AliasAnalysisType> * W)1102bfc779e4SAlina Sbirlea   SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
110312bbb4feSAlina Sbirlea       : MemorySSAWalker(M), Walker(W) {}
110412bbb4feSAlina Sbirlea   ~SkipSelfWalker() override = default;
110512bbb4feSAlina Sbirlea 
110612bbb4feSAlina Sbirlea   using MemorySSAWalker::getClobberingMemoryAccess;
110712bbb4feSAlina Sbirlea 
getClobberingMemoryAccess(MemoryAccess * MA,unsigned & UWL)1108f085cc5aSAlina Sbirlea   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1109f085cc5aSAlina Sbirlea     return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1110f085cc5aSAlina Sbirlea   }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc,unsigned & UWL)1111f085cc5aSAlina Sbirlea   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1112f085cc5aSAlina Sbirlea                                           const MemoryLocation &Loc,
1113f085cc5aSAlina Sbirlea                                           unsigned &UWL) {
1114f085cc5aSAlina Sbirlea     return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1115f085cc5aSAlina Sbirlea   }
1116f085cc5aSAlina Sbirlea 
getClobberingMemoryAccess(MemoryAccess * MA)1117bfc779e4SAlina Sbirlea   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1118f085cc5aSAlina Sbirlea     unsigned UpwardWalkLimit = MaxCheckLimit;
1119f085cc5aSAlina Sbirlea     return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1120bfc779e4SAlina Sbirlea   }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc)112112bbb4feSAlina Sbirlea   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1122bfc779e4SAlina Sbirlea                                           const MemoryLocation &Loc) override {
1123f085cc5aSAlina Sbirlea     unsigned UpwardWalkLimit = MaxCheckLimit;
1124f085cc5aSAlina Sbirlea     return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1125bfc779e4SAlina Sbirlea   }
112612bbb4feSAlina Sbirlea 
invalidateInfo(MemoryAccess * MA)112712bbb4feSAlina Sbirlea   void invalidateInfo(MemoryAccess *MA) override {
112812bbb4feSAlina Sbirlea     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
112912bbb4feSAlina Sbirlea       MUD->resetOptimized();
113012bbb4feSAlina Sbirlea   }
113112bbb4feSAlina Sbirlea };
113212bbb4feSAlina Sbirlea 
1133bb1b2d09SEugene Zelenko } // end namespace llvm
1134bb1b2d09SEugene Zelenko 
renameSuccessorPhis(BasicBlock * BB,MemoryAccess * IncomingVal,bool RenameAllUses)1135554dcd8cSDaniel Berlin void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1136554dcd8cSDaniel Berlin                                     bool RenameAllUses) {
1137554dcd8cSDaniel Berlin   // Pass through values to our successors
1138554dcd8cSDaniel Berlin   for (const BasicBlock *S : successors(BB)) {
1139554dcd8cSDaniel Berlin     auto It = PerBlockAccesses.find(S);
1140554dcd8cSDaniel Berlin     // Rename the phi nodes in our successor block
1141554dcd8cSDaniel Berlin     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1142554dcd8cSDaniel Berlin       continue;
1143554dcd8cSDaniel Berlin     AccessList *Accesses = It->second.get();
1144554dcd8cSDaniel Berlin     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1145554dcd8cSDaniel Berlin     if (RenameAllUses) {
11463d03769bSAlina Sbirlea       bool ReplacementDone = false;
11473d03769bSAlina Sbirlea       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
11483d03769bSAlina Sbirlea         if (Phi->getIncomingBlock(I) == BB) {
11493d03769bSAlina Sbirlea           Phi->setIncomingValue(I, IncomingVal);
11503d03769bSAlina Sbirlea           ReplacementDone = true;
11513d03769bSAlina Sbirlea         }
11523d03769bSAlina Sbirlea       (void) ReplacementDone;
11533d03769bSAlina Sbirlea       assert(ReplacementDone && "Incomplete phi during partial rename");
1154554dcd8cSDaniel Berlin     } else
1155554dcd8cSDaniel Berlin       Phi->addIncoming(IncomingVal, BB);
1156554dcd8cSDaniel Berlin   }
1157554dcd8cSDaniel Berlin }
1158554dcd8cSDaniel Berlin 
11595f8f34e4SAdrian Prantl /// Rename a single basic block into MemorySSA form.
1160554dcd8cSDaniel Berlin /// Uses the standard SSA renaming algorithm.
1161554dcd8cSDaniel Berlin /// \returns The new incoming value.
renameBlock(BasicBlock * BB,MemoryAccess * IncomingVal,bool RenameAllUses)1162554dcd8cSDaniel Berlin MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1163554dcd8cSDaniel Berlin                                      bool RenameAllUses) {
1164554dcd8cSDaniel Berlin   auto It = PerBlockAccesses.find(BB);
1165554dcd8cSDaniel Berlin   // Skip most processing if the list is empty.
1166554dcd8cSDaniel Berlin   if (It != PerBlockAccesses.end()) {
1167554dcd8cSDaniel Berlin     AccessList *Accesses = It->second.get();
1168554dcd8cSDaniel Berlin     for (MemoryAccess &L : *Accesses) {
1169554dcd8cSDaniel Berlin       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1170554dcd8cSDaniel Berlin         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1171554dcd8cSDaniel Berlin           MUD->setDefiningAccess(IncomingVal);
1172554dcd8cSDaniel Berlin         if (isa<MemoryDef>(&L))
1173554dcd8cSDaniel Berlin           IncomingVal = &L;
1174554dcd8cSDaniel Berlin       } else {
1175554dcd8cSDaniel Berlin         IncomingVal = &L;
1176554dcd8cSDaniel Berlin       }
1177554dcd8cSDaniel Berlin     }
1178554dcd8cSDaniel Berlin   }
1179554dcd8cSDaniel Berlin   return IncomingVal;
1180554dcd8cSDaniel Berlin }
1181554dcd8cSDaniel Berlin 
11825f8f34e4SAdrian Prantl /// This is the standard SSA renaming algorithm.
1183554dcd8cSDaniel Berlin ///
1184554dcd8cSDaniel Berlin /// We walk the dominator tree in preorder, renaming accesses, and then filling
1185554dcd8cSDaniel Berlin /// in phi nodes in our successors.
renamePass(DomTreeNode * Root,MemoryAccess * IncomingVal,SmallPtrSetImpl<BasicBlock * > & Visited,bool SkipVisited,bool RenameAllUses)1186554dcd8cSDaniel Berlin void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1187554dcd8cSDaniel Berlin                            SmallPtrSetImpl<BasicBlock *> &Visited,
1188554dcd8cSDaniel Berlin                            bool SkipVisited, bool RenameAllUses) {
11890363c3b8SAlina Sbirlea   assert(Root && "Trying to rename accesses in an unreachable block");
11900363c3b8SAlina Sbirlea 
1191554dcd8cSDaniel Berlin   SmallVector<RenamePassData, 32> WorkStack;
1192554dcd8cSDaniel Berlin   // Skip everything if we already renamed this block and we are skipping.
1193554dcd8cSDaniel Berlin   // Note: You can't sink this into the if, because we need it to occur
1194554dcd8cSDaniel Berlin   // regardless of whether we skip blocks or not.
1195554dcd8cSDaniel Berlin   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1196554dcd8cSDaniel Berlin   if (SkipVisited && AlreadyVisited)
1197554dcd8cSDaniel Berlin     return;
1198554dcd8cSDaniel Berlin 
1199554dcd8cSDaniel Berlin   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1200554dcd8cSDaniel Berlin   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1201554dcd8cSDaniel Berlin   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1202554dcd8cSDaniel Berlin 
1203554dcd8cSDaniel Berlin   while (!WorkStack.empty()) {
1204554dcd8cSDaniel Berlin     DomTreeNode *Node = WorkStack.back().DTN;
1205554dcd8cSDaniel Berlin     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1206554dcd8cSDaniel Berlin     IncomingVal = WorkStack.back().IncomingVal;
1207554dcd8cSDaniel Berlin 
1208554dcd8cSDaniel Berlin     if (ChildIt == Node->end()) {
1209554dcd8cSDaniel Berlin       WorkStack.pop_back();
1210554dcd8cSDaniel Berlin     } else {
1211554dcd8cSDaniel Berlin       DomTreeNode *Child = *ChildIt;
1212554dcd8cSDaniel Berlin       ++WorkStack.back().ChildIt;
1213554dcd8cSDaniel Berlin       BasicBlock *BB = Child->getBlock();
1214554dcd8cSDaniel Berlin       // Note: You can't sink this into the if, because we need it to occur
1215554dcd8cSDaniel Berlin       // regardless of whether we skip blocks or not.
1216554dcd8cSDaniel Berlin       AlreadyVisited = !Visited.insert(BB).second;
1217554dcd8cSDaniel Berlin       if (SkipVisited && AlreadyVisited) {
1218554dcd8cSDaniel Berlin         // We already visited this during our renaming, which can happen when
1219554dcd8cSDaniel Berlin         // being asked to rename multiple blocks. Figure out the incoming val,
1220554dcd8cSDaniel Berlin         // which is the last def.
1221554dcd8cSDaniel Berlin         // Incoming value can only change if there is a block def, and in that
1222554dcd8cSDaniel Berlin         // case, it's the last block def in the list.
1223554dcd8cSDaniel Berlin         if (auto *BlockDefs = getWritableBlockDefs(BB))
1224554dcd8cSDaniel Berlin           IncomingVal = &*BlockDefs->rbegin();
1225554dcd8cSDaniel Berlin       } else
1226554dcd8cSDaniel Berlin         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1227554dcd8cSDaniel Berlin       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1228554dcd8cSDaniel Berlin       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1229554dcd8cSDaniel Berlin     }
1230554dcd8cSDaniel Berlin   }
1231554dcd8cSDaniel Berlin }
1232554dcd8cSDaniel Berlin 
12335f8f34e4SAdrian Prantl /// This handles unreachable block accesses by deleting phi nodes in
1234554dcd8cSDaniel Berlin /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1235554dcd8cSDaniel Berlin /// being uses of the live on entry definition.
markUnreachableAsLiveOnEntry(BasicBlock * BB)1236554dcd8cSDaniel Berlin void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1237554dcd8cSDaniel Berlin   assert(!DT->isReachableFromEntry(BB) &&
1238554dcd8cSDaniel Berlin          "Reachable block found while handling unreachable blocks");
1239554dcd8cSDaniel Berlin 
1240554dcd8cSDaniel Berlin   // Make sure phi nodes in our reachable successors end up with a
1241554dcd8cSDaniel Berlin   // LiveOnEntryDef for our incoming edge, even though our block is forward
1242554dcd8cSDaniel Berlin   // unreachable.  We could just disconnect these blocks from the CFG fully,
1243554dcd8cSDaniel Berlin   // but we do not right now.
1244554dcd8cSDaniel Berlin   for (const BasicBlock *S : successors(BB)) {
1245554dcd8cSDaniel Berlin     if (!DT->isReachableFromEntry(S))
1246554dcd8cSDaniel Berlin       continue;
1247554dcd8cSDaniel Berlin     auto It = PerBlockAccesses.find(S);
1248554dcd8cSDaniel Berlin     // Rename the phi nodes in our successor block
1249554dcd8cSDaniel Berlin     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1250554dcd8cSDaniel Berlin       continue;
1251554dcd8cSDaniel Berlin     AccessList *Accesses = It->second.get();
1252554dcd8cSDaniel Berlin     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1253554dcd8cSDaniel Berlin     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1254554dcd8cSDaniel Berlin   }
1255554dcd8cSDaniel Berlin 
1256554dcd8cSDaniel Berlin   auto It = PerBlockAccesses.find(BB);
1257554dcd8cSDaniel Berlin   if (It == PerBlockAccesses.end())
1258554dcd8cSDaniel Berlin     return;
1259554dcd8cSDaniel Berlin 
1260554dcd8cSDaniel Berlin   auto &Accesses = It->second;
1261554dcd8cSDaniel Berlin   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1262554dcd8cSDaniel Berlin     auto Next = std::next(AI);
1263554dcd8cSDaniel Berlin     // If we have a phi, just remove it. We are going to replace all
1264554dcd8cSDaniel Berlin     // users with live on entry.
1265554dcd8cSDaniel Berlin     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1266554dcd8cSDaniel Berlin       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1267554dcd8cSDaniel Berlin     else
1268554dcd8cSDaniel Berlin       Accesses->erase(AI);
1269554dcd8cSDaniel Berlin     AI = Next;
1270554dcd8cSDaniel Berlin   }
1271554dcd8cSDaniel Berlin }
1272554dcd8cSDaniel Berlin 
MemorySSA(Function & Func,AliasAnalysis * AA,DominatorTree * DT)1273554dcd8cSDaniel Berlin MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1274b752eb88SKazu Hirata     : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1275b752eb88SKazu Hirata       SkipWalker(nullptr) {
1276bfc779e4SAlina Sbirlea   // Build MemorySSA using a batch alias analysis. This reuses the internal
1277bfc779e4SAlina Sbirlea   // state that AA collects during an alias()/getModRefInfo() call. This is
1278bfc779e4SAlina Sbirlea   // safe because there are no CFG changes while building MemorySSA and can
1279bfc779e4SAlina Sbirlea   // significantly reduce the time spent by the compiler in AA, because we will
1280bfc779e4SAlina Sbirlea   // make queries about all the instructions in the Function.
1281717965aeSDávid Bolvanský   assert(AA && "No alias analysis?");
1282bfc779e4SAlina Sbirlea   BatchAAResults BatchAA(*AA);
1283bfc779e4SAlina Sbirlea   buildMemorySSA(BatchAA);
1284bfc779e4SAlina Sbirlea   // Intentionally leave AA to nullptr while building so we don't accidently
1285bfc779e4SAlina Sbirlea   // use non-batch AliasAnalysis.
1286bfc779e4SAlina Sbirlea   this->AA = AA;
1287bfc779e4SAlina Sbirlea   // Also create the walker here.
1288bfc779e4SAlina Sbirlea   getWalker();
1289554dcd8cSDaniel Berlin }
1290554dcd8cSDaniel Berlin 
~MemorySSA()1291554dcd8cSDaniel Berlin MemorySSA::~MemorySSA() {
1292554dcd8cSDaniel Berlin   // Drop all our references
1293554dcd8cSDaniel Berlin   for (const auto &Pair : PerBlockAccesses)
1294554dcd8cSDaniel Berlin     for (MemoryAccess &MA : *Pair.second)
1295554dcd8cSDaniel Berlin       MA.dropAllReferences();
1296554dcd8cSDaniel Berlin }
1297554dcd8cSDaniel Berlin 
getOrCreateAccessList(const BasicBlock * BB)1298554dcd8cSDaniel Berlin MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1299554dcd8cSDaniel Berlin   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1300554dcd8cSDaniel Berlin 
1301554dcd8cSDaniel Berlin   if (Res.second)
13020eaee545SJonas Devlieghere     Res.first->second = std::make_unique<AccessList>();
1303554dcd8cSDaniel Berlin   return Res.first->second.get();
1304554dcd8cSDaniel Berlin }
1305bb1b2d09SEugene Zelenko 
getOrCreateDefsList(const BasicBlock * BB)1306554dcd8cSDaniel Berlin MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1307554dcd8cSDaniel Berlin   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1308554dcd8cSDaniel Berlin 
1309554dcd8cSDaniel Berlin   if (Res.second)
13100eaee545SJonas Devlieghere     Res.first->second = std::make_unique<DefsList>();
1311554dcd8cSDaniel Berlin   return Res.first->second.get();
1312554dcd8cSDaniel Berlin }
1313554dcd8cSDaniel Berlin 
1314bb1b2d09SEugene Zelenko namespace llvm {
1315bb1b2d09SEugene Zelenko 
1316554dcd8cSDaniel Berlin /// This class is a batch walker of all MemoryUse's in the program, and points
1317554dcd8cSDaniel Berlin /// their defining access at the thing that actually clobbers them.  Because it
1318554dcd8cSDaniel Berlin /// is a batch walker that touches everything, it does not operate like the
1319554dcd8cSDaniel Berlin /// other walkers.  This walker is basically performing a top-down SSA renaming
1320554dcd8cSDaniel Berlin /// pass, where the version stack is used as the cache.  This enables it to be
1321554dcd8cSDaniel Berlin /// significantly more time and memory efficient than using the regular walker,
1322554dcd8cSDaniel Berlin /// which is walking bottom-up.
1323554dcd8cSDaniel Berlin class MemorySSA::OptimizeUses {
1324554dcd8cSDaniel Berlin public:
OptimizeUses(MemorySSA * MSSA,CachingWalker<BatchAAResults> * Walker,BatchAAResults * BAA,DominatorTree * DT)1325f085cc5aSAlina Sbirlea   OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1326f085cc5aSAlina Sbirlea                BatchAAResults *BAA, DominatorTree *DT)
1327bfc779e4SAlina Sbirlea       : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1328554dcd8cSDaniel Berlin 
1329554dcd8cSDaniel Berlin   void optimizeUses();
1330554dcd8cSDaniel Berlin 
1331554dcd8cSDaniel Berlin private:
1332554dcd8cSDaniel Berlin   /// This represents where a given memorylocation is in the stack.
1333554dcd8cSDaniel Berlin   struct MemlocStackInfo {
1334554dcd8cSDaniel Berlin     // This essentially is keeping track of versions of the stack. Whenever
1335554dcd8cSDaniel Berlin     // the stack changes due to pushes or pops, these versions increase.
1336554dcd8cSDaniel Berlin     unsigned long StackEpoch;
1337554dcd8cSDaniel Berlin     unsigned long PopEpoch;
1338554dcd8cSDaniel Berlin     // This is the lower bound of places on the stack to check. It is equal to
1339554dcd8cSDaniel Berlin     // the place the last stack walk ended.
1340554dcd8cSDaniel Berlin     // Note: Correctness depends on this being initialized to 0, which densemap
1341554dcd8cSDaniel Berlin     // does
1342554dcd8cSDaniel Berlin     unsigned long LowerBound;
1343554dcd8cSDaniel Berlin     const BasicBlock *LowerBoundBlock;
1344554dcd8cSDaniel Berlin     // This is where the last walk for this memory location ended.
1345554dcd8cSDaniel Berlin     unsigned long LastKill;
1346554dcd8cSDaniel Berlin     bool LastKillValid;
1347d90c9f4aSAlina Sbirlea     Optional<AliasResult> AR;
1348554dcd8cSDaniel Berlin   };
1349bb1b2d09SEugene Zelenko 
1350554dcd8cSDaniel Berlin   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1351554dcd8cSDaniel Berlin                            SmallVectorImpl<MemoryAccess *> &,
1352554dcd8cSDaniel Berlin                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1353bb1b2d09SEugene Zelenko 
1354554dcd8cSDaniel Berlin   MemorySSA *MSSA;
1355f085cc5aSAlina Sbirlea   CachingWalker<BatchAAResults> *Walker;
1356bfc779e4SAlina Sbirlea   BatchAAResults *AA;
1357554dcd8cSDaniel Berlin   DominatorTree *DT;
1358554dcd8cSDaniel Berlin };
1359554dcd8cSDaniel Berlin 
1360bb1b2d09SEugene Zelenko } // end namespace llvm
1361bb1b2d09SEugene Zelenko 
1362554dcd8cSDaniel Berlin /// Optimize the uses in a given block This is basically the SSA renaming
1363554dcd8cSDaniel Berlin /// algorithm, with one caveat: We are able to use a single stack for all
1364554dcd8cSDaniel Berlin /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1365554dcd8cSDaniel Berlin /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1366554dcd8cSDaniel Berlin /// going to be some position in that stack of possible ones.
1367554dcd8cSDaniel Berlin ///
1368554dcd8cSDaniel Berlin /// We track the stack positions that each MemoryLocation needs
1369554dcd8cSDaniel Berlin /// to check, and last ended at.  This is because we only want to check the
1370554dcd8cSDaniel Berlin /// things that changed since last time.  The same MemoryLocation should
1371554dcd8cSDaniel Berlin /// get clobbered by the same store (getModRefInfo does not use invariantness or
1372554dcd8cSDaniel Berlin /// things like this, and if they start, we can modify MemoryLocOrCall to
1373554dcd8cSDaniel Berlin /// include relevant data)
optimizeUsesInBlock(const BasicBlock * BB,unsigned long & StackEpoch,unsigned long & PopEpoch,SmallVectorImpl<MemoryAccess * > & VersionStack,DenseMap<MemoryLocOrCall,MemlocStackInfo> & LocStackInfo)1374554dcd8cSDaniel Berlin void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1375554dcd8cSDaniel Berlin     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1376554dcd8cSDaniel Berlin     SmallVectorImpl<MemoryAccess *> &VersionStack,
1377554dcd8cSDaniel Berlin     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1378554dcd8cSDaniel Berlin 
1379554dcd8cSDaniel Berlin   /// If no accesses, nothing to do.
1380554dcd8cSDaniel Berlin   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1381554dcd8cSDaniel Berlin   if (Accesses == nullptr)
1382554dcd8cSDaniel Berlin     return;
1383554dcd8cSDaniel Berlin 
1384554dcd8cSDaniel Berlin   // Pop everything that doesn't dominate the current block off the stack,
1385554dcd8cSDaniel Berlin   // increment the PopEpoch to account for this.
1386554dcd8cSDaniel Berlin   while (true) {
1387554dcd8cSDaniel Berlin     assert(
1388554dcd8cSDaniel Berlin         !VersionStack.empty() &&
1389554dcd8cSDaniel Berlin         "Version stack should have liveOnEntry sentinel dominating everything");
1390554dcd8cSDaniel Berlin     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1391554dcd8cSDaniel Berlin     if (DT->dominates(BackBlock, BB))
1392554dcd8cSDaniel Berlin       break;
1393554dcd8cSDaniel Berlin     while (VersionStack.back()->getBlock() == BackBlock)
1394554dcd8cSDaniel Berlin       VersionStack.pop_back();
1395554dcd8cSDaniel Berlin     ++PopEpoch;
1396554dcd8cSDaniel Berlin   }
1397554dcd8cSDaniel Berlin 
1398554dcd8cSDaniel Berlin   for (MemoryAccess &MA : *Accesses) {
1399554dcd8cSDaniel Berlin     auto *MU = dyn_cast<MemoryUse>(&MA);
1400554dcd8cSDaniel Berlin     if (!MU) {
1401554dcd8cSDaniel Berlin       VersionStack.push_back(&MA);
1402554dcd8cSDaniel Berlin       ++StackEpoch;
1403554dcd8cSDaniel Berlin       continue;
1404554dcd8cSDaniel Berlin     }
1405554dcd8cSDaniel Berlin 
1406f96428e1SNikita Popov     if (MU->isOptimized())
1407f96428e1SNikita Popov       continue;
1408f96428e1SNikita Popov 
1409554dcd8cSDaniel Berlin     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1410d90c9f4aSAlina Sbirlea       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1411554dcd8cSDaniel Berlin       continue;
1412554dcd8cSDaniel Berlin     }
1413554dcd8cSDaniel Berlin 
1414554dcd8cSDaniel Berlin     MemoryLocOrCall UseMLOC(MU);
1415554dcd8cSDaniel Berlin     auto &LocInfo = LocStackInfo[UseMLOC];
1416554dcd8cSDaniel Berlin     // If the pop epoch changed, it means we've removed stuff from top of
1417554dcd8cSDaniel Berlin     // stack due to changing blocks. We may have to reset the lower bound or
1418554dcd8cSDaniel Berlin     // last kill info.
1419554dcd8cSDaniel Berlin     if (LocInfo.PopEpoch != PopEpoch) {
1420554dcd8cSDaniel Berlin       LocInfo.PopEpoch = PopEpoch;
1421554dcd8cSDaniel Berlin       LocInfo.StackEpoch = StackEpoch;
1422554dcd8cSDaniel Berlin       // If the lower bound was in something that no longer dominates us, we
1423554dcd8cSDaniel Berlin       // have to reset it.
1424554dcd8cSDaniel Berlin       // We can't simply track stack size, because the stack may have had
1425554dcd8cSDaniel Berlin       // pushes/pops in the meantime.
1426554dcd8cSDaniel Berlin       // XXX: This is non-optimal, but only is slower cases with heavily
1427554dcd8cSDaniel Berlin       // branching dominator trees.  To get the optimal number of queries would
1428554dcd8cSDaniel Berlin       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1429554dcd8cSDaniel Berlin       // the top of that stack dominates us.  This does not seem worth it ATM.
1430554dcd8cSDaniel Berlin       // A much cheaper optimization would be to always explore the deepest
1431554dcd8cSDaniel Berlin       // branch of the dominator tree first. This will guarantee this resets on
1432554dcd8cSDaniel Berlin       // the smallest set of blocks.
1433554dcd8cSDaniel Berlin       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1434554dcd8cSDaniel Berlin           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1435554dcd8cSDaniel Berlin         // Reset the lower bound of things to check.
1436554dcd8cSDaniel Berlin         // TODO: Some day we should be able to reset to last kill, rather than
1437554dcd8cSDaniel Berlin         // 0.
1438554dcd8cSDaniel Berlin         LocInfo.LowerBound = 0;
1439554dcd8cSDaniel Berlin         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1440554dcd8cSDaniel Berlin         LocInfo.LastKillValid = false;
1441554dcd8cSDaniel Berlin       }
1442554dcd8cSDaniel Berlin     } else if (LocInfo.StackEpoch != StackEpoch) {
1443554dcd8cSDaniel Berlin       // If all that has changed is the StackEpoch, we only have to check the
1444554dcd8cSDaniel Berlin       // new things on the stack, because we've checked everything before.  In
1445554dcd8cSDaniel Berlin       // this case, the lower bound of things to check remains the same.
1446554dcd8cSDaniel Berlin       LocInfo.PopEpoch = PopEpoch;
1447554dcd8cSDaniel Berlin       LocInfo.StackEpoch = StackEpoch;
1448554dcd8cSDaniel Berlin     }
1449554dcd8cSDaniel Berlin     if (!LocInfo.LastKillValid) {
1450554dcd8cSDaniel Berlin       LocInfo.LastKill = VersionStack.size() - 1;
1451554dcd8cSDaniel Berlin       LocInfo.LastKillValid = true;
1452d0660797Sdfukalov       LocInfo.AR = AliasResult::MayAlias;
1453554dcd8cSDaniel Berlin     }
1454554dcd8cSDaniel Berlin 
1455554dcd8cSDaniel Berlin     // At this point, we should have corrected last kill and LowerBound to be
1456554dcd8cSDaniel Berlin     // in bounds.
1457554dcd8cSDaniel Berlin     assert(LocInfo.LowerBound < VersionStack.size() &&
1458554dcd8cSDaniel Berlin            "Lower bound out of range");
1459554dcd8cSDaniel Berlin     assert(LocInfo.LastKill < VersionStack.size() &&
1460554dcd8cSDaniel Berlin            "Last kill info out of range");
1461554dcd8cSDaniel Berlin     // In any case, the new upper bound is the top of the stack.
1462554dcd8cSDaniel Berlin     unsigned long UpperBound = VersionStack.size() - 1;
1463554dcd8cSDaniel Berlin 
1464554dcd8cSDaniel Berlin     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1465d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1466554dcd8cSDaniel Berlin                         << *(MU->getMemoryInst()) << ")"
1467d34e60caSNicola Zaghen                         << " because there are "
1468d34e60caSNicola Zaghen                         << UpperBound - LocInfo.LowerBound
1469554dcd8cSDaniel Berlin                         << " stores to disambiguate\n");
1470554dcd8cSDaniel Berlin       // Because we did not walk, LastKill is no longer valid, as this may
1471554dcd8cSDaniel Berlin       // have been a kill.
1472554dcd8cSDaniel Berlin       LocInfo.LastKillValid = false;
1473554dcd8cSDaniel Berlin       continue;
1474554dcd8cSDaniel Berlin     }
1475554dcd8cSDaniel Berlin     bool FoundClobberResult = false;
1476f085cc5aSAlina Sbirlea     unsigned UpwardWalkLimit = MaxCheckLimit;
1477554dcd8cSDaniel Berlin     while (UpperBound > LocInfo.LowerBound) {
1478554dcd8cSDaniel Berlin       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1479b493124aSArthur Eubanks         // For phis, use the walker, see where we ended up, go there.
1480b493124aSArthur Eubanks         // The invariant.group handling in MemorySSA is ad-hoc and doesn't
1481b493124aSArthur Eubanks         // support updates, so don't use it to optimize uses.
1482f085cc5aSAlina Sbirlea         MemoryAccess *Result =
1483b493124aSArthur Eubanks             Walker->getClobberingMemoryAccessWithoutInvariantGroup(
1484b493124aSArthur Eubanks                 MU, UpwardWalkLimit);
1485b493124aSArthur Eubanks         // We are guaranteed to find it or something is wrong.
1486554dcd8cSDaniel Berlin         while (VersionStack[UpperBound] != Result) {
1487554dcd8cSDaniel Berlin           assert(UpperBound != 0);
1488554dcd8cSDaniel Berlin           --UpperBound;
1489554dcd8cSDaniel Berlin         }
1490554dcd8cSDaniel Berlin         FoundClobberResult = true;
1491554dcd8cSDaniel Berlin         break;
1492554dcd8cSDaniel Berlin       }
1493554dcd8cSDaniel Berlin 
1494554dcd8cSDaniel Berlin       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1495d90c9f4aSAlina Sbirlea       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1496d90c9f4aSAlina Sbirlea       if (CA.IsClobber) {
1497554dcd8cSDaniel Berlin         FoundClobberResult = true;
1498d90c9f4aSAlina Sbirlea         LocInfo.AR = CA.AR;
1499554dcd8cSDaniel Berlin         break;
1500554dcd8cSDaniel Berlin       }
1501554dcd8cSDaniel Berlin       --UpperBound;
1502554dcd8cSDaniel Berlin     }
1503d90c9f4aSAlina Sbirlea 
1504d90c9f4aSAlina Sbirlea     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1505d90c9f4aSAlina Sbirlea 
1506554dcd8cSDaniel Berlin     // At the end of this loop, UpperBound is either a clobber, or lower bound
1507554dcd8cSDaniel Berlin     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1508554dcd8cSDaniel Berlin     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1509554dcd8cSDaniel Berlin       // We were last killed now by where we got to
1510d90c9f4aSAlina Sbirlea       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1511d90c9f4aSAlina Sbirlea         LocInfo.AR = None;
1512d90c9f4aSAlina Sbirlea       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1513554dcd8cSDaniel Berlin       LocInfo.LastKill = UpperBound;
1514554dcd8cSDaniel Berlin     } else {
1515554dcd8cSDaniel Berlin       // Otherwise, we checked all the new ones, and now we know we can get to
1516554dcd8cSDaniel Berlin       // LastKill.
1517d90c9f4aSAlina Sbirlea       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1518554dcd8cSDaniel Berlin     }
1519554dcd8cSDaniel Berlin     LocInfo.LowerBound = VersionStack.size() - 1;
1520554dcd8cSDaniel Berlin     LocInfo.LowerBoundBlock = BB;
1521554dcd8cSDaniel Berlin   }
1522554dcd8cSDaniel Berlin }
1523554dcd8cSDaniel Berlin 
1524554dcd8cSDaniel Berlin /// Optimize uses to point to their actual clobbering definitions.
optimizeUses()1525554dcd8cSDaniel Berlin void MemorySSA::OptimizeUses::optimizeUses() {
1526554dcd8cSDaniel Berlin   SmallVector<MemoryAccess *, 16> VersionStack;
1527554dcd8cSDaniel Berlin   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1528554dcd8cSDaniel Berlin   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1529554dcd8cSDaniel Berlin 
1530554dcd8cSDaniel Berlin   unsigned long StackEpoch = 1;
1531554dcd8cSDaniel Berlin   unsigned long PopEpoch = 1;
1532554dcd8cSDaniel Berlin   // We perform a non-recursive top-down dominator tree walk.
1533554dcd8cSDaniel Berlin   for (const auto *DomNode : depth_first(DT->getRootNode()))
1534554dcd8cSDaniel Berlin     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1535554dcd8cSDaniel Berlin                         LocStackInfo);
1536554dcd8cSDaniel Berlin }
1537554dcd8cSDaniel Berlin 
placePHINodes(const SmallPtrSetImpl<BasicBlock * > & DefiningBlocks)1538554dcd8cSDaniel Berlin void MemorySSA::placePHINodes(
153967cfbaacSMichael Zolotukhin     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1540554dcd8cSDaniel Berlin   // Determine where our MemoryPhi's should go
1541554dcd8cSDaniel Berlin   ForwardIDFCalculator IDFs(*DT);
1542554dcd8cSDaniel Berlin   IDFs.setDefiningBlocks(DefiningBlocks);
1543554dcd8cSDaniel Berlin   SmallVector<BasicBlock *, 32> IDFBlocks;
1544554dcd8cSDaniel Berlin   IDFs.calculate(IDFBlocks);
1545554dcd8cSDaniel Berlin 
1546554dcd8cSDaniel Berlin   // Now place MemoryPhi nodes.
1547554dcd8cSDaniel Berlin   for (auto &BB : IDFBlocks)
1548554dcd8cSDaniel Berlin     createMemoryPhi(BB);
1549554dcd8cSDaniel Berlin }
1550554dcd8cSDaniel Berlin 
buildMemorySSA(BatchAAResults & BAA)1551bfc779e4SAlina Sbirlea void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1552554dcd8cSDaniel Berlin   // We create an access to represent "live on entry", for things like
1553554dcd8cSDaniel Berlin   // arguments or users of globals, where the memory they use is defined before
1554554dcd8cSDaniel Berlin   // the beginning of the function. We do not actually insert it into the IR.
1555554dcd8cSDaniel Berlin   // We do not define a live on exit for the immediate uses, and thus our
1556554dcd8cSDaniel Berlin   // semantics do *not* imply that something with no immediate uses can simply
1557554dcd8cSDaniel Berlin   // be removed.
1558554dcd8cSDaniel Berlin   BasicBlock &StartingPoint = F.getEntryBlock();
1559612cf21eSGeorge Burgess IV   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1560612cf21eSGeorge Burgess IV                                      &StartingPoint, NextID++));
1561554dcd8cSDaniel Berlin 
1562554dcd8cSDaniel Berlin   // We maintain lists of memory accesses per-block, trading memory for time. We
1563554dcd8cSDaniel Berlin   // could just look up the memory access for every possible instruction in the
1564554dcd8cSDaniel Berlin   // stream.
1565554dcd8cSDaniel Berlin   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1566554dcd8cSDaniel Berlin   // Go through each block, figure out where defs occur, and chain together all
1567554dcd8cSDaniel Berlin   // the accesses.
1568554dcd8cSDaniel Berlin   for (BasicBlock &B : F) {
1569554dcd8cSDaniel Berlin     bool InsertIntoDef = false;
1570554dcd8cSDaniel Berlin     AccessList *Accesses = nullptr;
1571554dcd8cSDaniel Berlin     DefsList *Defs = nullptr;
1572554dcd8cSDaniel Berlin     for (Instruction &I : B) {
1573bfc779e4SAlina Sbirlea       MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1574554dcd8cSDaniel Berlin       if (!MUD)
1575554dcd8cSDaniel Berlin         continue;
1576554dcd8cSDaniel Berlin 
1577554dcd8cSDaniel Berlin       if (!Accesses)
1578554dcd8cSDaniel Berlin         Accesses = getOrCreateAccessList(&B);
1579554dcd8cSDaniel Berlin       Accesses->push_back(MUD);
1580554dcd8cSDaniel Berlin       if (isa<MemoryDef>(MUD)) {
1581554dcd8cSDaniel Berlin         InsertIntoDef = true;
1582554dcd8cSDaniel Berlin         if (!Defs)
1583554dcd8cSDaniel Berlin           Defs = getOrCreateDefsList(&B);
1584554dcd8cSDaniel Berlin         Defs->push_back(*MUD);
1585554dcd8cSDaniel Berlin       }
1586554dcd8cSDaniel Berlin     }
1587554dcd8cSDaniel Berlin     if (InsertIntoDef)
1588554dcd8cSDaniel Berlin       DefiningBlocks.insert(&B);
1589554dcd8cSDaniel Berlin   }
159067cfbaacSMichael Zolotukhin   placePHINodes(DefiningBlocks);
1591554dcd8cSDaniel Berlin 
1592554dcd8cSDaniel Berlin   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1593554dcd8cSDaniel Berlin   // filled in with all blocks.
1594554dcd8cSDaniel Berlin   SmallPtrSet<BasicBlock *, 16> Visited;
1595554dcd8cSDaniel Berlin   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1596554dcd8cSDaniel Berlin 
1597554dcd8cSDaniel Berlin   // Mark the uses in unreachable blocks as live on entry, so that they go
1598554dcd8cSDaniel Berlin   // somewhere.
1599554dcd8cSDaniel Berlin   for (auto &BB : F)
1600554dcd8cSDaniel Berlin     if (!Visited.count(&BB))
1601554dcd8cSDaniel Berlin       markUnreachableAsLiveOnEntry(&BB);
1602554dcd8cSDaniel Berlin }
1603554dcd8cSDaniel Berlin 
getWalker()1604554dcd8cSDaniel Berlin MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1605554dcd8cSDaniel Berlin 
getWalkerImpl()1606bfc779e4SAlina Sbirlea MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1607554dcd8cSDaniel Berlin   if (Walker)
1608554dcd8cSDaniel Berlin     return Walker.get();
1609554dcd8cSDaniel Berlin 
1610bc8aa24cSAlina Sbirlea   if (!WalkerBase)
1611bfc779e4SAlina Sbirlea     WalkerBase =
16120eaee545SJonas Devlieghere         std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1613bc8aa24cSAlina Sbirlea 
1614bfc779e4SAlina Sbirlea   Walker =
16150eaee545SJonas Devlieghere       std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1616554dcd8cSDaniel Berlin   return Walker.get();
1617554dcd8cSDaniel Berlin }
1618554dcd8cSDaniel Berlin 
getSkipSelfWalker()161912bbb4feSAlina Sbirlea MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
162012bbb4feSAlina Sbirlea   if (SkipWalker)
162112bbb4feSAlina Sbirlea     return SkipWalker.get();
162212bbb4feSAlina Sbirlea 
162312bbb4feSAlina Sbirlea   if (!WalkerBase)
1624bfc779e4SAlina Sbirlea     WalkerBase =
16250eaee545SJonas Devlieghere         std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
162612bbb4feSAlina Sbirlea 
1627bfc779e4SAlina Sbirlea   SkipWalker =
16280eaee545SJonas Devlieghere       std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
162912bbb4feSAlina Sbirlea   return SkipWalker.get();
163012bbb4feSAlina Sbirlea  }
163112bbb4feSAlina Sbirlea 
163212bbb4feSAlina Sbirlea 
1633554dcd8cSDaniel Berlin // This is a helper function used by the creation routines. It places NewAccess
1634554dcd8cSDaniel Berlin // into the access and defs lists for a given basic block, at the given
1635554dcd8cSDaniel Berlin // insertion point.
insertIntoListsForBlock(MemoryAccess * NewAccess,const BasicBlock * BB,InsertionPlace Point)1636554dcd8cSDaniel Berlin void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1637554dcd8cSDaniel Berlin                                         const BasicBlock *BB,
1638554dcd8cSDaniel Berlin                                         InsertionPlace Point) {
1639554dcd8cSDaniel Berlin   auto *Accesses = getOrCreateAccessList(BB);
1640554dcd8cSDaniel Berlin   if (Point == Beginning) {
1641554dcd8cSDaniel Berlin     // If it's a phi node, it goes first, otherwise, it goes after any phi
1642554dcd8cSDaniel Berlin     // nodes.
1643554dcd8cSDaniel Berlin     if (isa<MemoryPhi>(NewAccess)) {
1644554dcd8cSDaniel Berlin       Accesses->push_front(NewAccess);
1645554dcd8cSDaniel Berlin       auto *Defs = getOrCreateDefsList(BB);
1646554dcd8cSDaniel Berlin       Defs->push_front(*NewAccess);
1647554dcd8cSDaniel Berlin     } else {
1648554dcd8cSDaniel Berlin       auto AI = find_if_not(
1649554dcd8cSDaniel Berlin           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1650554dcd8cSDaniel Berlin       Accesses->insert(AI, NewAccess);
1651554dcd8cSDaniel Berlin       if (!isa<MemoryUse>(NewAccess)) {
1652554dcd8cSDaniel Berlin         auto *Defs = getOrCreateDefsList(BB);
1653554dcd8cSDaniel Berlin         auto DI = find_if_not(
1654554dcd8cSDaniel Berlin             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1655554dcd8cSDaniel Berlin         Defs->insert(DI, *NewAccess);
1656554dcd8cSDaniel Berlin       }
1657554dcd8cSDaniel Berlin     }
1658554dcd8cSDaniel Berlin   } else {
1659554dcd8cSDaniel Berlin     Accesses->push_back(NewAccess);
1660554dcd8cSDaniel Berlin     if (!isa<MemoryUse>(NewAccess)) {
1661554dcd8cSDaniel Berlin       auto *Defs = getOrCreateDefsList(BB);
1662554dcd8cSDaniel Berlin       Defs->push_back(*NewAccess);
1663554dcd8cSDaniel Berlin     }
1664554dcd8cSDaniel Berlin   }
1665554dcd8cSDaniel Berlin   BlockNumberingValid.erase(BB);
1666554dcd8cSDaniel Berlin }
1667554dcd8cSDaniel Berlin 
insertIntoListsBefore(MemoryAccess * What,const BasicBlock * BB,AccessList::iterator InsertPt)1668554dcd8cSDaniel Berlin void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1669554dcd8cSDaniel Berlin                                       AccessList::iterator InsertPt) {
1670554dcd8cSDaniel Berlin   auto *Accesses = getWritableBlockAccesses(BB);
1671554dcd8cSDaniel Berlin   bool WasEnd = InsertPt == Accesses->end();
1672554dcd8cSDaniel Berlin   Accesses->insert(AccessList::iterator(InsertPt), What);
1673554dcd8cSDaniel Berlin   if (!isa<MemoryUse>(What)) {
1674554dcd8cSDaniel Berlin     auto *Defs = getOrCreateDefsList(BB);
1675554dcd8cSDaniel Berlin     // If we got asked to insert at the end, we have an easy job, just shove it
1676554dcd8cSDaniel Berlin     // at the end. If we got asked to insert before an existing def, we also get
1677a5531f28SZhaoshi Zheng     // an iterator. If we got asked to insert before a use, we have to hunt for
1678554dcd8cSDaniel Berlin     // the next def.
1679554dcd8cSDaniel Berlin     if (WasEnd) {
1680554dcd8cSDaniel Berlin       Defs->push_back(*What);
1681554dcd8cSDaniel Berlin     } else if (isa<MemoryDef>(InsertPt)) {
1682554dcd8cSDaniel Berlin       Defs->insert(InsertPt->getDefsIterator(), *What);
1683554dcd8cSDaniel Berlin     } else {
1684554dcd8cSDaniel Berlin       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1685554dcd8cSDaniel Berlin         ++InsertPt;
1686554dcd8cSDaniel Berlin       // Either we found a def, or we are inserting at the end
1687554dcd8cSDaniel Berlin       if (InsertPt == Accesses->end())
1688554dcd8cSDaniel Berlin         Defs->push_back(*What);
1689554dcd8cSDaniel Berlin       else
1690554dcd8cSDaniel Berlin         Defs->insert(InsertPt->getDefsIterator(), *What);
1691554dcd8cSDaniel Berlin     }
1692554dcd8cSDaniel Berlin   }
1693554dcd8cSDaniel Berlin   BlockNumberingValid.erase(BB);
1694554dcd8cSDaniel Berlin }
1695554dcd8cSDaniel Berlin 
prepareForMoveTo(MemoryAccess * What,BasicBlock * BB)16965676a5d4SGeorge Burgess IV void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
16975676a5d4SGeorge Burgess IV   // Keep it in the lookup tables, remove from the lists
16985676a5d4SGeorge Burgess IV   removeFromLists(What, false);
16995676a5d4SGeorge Burgess IV 
17005676a5d4SGeorge Burgess IV   // Note that moving should implicitly invalidate the optimized state of a
17015676a5d4SGeorge Burgess IV   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
17025676a5d4SGeorge Burgess IV   // MemoryDef.
17035676a5d4SGeorge Burgess IV   if (auto *MD = dyn_cast<MemoryDef>(What))
17045676a5d4SGeorge Burgess IV     MD->resetOptimized();
17055676a5d4SGeorge Burgess IV   What->setBlock(BB);
17065676a5d4SGeorge Burgess IV }
17075676a5d4SGeorge Burgess IV 
1708a5531f28SZhaoshi Zheng // Move What before Where in the IR.  The end result is that What will belong to
1709554dcd8cSDaniel Berlin // the right lists and have the right Block set, but will not otherwise be
1710554dcd8cSDaniel Berlin // correct. It will not have the right defining access, and if it is a def,
1711554dcd8cSDaniel Berlin // things below it will not properly be updated.
moveTo(MemoryUseOrDef * What,BasicBlock * BB,AccessList::iterator Where)1712554dcd8cSDaniel Berlin void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1713554dcd8cSDaniel Berlin                        AccessList::iterator Where) {
17145676a5d4SGeorge Burgess IV   prepareForMoveTo(What, BB);
1715554dcd8cSDaniel Berlin   insertIntoListsBefore(What, BB, Where);
1716554dcd8cSDaniel Berlin }
1717554dcd8cSDaniel Berlin 
moveTo(MemoryAccess * What,BasicBlock * BB,InsertionPlace Point)17180f53355eSAlina Sbirlea void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1719554dcd8cSDaniel Berlin                        InsertionPlace Point) {
17200f53355eSAlina Sbirlea   if (isa<MemoryPhi>(What)) {
17210f53355eSAlina Sbirlea     assert(Point == Beginning &&
17220f53355eSAlina Sbirlea            "Can only move a Phi at the beginning of the block");
17230f53355eSAlina Sbirlea     // Update lookup table entry
17240f53355eSAlina Sbirlea     ValueToMemoryAccess.erase(What->getBlock());
17250f53355eSAlina Sbirlea     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
17260f53355eSAlina Sbirlea     (void)Inserted;
17270f53355eSAlina Sbirlea     assert(Inserted && "Cannot move a Phi to a block that already has one");
17280f53355eSAlina Sbirlea   }
17290f53355eSAlina Sbirlea 
17305676a5d4SGeorge Burgess IV   prepareForMoveTo(What, BB);
1731554dcd8cSDaniel Berlin   insertIntoListsForBlock(What, BB, Point);
1732554dcd8cSDaniel Berlin }
1733554dcd8cSDaniel Berlin 
createMemoryPhi(BasicBlock * BB)1734554dcd8cSDaniel Berlin MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1735554dcd8cSDaniel Berlin   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1736554dcd8cSDaniel Berlin   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1737554dcd8cSDaniel Berlin   // Phi's always are placed at the front of the block.
1738554dcd8cSDaniel Berlin   insertIntoListsForBlock(Phi, BB, Beginning);
1739554dcd8cSDaniel Berlin   ValueToMemoryAccess[BB] = Phi;
1740554dcd8cSDaniel Berlin   return Phi;
1741554dcd8cSDaniel Berlin }
1742554dcd8cSDaniel Berlin 
createDefinedAccess(Instruction * I,MemoryAccess * Definition,const MemoryUseOrDef * Template,bool CreationMustSucceed)1743554dcd8cSDaniel Berlin MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
17447980099aSAlina Sbirlea                                                MemoryAccess *Definition,
17454bc625caSAlina Sbirlea                                                const MemoryUseOrDef *Template,
17464bc625caSAlina Sbirlea                                                bool CreationMustSucceed) {
1747554dcd8cSDaniel Berlin   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1748bfc779e4SAlina Sbirlea   MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
17494bc625caSAlina Sbirlea   if (CreationMustSucceed)
17504bc625caSAlina Sbirlea     assert(NewAccess != nullptr && "Tried to create a memory access for a "
17514bc625caSAlina Sbirlea                                    "non-memory touching instruction");
1752d370836cSAlina Sbirlea   if (NewAccess) {
1753d370836cSAlina Sbirlea     assert((!Definition || !isa<MemoryUse>(Definition)) &&
1754d370836cSAlina Sbirlea            "A use cannot be a defining access");
1755554dcd8cSDaniel Berlin     NewAccess->setDefiningAccess(Definition);
1756d370836cSAlina Sbirlea   }
1757554dcd8cSDaniel Berlin   return NewAccess;
1758554dcd8cSDaniel Berlin }
1759554dcd8cSDaniel Berlin 
1760554dcd8cSDaniel Berlin // Return true if the instruction has ordering constraints.
1761554dcd8cSDaniel Berlin // Note specifically that this only considers stores and loads
1762554dcd8cSDaniel Berlin // because others are still considered ModRef by getModRefInfo.
isOrdered(const Instruction * I)1763554dcd8cSDaniel Berlin static inline bool isOrdered(const Instruction *I) {
1764554dcd8cSDaniel Berlin   if (auto *SI = dyn_cast<StoreInst>(I)) {
1765554dcd8cSDaniel Berlin     if (!SI->isUnordered())
1766554dcd8cSDaniel Berlin       return true;
1767554dcd8cSDaniel Berlin   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1768554dcd8cSDaniel Berlin     if (!LI->isUnordered())
1769554dcd8cSDaniel Berlin       return true;
1770554dcd8cSDaniel Berlin   }
1771554dcd8cSDaniel Berlin   return false;
1772554dcd8cSDaniel Berlin }
1773bb1b2d09SEugene Zelenko 
17745f8f34e4SAdrian Prantl /// Helper function to create new memory accesses
1775bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
createNewAccess(Instruction * I,AliasAnalysisType * AAP,const MemoryUseOrDef * Template)17767980099aSAlina Sbirlea MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1777bfc779e4SAlina Sbirlea                                            AliasAnalysisType *AAP,
17787980099aSAlina Sbirlea                                            const MemoryUseOrDef *Template) {
1779554dcd8cSDaniel Berlin   // The assume intrinsic has a control dependency which we model by claiming
1780f7b4022dSAlina Sbirlea   // that it writes arbitrarily. Debuginfo intrinsics may be considered
1781f7b4022dSAlina Sbirlea   // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1782f7b4022dSAlina Sbirlea   // dependencies here.
1783554dcd8cSDaniel Berlin   // FIXME: Replace this special casing with a more accurate modelling of
1784554dcd8cSDaniel Berlin   // assume's control dependency.
1785121cac01SJeroen Dobbelaere   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1786121cac01SJeroen Dobbelaere     switch (II->getIntrinsicID()) {
1787121cac01SJeroen Dobbelaere     default:
1788121cac01SJeroen Dobbelaere       break;
1789121cac01SJeroen Dobbelaere     case Intrinsic::assume:
1790121cac01SJeroen Dobbelaere     case Intrinsic::experimental_noalias_scope_decl:
1791098a0d8fSHongtao Yu     case Intrinsic::pseudoprobe:
17926b2d1346SAlina Sbirlea       return nullptr;
1793121cac01SJeroen Dobbelaere     }
1794121cac01SJeroen Dobbelaere   }
17956b2d1346SAlina Sbirlea 
17966b2d1346SAlina Sbirlea   // Using a nonstandard AA pipelines might leave us with unexpected modref
17976b2d1346SAlina Sbirlea   // results for I, so add a check to not model instructions that may not read
17986b2d1346SAlina Sbirlea   // from or write to memory. This is necessary for correctness.
17996b2d1346SAlina Sbirlea   if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1800554dcd8cSDaniel Berlin     return nullptr;
1801554dcd8cSDaniel Berlin 
18027980099aSAlina Sbirlea   bool Def, Use;
18037980099aSAlina Sbirlea   if (Template) {
1804b557c32aSKazu Hirata     Def = isa<MemoryDef>(Template);
1805b557c32aSKazu Hirata     Use = isa<MemoryUse>(Template);
18067980099aSAlina Sbirlea #if !defined(NDEBUG)
1807bfc779e4SAlina Sbirlea     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
18087980099aSAlina Sbirlea     bool DefCheck, UseCheck;
18097980099aSAlina Sbirlea     DefCheck = isModSet(ModRef) || isOrdered(I);
18107980099aSAlina Sbirlea     UseCheck = isRefSet(ModRef);
18117980099aSAlina Sbirlea     assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
18127980099aSAlina Sbirlea #endif
18137980099aSAlina Sbirlea   } else {
1814554dcd8cSDaniel Berlin     // Find out what affect this instruction has on memory.
1815bfc779e4SAlina Sbirlea     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1816554dcd8cSDaniel Berlin     // The isOrdered check is used to ensure that volatiles end up as defs
1817554dcd8cSDaniel Berlin     // (atomics end up as ModRef right now anyway).  Until we separate the
1818554dcd8cSDaniel Berlin     // ordering chain from the memory chain, this enables people to see at least
1819554dcd8cSDaniel Berlin     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1820554dcd8cSDaniel Berlin     // will still give an answer that bypasses other volatile loads.  TODO:
18217980099aSAlina Sbirlea     // Separate memory aliasing and ordering into two different chains so that
18227980099aSAlina Sbirlea     // we can precisely represent both "what memory will this read/write/is
18237980099aSAlina Sbirlea     // clobbered by" and "what instructions can I move this past".
18247980099aSAlina Sbirlea     Def = isModSet(ModRef) || isOrdered(I);
18257980099aSAlina Sbirlea     Use = isRefSet(ModRef);
18267980099aSAlina Sbirlea   }
1827554dcd8cSDaniel Berlin 
1828554dcd8cSDaniel Berlin   // It's possible for an instruction to not modify memory at all. During
1829554dcd8cSDaniel Berlin   // construction, we ignore them.
1830554dcd8cSDaniel Berlin   if (!Def && !Use)
1831554dcd8cSDaniel Berlin     return nullptr;
1832554dcd8cSDaniel Berlin 
1833554dcd8cSDaniel Berlin   MemoryUseOrDef *MUD;
1834554dcd8cSDaniel Berlin   if (Def)
1835554dcd8cSDaniel Berlin     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1836554dcd8cSDaniel Berlin   else
1837554dcd8cSDaniel Berlin     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1838554dcd8cSDaniel Berlin   ValueToMemoryAccess[I] = MUD;
1839554dcd8cSDaniel Berlin   return MUD;
1840554dcd8cSDaniel Berlin }
1841554dcd8cSDaniel Berlin 
18425f8f34e4SAdrian Prantl /// Properly remove \p MA from all of MemorySSA's lookup tables.
removeFromLookups(MemoryAccess * MA)1843554dcd8cSDaniel Berlin void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1844554dcd8cSDaniel Berlin   assert(MA->use_empty() &&
1845554dcd8cSDaniel Berlin          "Trying to remove memory access that still has uses");
1846554dcd8cSDaniel Berlin   BlockNumbering.erase(MA);
18472cbf9730SGeorge Burgess IV   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1848554dcd8cSDaniel Berlin     MUD->setDefiningAccess(nullptr);
1849554dcd8cSDaniel Berlin   // Invalidate our walker's cache if necessary
1850554dcd8cSDaniel Berlin   if (!isa<MemoryUse>(MA))
1851bfc779e4SAlina Sbirlea     getWalker()->invalidateInfo(MA);
18522cbf9730SGeorge Burgess IV 
1853554dcd8cSDaniel Berlin   Value *MemoryInst;
18542cbf9730SGeorge Burgess IV   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1855554dcd8cSDaniel Berlin     MemoryInst = MUD->getMemoryInst();
18562cbf9730SGeorge Burgess IV   else
1857554dcd8cSDaniel Berlin     MemoryInst = MA->getBlock();
18582cbf9730SGeorge Burgess IV 
1859554dcd8cSDaniel Berlin   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1860554dcd8cSDaniel Berlin   if (VMA->second == MA)
1861554dcd8cSDaniel Berlin     ValueToMemoryAccess.erase(VMA);
1862554dcd8cSDaniel Berlin }
1863554dcd8cSDaniel Berlin 
18645f8f34e4SAdrian Prantl /// Properly remove \p MA from all of MemorySSA's lists.
1865554dcd8cSDaniel Berlin ///
1866554dcd8cSDaniel Berlin /// Because of the way the intrusive list and use lists work, it is important to
1867554dcd8cSDaniel Berlin /// do removal in the right order.
1868554dcd8cSDaniel Berlin /// ShouldDelete defaults to true, and will cause the memory access to also be
1869554dcd8cSDaniel Berlin /// deleted, not just removed.
removeFromLists(MemoryAccess * MA,bool ShouldDelete)1870554dcd8cSDaniel Berlin void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1871da1e80feSAlina Sbirlea   BasicBlock *BB = MA->getBlock();
1872554dcd8cSDaniel Berlin   // The access list owns the reference, so we erase it from the non-owning list
1873554dcd8cSDaniel Berlin   // first.
1874554dcd8cSDaniel Berlin   if (!isa<MemoryUse>(MA)) {
1875da1e80feSAlina Sbirlea     auto DefsIt = PerBlockDefs.find(BB);
1876554dcd8cSDaniel Berlin     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1877554dcd8cSDaniel Berlin     Defs->remove(*MA);
1878554dcd8cSDaniel Berlin     if (Defs->empty())
1879554dcd8cSDaniel Berlin       PerBlockDefs.erase(DefsIt);
1880554dcd8cSDaniel Berlin   }
1881554dcd8cSDaniel Berlin 
1882554dcd8cSDaniel Berlin   // The erase call here will delete it. If we don't want it deleted, we call
1883554dcd8cSDaniel Berlin   // remove instead.
1884da1e80feSAlina Sbirlea   auto AccessIt = PerBlockAccesses.find(BB);
1885554dcd8cSDaniel Berlin   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1886554dcd8cSDaniel Berlin   if (ShouldDelete)
1887554dcd8cSDaniel Berlin     Accesses->erase(MA);
1888554dcd8cSDaniel Berlin   else
1889554dcd8cSDaniel Berlin     Accesses->remove(MA);
1890554dcd8cSDaniel Berlin 
1891da1e80feSAlina Sbirlea   if (Accesses->empty()) {
1892554dcd8cSDaniel Berlin     PerBlockAccesses.erase(AccessIt);
1893da1e80feSAlina Sbirlea     BlockNumberingValid.erase(BB);
1894da1e80feSAlina Sbirlea   }
1895554dcd8cSDaniel Berlin }
1896554dcd8cSDaniel Berlin 
print(raw_ostream & OS) const1897554dcd8cSDaniel Berlin void MemorySSA::print(raw_ostream &OS) const {
1898554dcd8cSDaniel Berlin   MemorySSAAnnotatedWriter Writer(this);
1899554dcd8cSDaniel Berlin   F.print(OS, &Writer);
1900554dcd8cSDaniel Berlin }
1901554dcd8cSDaniel Berlin 
1902615eb470SAaron Ballman #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1903554dcd8cSDaniel Berlin LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1904554dcd8cSDaniel Berlin #endif
1905554dcd8cSDaniel Berlin 
verifyMemorySSA(VerificationLevel VL) const1906b759381bSAlina Sbirlea void MemorySSA::verifyMemorySSA(VerificationLevel VL) const {
1907b759381bSAlina Sbirlea #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1908b759381bSAlina Sbirlea   VL = VerificationLevel::Full;
1909b759381bSAlina Sbirlea #endif
1910b759381bSAlina Sbirlea 
1911b759381bSAlina Sbirlea #ifndef NDEBUG
1912b759381bSAlina Sbirlea   verifyOrderingDominationAndDefUses(F, VL);
191397ec6245SGeorge Burgess IV   verifyDominationNumbers(F);
1914b759381bSAlina Sbirlea   if (VL == VerificationLevel::Full)
191563e97fa0SAlina Sbirlea     verifyPrevDefInPhis(F);
1916b759381bSAlina Sbirlea #endif
1917d77edc00SAlina Sbirlea   // Previously, the verification used to also verify that the clobberingAccess
1918d77edc00SAlina Sbirlea   // cached by MemorySSA is the same as the clobberingAccess found at a later
1919d77edc00SAlina Sbirlea   // query to AA. This does not hold true in general due to the current fragility
1920d77edc00SAlina Sbirlea   // of BasicAA which has arbitrary caps on the things it analyzes before giving
1921d77edc00SAlina Sbirlea   // up. As a result, transformations that are correct, will lead to BasicAA
1922d77edc00SAlina Sbirlea   // returning different Alias answers before and after that transformation.
1923d77edc00SAlina Sbirlea   // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1924d77edc00SAlina Sbirlea   // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1925d77edc00SAlina Sbirlea   // every transformation, which defeats the purpose of using it. For such an
1926d77edc00SAlina Sbirlea   // example, see test4 added in D51960.
1927554dcd8cSDaniel Berlin }
1928554dcd8cSDaniel Berlin 
verifyPrevDefInPhis(Function & F) const192963e97fa0SAlina Sbirlea void MemorySSA::verifyPrevDefInPhis(Function &F) const {
193063e97fa0SAlina Sbirlea   for (const BasicBlock &BB : F) {
193163e97fa0SAlina Sbirlea     if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
193263e97fa0SAlina Sbirlea       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
193363e97fa0SAlina Sbirlea         auto *Pred = Phi->getIncomingBlock(I);
193463e97fa0SAlina Sbirlea         auto *IncAcc = Phi->getIncomingValue(I);
193563e97fa0SAlina Sbirlea         // If Pred has no unreachable predecessors, get last def looking at
193663e97fa0SAlina Sbirlea         // IDoms. If, while walkings IDoms, any of these has an unreachable
19371a3fdaf6SAlina Sbirlea         // predecessor, then the incoming def can be any access.
193863e97fa0SAlina Sbirlea         if (auto *DTNode = DT->getNode(Pred)) {
193963e97fa0SAlina Sbirlea           while (DTNode) {
194063e97fa0SAlina Sbirlea             if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
194163e97fa0SAlina Sbirlea               auto *LastAcc = &*(--DefList->end());
194263e97fa0SAlina Sbirlea               assert(LastAcc == IncAcc &&
194363e97fa0SAlina Sbirlea                      "Incorrect incoming access into phi.");
1944385f380eSKazu Hirata               (void)IncAcc;
1945385f380eSKazu Hirata               (void)LastAcc;
194663e97fa0SAlina Sbirlea               break;
194763e97fa0SAlina Sbirlea             }
194863e97fa0SAlina Sbirlea             DTNode = DTNode->getIDom();
194963e97fa0SAlina Sbirlea           }
19501a3fdaf6SAlina Sbirlea         } else {
195163e97fa0SAlina Sbirlea           // If Pred has unreachable predecessors, but has at least a Def, the
195263e97fa0SAlina Sbirlea           // incoming access can be the last Def in Pred, or it could have been
19531a3fdaf6SAlina Sbirlea           // optimized to LoE. After an update, though, the LoE may have been
19541a3fdaf6SAlina Sbirlea           // replaced by another access, so IncAcc may be any access.
195563e97fa0SAlina Sbirlea           // If Pred has unreachable predecessors and no Defs, incoming access
19561a3fdaf6SAlina Sbirlea           // should be LoE; However, after an update, it may be any access.
195763e97fa0SAlina Sbirlea         }
195863e97fa0SAlina Sbirlea       }
195963e97fa0SAlina Sbirlea     }
196063e97fa0SAlina Sbirlea   }
196163e97fa0SAlina Sbirlea }
196263e97fa0SAlina Sbirlea 
196397ec6245SGeorge Burgess IV /// Verify that all of the blocks we believe to have valid domination numbers
196497ec6245SGeorge Burgess IV /// actually have valid domination numbers.
verifyDominationNumbers(const Function & F) const196597ec6245SGeorge Burgess IV void MemorySSA::verifyDominationNumbers(const Function &F) const {
196697ec6245SGeorge Burgess IV   if (BlockNumberingValid.empty())
196797ec6245SGeorge Burgess IV     return;
196897ec6245SGeorge Burgess IV 
196997ec6245SGeorge Burgess IV   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
197097ec6245SGeorge Burgess IV   for (const BasicBlock &BB : F) {
197197ec6245SGeorge Burgess IV     if (!ValidBlocks.count(&BB))
197297ec6245SGeorge Burgess IV       continue;
197397ec6245SGeorge Burgess IV 
197497ec6245SGeorge Burgess IV     ValidBlocks.erase(&BB);
197597ec6245SGeorge Burgess IV 
197697ec6245SGeorge Burgess IV     const AccessList *Accesses = getBlockAccesses(&BB);
197797ec6245SGeorge Burgess IV     // It's correct to say an empty block has valid numbering.
197897ec6245SGeorge Burgess IV     if (!Accesses)
197997ec6245SGeorge Burgess IV       continue;
198097ec6245SGeorge Burgess IV 
198197ec6245SGeorge Burgess IV     // Block numbering starts at 1.
198297ec6245SGeorge Burgess IV     unsigned long LastNumber = 0;
198397ec6245SGeorge Burgess IV     for (const MemoryAccess &MA : *Accesses) {
198497ec6245SGeorge Burgess IV       auto ThisNumberIter = BlockNumbering.find(&MA);
198597ec6245SGeorge Burgess IV       assert(ThisNumberIter != BlockNumbering.end() &&
198697ec6245SGeorge Burgess IV              "MemoryAccess has no domination number in a valid block!");
198797ec6245SGeorge Burgess IV 
198897ec6245SGeorge Burgess IV       unsigned long ThisNumber = ThisNumberIter->second;
198997ec6245SGeorge Burgess IV       assert(ThisNumber > LastNumber &&
199097ec6245SGeorge Burgess IV              "Domination numbers should be strictly increasing!");
1991385f380eSKazu Hirata       (void)LastNumber;
199297ec6245SGeorge Burgess IV       LastNumber = ThisNumber;
199397ec6245SGeorge Burgess IV     }
199497ec6245SGeorge Burgess IV   }
199597ec6245SGeorge Burgess IV 
199697ec6245SGeorge Burgess IV   assert(ValidBlocks.empty() &&
199797ec6245SGeorge Burgess IV          "All valid BasicBlocks should exist in F -- dangling pointers?");
199897ec6245SGeorge Burgess IV }
199997ec6245SGeorge Burgess IV 
200014a2bbb1SAlina Sbirlea /// Verify ordering: the order and existence of MemoryAccesses matches the
2001554dcd8cSDaniel Berlin /// order and existence of memory affecting instructions.
200214a2bbb1SAlina Sbirlea /// Verify domination: each definition dominates all of its uses.
200314a2bbb1SAlina Sbirlea /// Verify def-uses: the immediate use information - walk all the memory
200414a2bbb1SAlina Sbirlea /// accesses and verifying that, for each use, it appears in the appropriate
200514a2bbb1SAlina Sbirlea /// def's use list
verifyOrderingDominationAndDefUses(Function & F,VerificationLevel VL) const2006b759381bSAlina Sbirlea void MemorySSA::verifyOrderingDominationAndDefUses(Function &F,
2007b759381bSAlina Sbirlea                                                    VerificationLevel VL) const {
2008554dcd8cSDaniel Berlin   // Walk all the blocks, comparing what the lookups think and what the access
2009554dcd8cSDaniel Berlin   // lists think, as well as the order in the blocks vs the order in the access
2010554dcd8cSDaniel Berlin   // lists.
2011554dcd8cSDaniel Berlin   SmallVector<MemoryAccess *, 32> ActualAccesses;
2012554dcd8cSDaniel Berlin   SmallVector<MemoryAccess *, 32> ActualDefs;
2013554dcd8cSDaniel Berlin   for (BasicBlock &B : F) {
2014554dcd8cSDaniel Berlin     const AccessList *AL = getBlockAccesses(&B);
2015554dcd8cSDaniel Berlin     const auto *DL = getBlockDefs(&B);
201614a2bbb1SAlina Sbirlea     MemoryPhi *Phi = getMemoryAccess(&B);
2017554dcd8cSDaniel Berlin     if (Phi) {
201814a2bbb1SAlina Sbirlea       // Verify ordering.
2019554dcd8cSDaniel Berlin       ActualAccesses.push_back(Phi);
2020554dcd8cSDaniel Berlin       ActualDefs.push_back(Phi);
202114a2bbb1SAlina Sbirlea       // Verify domination
2022385f380eSKazu Hirata       for (const Use &U : Phi->uses()) {
202314a2bbb1SAlina Sbirlea         assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
2024385f380eSKazu Hirata         (void)U;
2025385f380eSKazu Hirata       }
2026b759381bSAlina Sbirlea       // Verify def-uses for full verify.
2027b759381bSAlina Sbirlea       if (VL == VerificationLevel::Full) {
202814a2bbb1SAlina Sbirlea         assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
202914a2bbb1SAlina Sbirlea                                             pred_begin(&B), pred_end(&B))) &&
203014a2bbb1SAlina Sbirlea                "Incomplete MemoryPhi Node");
203114a2bbb1SAlina Sbirlea         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
203214a2bbb1SAlina Sbirlea           verifyUseInDefs(Phi->getIncomingValue(I), Phi);
2033e6fde1aeSKazu Hirata           assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
203414a2bbb1SAlina Sbirlea                  "Incoming phi block not a block predecessor");
203514a2bbb1SAlina Sbirlea         }
2036b759381bSAlina Sbirlea       }
2037554dcd8cSDaniel Berlin     }
2038554dcd8cSDaniel Berlin 
2039554dcd8cSDaniel Berlin     for (Instruction &I : B) {
204014a2bbb1SAlina Sbirlea       MemoryUseOrDef *MA = getMemoryAccess(&I);
2041554dcd8cSDaniel Berlin       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
2042554dcd8cSDaniel Berlin              "We have memory affecting instructions "
2043554dcd8cSDaniel Berlin              "in this block but they are not in the "
2044554dcd8cSDaniel Berlin              "access list or defs list");
2045554dcd8cSDaniel Berlin       if (MA) {
204614a2bbb1SAlina Sbirlea         // Verify ordering.
2047554dcd8cSDaniel Berlin         ActualAccesses.push_back(MA);
204814a2bbb1SAlina Sbirlea         if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
204914a2bbb1SAlina Sbirlea           // Verify ordering.
2050554dcd8cSDaniel Berlin           ActualDefs.push_back(MA);
205114a2bbb1SAlina Sbirlea           // Verify domination.
2052385f380eSKazu Hirata           for (const Use &U : MD->uses()) {
205314a2bbb1SAlina Sbirlea             assert(dominates(MD, U) &&
205414a2bbb1SAlina Sbirlea                    "Memory Def does not dominate it's uses");
2055385f380eSKazu Hirata             (void)U;
2056385f380eSKazu Hirata           }
205714a2bbb1SAlina Sbirlea         }
2058b759381bSAlina Sbirlea         // Verify def-uses for full verify.
2059b759381bSAlina Sbirlea         if (VL == VerificationLevel::Full)
206014a2bbb1SAlina Sbirlea           verifyUseInDefs(MA->getDefiningAccess(), MA);
2061554dcd8cSDaniel Berlin       }
2062554dcd8cSDaniel Berlin     }
2063554dcd8cSDaniel Berlin     // Either we hit the assert, really have no accesses, or we have both
206414a2bbb1SAlina Sbirlea     // accesses and an access list. Same with defs.
2065554dcd8cSDaniel Berlin     if (!AL && !DL)
2066554dcd8cSDaniel Berlin       continue;
206714a2bbb1SAlina Sbirlea     // Verify ordering.
2068554dcd8cSDaniel Berlin     assert(AL->size() == ActualAccesses.size() &&
2069554dcd8cSDaniel Berlin            "We don't have the same number of accesses in the block as on the "
2070554dcd8cSDaniel Berlin            "access list");
2071554dcd8cSDaniel Berlin     assert((DL || ActualDefs.size() == 0) &&
2072554dcd8cSDaniel Berlin            "Either we should have a defs list, or we should have no defs");
2073554dcd8cSDaniel Berlin     assert((!DL || DL->size() == ActualDefs.size()) &&
2074554dcd8cSDaniel Berlin            "We don't have the same number of defs in the block as on the "
2075554dcd8cSDaniel Berlin            "def list");
2076554dcd8cSDaniel Berlin     auto ALI = AL->begin();
2077554dcd8cSDaniel Berlin     auto AAI = ActualAccesses.begin();
2078554dcd8cSDaniel Berlin     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2079554dcd8cSDaniel Berlin       assert(&*ALI == *AAI && "Not the same accesses in the same order");
2080554dcd8cSDaniel Berlin       ++ALI;
2081554dcd8cSDaniel Berlin       ++AAI;
2082554dcd8cSDaniel Berlin     }
2083554dcd8cSDaniel Berlin     ActualAccesses.clear();
2084554dcd8cSDaniel Berlin     if (DL) {
2085554dcd8cSDaniel Berlin       auto DLI = DL->begin();
2086554dcd8cSDaniel Berlin       auto ADI = ActualDefs.begin();
2087554dcd8cSDaniel Berlin       while (DLI != DL->end() && ADI != ActualDefs.end()) {
2088554dcd8cSDaniel Berlin         assert(&*DLI == *ADI && "Not the same defs in the same order");
2089554dcd8cSDaniel Berlin         ++DLI;
2090554dcd8cSDaniel Berlin         ++ADI;
2091554dcd8cSDaniel Berlin       }
2092554dcd8cSDaniel Berlin     }
2093554dcd8cSDaniel Berlin     ActualDefs.clear();
2094554dcd8cSDaniel Berlin   }
2095554dcd8cSDaniel Berlin }
2096554dcd8cSDaniel Berlin 
20975f8f34e4SAdrian Prantl /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2098554dcd8cSDaniel Berlin /// appears in the use list of \p Def.
verifyUseInDefs(MemoryAccess * Def,MemoryAccess * Use) const2099554dcd8cSDaniel Berlin void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2100554dcd8cSDaniel Berlin   // The live on entry use may cause us to get a NULL def here
2101554dcd8cSDaniel Berlin   if (!Def)
2102554dcd8cSDaniel Berlin     assert(isLiveOnEntryDef(Use) &&
2103554dcd8cSDaniel Berlin            "Null def but use not point to live on entry def");
2104554dcd8cSDaniel Berlin   else
2105554dcd8cSDaniel Berlin     assert(is_contained(Def->users(), Use) &&
2106554dcd8cSDaniel Berlin            "Did not find use in def's use list");
2107554dcd8cSDaniel Berlin }
2108554dcd8cSDaniel Berlin 
2109554dcd8cSDaniel Berlin /// Perform a local numbering on blocks so that instruction ordering can be
2110554dcd8cSDaniel Berlin /// determined in constant time.
2111554dcd8cSDaniel Berlin /// TODO: We currently just number in order.  If we numbered by N, we could
2112554dcd8cSDaniel Berlin /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2113554dcd8cSDaniel Berlin /// log2(N) sequences of mixed before and after) without needing to invalidate
2114554dcd8cSDaniel Berlin /// the numbering.
renumberBlock(const BasicBlock * B) const2115554dcd8cSDaniel Berlin void MemorySSA::renumberBlock(const BasicBlock *B) const {
2116554dcd8cSDaniel Berlin   // The pre-increment ensures the numbers really start at 1.
2117554dcd8cSDaniel Berlin   unsigned long CurrentNumber = 0;
2118554dcd8cSDaniel Berlin   const AccessList *AL = getBlockAccesses(B);
2119554dcd8cSDaniel Berlin   assert(AL != nullptr && "Asking to renumber an empty block");
2120554dcd8cSDaniel Berlin   for (const auto &I : *AL)
2121554dcd8cSDaniel Berlin     BlockNumbering[&I] = ++CurrentNumber;
2122554dcd8cSDaniel Berlin   BlockNumberingValid.insert(B);
2123554dcd8cSDaniel Berlin }
2124554dcd8cSDaniel Berlin 
21255f8f34e4SAdrian Prantl /// Determine, for two memory accesses in the same block,
2126554dcd8cSDaniel Berlin /// whether \p Dominator dominates \p Dominatee.
2127554dcd8cSDaniel Berlin /// \returns True if \p Dominator dominates \p Dominatee.
locallyDominates(const MemoryAccess * Dominator,const MemoryAccess * Dominatee) const2128554dcd8cSDaniel Berlin bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2129554dcd8cSDaniel Berlin                                  const MemoryAccess *Dominatee) const {
2130554dcd8cSDaniel Berlin   const BasicBlock *DominatorBlock = Dominator->getBlock();
2131554dcd8cSDaniel Berlin 
2132554dcd8cSDaniel Berlin   assert((DominatorBlock == Dominatee->getBlock()) &&
2133554dcd8cSDaniel Berlin          "Asking for local domination when accesses are in different blocks!");
2134554dcd8cSDaniel Berlin   // A node dominates itself.
2135554dcd8cSDaniel Berlin   if (Dominatee == Dominator)
2136554dcd8cSDaniel Berlin     return true;
2137554dcd8cSDaniel Berlin 
2138554dcd8cSDaniel Berlin   // When Dominatee is defined on function entry, it is not dominated by another
2139554dcd8cSDaniel Berlin   // memory access.
2140554dcd8cSDaniel Berlin   if (isLiveOnEntryDef(Dominatee))
2141554dcd8cSDaniel Berlin     return false;
2142554dcd8cSDaniel Berlin 
2143554dcd8cSDaniel Berlin   // When Dominator is defined on function entry, it dominates the other memory
2144554dcd8cSDaniel Berlin   // access.
2145554dcd8cSDaniel Berlin   if (isLiveOnEntryDef(Dominator))
2146554dcd8cSDaniel Berlin     return true;
2147554dcd8cSDaniel Berlin 
2148554dcd8cSDaniel Berlin   if (!BlockNumberingValid.count(DominatorBlock))
2149554dcd8cSDaniel Berlin     renumberBlock(DominatorBlock);
2150554dcd8cSDaniel Berlin 
2151554dcd8cSDaniel Berlin   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2152554dcd8cSDaniel Berlin   // All numbers start with 1
2153554dcd8cSDaniel Berlin   assert(DominatorNum != 0 && "Block was not numbered properly");
2154554dcd8cSDaniel Berlin   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2155554dcd8cSDaniel Berlin   assert(DominateeNum != 0 && "Block was not numbered properly");
2156554dcd8cSDaniel Berlin   return DominatorNum < DominateeNum;
2157554dcd8cSDaniel Berlin }
2158554dcd8cSDaniel Berlin 
dominates(const MemoryAccess * Dominator,const MemoryAccess * Dominatee) const2159554dcd8cSDaniel Berlin bool MemorySSA::dominates(const MemoryAccess *Dominator,
2160554dcd8cSDaniel Berlin                           const MemoryAccess *Dominatee) const {
2161554dcd8cSDaniel Berlin   if (Dominator == Dominatee)
2162554dcd8cSDaniel Berlin     return true;
2163554dcd8cSDaniel Berlin 
2164554dcd8cSDaniel Berlin   if (isLiveOnEntryDef(Dominatee))
2165554dcd8cSDaniel Berlin     return false;
2166554dcd8cSDaniel Berlin 
2167554dcd8cSDaniel Berlin   if (Dominator->getBlock() != Dominatee->getBlock())
2168554dcd8cSDaniel Berlin     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2169554dcd8cSDaniel Berlin   return locallyDominates(Dominator, Dominatee);
2170554dcd8cSDaniel Berlin }
2171554dcd8cSDaniel Berlin 
dominates(const MemoryAccess * Dominator,const Use & Dominatee) const2172554dcd8cSDaniel Berlin bool MemorySSA::dominates(const MemoryAccess *Dominator,
2173554dcd8cSDaniel Berlin                           const Use &Dominatee) const {
2174554dcd8cSDaniel Berlin   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2175554dcd8cSDaniel Berlin     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2176554dcd8cSDaniel Berlin     // The def must dominate the incoming block of the phi.
2177554dcd8cSDaniel Berlin     if (UseBB != Dominator->getBlock())
2178554dcd8cSDaniel Berlin       return DT->dominates(Dominator->getBlock(), UseBB);
2179554dcd8cSDaniel Berlin     // If the UseBB and the DefBB are the same, compare locally.
2180554dcd8cSDaniel Berlin     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2181554dcd8cSDaniel Berlin   }
2182554dcd8cSDaniel Berlin   // If it's not a PHI node use, the normal dominates can already handle it.
2183554dcd8cSDaniel Berlin   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2184554dcd8cSDaniel Berlin }
2185554dcd8cSDaniel Berlin 
ensureOptimizedUses()2186f96428e1SNikita Popov void MemorySSA::ensureOptimizedUses() {
2187f96428e1SNikita Popov   if (IsOptimized)
2188f96428e1SNikita Popov     return;
2189f96428e1SNikita Popov 
2190f96428e1SNikita Popov   BatchAAResults BatchAA(*AA);
2191f96428e1SNikita Popov   ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BatchAA, DT);
2192f96428e1SNikita Popov   CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
2193f96428e1SNikita Popov   OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses();
2194f96428e1SNikita Popov   IsOptimized = true;
2195f96428e1SNikita Popov }
2196f96428e1SNikita Popov 
print(raw_ostream & OS) const219796ab8726SReid Kleckner void MemoryAccess::print(raw_ostream &OS) const {
219896ab8726SReid Kleckner   switch (getValueID()) {
219996ab8726SReid Kleckner   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
220096ab8726SReid Kleckner   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
220196ab8726SReid Kleckner   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
220296ab8726SReid Kleckner   }
220396ab8726SReid Kleckner   llvm_unreachable("invalid value id");
220496ab8726SReid Kleckner }
220596ab8726SReid Kleckner 
print(raw_ostream & OS) const2206554dcd8cSDaniel Berlin void MemoryDef::print(raw_ostream &OS) const {
2207554dcd8cSDaniel Berlin   MemoryAccess *UO = getDefiningAccess();
2208554dcd8cSDaniel Berlin 
2209aa283d80SGeorge Burgess IV   auto printID = [&OS](MemoryAccess *A) {
2210aa283d80SGeorge Burgess IV     if (A && A->getID())
2211aa283d80SGeorge Burgess IV       OS << A->getID();
2212554dcd8cSDaniel Berlin     else
2213554dcd8cSDaniel Berlin       OS << LiveOnEntryStr;
2214aa283d80SGeorge Burgess IV   };
2215aa283d80SGeorge Burgess IV 
2216aa283d80SGeorge Burgess IV   OS << getID() << " = MemoryDef(";
2217aa283d80SGeorge Burgess IV   printID(UO);
2218aa283d80SGeorge Burgess IV   OS << ")";
2219aa283d80SGeorge Burgess IV 
2220aa283d80SGeorge Burgess IV   if (isOptimized()) {
2221aa283d80SGeorge Burgess IV     OS << "->";
2222aa283d80SGeorge Burgess IV     printID(getOptimized());
2223aa283d80SGeorge Burgess IV 
2224aa283d80SGeorge Burgess IV     if (Optional<AliasResult> AR = getOptimizedAccessType())
2225aa283d80SGeorge Burgess IV       OS << " " << *AR;
2226aa283d80SGeorge Burgess IV   }
2227554dcd8cSDaniel Berlin }
2228554dcd8cSDaniel Berlin 
print(raw_ostream & OS) const2229554dcd8cSDaniel Berlin void MemoryPhi::print(raw_ostream &OS) const {
2230657f5b97SKazu Hirata   ListSeparator LS(",");
2231554dcd8cSDaniel Berlin   OS << getID() << " = MemoryPhi(";
2232554dcd8cSDaniel Berlin   for (const auto &Op : operands()) {
2233554dcd8cSDaniel Berlin     BasicBlock *BB = getIncomingBlock(Op);
2234554dcd8cSDaniel Berlin     MemoryAccess *MA = cast<MemoryAccess>(Op);
2235554dcd8cSDaniel Berlin 
2236657f5b97SKazu Hirata     OS << LS << '{';
2237554dcd8cSDaniel Berlin     if (BB->hasName())
2238554dcd8cSDaniel Berlin       OS << BB->getName();
2239554dcd8cSDaniel Berlin     else
2240554dcd8cSDaniel Berlin       BB->printAsOperand(OS, false);
2241554dcd8cSDaniel Berlin     OS << ',';
2242554dcd8cSDaniel Berlin     if (unsigned ID = MA->getID())
2243554dcd8cSDaniel Berlin       OS << ID;
2244554dcd8cSDaniel Berlin     else
2245554dcd8cSDaniel Berlin       OS << LiveOnEntryStr;
2246554dcd8cSDaniel Berlin     OS << '}';
2247554dcd8cSDaniel Berlin   }
2248554dcd8cSDaniel Berlin   OS << ')';
2249554dcd8cSDaniel Berlin }
2250554dcd8cSDaniel Berlin 
print(raw_ostream & OS) const2251554dcd8cSDaniel Berlin void MemoryUse::print(raw_ostream &OS) const {
2252554dcd8cSDaniel Berlin   MemoryAccess *UO = getDefiningAccess();
2253554dcd8cSDaniel Berlin   OS << "MemoryUse(";
2254554dcd8cSDaniel Berlin   if (UO && UO->getID())
2255554dcd8cSDaniel Berlin     OS << UO->getID();
2256554dcd8cSDaniel Berlin   else
2257554dcd8cSDaniel Berlin     OS << LiveOnEntryStr;
2258554dcd8cSDaniel Berlin   OS << ')';
2259aa283d80SGeorge Burgess IV 
2260aa283d80SGeorge Burgess IV   if (Optional<AliasResult> AR = getOptimizedAccessType())
2261aa283d80SGeorge Burgess IV     OS << " " << *AR;
2262554dcd8cSDaniel Berlin }
2263554dcd8cSDaniel Berlin 
dump() const2264554dcd8cSDaniel Berlin void MemoryAccess::dump() const {
2265554dcd8cSDaniel Berlin // Cannot completely remove virtual function even in release mode.
2266615eb470SAaron Ballman #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2267554dcd8cSDaniel Berlin   print(dbgs());
2268554dcd8cSDaniel Berlin   dbgs() << "\n";
2269554dcd8cSDaniel Berlin #endif
2270554dcd8cSDaniel Berlin }
2271554dcd8cSDaniel Berlin 
2272554dcd8cSDaniel Berlin char MemorySSAPrinterLegacyPass::ID = 0;
2273554dcd8cSDaniel Berlin 
MemorySSAPrinterLegacyPass()2274554dcd8cSDaniel Berlin MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2275554dcd8cSDaniel Berlin   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2276554dcd8cSDaniel Berlin }
2277554dcd8cSDaniel Berlin 
getAnalysisUsage(AnalysisUsage & AU) const2278554dcd8cSDaniel Berlin void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2279554dcd8cSDaniel Berlin   AU.setPreservesAll();
2280554dcd8cSDaniel Berlin   AU.addRequired<MemorySSAWrapperPass>();
2281554dcd8cSDaniel Berlin }
2282554dcd8cSDaniel Berlin 
22835f672fefSJamie Schmeiser class DOTFuncMSSAInfo {
22845f672fefSJamie Schmeiser private:
22855f672fefSJamie Schmeiser   const Function &F;
22865f672fefSJamie Schmeiser   MemorySSAAnnotatedWriter MSSAWriter;
22875f672fefSJamie Schmeiser 
22885f672fefSJamie Schmeiser public:
DOTFuncMSSAInfo(const Function & F,MemorySSA & MSSA)22895f672fefSJamie Schmeiser   DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
22905f672fefSJamie Schmeiser       : F(F), MSSAWriter(&MSSA) {}
22915f672fefSJamie Schmeiser 
getFunction()22925f672fefSJamie Schmeiser   const Function *getFunction() { return &F; }
getWriter()22935f672fefSJamie Schmeiser   MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
22945f672fefSJamie Schmeiser };
22955f672fefSJamie Schmeiser 
22965f672fefSJamie Schmeiser namespace llvm {
22975f672fefSJamie Schmeiser 
22985f672fefSJamie Schmeiser template <>
22995f672fefSJamie Schmeiser struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
getEntryNodellvm::GraphTraits23005f672fefSJamie Schmeiser   static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
23015f672fefSJamie Schmeiser     return &(CFGInfo->getFunction()->getEntryBlock());
23025f672fefSJamie Schmeiser   }
23035f672fefSJamie Schmeiser 
23045f672fefSJamie Schmeiser   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
23055f672fefSJamie Schmeiser   using nodes_iterator = pointer_iterator<Function::const_iterator>;
23065f672fefSJamie Schmeiser 
nodes_beginllvm::GraphTraits23075f672fefSJamie Schmeiser   static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
23085f672fefSJamie Schmeiser     return nodes_iterator(CFGInfo->getFunction()->begin());
23095f672fefSJamie Schmeiser   }
23105f672fefSJamie Schmeiser 
nodes_endllvm::GraphTraits23115f672fefSJamie Schmeiser   static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
23125f672fefSJamie Schmeiser     return nodes_iterator(CFGInfo->getFunction()->end());
23135f672fefSJamie Schmeiser   }
23145f672fefSJamie Schmeiser 
sizellvm::GraphTraits23155f672fefSJamie Schmeiser   static size_t size(DOTFuncMSSAInfo *CFGInfo) {
23165f672fefSJamie Schmeiser     return CFGInfo->getFunction()->size();
23175f672fefSJamie Schmeiser   }
23185f672fefSJamie Schmeiser };
23195f672fefSJamie Schmeiser 
23205f672fefSJamie Schmeiser template <>
23215f672fefSJamie Schmeiser struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
23225f672fefSJamie Schmeiser 
DOTGraphTraitsllvm::DOTGraphTraits23235f672fefSJamie Schmeiser   DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
23245f672fefSJamie Schmeiser 
getGraphNamellvm::DOTGraphTraits23255f672fefSJamie Schmeiser   static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
23265f672fefSJamie Schmeiser     return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
23275f672fefSJamie Schmeiser            "' function";
23285f672fefSJamie Schmeiser   }
23295f672fefSJamie Schmeiser 
getNodeLabelllvm::DOTGraphTraits23305f672fefSJamie Schmeiser   std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
23315f672fefSJamie Schmeiser     return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
23325f672fefSJamie Schmeiser         Node, nullptr,
23335f672fefSJamie Schmeiser         [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
23345f672fefSJamie Schmeiser           BB.print(OS, &CFGInfo->getWriter(), true, true);
23355f672fefSJamie Schmeiser         },
23365f672fefSJamie Schmeiser         [](std::string &S, unsigned &I, unsigned Idx) -> void {
23375f672fefSJamie Schmeiser           std::string Str = S.substr(I, Idx - I);
23385f672fefSJamie Schmeiser           StringRef SR = Str;
23395f672fefSJamie Schmeiser           if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
23405f672fefSJamie Schmeiser               SR.count("MemoryUse("))
23415f672fefSJamie Schmeiser             return;
23425f672fefSJamie Schmeiser           DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
23435f672fefSJamie Schmeiser         });
23445f672fefSJamie Schmeiser   }
23455f672fefSJamie Schmeiser 
getEdgeSourceLabelllvm::DOTGraphTraits23465f672fefSJamie Schmeiser   static std::string getEdgeSourceLabel(const BasicBlock *Node,
23475f672fefSJamie Schmeiser                                         const_succ_iterator I) {
23485f672fefSJamie Schmeiser     return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
23495f672fefSJamie Schmeiser   }
23505f672fefSJamie Schmeiser 
23515f672fefSJamie Schmeiser   /// Display the raw branch weights from PGO.
getEdgeAttributesllvm::DOTGraphTraits23525f672fefSJamie Schmeiser   std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
23535f672fefSJamie Schmeiser                                 DOTFuncMSSAInfo *CFGInfo) {
23545f672fefSJamie Schmeiser     return "";
23555f672fefSJamie Schmeiser   }
23565f672fefSJamie Schmeiser 
getNodeAttributesllvm::DOTGraphTraits23575f672fefSJamie Schmeiser   std::string getNodeAttributes(const BasicBlock *Node,
23585f672fefSJamie Schmeiser                                 DOTFuncMSSAInfo *CFGInfo) {
23595f672fefSJamie Schmeiser     return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
23605f672fefSJamie Schmeiser                ? "style=filled, fillcolor=lightpink"
23615f672fefSJamie Schmeiser                : "";
23625f672fefSJamie Schmeiser   }
23635f672fefSJamie Schmeiser };
23645f672fefSJamie Schmeiser 
23655f672fefSJamie Schmeiser } // namespace llvm
23665f672fefSJamie Schmeiser 
runOnFunction(Function & F)2367554dcd8cSDaniel Berlin bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2368554dcd8cSDaniel Berlin   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2369f96428e1SNikita Popov   MSSA.ensureOptimizedUses();
23705f672fefSJamie Schmeiser   if (DotCFGMSSA != "") {
23715f672fefSJamie Schmeiser     DOTFuncMSSAInfo CFGInfo(F, MSSA);
23725f672fefSJamie Schmeiser     WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
23735f672fefSJamie Schmeiser   } else
2374554dcd8cSDaniel Berlin     MSSA.print(dbgs());
23755f672fefSJamie Schmeiser 
2376554dcd8cSDaniel Berlin   if (VerifyMemorySSA)
2377554dcd8cSDaniel Berlin     MSSA.verifyMemorySSA();
2378554dcd8cSDaniel Berlin   return false;
2379554dcd8cSDaniel Berlin }
2380554dcd8cSDaniel Berlin 
2381554dcd8cSDaniel Berlin AnalysisKey MemorySSAAnalysis::Key;
2382554dcd8cSDaniel Berlin 
run(Function & F,FunctionAnalysisManager & AM)2383554dcd8cSDaniel Berlin MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2384554dcd8cSDaniel Berlin                                                  FunctionAnalysisManager &AM) {
2385554dcd8cSDaniel Berlin   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2386554dcd8cSDaniel Berlin   auto &AA = AM.getResult<AAManager>(F);
23870eaee545SJonas Devlieghere   return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2388554dcd8cSDaniel Berlin }
2389554dcd8cSDaniel Berlin 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)2390b4683203SAlina Sbirlea bool MemorySSAAnalysis::Result::invalidate(
2391b4683203SAlina Sbirlea     Function &F, const PreservedAnalyses &PA,
2392b4683203SAlina Sbirlea     FunctionAnalysisManager::Invalidator &Inv) {
2393b4683203SAlina Sbirlea   auto PAC = PA.getChecker<MemorySSAAnalysis>();
2394b4683203SAlina Sbirlea   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2395b4683203SAlina Sbirlea          Inv.invalidate<AAManager>(F, PA) ||
2396b4683203SAlina Sbirlea          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2397b4683203SAlina Sbirlea }
2398b4683203SAlina Sbirlea 
run(Function & F,FunctionAnalysisManager & AM)2399554dcd8cSDaniel Berlin PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2400554dcd8cSDaniel Berlin                                             FunctionAnalysisManager &AM) {
24015f672fefSJamie Schmeiser   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2402f96428e1SNikita Popov   MSSA.ensureOptimizedUses();
24035f672fefSJamie Schmeiser   if (DotCFGMSSA != "") {
24045f672fefSJamie Schmeiser     DOTFuncMSSAInfo CFGInfo(F, MSSA);
24055f672fefSJamie Schmeiser     WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
24065f672fefSJamie Schmeiser   } else {
2407554dcd8cSDaniel Berlin     OS << "MemorySSA for function: " << F.getName() << "\n";
24085f672fefSJamie Schmeiser     MSSA.print(OS);
24095f672fefSJamie Schmeiser   }
2410554dcd8cSDaniel Berlin 
2411554dcd8cSDaniel Berlin   return PreservedAnalyses::all();
2412554dcd8cSDaniel Berlin }
2413554dcd8cSDaniel Berlin 
run(Function & F,FunctionAnalysisManager & AM)24147b08d9daSArthur Eubanks PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F,
24157b08d9daSArthur Eubanks                                                   FunctionAnalysisManager &AM) {
24167b08d9daSArthur Eubanks   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
24177b08d9daSArthur Eubanks   OS << "MemorySSA (walker) for function: " << F.getName() << "\n";
24187b08d9daSArthur Eubanks   MemorySSAWalkerAnnotatedWriter Writer(&MSSA);
24197b08d9daSArthur Eubanks   F.print(OS, &Writer);
24207b08d9daSArthur Eubanks 
24217b08d9daSArthur Eubanks   return PreservedAnalyses::all();
24227b08d9daSArthur Eubanks }
24237b08d9daSArthur Eubanks 
run(Function & F,FunctionAnalysisManager & AM)2424554dcd8cSDaniel Berlin PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2425554dcd8cSDaniel Berlin                                              FunctionAnalysisManager &AM) {
2426554dcd8cSDaniel Berlin   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2427554dcd8cSDaniel Berlin 
2428554dcd8cSDaniel Berlin   return PreservedAnalyses::all();
2429554dcd8cSDaniel Berlin }
2430554dcd8cSDaniel Berlin 
2431554dcd8cSDaniel Berlin char MemorySSAWrapperPass::ID = 0;
2432554dcd8cSDaniel Berlin 
MemorySSAWrapperPass()2433554dcd8cSDaniel Berlin MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2434554dcd8cSDaniel Berlin   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2435554dcd8cSDaniel Berlin }
2436554dcd8cSDaniel Berlin 
releaseMemory()2437554dcd8cSDaniel Berlin void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2438554dcd8cSDaniel Berlin 
getAnalysisUsage(AnalysisUsage & AU) const2439554dcd8cSDaniel Berlin void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2440554dcd8cSDaniel Berlin   AU.setPreservesAll();
2441554dcd8cSDaniel Berlin   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2442554dcd8cSDaniel Berlin   AU.addRequiredTransitive<AAResultsWrapperPass>();
2443554dcd8cSDaniel Berlin }
2444554dcd8cSDaniel Berlin 
runOnFunction(Function & F)2445554dcd8cSDaniel Berlin bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2446554dcd8cSDaniel Berlin   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2447554dcd8cSDaniel Berlin   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2448554dcd8cSDaniel Berlin   MSSA.reset(new MemorySSA(F, &AA, &DT));
2449554dcd8cSDaniel Berlin   return false;
2450554dcd8cSDaniel Berlin }
2451554dcd8cSDaniel Berlin 
verifyAnalysis() const2452f0b57d80SNikita Popov void MemorySSAWrapperPass::verifyAnalysis() const {
2453f0b57d80SNikita Popov   if (VerifyMemorySSA)
2454f0b57d80SNikita Popov     MSSA->verifyMemorySSA();
2455f0b57d80SNikita Popov }
2456554dcd8cSDaniel Berlin 
print(raw_ostream & OS,const Module * M) const2457554dcd8cSDaniel Berlin void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2458554dcd8cSDaniel Berlin   MSSA->print(OS);
2459554dcd8cSDaniel Berlin }
2460554dcd8cSDaniel Berlin 
MemorySSAWalker(MemorySSA * M)2461554dcd8cSDaniel Berlin MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2462554dcd8cSDaniel Berlin 
2463bc8aa24cSAlina Sbirlea /// Walk the use-def chains starting at \p StartingAccess and find
2464554dcd8cSDaniel Berlin /// the MemoryAccess that actually clobbers Loc.
2465554dcd8cSDaniel Berlin ///
2466554dcd8cSDaniel Berlin /// \returns our clobbering memory access
2467bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
2468bfc779e4SAlina Sbirlea MemoryAccess *
getClobberingMemoryAccessBase(MemoryAccess * StartingAccess,const MemoryLocation & Loc,unsigned & UpwardWalkLimit)2469bfc779e4SAlina Sbirlea MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2470f085cc5aSAlina Sbirlea     MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2471f085cc5aSAlina Sbirlea     unsigned &UpwardWalkLimit) {
2472b2f933a6SNikita Popov   assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
2473554dcd8cSDaniel Berlin 
2474b2f933a6SNikita Popov   Instruction *I = nullptr;
2475b2f933a6SNikita Popov   if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
2476554dcd8cSDaniel Berlin     if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2477554dcd8cSDaniel Berlin       return StartingUseOrDef;
2478554dcd8cSDaniel Berlin 
2479b2f933a6SNikita Popov     I = StartingUseOrDef->getMemoryInst();
2480554dcd8cSDaniel Berlin 
2481b2f933a6SNikita Popov     // Conservatively, fences are always clobbers, so don't perform the walk if
2482b2f933a6SNikita Popov     // we hit a fence.
2483363ac683SChandler Carruth     if (!isa<CallBase>(I) && I->isFenceLike())
2484554dcd8cSDaniel Berlin       return StartingUseOrDef;
2485b2f933a6SNikita Popov   }
2486554dcd8cSDaniel Berlin 
2487554dcd8cSDaniel Berlin   UpwardsMemoryQuery Q;
2488b2f933a6SNikita Popov   Q.OriginalAccess = StartingAccess;
2489554dcd8cSDaniel Berlin   Q.StartingLoc = Loc;
249052b86d35SNikita Popov   Q.Inst = nullptr;
2491554dcd8cSDaniel Berlin   Q.IsCall = false;
2492554dcd8cSDaniel Berlin 
2493554dcd8cSDaniel Berlin   // Unlike the other function, do not walk to the def of a def, because we are
2494554dcd8cSDaniel Berlin   // handed something we already believe is the clobbering access.
2495bc8aa24cSAlina Sbirlea   // We never set SkipSelf to true in Q in this method.
2496f085cc5aSAlina Sbirlea   MemoryAccess *Clobber =
2497b2f933a6SNikita Popov       Walker.findClobber(StartingAccess, Q, UpwardWalkLimit);
2498b2f933a6SNikita Popov   LLVM_DEBUG({
2499b2f933a6SNikita Popov     dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
2500b2f933a6SNikita Popov     if (I)
2501b2f933a6SNikita Popov       dbgs() << "  for instruction " << *I << "\n";
2502b2f933a6SNikita Popov     dbgs() << "  is " << *Clobber << "\n";
2503b2f933a6SNikita Popov   });
2504554dcd8cSDaniel Berlin   return Clobber;
2505554dcd8cSDaniel Berlin }
2506554dcd8cSDaniel Berlin 
2507b493124aSArthur Eubanks static const Instruction *
getInvariantGroupClobberingInstruction(Instruction & I,DominatorTree & DT)2508b493124aSArthur Eubanks getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) {
2509b493124aSArthur Eubanks   if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile())
2510b493124aSArthur Eubanks     return nullptr;
2511b493124aSArthur Eubanks 
2512b493124aSArthur Eubanks   // We consider bitcasts and zero GEPs to be the same pointer value. Start by
2513b493124aSArthur Eubanks   // stripping bitcasts and zero GEPs, then we will recursively look at loads
2514b493124aSArthur Eubanks   // and stores through bitcasts and zero GEPs.
2515b493124aSArthur Eubanks   Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts();
2516b493124aSArthur Eubanks 
2517b493124aSArthur Eubanks   // It's not safe to walk the use list of a global value because function
2518b493124aSArthur Eubanks   // passes aren't allowed to look outside their functions.
2519b493124aSArthur Eubanks   // FIXME: this could be fixed by filtering instructions from outside of
2520b493124aSArthur Eubanks   // current function.
2521b493124aSArthur Eubanks   if (isa<Constant>(PointerOperand))
2522b493124aSArthur Eubanks     return nullptr;
2523b493124aSArthur Eubanks 
2524b493124aSArthur Eubanks   // Queue to process all pointers that are equivalent to load operand.
2525b493124aSArthur Eubanks   SmallVector<const Value *, 8> PointerUsesQueue;
2526b493124aSArthur Eubanks   PointerUsesQueue.push_back(PointerOperand);
2527b493124aSArthur Eubanks 
2528b493124aSArthur Eubanks   const Instruction *MostDominatingInstruction = &I;
2529b493124aSArthur Eubanks 
2530b493124aSArthur Eubanks   // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case
2531b493124aSArthur Eubanks   // we will see all the instructions. It may not matter in practice. If it
2532b493124aSArthur Eubanks   // does, we will have to support MemorySSA construction and updates.
2533b493124aSArthur Eubanks   while (!PointerUsesQueue.empty()) {
2534b493124aSArthur Eubanks     const Value *Ptr = PointerUsesQueue.pop_back_val();
2535b493124aSArthur Eubanks     assert(Ptr && !isa<GlobalValue>(Ptr) &&
2536b493124aSArthur Eubanks            "Null or GlobalValue should not be inserted");
2537b493124aSArthur Eubanks 
2538b493124aSArthur Eubanks     for (const User *Us : Ptr->users()) {
2539b493124aSArthur Eubanks       auto *U = dyn_cast<Instruction>(Us);
2540b493124aSArthur Eubanks       if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction))
2541b493124aSArthur Eubanks         continue;
2542b493124aSArthur Eubanks 
2543b493124aSArthur Eubanks       // Add bitcasts and zero GEPs to queue.
2544b493124aSArthur Eubanks       if (isa<BitCastInst>(U)) {
2545b493124aSArthur Eubanks         PointerUsesQueue.push_back(U);
2546b493124aSArthur Eubanks         continue;
2547b493124aSArthur Eubanks       }
2548b493124aSArthur Eubanks       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
2549b493124aSArthur Eubanks         if (GEP->hasAllZeroIndices())
2550b493124aSArthur Eubanks           PointerUsesQueue.push_back(U);
2551b493124aSArthur Eubanks         continue;
2552b493124aSArthur Eubanks       }
2553b493124aSArthur Eubanks 
2554b493124aSArthur Eubanks       // If we hit a load/store with an invariant.group metadata and the same
2555b493124aSArthur Eubanks       // pointer operand, we can assume that value pointed to by the pointer
2556b493124aSArthur Eubanks       // operand didn't change.
2557b493124aSArthur Eubanks       if (U->hasMetadata(LLVMContext::MD_invariant_group) &&
2558b493124aSArthur Eubanks           getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) {
2559b493124aSArthur Eubanks         MostDominatingInstruction = U;
2560b493124aSArthur Eubanks       }
2561b493124aSArthur Eubanks     }
2562b493124aSArthur Eubanks   }
2563b493124aSArthur Eubanks   return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction;
2564b493124aSArthur Eubanks }
2565b493124aSArthur Eubanks 
2566bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
2567554dcd8cSDaniel Berlin MemoryAccess *
getClobberingMemoryAccessBase(MemoryAccess * MA,unsigned & UpwardWalkLimit,bool SkipSelf,bool UseInvariantGroup)2568bfc779e4SAlina Sbirlea MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2569b493124aSArthur Eubanks     MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf,
2570b493124aSArthur Eubanks     bool UseInvariantGroup) {
2571554dcd8cSDaniel Berlin   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2572554dcd8cSDaniel Berlin   // If this is a MemoryPhi, we can't do anything.
2573554dcd8cSDaniel Berlin   if (!StartingAccess)
2574554dcd8cSDaniel Berlin     return MA;
2575554dcd8cSDaniel Berlin 
2576b493124aSArthur Eubanks   if (UseInvariantGroup) {
2577b493124aSArthur Eubanks     if (auto *I = getInvariantGroupClobberingInstruction(
2578b493124aSArthur Eubanks             *StartingAccess->getMemoryInst(), MSSA->getDomTree())) {
2579b493124aSArthur Eubanks       assert(isa<LoadInst>(I) || isa<StoreInst>(I));
2580b493124aSArthur Eubanks 
2581b493124aSArthur Eubanks       auto *ClobberMA = MSSA->getMemoryAccess(I);
2582b493124aSArthur Eubanks       assert(ClobberMA);
2583b493124aSArthur Eubanks       if (isa<MemoryUse>(ClobberMA))
2584b493124aSArthur Eubanks         return ClobberMA->getDefiningAccess();
2585b493124aSArthur Eubanks       return ClobberMA;
2586b493124aSArthur Eubanks     }
2587b493124aSArthur Eubanks   }
2588b493124aSArthur Eubanks 
2589bc8aa24cSAlina Sbirlea   bool IsOptimized = false;
2590bc8aa24cSAlina Sbirlea 
2591554dcd8cSDaniel Berlin   // If this is an already optimized use or def, return the optimized result.
2592d90c9f4aSAlina Sbirlea   // Note: Currently, we store the optimized def result in a separate field,
2593d90c9f4aSAlina Sbirlea   // since we can't use the defining access.
2594bc8aa24cSAlina Sbirlea   if (StartingAccess->isOptimized()) {
2595bc8aa24cSAlina Sbirlea     if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
25966f49f4a9SGeorge Burgess IV       return StartingAccess->getOptimized();
2597bc8aa24cSAlina Sbirlea     IsOptimized = true;
2598bc8aa24cSAlina Sbirlea   }
2599554dcd8cSDaniel Berlin 
2600554dcd8cSDaniel Berlin   const Instruction *I = StartingAccess->getMemoryInst();
260144477c61SGeorge Burgess IV   // We can't sanely do anything with a fence, since they conservatively clobber
260244477c61SGeorge Burgess IV   // all memory, and have no locations to get pointers from to try to
260344477c61SGeorge Burgess IV   // disambiguate.
2604363ac683SChandler Carruth   if (!isa<CallBase>(I) && I->isFenceLike())
2605554dcd8cSDaniel Berlin     return StartingAccess;
2606554dcd8cSDaniel Berlin 
2607b4d088d0SAlina Sbirlea   UpwardsMemoryQuery Q(I, StartingAccess);
2608b4d088d0SAlina Sbirlea 
2609bfc779e4SAlina Sbirlea   if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2610554dcd8cSDaniel Berlin     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
261144477c61SGeorge Burgess IV     StartingAccess->setOptimized(LiveOnEntry);
261244477c61SGeorge Burgess IV     StartingAccess->setOptimizedAccessType(None);
2613554dcd8cSDaniel Berlin     return LiveOnEntry;
2614554dcd8cSDaniel Berlin   }
2615554dcd8cSDaniel Berlin 
2616bc8aa24cSAlina Sbirlea   MemoryAccess *OptimizedAccess;
2617bc8aa24cSAlina Sbirlea   if (!IsOptimized) {
2618554dcd8cSDaniel Berlin     // Start with the thing we already think clobbers this location
2619554dcd8cSDaniel Berlin     MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2620554dcd8cSDaniel Berlin 
2621554dcd8cSDaniel Berlin     // At this point, DefiningAccess may be the live on entry def.
2622554dcd8cSDaniel Berlin     // If it is, we will not get a better result.
2623d90c9f4aSAlina Sbirlea     if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
262444477c61SGeorge Burgess IV       StartingAccess->setOptimized(DefiningAccess);
262544477c61SGeorge Burgess IV       StartingAccess->setOptimizedAccessType(None);
2626554dcd8cSDaniel Berlin       return DefiningAccess;
2627d90c9f4aSAlina Sbirlea     }
2628554dcd8cSDaniel Berlin 
2629f085cc5aSAlina Sbirlea     OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2630bc8aa24cSAlina Sbirlea     StartingAccess->setOptimized(OptimizedAccess);
2631bc8aa24cSAlina Sbirlea     if (MSSA->isLiveOnEntryDef(OptimizedAccess))
263244477c61SGeorge Burgess IV       StartingAccess->setOptimizedAccessType(None);
2633c1a88e00Sdfukalov     else if (Q.AR && *Q.AR == AliasResult::MustAlias)
2634c1a88e00Sdfukalov       StartingAccess->setOptimizedAccessType(
2635c1a88e00Sdfukalov           AliasResult(AliasResult::MustAlias));
2636bc8aa24cSAlina Sbirlea   } else
2637bc8aa24cSAlina Sbirlea     OptimizedAccess = StartingAccess->getOptimized();
2638bc8aa24cSAlina Sbirlea 
2639bc8aa24cSAlina Sbirlea   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2640bc8aa24cSAlina Sbirlea   LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2641bc8aa24cSAlina Sbirlea   LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2642bc8aa24cSAlina Sbirlea   LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2643bc8aa24cSAlina Sbirlea 
2644bc8aa24cSAlina Sbirlea   MemoryAccess *Result;
2645bc8aa24cSAlina Sbirlea   if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2646f085cc5aSAlina Sbirlea       isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2647bc8aa24cSAlina Sbirlea     assert(isa<MemoryDef>(Q.OriginalAccess));
2648bc8aa24cSAlina Sbirlea     Q.SkipSelfAccess = true;
2649f085cc5aSAlina Sbirlea     Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
2650bc8aa24cSAlina Sbirlea   } else
2651bc8aa24cSAlina Sbirlea     Result = OptimizedAccess;
2652bc8aa24cSAlina Sbirlea 
2653bc8aa24cSAlina Sbirlea   LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2654bc8aa24cSAlina Sbirlea   LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2655554dcd8cSDaniel Berlin 
2656554dcd8cSDaniel Berlin   return Result;
2657554dcd8cSDaniel Berlin }
2658554dcd8cSDaniel Berlin 
2659554dcd8cSDaniel Berlin MemoryAccess *
getClobberingMemoryAccess(MemoryAccess * MA)2660554dcd8cSDaniel Berlin DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2661554dcd8cSDaniel Berlin   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2662554dcd8cSDaniel Berlin     return Use->getDefiningAccess();
2663554dcd8cSDaniel Berlin   return MA;
2664554dcd8cSDaniel Berlin }
2665554dcd8cSDaniel Berlin 
getClobberingMemoryAccess(MemoryAccess * StartingAccess,const MemoryLocation &)2666554dcd8cSDaniel Berlin MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2667554dcd8cSDaniel Berlin     MemoryAccess *StartingAccess, const MemoryLocation &) {
2668554dcd8cSDaniel Berlin   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2669554dcd8cSDaniel Berlin     return Use->getDefiningAccess();
2670554dcd8cSDaniel Berlin   return StartingAccess;
2671554dcd8cSDaniel Berlin }
267296ab8726SReid Kleckner 
deleteMe(DerivedUser * Self)267396ab8726SReid Kleckner void MemoryPhi::deleteMe(DerivedUser *Self) {
267496ab8726SReid Kleckner   delete static_cast<MemoryPhi *>(Self);
267596ab8726SReid Kleckner }
267696ab8726SReid Kleckner 
deleteMe(DerivedUser * Self)267796ab8726SReid Kleckner void MemoryDef::deleteMe(DerivedUser *Self) {
267896ab8726SReid Kleckner   delete static_cast<MemoryDef *>(Self);
267996ab8726SReid Kleckner }
268096ab8726SReid Kleckner 
deleteMe(DerivedUser * Self)268196ab8726SReid Kleckner void MemoryUse::deleteMe(DerivedUser *Self) {
268296ab8726SReid Kleckner   delete static_cast<MemoryUse *>(Self);
268396ab8726SReid Kleckner }
26849ed8e0caSdfukalov 
IsGuaranteedLoopInvariant(Value * Ptr) const26859ed8e0caSdfukalov bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const {
26869ed8e0caSdfukalov   auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) {
26879ed8e0caSdfukalov     Ptr = Ptr->stripPointerCasts();
26889ed8e0caSdfukalov     if (!isa<Instruction>(Ptr))
26899ed8e0caSdfukalov       return true;
26909ed8e0caSdfukalov     return isa<AllocaInst>(Ptr);
26919ed8e0caSdfukalov   };
26929ed8e0caSdfukalov 
26939ed8e0caSdfukalov   Ptr = Ptr->stripPointerCasts();
2694a4fb8866SMatteo Favaro   if (auto *I = dyn_cast<Instruction>(Ptr)) {
2695fb9ed197SNikita Popov     if (I->getParent()->isEntryBlock())
2696a4fb8866SMatteo Favaro       return true;
2697a4fb8866SMatteo Favaro   }
26989ed8e0caSdfukalov   if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
26999ed8e0caSdfukalov     return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
27009ed8e0caSdfukalov            GEP->hasAllConstantIndices();
27019ed8e0caSdfukalov   }
27029ed8e0caSdfukalov   return IsGuaranteedLoopInvariantBase(Ptr);
27039ed8e0caSdfukalov }
2704