1bb1b2d09SEugene Zelenko //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2554dcd8cSDaniel Berlin //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6554dcd8cSDaniel Berlin //
7bb1b2d09SEugene Zelenko //===----------------------------------------------------------------------===//
8554dcd8cSDaniel Berlin //
9554dcd8cSDaniel Berlin // This file implements the MemorySSA class.
10554dcd8cSDaniel Berlin //
11bb1b2d09SEugene Zelenko //===----------------------------------------------------------------------===//
12bb1b2d09SEugene Zelenko
13554dcd8cSDaniel Berlin #include "llvm/Analysis/MemorySSA.h"
14554dcd8cSDaniel Berlin #include "llvm/ADT/DenseMap.h"
15bb1b2d09SEugene Zelenko #include "llvm/ADT/DenseMapInfo.h"
16554dcd8cSDaniel Berlin #include "llvm/ADT/DenseSet.h"
17554dcd8cSDaniel Berlin #include "llvm/ADT/DepthFirstIterator.h"
18bb1b2d09SEugene Zelenko #include "llvm/ADT/Hashing.h"
19bb1b2d09SEugene Zelenko #include "llvm/ADT/None.h"
20bb1b2d09SEugene Zelenko #include "llvm/ADT/Optional.h"
21554dcd8cSDaniel Berlin #include "llvm/ADT/STLExtras.h"
22554dcd8cSDaniel Berlin #include "llvm/ADT/SmallPtrSet.h"
23bb1b2d09SEugene Zelenko #include "llvm/ADT/SmallVector.h"
24657f5b97SKazu Hirata #include "llvm/ADT/StringExtras.h"
25bb1b2d09SEugene Zelenko #include "llvm/ADT/iterator.h"
26bb1b2d09SEugene Zelenko #include "llvm/ADT/iterator_range.h"
27554dcd8cSDaniel Berlin #include "llvm/Analysis/AliasAnalysis.h"
285f672fefSJamie Schmeiser #include "llvm/Analysis/CFGPrinter.h"
29554dcd8cSDaniel Berlin #include "llvm/Analysis/IteratedDominanceFrontier.h"
30554dcd8cSDaniel Berlin #include "llvm/Analysis/MemoryLocation.h"
31432a3883SNico Weber #include "llvm/Config/llvm-config.h"
32554dcd8cSDaniel Berlin #include "llvm/IR/AssemblyAnnotationWriter.h"
33bb1b2d09SEugene Zelenko #include "llvm/IR/BasicBlock.h"
34554dcd8cSDaniel Berlin #include "llvm/IR/Dominators.h"
35bb1b2d09SEugene Zelenko #include "llvm/IR/Function.h"
36bb1b2d09SEugene Zelenko #include "llvm/IR/Instruction.h"
37bb1b2d09SEugene Zelenko #include "llvm/IR/Instructions.h"
38554dcd8cSDaniel Berlin #include "llvm/IR/IntrinsicInst.h"
39554dcd8cSDaniel Berlin #include "llvm/IR/LLVMContext.h"
40c6f0940dSBill Wendling #include "llvm/IR/Operator.h"
41bb1b2d09SEugene Zelenko #include "llvm/IR/PassManager.h"
42bb1b2d09SEugene Zelenko #include "llvm/IR/Use.h"
4305da2fe5SReid Kleckner #include "llvm/InitializePasses.h"
44bb1b2d09SEugene Zelenko #include "llvm/Pass.h"
45bb1b2d09SEugene Zelenko #include "llvm/Support/AtomicOrdering.h"
46bb1b2d09SEugene Zelenko #include "llvm/Support/Casting.h"
47bb1b2d09SEugene Zelenko #include "llvm/Support/CommandLine.h"
48bb1b2d09SEugene Zelenko #include "llvm/Support/Compiler.h"
49554dcd8cSDaniel Berlin #include "llvm/Support/Debug.h"
50bb1b2d09SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
51554dcd8cSDaniel Berlin #include "llvm/Support/FormattedStream.h"
5271c3a551Sserge-sans-paille #include "llvm/Support/GraphWriter.h"
53bb1b2d09SEugene Zelenko #include "llvm/Support/raw_ostream.h"
54554dcd8cSDaniel Berlin #include <algorithm>
55bb1b2d09SEugene Zelenko #include <cassert>
56bb1b2d09SEugene Zelenko #include <iterator>
57bb1b2d09SEugene Zelenko #include <memory>
58bb1b2d09SEugene Zelenko #include <utility>
59bb1b2d09SEugene Zelenko
60bb1b2d09SEugene Zelenko using namespace llvm;
61554dcd8cSDaniel Berlin
62554dcd8cSDaniel Berlin #define DEBUG_TYPE "memoryssa"
63bb1b2d09SEugene Zelenko
645f672fefSJamie Schmeiser static cl::opt<std::string>
655f672fefSJamie Schmeiser DotCFGMSSA("dot-cfg-mssa",
665f672fefSJamie Schmeiser cl::value_desc("file name for generated dot file"),
675f672fefSJamie Schmeiser cl::desc("file name for generated dot file"), cl::init(""));
685f672fefSJamie Schmeiser
69554dcd8cSDaniel Berlin INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
70554dcd8cSDaniel Berlin true)
71554dcd8cSDaniel Berlin INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
72554dcd8cSDaniel Berlin INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
73554dcd8cSDaniel Berlin INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
74554dcd8cSDaniel Berlin true)
75554dcd8cSDaniel Berlin
76554dcd8cSDaniel Berlin INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
77554dcd8cSDaniel Berlin "Memory SSA Printer", false, false)
78554dcd8cSDaniel Berlin INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
79554dcd8cSDaniel Berlin INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
80554dcd8cSDaniel Berlin "Memory SSA Printer", false, false)
81554dcd8cSDaniel Berlin
82554dcd8cSDaniel Berlin static cl::opt<unsigned> MaxCheckLimit(
83554dcd8cSDaniel Berlin "memssa-check-limit", cl::Hidden, cl::init(100),
84554dcd8cSDaniel Berlin cl::desc("The maximum number of stores/phis MemorySSA"
85554dcd8cSDaniel Berlin "will consider trying to walk past (default = 100)"));
86554dcd8cSDaniel Berlin
87cc2e8cccSAlina Sbirlea // Always verify MemorySSA if expensive checking is enabled.
88cc2e8cccSAlina Sbirlea #ifdef EXPENSIVE_CHECKS
89cc2e8cccSAlina Sbirlea bool llvm::VerifyMemorySSA = true;
90cc2e8cccSAlina Sbirlea #else
91cc2e8cccSAlina Sbirlea bool llvm::VerifyMemorySSA = false;
92cc2e8cccSAlina Sbirlea #endif
934fd1f266SAlina Sbirlea
94cc2e8cccSAlina Sbirlea static cl::opt<bool, true>
95cc2e8cccSAlina Sbirlea VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
96cc2e8cccSAlina Sbirlea cl::Hidden, cl::desc("Enable verification of MemorySSA."));
97554dcd8cSDaniel Berlin
98813a7f1aSArthur Eubanks const static char LiveOnEntryStr[] = "liveOnEntry";
99813a7f1aSArthur Eubanks
1007b08d9daSArthur Eubanks namespace {
101bb1b2d09SEugene Zelenko
1025f8f34e4SAdrian Prantl /// An assembly annotator class to print Memory SSA information in
103554dcd8cSDaniel Berlin /// comments.
104554dcd8cSDaniel Berlin class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
105554dcd8cSDaniel Berlin const MemorySSA *MSSA;
106554dcd8cSDaniel Berlin
107554dcd8cSDaniel Berlin public:
MemorySSAAnnotatedWriter(const MemorySSA * M)108554dcd8cSDaniel Berlin MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
109554dcd8cSDaniel Berlin
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)110bb1b2d09SEugene Zelenko void emitBasicBlockStartAnnot(const BasicBlock *BB,
111bb1b2d09SEugene Zelenko formatted_raw_ostream &OS) override {
112554dcd8cSDaniel Berlin if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
113554dcd8cSDaniel Berlin OS << "; " << *MA << "\n";
114554dcd8cSDaniel Berlin }
115554dcd8cSDaniel Berlin
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)116bb1b2d09SEugene Zelenko void emitInstructionAnnot(const Instruction *I,
117bb1b2d09SEugene Zelenko formatted_raw_ostream &OS) override {
118554dcd8cSDaniel Berlin if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
119554dcd8cSDaniel Berlin OS << "; " << *MA << "\n";
120554dcd8cSDaniel Berlin }
121554dcd8cSDaniel Berlin };
122bb1b2d09SEugene Zelenko
1237b08d9daSArthur Eubanks /// An assembly annotator class to print Memory SSA information in
1247b08d9daSArthur Eubanks /// comments.
1257b08d9daSArthur Eubanks class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter {
1267b08d9daSArthur Eubanks MemorySSA *MSSA;
1277b08d9daSArthur Eubanks MemorySSAWalker *Walker;
1287b08d9daSArthur Eubanks
1297b08d9daSArthur Eubanks public:
MemorySSAWalkerAnnotatedWriter(MemorySSA * M)1307b08d9daSArthur Eubanks MemorySSAWalkerAnnotatedWriter(MemorySSA *M)
1317b08d9daSArthur Eubanks : MSSA(M), Walker(M->getWalker()) {}
1327b08d9daSArthur Eubanks
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)13350d41f3eSAlina Sbirlea void emitBasicBlockStartAnnot(const BasicBlock *BB,
13450d41f3eSAlina Sbirlea formatted_raw_ostream &OS) override {
13550d41f3eSAlina Sbirlea if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
13650d41f3eSAlina Sbirlea OS << "; " << *MA << "\n";
13750d41f3eSAlina Sbirlea }
13850d41f3eSAlina Sbirlea
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)1397b08d9daSArthur Eubanks void emitInstructionAnnot(const Instruction *I,
1407b08d9daSArthur Eubanks formatted_raw_ostream &OS) override {
1417b08d9daSArthur Eubanks if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
1427b08d9daSArthur Eubanks MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA);
1437b08d9daSArthur Eubanks OS << "; " << *MA;
144813a7f1aSArthur Eubanks if (Clobber) {
145813a7f1aSArthur Eubanks OS << " - clobbered by ";
146813a7f1aSArthur Eubanks if (MSSA->isLiveOnEntryDef(Clobber))
147813a7f1aSArthur Eubanks OS << LiveOnEntryStr;
148813a7f1aSArthur Eubanks else
149813a7f1aSArthur Eubanks OS << *Clobber;
150813a7f1aSArthur Eubanks }
1517b08d9daSArthur Eubanks OS << "\n";
1527b08d9daSArthur Eubanks }
1537b08d9daSArthur Eubanks }
1547b08d9daSArthur Eubanks };
1557b08d9daSArthur Eubanks
1567b08d9daSArthur Eubanks } // namespace
157554dcd8cSDaniel Berlin
158554dcd8cSDaniel Berlin namespace {
159bb1b2d09SEugene Zelenko
160554dcd8cSDaniel Berlin /// Our current alias analysis API differentiates heavily between calls and
161554dcd8cSDaniel Berlin /// non-calls, and functions called on one usually assert on the other.
162554dcd8cSDaniel Berlin /// This class encapsulates the distinction to simplify other code that wants
163554dcd8cSDaniel Berlin /// "Memory affecting instructions and related data" to use as a key.
164554dcd8cSDaniel Berlin /// For example, this class is used as a densemap key in the use optimizer.
165554dcd8cSDaniel Berlin class MemoryLocOrCall {
166554dcd8cSDaniel Berlin public:
167bb1b2d09SEugene Zelenko bool IsCall = false;
168bb1b2d09SEugene Zelenko
MemoryLocOrCall(MemoryUseOrDef * MUD)169554dcd8cSDaniel Berlin MemoryLocOrCall(MemoryUseOrDef *MUD)
170554dcd8cSDaniel Berlin : MemoryLocOrCall(MUD->getMemoryInst()) {}
MemoryLocOrCall(const MemoryUseOrDef * MUD)171554dcd8cSDaniel Berlin MemoryLocOrCall(const MemoryUseOrDef *MUD)
172554dcd8cSDaniel Berlin : MemoryLocOrCall(MUD->getMemoryInst()) {}
173554dcd8cSDaniel Berlin
MemoryLocOrCall(Instruction * Inst)174554dcd8cSDaniel Berlin MemoryLocOrCall(Instruction *Inst) {
175363ac683SChandler Carruth if (auto *C = dyn_cast<CallBase>(Inst)) {
176554dcd8cSDaniel Berlin IsCall = true;
177363ac683SChandler Carruth Call = C;
178554dcd8cSDaniel Berlin } else {
179554dcd8cSDaniel Berlin IsCall = false;
180554dcd8cSDaniel Berlin // There is no such thing as a memorylocation for a fence inst, and it is
181554dcd8cSDaniel Berlin // unique in that regard.
182554dcd8cSDaniel Berlin if (!isa<FenceInst>(Inst))
183554dcd8cSDaniel Berlin Loc = MemoryLocation::get(Inst);
184554dcd8cSDaniel Berlin }
185554dcd8cSDaniel Berlin }
186554dcd8cSDaniel Berlin
MemoryLocOrCall(const MemoryLocation & Loc)187bb1b2d09SEugene Zelenko explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
188554dcd8cSDaniel Berlin
getCall() const189363ac683SChandler Carruth const CallBase *getCall() const {
190554dcd8cSDaniel Berlin assert(IsCall);
191363ac683SChandler Carruth return Call;
192554dcd8cSDaniel Berlin }
193bb1b2d09SEugene Zelenko
getLoc() const194554dcd8cSDaniel Berlin MemoryLocation getLoc() const {
195554dcd8cSDaniel Berlin assert(!IsCall);
196554dcd8cSDaniel Berlin return Loc;
197554dcd8cSDaniel Berlin }
198554dcd8cSDaniel Berlin
operator ==(const MemoryLocOrCall & Other) const199554dcd8cSDaniel Berlin bool operator==(const MemoryLocOrCall &Other) const {
200554dcd8cSDaniel Berlin if (IsCall != Other.IsCall)
201554dcd8cSDaniel Berlin return false;
202554dcd8cSDaniel Berlin
2033588fd48SGeorge Burgess IV if (!IsCall)
204554dcd8cSDaniel Berlin return Loc == Other.Loc;
2053588fd48SGeorge Burgess IV
206a58b62b4SCraig Topper if (Call->getCalledOperand() != Other.Call->getCalledOperand())
2073588fd48SGeorge Burgess IV return false;
2083588fd48SGeorge Burgess IV
209363ac683SChandler Carruth return Call->arg_size() == Other.Call->arg_size() &&
210363ac683SChandler Carruth std::equal(Call->arg_begin(), Call->arg_end(),
211363ac683SChandler Carruth Other.Call->arg_begin());
212554dcd8cSDaniel Berlin }
213554dcd8cSDaniel Berlin
214554dcd8cSDaniel Berlin private:
215554dcd8cSDaniel Berlin union {
216363ac683SChandler Carruth const CallBase *Call;
217554dcd8cSDaniel Berlin MemoryLocation Loc;
218554dcd8cSDaniel Berlin };
219554dcd8cSDaniel Berlin };
220bb1b2d09SEugene Zelenko
221bb1b2d09SEugene Zelenko } // end anonymous namespace
222554dcd8cSDaniel Berlin
223554dcd8cSDaniel Berlin namespace llvm {
224bb1b2d09SEugene Zelenko
225554dcd8cSDaniel Berlin template <> struct DenseMapInfo<MemoryLocOrCall> {
getEmptyKeyllvm::DenseMapInfo226554dcd8cSDaniel Berlin static inline MemoryLocOrCall getEmptyKey() {
227554dcd8cSDaniel Berlin return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
228554dcd8cSDaniel Berlin }
229bb1b2d09SEugene Zelenko
getTombstoneKeyllvm::DenseMapInfo230554dcd8cSDaniel Berlin static inline MemoryLocOrCall getTombstoneKey() {
231554dcd8cSDaniel Berlin return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
232554dcd8cSDaniel Berlin }
233bb1b2d09SEugene Zelenko
getHashValuellvm::DenseMapInfo234554dcd8cSDaniel Berlin static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
2353588fd48SGeorge Burgess IV if (!MLOC.IsCall)
236554dcd8cSDaniel Berlin return hash_combine(
2373588fd48SGeorge Burgess IV MLOC.IsCall,
2383588fd48SGeorge Burgess IV DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
2393588fd48SGeorge Burgess IV
2403588fd48SGeorge Burgess IV hash_code hash =
2413588fd48SGeorge Burgess IV hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
242a58b62b4SCraig Topper MLOC.getCall()->getCalledOperand()));
2433588fd48SGeorge Burgess IV
244363ac683SChandler Carruth for (const Value *Arg : MLOC.getCall()->args())
2453588fd48SGeorge Burgess IV hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
2463588fd48SGeorge Burgess IV return hash;
247554dcd8cSDaniel Berlin }
248bb1b2d09SEugene Zelenko
isEqualllvm::DenseMapInfo249554dcd8cSDaniel Berlin static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
250554dcd8cSDaniel Berlin return LHS == RHS;
251554dcd8cSDaniel Berlin }
252554dcd8cSDaniel Berlin };
253554dcd8cSDaniel Berlin
254bb1b2d09SEugene Zelenko } // end namespace llvm
255bb1b2d09SEugene Zelenko
256554dcd8cSDaniel Berlin /// This does one-way checks to see if Use could theoretically be hoisted above
257554dcd8cSDaniel Berlin /// MayClobber. This will not check the other way around.
258554dcd8cSDaniel Berlin ///
259554dcd8cSDaniel Berlin /// This assumes that, for the purposes of MemorySSA, Use comes directly after
260554dcd8cSDaniel Berlin /// MayClobber, with no potentially clobbering operations in between them.
261554dcd8cSDaniel Berlin /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
areLoadsReorderable(const LoadInst * Use,const LoadInst * MayClobber)262ca741a87SAlina Sbirlea static bool areLoadsReorderable(const LoadInst *Use,
263554dcd8cSDaniel Berlin const LoadInst *MayClobber) {
264554dcd8cSDaniel Berlin bool VolatileUse = Use->isVolatile();
265554dcd8cSDaniel Berlin bool VolatileClobber = MayClobber->isVolatile();
266554dcd8cSDaniel Berlin // Volatile operations may never be reordered with other volatile operations.
267554dcd8cSDaniel Berlin if (VolatileUse && VolatileClobber)
268ca741a87SAlina Sbirlea return false;
269ca741a87SAlina Sbirlea // Otherwise, volatile doesn't matter here. From the language reference:
270ca741a87SAlina Sbirlea // 'optimizers may change the order of volatile operations relative to
271ca741a87SAlina Sbirlea // non-volatile operations.'"
272554dcd8cSDaniel Berlin
273554dcd8cSDaniel Berlin // If a load is seq_cst, it cannot be moved above other loads. If its ordering
274554dcd8cSDaniel Berlin // is weaker, it can be moved above other loads. We just need to be sure that
275554dcd8cSDaniel Berlin // MayClobber isn't an acquire load, because loads can't be moved above
276554dcd8cSDaniel Berlin // acquire loads.
277554dcd8cSDaniel Berlin //
278554dcd8cSDaniel Berlin // Note that this explicitly *does* allow the free reordering of monotonic (or
279554dcd8cSDaniel Berlin // weaker) loads of the same address.
280554dcd8cSDaniel Berlin bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
281554dcd8cSDaniel Berlin bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
282554dcd8cSDaniel Berlin AtomicOrdering::Acquire);
283ca741a87SAlina Sbirlea return !(SeqCstUse || MayClobberIsAcquire);
284554dcd8cSDaniel Berlin }
285554dcd8cSDaniel Berlin
286d90c9f4aSAlina Sbirlea namespace {
287d90c9f4aSAlina Sbirlea
288d90c9f4aSAlina Sbirlea struct ClobberAlias {
289d90c9f4aSAlina Sbirlea bool IsClobber;
290d90c9f4aSAlina Sbirlea Optional<AliasResult> AR;
291d90c9f4aSAlina Sbirlea };
292d90c9f4aSAlina Sbirlea
293d90c9f4aSAlina Sbirlea } // end anonymous namespace
294d90c9f4aSAlina Sbirlea
295d90c9f4aSAlina Sbirlea // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
296d90c9f4aSAlina Sbirlea // ignored if IsClobber = false.
297bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
298bfc779e4SAlina Sbirlea static ClobberAlias
instructionClobbersQuery(const MemoryDef * MD,const MemoryLocation & UseLoc,const Instruction * UseInst,AliasAnalysisType & AA)299bfc779e4SAlina Sbirlea instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
300bfc779e4SAlina Sbirlea const Instruction *UseInst, AliasAnalysisType &AA) {
301554dcd8cSDaniel Berlin Instruction *DefInst = MD->getMemoryInst();
302554dcd8cSDaniel Berlin assert(DefInst && "Defining instruction not actually an instruction");
303d90c9f4aSAlina Sbirlea Optional<AliasResult> AR;
304554dcd8cSDaniel Berlin
305554dcd8cSDaniel Berlin if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
306554dcd8cSDaniel Berlin // These intrinsics will show up as affecting memory, but they are just
307ff08c80eSGeorge Burgess IV // markers, mostly.
308ff08c80eSGeorge Burgess IV //
309ff08c80eSGeorge Burgess IV // FIXME: We probably don't actually want MemorySSA to model these at all
310ff08c80eSGeorge Burgess IV // (including creating MemoryAccesses for them): we just end up inventing
311ff08c80eSGeorge Burgess IV // clobbers where they don't really exist at all. Please see D43269 for
312ff08c80eSGeorge Burgess IV // context.
313554dcd8cSDaniel Berlin switch (II->getIntrinsicID()) {
314554dcd8cSDaniel Berlin case Intrinsic::invariant_start:
315554dcd8cSDaniel Berlin case Intrinsic::invariant_end:
316554dcd8cSDaniel Berlin case Intrinsic::assume:
317121cac01SJeroen Dobbelaere case Intrinsic::experimental_noalias_scope_decl:
318098a0d8fSHongtao Yu case Intrinsic::pseudoprobe:
319c1a88e00Sdfukalov return {false, AliasResult(AliasResult::NoAlias)};
320f7b4022dSAlina Sbirlea case Intrinsic::dbg_addr:
321f7b4022dSAlina Sbirlea case Intrinsic::dbg_declare:
322f7b4022dSAlina Sbirlea case Intrinsic::dbg_label:
323f7b4022dSAlina Sbirlea case Intrinsic::dbg_value:
324f7b4022dSAlina Sbirlea llvm_unreachable("debuginfo shouldn't have associated defs!");
325554dcd8cSDaniel Berlin default:
326554dcd8cSDaniel Berlin break;
327554dcd8cSDaniel Berlin }
328554dcd8cSDaniel Berlin }
329554dcd8cSDaniel Berlin
33052b86d35SNikita Popov if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
33152b86d35SNikita Popov ModRefInfo I = AA.getModRefInfo(DefInst, CB);
332d0660797Sdfukalov AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
333d90c9f4aSAlina Sbirlea return {isModOrRefSet(I), AR};
33470e22d12SHans Wennborg }
335554dcd8cSDaniel Berlin
336ca741a87SAlina Sbirlea if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
33752b86d35SNikita Popov if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
338c1a88e00Sdfukalov return {!areLoadsReorderable(UseLoad, DefLoad),
339c1a88e00Sdfukalov AliasResult(AliasResult::MayAlias)};
340554dcd8cSDaniel Berlin
341d90c9f4aSAlina Sbirlea ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
342d0660797Sdfukalov AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
343d90c9f4aSAlina Sbirlea return {isModSet(I), AR};
344554dcd8cSDaniel Berlin }
345554dcd8cSDaniel Berlin
346bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
instructionClobbersQuery(MemoryDef * MD,const MemoryUseOrDef * MU,const MemoryLocOrCall & UseMLOC,AliasAnalysisType & AA)347d90c9f4aSAlina Sbirlea static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
348d90c9f4aSAlina Sbirlea const MemoryUseOrDef *MU,
349554dcd8cSDaniel Berlin const MemoryLocOrCall &UseMLOC,
350bfc779e4SAlina Sbirlea AliasAnalysisType &AA) {
351554dcd8cSDaniel Berlin // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
352554dcd8cSDaniel Berlin // to exist while MemoryLocOrCall is pushed through places.
353554dcd8cSDaniel Berlin if (UseMLOC.IsCall)
354554dcd8cSDaniel Berlin return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
355554dcd8cSDaniel Berlin AA);
356554dcd8cSDaniel Berlin return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
357554dcd8cSDaniel Berlin AA);
358554dcd8cSDaniel Berlin }
359554dcd8cSDaniel Berlin
360554dcd8cSDaniel Berlin // Return true when MD may alias MU, return false otherwise.
defClobbersUseOrDef(MemoryDef * MD,const MemoryUseOrDef * MU,AliasAnalysis & AA)361554dcd8cSDaniel Berlin bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
362554dcd8cSDaniel Berlin AliasAnalysis &AA) {
363d90c9f4aSAlina Sbirlea return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
364554dcd8cSDaniel Berlin }
365554dcd8cSDaniel Berlin
366554dcd8cSDaniel Berlin namespace {
367bb1b2d09SEugene Zelenko
368554dcd8cSDaniel Berlin struct UpwardsMemoryQuery {
369554dcd8cSDaniel Berlin // True if our original query started off as a call
370bb1b2d09SEugene Zelenko bool IsCall = false;
371554dcd8cSDaniel Berlin // The pointer location we started the query with. This will be empty if
372554dcd8cSDaniel Berlin // IsCall is true.
373554dcd8cSDaniel Berlin MemoryLocation StartingLoc;
374554dcd8cSDaniel Berlin // This is the instruction we were querying about.
375bb1b2d09SEugene Zelenko const Instruction *Inst = nullptr;
376554dcd8cSDaniel Berlin // The MemoryAccess we actually got called with, used to test local domination
377bb1b2d09SEugene Zelenko const MemoryAccess *OriginalAccess = nullptr;
378c1a88e00Sdfukalov Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias);
379f7230204SAlina Sbirlea bool SkipSelfAccess = false;
380554dcd8cSDaniel Berlin
381bb1b2d09SEugene Zelenko UpwardsMemoryQuery() = default;
382554dcd8cSDaniel Berlin
UpwardsMemoryQuery__anonca596e530511::UpwardsMemoryQuery383554dcd8cSDaniel Berlin UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
384363ac683SChandler Carruth : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
385554dcd8cSDaniel Berlin if (!IsCall)
386554dcd8cSDaniel Berlin StartingLoc = MemoryLocation::get(Inst);
387554dcd8cSDaniel Berlin }
388554dcd8cSDaniel Berlin };
389554dcd8cSDaniel Berlin
390bb1b2d09SEugene Zelenko } // end anonymous namespace
391bb1b2d09SEugene Zelenko
392bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType & AA,const Instruction * I)393bfc779e4SAlina Sbirlea static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
394554dcd8cSDaniel Berlin const Instruction *I) {
395554dcd8cSDaniel Berlin // If the memory can't be changed, then loads of the memory can't be
396554dcd8cSDaniel Berlin // clobbered.
397393b9e9dSNikita Popov if (auto *LI = dyn_cast<LoadInst>(I))
398393b9e9dSNikita Popov return I->hasMetadata(LLVMContext::MD_invariant_load) ||
399393b9e9dSNikita Popov AA.pointsToConstantMemory(MemoryLocation::get(LI));
400393b9e9dSNikita Popov return false;
401554dcd8cSDaniel Berlin }
402554dcd8cSDaniel Berlin
403554dcd8cSDaniel Berlin /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
404554dcd8cSDaniel Berlin /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
405554dcd8cSDaniel Berlin ///
406554dcd8cSDaniel Berlin /// This is meant to be as simple and self-contained as possible. Because it
407554dcd8cSDaniel Berlin /// uses no cache, etc., it can be relatively expensive.
408554dcd8cSDaniel Berlin ///
409554dcd8cSDaniel Berlin /// \param Start The MemoryAccess that we want to walk from.
410554dcd8cSDaniel Berlin /// \param ClobberAt A clobber for Start.
411554dcd8cSDaniel Berlin /// \param StartLoc The MemoryLocation for Start.
412f5403d83SAlina Sbirlea /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
413554dcd8cSDaniel Berlin /// \param Query The UpwardsMemoryQuery we used for our search.
414554dcd8cSDaniel Berlin /// \param AA The AliasAnalysis we used for our search.
41565f385daSAlina Sbirlea /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
416bfc779e4SAlina Sbirlea
417bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
418d77edc00SAlina Sbirlea LLVM_ATTRIBUTE_UNUSED static void
checkClobberSanity(const MemoryAccess * Start,MemoryAccess * ClobberAt,const MemoryLocation & StartLoc,const MemorySSA & MSSA,const UpwardsMemoryQuery & Query,AliasAnalysisType & AA,bool AllowImpreciseClobber=false)419f5403d83SAlina Sbirlea checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
420554dcd8cSDaniel Berlin const MemoryLocation &StartLoc, const MemorySSA &MSSA,
421bfc779e4SAlina Sbirlea const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
42265f385daSAlina Sbirlea bool AllowImpreciseClobber = false) {
423554dcd8cSDaniel Berlin assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
424554dcd8cSDaniel Berlin
425554dcd8cSDaniel Berlin if (MSSA.isLiveOnEntryDef(Start)) {
426554dcd8cSDaniel Berlin assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
427554dcd8cSDaniel Berlin "liveOnEntry must clobber itself");
428554dcd8cSDaniel Berlin return;
429554dcd8cSDaniel Berlin }
430554dcd8cSDaniel Berlin
431554dcd8cSDaniel Berlin bool FoundClobber = false;
432f5403d83SAlina Sbirlea DenseSet<ConstMemoryAccessPair> VisitedPhis;
433f5403d83SAlina Sbirlea SmallVector<ConstMemoryAccessPair, 8> Worklist;
434554dcd8cSDaniel Berlin Worklist.emplace_back(Start, StartLoc);
435554dcd8cSDaniel Berlin // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
436554dcd8cSDaniel Berlin // is found, complain.
437554dcd8cSDaniel Berlin while (!Worklist.empty()) {
438f5403d83SAlina Sbirlea auto MAP = Worklist.pop_back_val();
439554dcd8cSDaniel Berlin // All we care about is that nothing from Start to ClobberAt clobbers Start.
440554dcd8cSDaniel Berlin // We learn nothing from revisiting nodes.
441554dcd8cSDaniel Berlin if (!VisitedPhis.insert(MAP).second)
442554dcd8cSDaniel Berlin continue;
443554dcd8cSDaniel Berlin
444f5403d83SAlina Sbirlea for (const auto *MA : def_chain(MAP.first)) {
445554dcd8cSDaniel Berlin if (MA == ClobberAt) {
446f5403d83SAlina Sbirlea if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
447554dcd8cSDaniel Berlin // instructionClobbersQuery isn't essentially free, so don't use `|=`,
448554dcd8cSDaniel Berlin // since it won't let us short-circuit.
449554dcd8cSDaniel Berlin //
450554dcd8cSDaniel Berlin // Also, note that this can't be hoisted out of the `Worklist` loop,
451554dcd8cSDaniel Berlin // since MD may only act as a clobber for 1 of N MemoryLocations.
452d90c9f4aSAlina Sbirlea FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
453d90c9f4aSAlina Sbirlea if (!FoundClobber) {
454d90c9f4aSAlina Sbirlea ClobberAlias CA =
455554dcd8cSDaniel Berlin instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
456d90c9f4aSAlina Sbirlea if (CA.IsClobber) {
457d90c9f4aSAlina Sbirlea FoundClobber = true;
458d90c9f4aSAlina Sbirlea // Not used: CA.AR;
459d90c9f4aSAlina Sbirlea }
460d90c9f4aSAlina Sbirlea }
461554dcd8cSDaniel Berlin }
462554dcd8cSDaniel Berlin break;
463554dcd8cSDaniel Berlin }
464554dcd8cSDaniel Berlin
465554dcd8cSDaniel Berlin // We should never hit liveOnEntry, unless it's the clobber.
466554dcd8cSDaniel Berlin assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
467554dcd8cSDaniel Berlin
4685bce4d5aSAlina Sbirlea if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
469f5403d83SAlina Sbirlea // If Start is a Def, skip self.
4705bce4d5aSAlina Sbirlea if (MD == Start)
471f5403d83SAlina Sbirlea continue;
472f5403d83SAlina Sbirlea
473d90c9f4aSAlina Sbirlea assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
474d90c9f4aSAlina Sbirlea .IsClobber &&
475554dcd8cSDaniel Berlin "Found clobber before reaching ClobberAt!");
476554dcd8cSDaniel Berlin continue;
477554dcd8cSDaniel Berlin }
478554dcd8cSDaniel Berlin
4795bce4d5aSAlina Sbirlea if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
4806edcc9eeSAlina Sbirlea (void)MU;
4815bce4d5aSAlina Sbirlea assert (MU == Start &&
4825bce4d5aSAlina Sbirlea "Can only find use in def chain if Start is a use");
4835bce4d5aSAlina Sbirlea continue;
4845bce4d5aSAlina Sbirlea }
4855bce4d5aSAlina Sbirlea
486554dcd8cSDaniel Berlin assert(isa<MemoryPhi>(MA));
487dc971381SAlina Sbirlea
488dc971381SAlina Sbirlea // Add reachable phi predecessors
489dc971381SAlina Sbirlea for (auto ItB = upward_defs_begin(
490dc971381SAlina Sbirlea {const_cast<MemoryAccess *>(MA), MAP.second},
491161ccfe5SAlina Sbirlea MSSA.getDomTree()),
492dc971381SAlina Sbirlea ItE = upward_defs_end();
493dc971381SAlina Sbirlea ItB != ItE; ++ItB)
494dc971381SAlina Sbirlea if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
495dc971381SAlina Sbirlea Worklist.emplace_back(*ItB);
496554dcd8cSDaniel Berlin }
497554dcd8cSDaniel Berlin }
498554dcd8cSDaniel Berlin
49965f385daSAlina Sbirlea // If the verify is done following an optimization, it's possible that
50065f385daSAlina Sbirlea // ClobberAt was a conservative clobbering, that we can now infer is not a
50165f385daSAlina Sbirlea // true clobbering access. Don't fail the verify if that's the case.
50265f385daSAlina Sbirlea // We do have accesses that claim they're optimized, but could be optimized
50365f385daSAlina Sbirlea // further. Updating all these can be expensive, so allow it for now (FIXME).
50465f385daSAlina Sbirlea if (AllowImpreciseClobber)
50565f385daSAlina Sbirlea return;
50665f385daSAlina Sbirlea
507554dcd8cSDaniel Berlin // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
508554dcd8cSDaniel Berlin // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
509554dcd8cSDaniel Berlin assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
510554dcd8cSDaniel Berlin "ClobberAt never acted as a clobber");
511554dcd8cSDaniel Berlin }
512554dcd8cSDaniel Berlin
513bb1b2d09SEugene Zelenko namespace {
514bb1b2d09SEugene Zelenko
515554dcd8cSDaniel Berlin /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
516554dcd8cSDaniel Berlin /// in one class.
517bfc779e4SAlina Sbirlea template <class AliasAnalysisType> class ClobberWalker {
518554dcd8cSDaniel Berlin /// Save a few bytes by using unsigned instead of size_t.
519554dcd8cSDaniel Berlin using ListIndex = unsigned;
520554dcd8cSDaniel Berlin
521554dcd8cSDaniel Berlin /// Represents a span of contiguous MemoryDefs, potentially ending in a
522554dcd8cSDaniel Berlin /// MemoryPhi.
523554dcd8cSDaniel Berlin struct DefPath {
524554dcd8cSDaniel Berlin MemoryLocation Loc;
525554dcd8cSDaniel Berlin // Note that, because we always walk in reverse, Last will always dominate
526554dcd8cSDaniel Berlin // First. Also note that First and Last are inclusive.
527554dcd8cSDaniel Berlin MemoryAccess *First;
528554dcd8cSDaniel Berlin MemoryAccess *Last;
529554dcd8cSDaniel Berlin Optional<ListIndex> Previous;
530554dcd8cSDaniel Berlin
DefPath__anonca596e530611::ClobberWalker::DefPath531554dcd8cSDaniel Berlin DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
532554dcd8cSDaniel Berlin Optional<ListIndex> Previous)
533554dcd8cSDaniel Berlin : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
534554dcd8cSDaniel Berlin
DefPath__anonca596e530611::ClobberWalker::DefPath535554dcd8cSDaniel Berlin DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
536554dcd8cSDaniel Berlin Optional<ListIndex> Previous)
537554dcd8cSDaniel Berlin : DefPath(Loc, Init, Init, Previous) {}
538554dcd8cSDaniel Berlin };
539554dcd8cSDaniel Berlin
540554dcd8cSDaniel Berlin const MemorySSA &MSSA;
541bfc779e4SAlina Sbirlea AliasAnalysisType &AA;
542554dcd8cSDaniel Berlin DominatorTree &DT;
543554dcd8cSDaniel Berlin UpwardsMemoryQuery *Query;
544f085cc5aSAlina Sbirlea unsigned *UpwardWalkLimit;
545554dcd8cSDaniel Berlin
5461ce82015SAlina Sbirlea // Phi optimization bookkeeping:
5471ce82015SAlina Sbirlea // List of DefPath to process during the current phi optimization walk.
548554dcd8cSDaniel Berlin SmallVector<DefPath, 32> Paths;
5491ce82015SAlina Sbirlea // List of visited <Access, Location> pairs; we can skip paths already
5501ce82015SAlina Sbirlea // visited with the same memory location.
551554dcd8cSDaniel Berlin DenseSet<ConstMemoryAccessPair> VisitedPhis;
5521ce82015SAlina Sbirlea // Record if phi translation has been performed during the current phi
5531ce82015SAlina Sbirlea // optimization walk, as merging alias results after phi translation can
5541ce82015SAlina Sbirlea // yield incorrect results. Context in PR46156.
5551ce82015SAlina Sbirlea bool PerformedPhiTranslation = false;
556554dcd8cSDaniel Berlin
557554dcd8cSDaniel Berlin /// Find the nearest def or phi that `From` can legally be optimized to.
getWalkTarget(const MemoryPhi * From) const558554dcd8cSDaniel Berlin const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
559554dcd8cSDaniel Berlin assert(From->getNumOperands() && "Phi with no operands?");
560554dcd8cSDaniel Berlin
561554dcd8cSDaniel Berlin BasicBlock *BB = From->getBlock();
562554dcd8cSDaniel Berlin MemoryAccess *Result = MSSA.getLiveOnEntryDef();
563554dcd8cSDaniel Berlin DomTreeNode *Node = DT.getNode(BB);
564554dcd8cSDaniel Berlin while ((Node = Node->getIDom())) {
565554dcd8cSDaniel Berlin auto *Defs = MSSA.getBlockDefs(Node->getBlock());
566554dcd8cSDaniel Berlin if (Defs)
567554dcd8cSDaniel Berlin return &*Defs->rbegin();
568554dcd8cSDaniel Berlin }
569554dcd8cSDaniel Berlin return Result;
570554dcd8cSDaniel Berlin }
571554dcd8cSDaniel Berlin
572554dcd8cSDaniel Berlin /// Result of calling walkToPhiOrClobber.
573554dcd8cSDaniel Berlin struct UpwardsWalkResult {
574554dcd8cSDaniel Berlin /// The "Result" of the walk. Either a clobber, the last thing we walked, or
575d90c9f4aSAlina Sbirlea /// both. Include alias info when clobber found.
576554dcd8cSDaniel Berlin MemoryAccess *Result;
577554dcd8cSDaniel Berlin bool IsKnownClobber;
578d90c9f4aSAlina Sbirlea Optional<AliasResult> AR;
579554dcd8cSDaniel Berlin };
580554dcd8cSDaniel Berlin
581554dcd8cSDaniel Berlin /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
582554dcd8cSDaniel Berlin /// This will update Desc.Last as it walks. It will (optionally) also stop at
583554dcd8cSDaniel Berlin /// StopAt.
584554dcd8cSDaniel Berlin ///
585554dcd8cSDaniel Berlin /// This does not test for whether StopAt is a clobber
586554dcd8cSDaniel Berlin UpwardsWalkResult
walkToPhiOrClobber(DefPath & Desc,const MemoryAccess * StopAt=nullptr,const MemoryAccess * SkipStopAt=nullptr) const587f7230204SAlina Sbirlea walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
588f7230204SAlina Sbirlea const MemoryAccess *SkipStopAt = nullptr) const {
589554dcd8cSDaniel Berlin assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
590c8d6e049SAlina Sbirlea assert(UpwardWalkLimit && "Need a valid walk limit");
59157769382SAlina Sbirlea bool LimitAlreadyReached = false;
59257769382SAlina Sbirlea // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
59357769382SAlina Sbirlea // it to 1. This will not do any alias() calls. It either returns in the
59457769382SAlina Sbirlea // first iteration in the loop below, or is set back to 0 if all def chains
59557769382SAlina Sbirlea // are free of MemoryDefs.
59657769382SAlina Sbirlea if (!*UpwardWalkLimit) {
59757769382SAlina Sbirlea *UpwardWalkLimit = 1;
59857769382SAlina Sbirlea LimitAlreadyReached = true;
59957769382SAlina Sbirlea }
600554dcd8cSDaniel Berlin
601554dcd8cSDaniel Berlin for (MemoryAccess *Current : def_chain(Desc.Last)) {
602554dcd8cSDaniel Berlin Desc.Last = Current;
603f7230204SAlina Sbirlea if (Current == StopAt || Current == SkipStopAt)
604c1a88e00Sdfukalov return {Current, false, AliasResult(AliasResult::MayAlias)};
605554dcd8cSDaniel Berlin
606d90c9f4aSAlina Sbirlea if (auto *MD = dyn_cast<MemoryDef>(Current)) {
607d90c9f4aSAlina Sbirlea if (MSSA.isLiveOnEntryDef(MD))
608c1a88e00Sdfukalov return {MD, true, AliasResult(AliasResult::MustAlias)};
609f085cc5aSAlina Sbirlea
610f085cc5aSAlina Sbirlea if (!--*UpwardWalkLimit)
611c1a88e00Sdfukalov return {Current, true, AliasResult(AliasResult::MayAlias)};
612f085cc5aSAlina Sbirlea
613d90c9f4aSAlina Sbirlea ClobberAlias CA =
614d90c9f4aSAlina Sbirlea instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
615d90c9f4aSAlina Sbirlea if (CA.IsClobber)
616d90c9f4aSAlina Sbirlea return {MD, true, CA.AR};
617d90c9f4aSAlina Sbirlea }
618554dcd8cSDaniel Berlin }
619554dcd8cSDaniel Berlin
62057769382SAlina Sbirlea if (LimitAlreadyReached)
62157769382SAlina Sbirlea *UpwardWalkLimit = 0;
62257769382SAlina Sbirlea
623554dcd8cSDaniel Berlin assert(isa<MemoryPhi>(Desc.Last) &&
624554dcd8cSDaniel Berlin "Ended at a non-clobber that's not a phi?");
625c1a88e00Sdfukalov return {Desc.Last, false, AliasResult(AliasResult::MayAlias)};
626554dcd8cSDaniel Berlin }
627554dcd8cSDaniel Berlin
addSearches(MemoryPhi * Phi,SmallVectorImpl<ListIndex> & PausedSearches,ListIndex PriorNode)628554dcd8cSDaniel Berlin void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
629554dcd8cSDaniel Berlin ListIndex PriorNode) {
630c4f1b314SFlorian Hahn auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT,
631c4f1b314SFlorian Hahn &PerformedPhiTranslation);
6321ce82015SAlina Sbirlea auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
633554dcd8cSDaniel Berlin for (const MemoryAccessPair &P : UpwardDefs) {
634554dcd8cSDaniel Berlin PausedSearches.push_back(Paths.size());
635554dcd8cSDaniel Berlin Paths.emplace_back(P.second, P.first, PriorNode);
636554dcd8cSDaniel Berlin }
637554dcd8cSDaniel Berlin }
638554dcd8cSDaniel Berlin
639554dcd8cSDaniel Berlin /// Represents a search that terminated after finding a clobber. This clobber
640554dcd8cSDaniel Berlin /// may or may not be present in the path of defs from LastNode..SearchStart,
641554dcd8cSDaniel Berlin /// since it may have been retrieved from cache.
642554dcd8cSDaniel Berlin struct TerminatedPath {
643554dcd8cSDaniel Berlin MemoryAccess *Clobber;
644554dcd8cSDaniel Berlin ListIndex LastNode;
645554dcd8cSDaniel Berlin };
646554dcd8cSDaniel Berlin
647554dcd8cSDaniel Berlin /// Get an access that keeps us from optimizing to the given phi.
648554dcd8cSDaniel Berlin ///
649554dcd8cSDaniel Berlin /// PausedSearches is an array of indices into the Paths array. Its incoming
650554dcd8cSDaniel Berlin /// value is the indices of searches that stopped at the last phi optimization
651554dcd8cSDaniel Berlin /// target. It's left in an unspecified state.
652554dcd8cSDaniel Berlin ///
653554dcd8cSDaniel Berlin /// If this returns None, NewPaused is a vector of searches that terminated
654554dcd8cSDaniel Berlin /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
655554dcd8cSDaniel Berlin Optional<TerminatedPath>
getBlockingAccess(const MemoryAccess * StopWhere,SmallVectorImpl<ListIndex> & PausedSearches,SmallVectorImpl<ListIndex> & NewPaused,SmallVectorImpl<TerminatedPath> & Terminated)656554dcd8cSDaniel Berlin getBlockingAccess(const MemoryAccess *StopWhere,
657554dcd8cSDaniel Berlin SmallVectorImpl<ListIndex> &PausedSearches,
658554dcd8cSDaniel Berlin SmallVectorImpl<ListIndex> &NewPaused,
659554dcd8cSDaniel Berlin SmallVectorImpl<TerminatedPath> &Terminated) {
660554dcd8cSDaniel Berlin assert(!PausedSearches.empty() && "No searches to continue?");
661554dcd8cSDaniel Berlin
662554dcd8cSDaniel Berlin // BFS vs DFS really doesn't make a difference here, so just do a DFS with
663554dcd8cSDaniel Berlin // PausedSearches as our stack.
664554dcd8cSDaniel Berlin while (!PausedSearches.empty()) {
665554dcd8cSDaniel Berlin ListIndex PathIndex = PausedSearches.pop_back_val();
666554dcd8cSDaniel Berlin DefPath &Node = Paths[PathIndex];
667554dcd8cSDaniel Berlin
668554dcd8cSDaniel Berlin // If we've already visited this path with this MemoryLocation, we don't
669554dcd8cSDaniel Berlin // need to do so again.
670554dcd8cSDaniel Berlin //
671554dcd8cSDaniel Berlin // NOTE: That we just drop these paths on the ground makes caching
672554dcd8cSDaniel Berlin // behavior sporadic. e.g. given a diamond:
673554dcd8cSDaniel Berlin // A
674554dcd8cSDaniel Berlin // B C
675554dcd8cSDaniel Berlin // D
676554dcd8cSDaniel Berlin //
677554dcd8cSDaniel Berlin // ...If we walk D, B, A, C, we'll only cache the result of phi
678554dcd8cSDaniel Berlin // optimization for A, B, and D; C will be skipped because it dies here.
679554dcd8cSDaniel Berlin // This arguably isn't the worst thing ever, since:
680554dcd8cSDaniel Berlin // - We generally query things in a top-down order, so if we got below D
681554dcd8cSDaniel Berlin // without needing cache entries for {C, MemLoc}, then chances are
682554dcd8cSDaniel Berlin // that those cache entries would end up ultimately unused.
683554dcd8cSDaniel Berlin // - We still cache things for A, so C only needs to walk up a bit.
684554dcd8cSDaniel Berlin // If this behavior becomes problematic, we can fix without a ton of extra
685554dcd8cSDaniel Berlin // work.
6861ce82015SAlina Sbirlea if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) {
6871ce82015SAlina Sbirlea if (PerformedPhiTranslation) {
6881ce82015SAlina Sbirlea // If visiting this path performed Phi translation, don't continue,
6891ce82015SAlina Sbirlea // since it may not be correct to merge results from two paths if one
6901ce82015SAlina Sbirlea // relies on the phi translation.
6911ce82015SAlina Sbirlea TerminatedPath Term{Node.Last, PathIndex};
6921ce82015SAlina Sbirlea return Term;
6931ce82015SAlina Sbirlea }
694554dcd8cSDaniel Berlin continue;
6951ce82015SAlina Sbirlea }
696554dcd8cSDaniel Berlin
697f7230204SAlina Sbirlea const MemoryAccess *SkipStopWhere = nullptr;
698f7230204SAlina Sbirlea if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
699f7230204SAlina Sbirlea assert(isa<MemoryDef>(Query->OriginalAccess));
700f7230204SAlina Sbirlea SkipStopWhere = Query->OriginalAccess;
701f7230204SAlina Sbirlea }
702f7230204SAlina Sbirlea
703f085cc5aSAlina Sbirlea UpwardsWalkResult Res = walkToPhiOrClobber(Node,
704f085cc5aSAlina Sbirlea /*StopAt=*/StopWhere,
705f7230204SAlina Sbirlea /*SkipStopAt=*/SkipStopWhere);
706554dcd8cSDaniel Berlin if (Res.IsKnownClobber) {
707f7230204SAlina Sbirlea assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
708f085cc5aSAlina Sbirlea
709554dcd8cSDaniel Berlin // If this wasn't a cache hit, we hit a clobber when walking. That's a
710554dcd8cSDaniel Berlin // failure.
711554dcd8cSDaniel Berlin TerminatedPath Term{Res.Result, PathIndex};
712554dcd8cSDaniel Berlin if (!MSSA.dominates(Res.Result, StopWhere))
713554dcd8cSDaniel Berlin return Term;
714554dcd8cSDaniel Berlin
715554dcd8cSDaniel Berlin // Otherwise, it's a valid thing to potentially optimize to.
716554dcd8cSDaniel Berlin Terminated.push_back(Term);
717554dcd8cSDaniel Berlin continue;
718554dcd8cSDaniel Berlin }
719554dcd8cSDaniel Berlin
720f7230204SAlina Sbirlea if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
721554dcd8cSDaniel Berlin // We've hit our target. Save this path off for if we want to continue
722f7230204SAlina Sbirlea // walking. If we are in the mode of skipping the OriginalAccess, and
723f7230204SAlina Sbirlea // we've reached back to the OriginalAccess, do not save path, we've
724f7230204SAlina Sbirlea // just looped back to self.
725f7230204SAlina Sbirlea if (Res.Result != SkipStopWhere)
726554dcd8cSDaniel Berlin NewPaused.push_back(PathIndex);
727554dcd8cSDaniel Berlin continue;
728554dcd8cSDaniel Berlin }
729554dcd8cSDaniel Berlin
730554dcd8cSDaniel Berlin assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
731554dcd8cSDaniel Berlin addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
732554dcd8cSDaniel Berlin }
733554dcd8cSDaniel Berlin
734554dcd8cSDaniel Berlin return None;
735554dcd8cSDaniel Berlin }
736554dcd8cSDaniel Berlin
737554dcd8cSDaniel Berlin template <typename T, typename Walker>
738554dcd8cSDaniel Berlin struct generic_def_path_iterator
739554dcd8cSDaniel Berlin : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
740554dcd8cSDaniel Berlin std::forward_iterator_tag, T *> {
7413a3cb929SKazu Hirata generic_def_path_iterator() = default;
generic_def_path_iterator__anonca596e530611::ClobberWalker::generic_def_path_iterator742554dcd8cSDaniel Berlin generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
743554dcd8cSDaniel Berlin
operator *__anonca596e530611::ClobberWalker::generic_def_path_iterator744554dcd8cSDaniel Berlin T &operator*() const { return curNode(); }
745554dcd8cSDaniel Berlin
operator ++__anonca596e530611::ClobberWalker::generic_def_path_iterator746554dcd8cSDaniel Berlin generic_def_path_iterator &operator++() {
747554dcd8cSDaniel Berlin N = curNode().Previous;
748554dcd8cSDaniel Berlin return *this;
749554dcd8cSDaniel Berlin }
750554dcd8cSDaniel Berlin
operator ==__anonca596e530611::ClobberWalker::generic_def_path_iterator751554dcd8cSDaniel Berlin bool operator==(const generic_def_path_iterator &O) const {
752*a81b64a1SKazu Hirata if (N.has_value() != O.N.has_value())
753554dcd8cSDaniel Berlin return false;
754a7938c74SKazu Hirata return !N || *N == *O.N;
755554dcd8cSDaniel Berlin }
756554dcd8cSDaniel Berlin
757554dcd8cSDaniel Berlin private:
curNode__anonca596e530611::ClobberWalker::generic_def_path_iterator758554dcd8cSDaniel Berlin T &curNode() const { return W->Paths[*N]; }
759554dcd8cSDaniel Berlin
760bb1b2d09SEugene Zelenko Walker *W = nullptr;
761bb1b2d09SEugene Zelenko Optional<ListIndex> N = None;
762554dcd8cSDaniel Berlin };
763554dcd8cSDaniel Berlin
764554dcd8cSDaniel Berlin using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
765554dcd8cSDaniel Berlin using const_def_path_iterator =
766554dcd8cSDaniel Berlin generic_def_path_iterator<const DefPath, const ClobberWalker>;
767554dcd8cSDaniel Berlin
def_path(ListIndex From)768554dcd8cSDaniel Berlin iterator_range<def_path_iterator> def_path(ListIndex From) {
769554dcd8cSDaniel Berlin return make_range(def_path_iterator(this, From), def_path_iterator());
770554dcd8cSDaniel Berlin }
771554dcd8cSDaniel Berlin
const_def_path(ListIndex From) const772554dcd8cSDaniel Berlin iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
773554dcd8cSDaniel Berlin return make_range(const_def_path_iterator(this, From),
774554dcd8cSDaniel Berlin const_def_path_iterator());
775554dcd8cSDaniel Berlin }
776554dcd8cSDaniel Berlin
777554dcd8cSDaniel Berlin struct OptznResult {
778554dcd8cSDaniel Berlin /// The path that contains our result.
779554dcd8cSDaniel Berlin TerminatedPath PrimaryClobber;
780554dcd8cSDaniel Berlin /// The paths that we can legally cache back from, but that aren't
781554dcd8cSDaniel Berlin /// necessarily the result of the Phi optimization.
782554dcd8cSDaniel Berlin SmallVector<TerminatedPath, 4> OtherClobbers;
783554dcd8cSDaniel Berlin };
784554dcd8cSDaniel Berlin
defPathIndex(const DefPath & N) const785554dcd8cSDaniel Berlin ListIndex defPathIndex(const DefPath &N) const {
786554dcd8cSDaniel Berlin // The assert looks nicer if we don't need to do &N
787554dcd8cSDaniel Berlin const DefPath *NP = &N;
788554dcd8cSDaniel Berlin assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
789554dcd8cSDaniel Berlin "Out of bounds DefPath!");
790554dcd8cSDaniel Berlin return NP - &Paths.front();
791554dcd8cSDaniel Berlin }
792554dcd8cSDaniel Berlin
793554dcd8cSDaniel Berlin /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
794554dcd8cSDaniel Berlin /// that act as legal clobbers. Note that this won't return *all* clobbers.
795554dcd8cSDaniel Berlin ///
796554dcd8cSDaniel Berlin /// Phi optimization algorithm tl;dr:
797554dcd8cSDaniel Berlin /// - Find the earliest def/phi, A, we can optimize to
798554dcd8cSDaniel Berlin /// - Find if all paths from the starting memory access ultimately reach A
799554dcd8cSDaniel Berlin /// - If not, optimization isn't possible.
800554dcd8cSDaniel Berlin /// - Otherwise, walk from A to another clobber or phi, A'.
801554dcd8cSDaniel Berlin /// - If A' is a def, we're done.
802554dcd8cSDaniel Berlin /// - If A' is a phi, try to optimize it.
803554dcd8cSDaniel Berlin ///
804554dcd8cSDaniel Berlin /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
805554dcd8cSDaniel Berlin /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
tryOptimizePhi(MemoryPhi * Phi,MemoryAccess * Start,const MemoryLocation & Loc)806554dcd8cSDaniel Berlin OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
807554dcd8cSDaniel Berlin const MemoryLocation &Loc) {
8081ce82015SAlina Sbirlea assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation &&
809554dcd8cSDaniel Berlin "Reset the optimization state.");
810554dcd8cSDaniel Berlin
811554dcd8cSDaniel Berlin Paths.emplace_back(Loc, Start, Phi, None);
812554dcd8cSDaniel Berlin // Stores how many "valid" optimization nodes we had prior to calling
813554dcd8cSDaniel Berlin // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
814554dcd8cSDaniel Berlin auto PriorPathsSize = Paths.size();
815554dcd8cSDaniel Berlin
816554dcd8cSDaniel Berlin SmallVector<ListIndex, 16> PausedSearches;
817554dcd8cSDaniel Berlin SmallVector<ListIndex, 8> NewPaused;
818554dcd8cSDaniel Berlin SmallVector<TerminatedPath, 4> TerminatedPaths;
819554dcd8cSDaniel Berlin
820554dcd8cSDaniel Berlin addSearches(Phi, PausedSearches, 0);
821554dcd8cSDaniel Berlin
822554dcd8cSDaniel Berlin // Moves the TerminatedPath with the "most dominated" Clobber to the end of
823554dcd8cSDaniel Berlin // Paths.
824554dcd8cSDaniel Berlin auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
825554dcd8cSDaniel Berlin assert(!Paths.empty() && "Need a path to move");
826554dcd8cSDaniel Berlin auto Dom = Paths.begin();
827554dcd8cSDaniel Berlin for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
828554dcd8cSDaniel Berlin if (!MSSA.dominates(I->Clobber, Dom->Clobber))
829554dcd8cSDaniel Berlin Dom = I;
830554dcd8cSDaniel Berlin auto Last = Paths.end() - 1;
831554dcd8cSDaniel Berlin if (Last != Dom)
832554dcd8cSDaniel Berlin std::iter_swap(Last, Dom);
833554dcd8cSDaniel Berlin };
834554dcd8cSDaniel Berlin
835554dcd8cSDaniel Berlin MemoryPhi *Current = Phi;
836bb1b2d09SEugene Zelenko while (true) {
837554dcd8cSDaniel Berlin assert(!MSSA.isLiveOnEntryDef(Current) &&
838554dcd8cSDaniel Berlin "liveOnEntry wasn't treated as a clobber?");
839554dcd8cSDaniel Berlin
840554dcd8cSDaniel Berlin const auto *Target = getWalkTarget(Current);
841554dcd8cSDaniel Berlin // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
842554dcd8cSDaniel Berlin // optimization for the prior phi.
843554dcd8cSDaniel Berlin assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
844554dcd8cSDaniel Berlin return MSSA.dominates(P.Clobber, Target);
845554dcd8cSDaniel Berlin }));
846554dcd8cSDaniel Berlin
847554dcd8cSDaniel Berlin // FIXME: This is broken, because the Blocker may be reported to be
848554dcd8cSDaniel Berlin // liveOnEntry, and we'll happily wait for that to disappear (read: never)
849554dcd8cSDaniel Berlin // For the moment, this is fine, since we do nothing with blocker info.
850554dcd8cSDaniel Berlin if (Optional<TerminatedPath> Blocker = getBlockingAccess(
851554dcd8cSDaniel Berlin Target, PausedSearches, NewPaused, TerminatedPaths)) {
852554dcd8cSDaniel Berlin
853554dcd8cSDaniel Berlin // Find the node we started at. We can't search based on N->Last, since
854554dcd8cSDaniel Berlin // we may have gone around a loop with a different MemoryLocation.
855554dcd8cSDaniel Berlin auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
856554dcd8cSDaniel Berlin return defPathIndex(N) < PriorPathsSize;
857554dcd8cSDaniel Berlin });
858554dcd8cSDaniel Berlin assert(Iter != def_path_iterator());
859554dcd8cSDaniel Berlin
860554dcd8cSDaniel Berlin DefPath &CurNode = *Iter;
861554dcd8cSDaniel Berlin assert(CurNode.Last == Current);
862554dcd8cSDaniel Berlin
863554dcd8cSDaniel Berlin // Two things:
864554dcd8cSDaniel Berlin // A. We can't reliably cache all of NewPaused back. Consider a case
865554dcd8cSDaniel Berlin // where we have two paths in NewPaused; one of which can't optimize
866554dcd8cSDaniel Berlin // above this phi, whereas the other can. If we cache the second path
867554dcd8cSDaniel Berlin // back, we'll end up with suboptimal cache entries. We can handle
868554dcd8cSDaniel Berlin // cases like this a bit better when we either try to find all
869554dcd8cSDaniel Berlin // clobbers that block phi optimization, or when our cache starts
870554dcd8cSDaniel Berlin // supporting unfinished searches.
871554dcd8cSDaniel Berlin // B. We can't reliably cache TerminatedPaths back here without doing
872554dcd8cSDaniel Berlin // extra checks; consider a case like:
873554dcd8cSDaniel Berlin // T
874554dcd8cSDaniel Berlin // / \
875554dcd8cSDaniel Berlin // D C
876554dcd8cSDaniel Berlin // \ /
877554dcd8cSDaniel Berlin // S
878554dcd8cSDaniel Berlin // Where T is our target, C is a node with a clobber on it, D is a
879554dcd8cSDaniel Berlin // diamond (with a clobber *only* on the left or right node, N), and
880554dcd8cSDaniel Berlin // S is our start. Say we walk to D, through the node opposite N
881554dcd8cSDaniel Berlin // (read: ignoring the clobber), and see a cache entry in the top
882554dcd8cSDaniel Berlin // node of D. That cache entry gets put into TerminatedPaths. We then
883554dcd8cSDaniel Berlin // walk up to C (N is later in our worklist), find the clobber, and
884554dcd8cSDaniel Berlin // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
885554dcd8cSDaniel Berlin // the bottom part of D to the cached clobber, ignoring the clobber
886554dcd8cSDaniel Berlin // in N. Again, this problem goes away if we start tracking all
887554dcd8cSDaniel Berlin // blockers for a given phi optimization.
888554dcd8cSDaniel Berlin TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
889554dcd8cSDaniel Berlin return {Result, {}};
890554dcd8cSDaniel Berlin }
891554dcd8cSDaniel Berlin
892554dcd8cSDaniel Berlin // If there's nothing left to search, then all paths led to valid clobbers
893554dcd8cSDaniel Berlin // that we got from our cache; pick the nearest to the start, and allow
894554dcd8cSDaniel Berlin // the rest to be cached back.
895554dcd8cSDaniel Berlin if (NewPaused.empty()) {
896554dcd8cSDaniel Berlin MoveDominatedPathToEnd(TerminatedPaths);
897554dcd8cSDaniel Berlin TerminatedPath Result = TerminatedPaths.pop_back_val();
898554dcd8cSDaniel Berlin return {Result, std::move(TerminatedPaths)};
899554dcd8cSDaniel Berlin }
900554dcd8cSDaniel Berlin
901554dcd8cSDaniel Berlin MemoryAccess *DefChainEnd = nullptr;
902554dcd8cSDaniel Berlin SmallVector<TerminatedPath, 4> Clobbers;
903554dcd8cSDaniel Berlin for (ListIndex Paused : NewPaused) {
904554dcd8cSDaniel Berlin UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
905554dcd8cSDaniel Berlin if (WR.IsKnownClobber)
906554dcd8cSDaniel Berlin Clobbers.push_back({WR.Result, Paused});
907554dcd8cSDaniel Berlin else
908554dcd8cSDaniel Berlin // Micro-opt: If we hit the end of the chain, save it.
909554dcd8cSDaniel Berlin DefChainEnd = WR.Result;
910554dcd8cSDaniel Berlin }
911554dcd8cSDaniel Berlin
912554dcd8cSDaniel Berlin if (!TerminatedPaths.empty()) {
913554dcd8cSDaniel Berlin // If we couldn't find the dominating phi/liveOnEntry in the above loop,
914554dcd8cSDaniel Berlin // do it now.
915554dcd8cSDaniel Berlin if (!DefChainEnd)
916554dcd8cSDaniel Berlin for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
917554dcd8cSDaniel Berlin DefChainEnd = MA;
91865e11509SSimon Pilgrim assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
919554dcd8cSDaniel Berlin
920554dcd8cSDaniel Berlin // If any of the terminated paths don't dominate the phi we'll try to
921554dcd8cSDaniel Berlin // optimize, we need to figure out what they are and quit.
922554dcd8cSDaniel Berlin const BasicBlock *ChainBB = DefChainEnd->getBlock();
923554dcd8cSDaniel Berlin for (const TerminatedPath &TP : TerminatedPaths) {
924554dcd8cSDaniel Berlin // Because we know that DefChainEnd is as "high" as we can go, we
925554dcd8cSDaniel Berlin // don't need local dominance checks; BB dominance is sufficient.
926554dcd8cSDaniel Berlin if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
927554dcd8cSDaniel Berlin Clobbers.push_back(TP);
928554dcd8cSDaniel Berlin }
929554dcd8cSDaniel Berlin }
930554dcd8cSDaniel Berlin
931554dcd8cSDaniel Berlin // If we have clobbers in the def chain, find the one closest to Current
932554dcd8cSDaniel Berlin // and quit.
933554dcd8cSDaniel Berlin if (!Clobbers.empty()) {
934554dcd8cSDaniel Berlin MoveDominatedPathToEnd(Clobbers);
935554dcd8cSDaniel Berlin TerminatedPath Result = Clobbers.pop_back_val();
936554dcd8cSDaniel Berlin return {Result, std::move(Clobbers)};
937554dcd8cSDaniel Berlin }
938554dcd8cSDaniel Berlin
939554dcd8cSDaniel Berlin assert(all_of(NewPaused,
940554dcd8cSDaniel Berlin [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
941554dcd8cSDaniel Berlin
942554dcd8cSDaniel Berlin // Because liveOnEntry is a clobber, this must be a phi.
943554dcd8cSDaniel Berlin auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
944554dcd8cSDaniel Berlin
945554dcd8cSDaniel Berlin PriorPathsSize = Paths.size();
946554dcd8cSDaniel Berlin PausedSearches.clear();
947554dcd8cSDaniel Berlin for (ListIndex I : NewPaused)
948554dcd8cSDaniel Berlin addSearches(DefChainPhi, PausedSearches, I);
949554dcd8cSDaniel Berlin NewPaused.clear();
950554dcd8cSDaniel Berlin
951554dcd8cSDaniel Berlin Current = DefChainPhi;
952554dcd8cSDaniel Berlin }
953554dcd8cSDaniel Berlin }
954554dcd8cSDaniel Berlin
verifyOptResult(const OptznResult & R) const955554dcd8cSDaniel Berlin void verifyOptResult(const OptznResult &R) const {
956554dcd8cSDaniel Berlin assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
957554dcd8cSDaniel Berlin return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
958554dcd8cSDaniel Berlin }));
959554dcd8cSDaniel Berlin }
960554dcd8cSDaniel Berlin
resetPhiOptznState()961554dcd8cSDaniel Berlin void resetPhiOptznState() {
962554dcd8cSDaniel Berlin Paths.clear();
963554dcd8cSDaniel Berlin VisitedPhis.clear();
9641ce82015SAlina Sbirlea PerformedPhiTranslation = false;
965554dcd8cSDaniel Berlin }
966554dcd8cSDaniel Berlin
967554dcd8cSDaniel Berlin public:
ClobberWalker(const MemorySSA & MSSA,AliasAnalysisType & AA,DominatorTree & DT)968bfc779e4SAlina Sbirlea ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
969554dcd8cSDaniel Berlin : MSSA(MSSA), AA(AA), DT(DT) {}
970554dcd8cSDaniel Berlin
getAA()971bfc779e4SAlina Sbirlea AliasAnalysisType *getAA() { return &AA; }
972554dcd8cSDaniel Berlin /// Finds the nearest clobber for the given query, optimizing phis if
973554dcd8cSDaniel Berlin /// possible.
findClobber(MemoryAccess * Start,UpwardsMemoryQuery & Q,unsigned & UpWalkLimit)974f085cc5aSAlina Sbirlea MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
975f085cc5aSAlina Sbirlea unsigned &UpWalkLimit) {
976554dcd8cSDaniel Berlin Query = &Q;
977f085cc5aSAlina Sbirlea UpwardWalkLimit = &UpWalkLimit;
978f085cc5aSAlina Sbirlea // Starting limit must be > 0.
979f085cc5aSAlina Sbirlea if (!UpWalkLimit)
980f085cc5aSAlina Sbirlea UpWalkLimit++;
981554dcd8cSDaniel Berlin
982554dcd8cSDaniel Berlin MemoryAccess *Current = Start;
983554dcd8cSDaniel Berlin // This walker pretends uses don't exist. If we're handed one, silently grab
984554dcd8cSDaniel Berlin // its def. (This has the nice side-effect of ensuring we never cache uses)
985554dcd8cSDaniel Berlin if (auto *MU = dyn_cast<MemoryUse>(Start))
986554dcd8cSDaniel Berlin Current = MU->getDefiningAccess();
987554dcd8cSDaniel Berlin
988554dcd8cSDaniel Berlin DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
989554dcd8cSDaniel Berlin // Fast path for the overly-common case (no crazy phi optimization
990554dcd8cSDaniel Berlin // necessary)
991554dcd8cSDaniel Berlin UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
992554dcd8cSDaniel Berlin MemoryAccess *Result;
993554dcd8cSDaniel Berlin if (WalkResult.IsKnownClobber) {
994554dcd8cSDaniel Berlin Result = WalkResult.Result;
995d90c9f4aSAlina Sbirlea Q.AR = WalkResult.AR;
996554dcd8cSDaniel Berlin } else {
997554dcd8cSDaniel Berlin OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
998554dcd8cSDaniel Berlin Current, Q.StartingLoc);
999554dcd8cSDaniel Berlin verifyOptResult(OptRes);
1000554dcd8cSDaniel Berlin resetPhiOptznState();
1001554dcd8cSDaniel Berlin Result = OptRes.PrimaryClobber.Clobber;
1002554dcd8cSDaniel Berlin }
1003554dcd8cSDaniel Berlin
1004554dcd8cSDaniel Berlin #ifdef EXPENSIVE_CHECKS
1005f085cc5aSAlina Sbirlea if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
1006554dcd8cSDaniel Berlin checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
1007554dcd8cSDaniel Berlin #endif
1008554dcd8cSDaniel Berlin return Result;
1009554dcd8cSDaniel Berlin }
1010554dcd8cSDaniel Berlin };
1011554dcd8cSDaniel Berlin
1012554dcd8cSDaniel Berlin struct RenamePassData {
1013554dcd8cSDaniel Berlin DomTreeNode *DTN;
1014554dcd8cSDaniel Berlin DomTreeNode::const_iterator ChildIt;
1015554dcd8cSDaniel Berlin MemoryAccess *IncomingVal;
1016554dcd8cSDaniel Berlin
RenamePassData__anonca596e530611::RenamePassData1017554dcd8cSDaniel Berlin RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
1018554dcd8cSDaniel Berlin MemoryAccess *M)
1019554dcd8cSDaniel Berlin : DTN(D), ChildIt(It), IncomingVal(M) {}
1020bb1b2d09SEugene Zelenko
swap__anonca596e530611::RenamePassData1021554dcd8cSDaniel Berlin void swap(RenamePassData &RHS) {
1022554dcd8cSDaniel Berlin std::swap(DTN, RHS.DTN);
1023554dcd8cSDaniel Berlin std::swap(ChildIt, RHS.ChildIt);
1024554dcd8cSDaniel Berlin std::swap(IncomingVal, RHS.IncomingVal);
1025554dcd8cSDaniel Berlin }
1026554dcd8cSDaniel Berlin };
1027bb1b2d09SEugene Zelenko
1028bb1b2d09SEugene Zelenko } // end anonymous namespace
1029554dcd8cSDaniel Berlin
1030554dcd8cSDaniel Berlin namespace llvm {
1031bb1b2d09SEugene Zelenko
1032bfc779e4SAlina Sbirlea template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
1033bfc779e4SAlina Sbirlea ClobberWalker<AliasAnalysisType> Walker;
1034bc8aa24cSAlina Sbirlea MemorySSA *MSSA;
1035bc8aa24cSAlina Sbirlea
1036bc8aa24cSAlina Sbirlea public:
ClobberWalkerBase(MemorySSA * M,AliasAnalysisType * A,DominatorTree * D)1037bfc779e4SAlina Sbirlea ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
1038bc8aa24cSAlina Sbirlea : Walker(*M, *A, *D), MSSA(M) {}
1039bc8aa24cSAlina Sbirlea
1040bc8aa24cSAlina Sbirlea MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
1041f085cc5aSAlina Sbirlea const MemoryLocation &,
1042f085cc5aSAlina Sbirlea unsigned &);
1043f085cc5aSAlina Sbirlea // Third argument (bool), defines whether the clobber search should skip the
1044bc8aa24cSAlina Sbirlea // original queried access. If true, there will be a follow-up query searching
1045bc8aa24cSAlina Sbirlea // for a clobber access past "self". Note that the Optimized access is not
1046bc8aa24cSAlina Sbirlea // updated if a new clobber is found by this SkipSelf search. If this
1047bc8aa24cSAlina Sbirlea // additional query becomes heavily used we may decide to cache the result.
1048bc8aa24cSAlina Sbirlea // Walker instantiations will decide how to set the SkipSelf bool.
1049b493124aSArthur Eubanks MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool,
1050b493124aSArthur Eubanks bool UseInvariantGroup = true);
1051bc8aa24cSAlina Sbirlea };
1052bc8aa24cSAlina Sbirlea
10535f8f34e4SAdrian Prantl /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
105445f263ddSGeorge Burgess IV /// longer does caching on its own, but the name has been retained for the
105545f263ddSGeorge Burgess IV /// moment.
1056bfc779e4SAlina Sbirlea template <class AliasAnalysisType>
1057554dcd8cSDaniel Berlin class MemorySSA::CachingWalker final : public MemorySSAWalker {
1058bfc779e4SAlina Sbirlea ClobberWalkerBase<AliasAnalysisType> *Walker;
1059554dcd8cSDaniel Berlin
1060554dcd8cSDaniel Berlin public:
CachingWalker(MemorySSA * M,ClobberWalkerBase<AliasAnalysisType> * W)1061bfc779e4SAlina Sbirlea CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1062bc8aa24cSAlina Sbirlea : MemorySSAWalker(M), Walker(W) {}
1063bb1b2d09SEugene Zelenko ~CachingWalker() override = default;
1064554dcd8cSDaniel Berlin
1065554dcd8cSDaniel Berlin using MemorySSAWalker::getClobberingMemoryAccess;
1066bb1b2d09SEugene Zelenko
getClobberingMemoryAccess(MemoryAccess * MA,unsigned & UWL)1067f085cc5aSAlina Sbirlea MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1068f085cc5aSAlina Sbirlea return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1069f085cc5aSAlina Sbirlea }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc,unsigned & UWL)1070f085cc5aSAlina Sbirlea MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1071f085cc5aSAlina Sbirlea const MemoryLocation &Loc,
1072f085cc5aSAlina Sbirlea unsigned &UWL) {
1073f085cc5aSAlina Sbirlea return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1074f085cc5aSAlina Sbirlea }
1075b493124aSArthur Eubanks // This method is not accessible outside of this file.
getClobberingMemoryAccessWithoutInvariantGroup(MemoryAccess * MA,unsigned & UWL)1076b493124aSArthur Eubanks MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(MemoryAccess *MA,
1077b493124aSArthur Eubanks unsigned &UWL) {
1078b493124aSArthur Eubanks return Walker->getClobberingMemoryAccessBase(MA, UWL, false, false);
1079b493124aSArthur Eubanks }
1080f085cc5aSAlina Sbirlea
getClobberingMemoryAccess(MemoryAccess * MA)1081bfc779e4SAlina Sbirlea MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1082f085cc5aSAlina Sbirlea unsigned UpwardWalkLimit = MaxCheckLimit;
1083f085cc5aSAlina Sbirlea return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1084bfc779e4SAlina Sbirlea }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc)1085bc8aa24cSAlina Sbirlea MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1086bfc779e4SAlina Sbirlea const MemoryLocation &Loc) override {
1087f085cc5aSAlina Sbirlea unsigned UpwardWalkLimit = MaxCheckLimit;
1088f085cc5aSAlina Sbirlea return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1089bfc779e4SAlina Sbirlea }
1090bc8aa24cSAlina Sbirlea
invalidateInfo(MemoryAccess * MA)1091bc8aa24cSAlina Sbirlea void invalidateInfo(MemoryAccess *MA) override {
1092bc8aa24cSAlina Sbirlea if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1093bc8aa24cSAlina Sbirlea MUD->resetOptimized();
1094bc8aa24cSAlina Sbirlea }
1095554dcd8cSDaniel Berlin };
1096554dcd8cSDaniel Berlin
1097bfc779e4SAlina Sbirlea template <class AliasAnalysisType>
109812bbb4feSAlina Sbirlea class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1099bfc779e4SAlina Sbirlea ClobberWalkerBase<AliasAnalysisType> *Walker;
110012bbb4feSAlina Sbirlea
110112bbb4feSAlina Sbirlea public:
SkipSelfWalker(MemorySSA * M,ClobberWalkerBase<AliasAnalysisType> * W)1102bfc779e4SAlina Sbirlea SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
110312bbb4feSAlina Sbirlea : MemorySSAWalker(M), Walker(W) {}
110412bbb4feSAlina Sbirlea ~SkipSelfWalker() override = default;
110512bbb4feSAlina Sbirlea
110612bbb4feSAlina Sbirlea using MemorySSAWalker::getClobberingMemoryAccess;
110712bbb4feSAlina Sbirlea
getClobberingMemoryAccess(MemoryAccess * MA,unsigned & UWL)1108f085cc5aSAlina Sbirlea MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1109f085cc5aSAlina Sbirlea return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1110f085cc5aSAlina Sbirlea }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc,unsigned & UWL)1111f085cc5aSAlina Sbirlea MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1112f085cc5aSAlina Sbirlea const MemoryLocation &Loc,
1113f085cc5aSAlina Sbirlea unsigned &UWL) {
1114f085cc5aSAlina Sbirlea return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1115f085cc5aSAlina Sbirlea }
1116f085cc5aSAlina Sbirlea
getClobberingMemoryAccess(MemoryAccess * MA)1117bfc779e4SAlina Sbirlea MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1118f085cc5aSAlina Sbirlea unsigned UpwardWalkLimit = MaxCheckLimit;
1119f085cc5aSAlina Sbirlea return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1120bfc779e4SAlina Sbirlea }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc)112112bbb4feSAlina Sbirlea MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1122bfc779e4SAlina Sbirlea const MemoryLocation &Loc) override {
1123f085cc5aSAlina Sbirlea unsigned UpwardWalkLimit = MaxCheckLimit;
1124f085cc5aSAlina Sbirlea return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1125bfc779e4SAlina Sbirlea }
112612bbb4feSAlina Sbirlea
invalidateInfo(MemoryAccess * MA)112712bbb4feSAlina Sbirlea void invalidateInfo(MemoryAccess *MA) override {
112812bbb4feSAlina Sbirlea if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
112912bbb4feSAlina Sbirlea MUD->resetOptimized();
113012bbb4feSAlina Sbirlea }
113112bbb4feSAlina Sbirlea };
113212bbb4feSAlina Sbirlea
1133bb1b2d09SEugene Zelenko } // end namespace llvm
1134bb1b2d09SEugene Zelenko
renameSuccessorPhis(BasicBlock * BB,MemoryAccess * IncomingVal,bool RenameAllUses)1135554dcd8cSDaniel Berlin void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1136554dcd8cSDaniel Berlin bool RenameAllUses) {
1137554dcd8cSDaniel Berlin // Pass through values to our successors
1138554dcd8cSDaniel Berlin for (const BasicBlock *S : successors(BB)) {
1139554dcd8cSDaniel Berlin auto It = PerBlockAccesses.find(S);
1140554dcd8cSDaniel Berlin // Rename the phi nodes in our successor block
1141554dcd8cSDaniel Berlin if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1142554dcd8cSDaniel Berlin continue;
1143554dcd8cSDaniel Berlin AccessList *Accesses = It->second.get();
1144554dcd8cSDaniel Berlin auto *Phi = cast<MemoryPhi>(&Accesses->front());
1145554dcd8cSDaniel Berlin if (RenameAllUses) {
11463d03769bSAlina Sbirlea bool ReplacementDone = false;
11473d03769bSAlina Sbirlea for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
11483d03769bSAlina Sbirlea if (Phi->getIncomingBlock(I) == BB) {
11493d03769bSAlina Sbirlea Phi->setIncomingValue(I, IncomingVal);
11503d03769bSAlina Sbirlea ReplacementDone = true;
11513d03769bSAlina Sbirlea }
11523d03769bSAlina Sbirlea (void) ReplacementDone;
11533d03769bSAlina Sbirlea assert(ReplacementDone && "Incomplete phi during partial rename");
1154554dcd8cSDaniel Berlin } else
1155554dcd8cSDaniel Berlin Phi->addIncoming(IncomingVal, BB);
1156554dcd8cSDaniel Berlin }
1157554dcd8cSDaniel Berlin }
1158554dcd8cSDaniel Berlin
11595f8f34e4SAdrian Prantl /// Rename a single basic block into MemorySSA form.
1160554dcd8cSDaniel Berlin /// Uses the standard SSA renaming algorithm.
1161554dcd8cSDaniel Berlin /// \returns The new incoming value.
renameBlock(BasicBlock * BB,MemoryAccess * IncomingVal,bool RenameAllUses)1162554dcd8cSDaniel Berlin MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1163554dcd8cSDaniel Berlin bool RenameAllUses) {
1164554dcd8cSDaniel Berlin auto It = PerBlockAccesses.find(BB);
1165554dcd8cSDaniel Berlin // Skip most processing if the list is empty.
1166554dcd8cSDaniel Berlin if (It != PerBlockAccesses.end()) {
1167554dcd8cSDaniel Berlin AccessList *Accesses = It->second.get();
1168554dcd8cSDaniel Berlin for (MemoryAccess &L : *Accesses) {
1169554dcd8cSDaniel Berlin if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1170554dcd8cSDaniel Berlin if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1171554dcd8cSDaniel Berlin MUD->setDefiningAccess(IncomingVal);
1172554dcd8cSDaniel Berlin if (isa<MemoryDef>(&L))
1173554dcd8cSDaniel Berlin IncomingVal = &L;
1174554dcd8cSDaniel Berlin } else {
1175554dcd8cSDaniel Berlin IncomingVal = &L;
1176554dcd8cSDaniel Berlin }
1177554dcd8cSDaniel Berlin }
1178554dcd8cSDaniel Berlin }
1179554dcd8cSDaniel Berlin return IncomingVal;
1180554dcd8cSDaniel Berlin }
1181554dcd8cSDaniel Berlin
11825f8f34e4SAdrian Prantl /// This is the standard SSA renaming algorithm.
1183554dcd8cSDaniel Berlin ///
1184554dcd8cSDaniel Berlin /// We walk the dominator tree in preorder, renaming accesses, and then filling
1185554dcd8cSDaniel Berlin /// in phi nodes in our successors.
renamePass(DomTreeNode * Root,MemoryAccess * IncomingVal,SmallPtrSetImpl<BasicBlock * > & Visited,bool SkipVisited,bool RenameAllUses)1186554dcd8cSDaniel Berlin void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1187554dcd8cSDaniel Berlin SmallPtrSetImpl<BasicBlock *> &Visited,
1188554dcd8cSDaniel Berlin bool SkipVisited, bool RenameAllUses) {
11890363c3b8SAlina Sbirlea assert(Root && "Trying to rename accesses in an unreachable block");
11900363c3b8SAlina Sbirlea
1191554dcd8cSDaniel Berlin SmallVector<RenamePassData, 32> WorkStack;
1192554dcd8cSDaniel Berlin // Skip everything if we already renamed this block and we are skipping.
1193554dcd8cSDaniel Berlin // Note: You can't sink this into the if, because we need it to occur
1194554dcd8cSDaniel Berlin // regardless of whether we skip blocks or not.
1195554dcd8cSDaniel Berlin bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1196554dcd8cSDaniel Berlin if (SkipVisited && AlreadyVisited)
1197554dcd8cSDaniel Berlin return;
1198554dcd8cSDaniel Berlin
1199554dcd8cSDaniel Berlin IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1200554dcd8cSDaniel Berlin renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1201554dcd8cSDaniel Berlin WorkStack.push_back({Root, Root->begin(), IncomingVal});
1202554dcd8cSDaniel Berlin
1203554dcd8cSDaniel Berlin while (!WorkStack.empty()) {
1204554dcd8cSDaniel Berlin DomTreeNode *Node = WorkStack.back().DTN;
1205554dcd8cSDaniel Berlin DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1206554dcd8cSDaniel Berlin IncomingVal = WorkStack.back().IncomingVal;
1207554dcd8cSDaniel Berlin
1208554dcd8cSDaniel Berlin if (ChildIt == Node->end()) {
1209554dcd8cSDaniel Berlin WorkStack.pop_back();
1210554dcd8cSDaniel Berlin } else {
1211554dcd8cSDaniel Berlin DomTreeNode *Child = *ChildIt;
1212554dcd8cSDaniel Berlin ++WorkStack.back().ChildIt;
1213554dcd8cSDaniel Berlin BasicBlock *BB = Child->getBlock();
1214554dcd8cSDaniel Berlin // Note: You can't sink this into the if, because we need it to occur
1215554dcd8cSDaniel Berlin // regardless of whether we skip blocks or not.
1216554dcd8cSDaniel Berlin AlreadyVisited = !Visited.insert(BB).second;
1217554dcd8cSDaniel Berlin if (SkipVisited && AlreadyVisited) {
1218554dcd8cSDaniel Berlin // We already visited this during our renaming, which can happen when
1219554dcd8cSDaniel Berlin // being asked to rename multiple blocks. Figure out the incoming val,
1220554dcd8cSDaniel Berlin // which is the last def.
1221554dcd8cSDaniel Berlin // Incoming value can only change if there is a block def, and in that
1222554dcd8cSDaniel Berlin // case, it's the last block def in the list.
1223554dcd8cSDaniel Berlin if (auto *BlockDefs = getWritableBlockDefs(BB))
1224554dcd8cSDaniel Berlin IncomingVal = &*BlockDefs->rbegin();
1225554dcd8cSDaniel Berlin } else
1226554dcd8cSDaniel Berlin IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1227554dcd8cSDaniel Berlin renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1228554dcd8cSDaniel Berlin WorkStack.push_back({Child, Child->begin(), IncomingVal});
1229554dcd8cSDaniel Berlin }
1230554dcd8cSDaniel Berlin }
1231554dcd8cSDaniel Berlin }
1232554dcd8cSDaniel Berlin
12335f8f34e4SAdrian Prantl /// This handles unreachable block accesses by deleting phi nodes in
1234554dcd8cSDaniel Berlin /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1235554dcd8cSDaniel Berlin /// being uses of the live on entry definition.
markUnreachableAsLiveOnEntry(BasicBlock * BB)1236554dcd8cSDaniel Berlin void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1237554dcd8cSDaniel Berlin assert(!DT->isReachableFromEntry(BB) &&
1238554dcd8cSDaniel Berlin "Reachable block found while handling unreachable blocks");
1239554dcd8cSDaniel Berlin
1240554dcd8cSDaniel Berlin // Make sure phi nodes in our reachable successors end up with a
1241554dcd8cSDaniel Berlin // LiveOnEntryDef for our incoming edge, even though our block is forward
1242554dcd8cSDaniel Berlin // unreachable. We could just disconnect these blocks from the CFG fully,
1243554dcd8cSDaniel Berlin // but we do not right now.
1244554dcd8cSDaniel Berlin for (const BasicBlock *S : successors(BB)) {
1245554dcd8cSDaniel Berlin if (!DT->isReachableFromEntry(S))
1246554dcd8cSDaniel Berlin continue;
1247554dcd8cSDaniel Berlin auto It = PerBlockAccesses.find(S);
1248554dcd8cSDaniel Berlin // Rename the phi nodes in our successor block
1249554dcd8cSDaniel Berlin if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1250554dcd8cSDaniel Berlin continue;
1251554dcd8cSDaniel Berlin AccessList *Accesses = It->second.get();
1252554dcd8cSDaniel Berlin auto *Phi = cast<MemoryPhi>(&Accesses->front());
1253554dcd8cSDaniel Berlin Phi->addIncoming(LiveOnEntryDef.get(), BB);
1254554dcd8cSDaniel Berlin }
1255554dcd8cSDaniel Berlin
1256554dcd8cSDaniel Berlin auto It = PerBlockAccesses.find(BB);
1257554dcd8cSDaniel Berlin if (It == PerBlockAccesses.end())
1258554dcd8cSDaniel Berlin return;
1259554dcd8cSDaniel Berlin
1260554dcd8cSDaniel Berlin auto &Accesses = It->second;
1261554dcd8cSDaniel Berlin for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1262554dcd8cSDaniel Berlin auto Next = std::next(AI);
1263554dcd8cSDaniel Berlin // If we have a phi, just remove it. We are going to replace all
1264554dcd8cSDaniel Berlin // users with live on entry.
1265554dcd8cSDaniel Berlin if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1266554dcd8cSDaniel Berlin UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1267554dcd8cSDaniel Berlin else
1268554dcd8cSDaniel Berlin Accesses->erase(AI);
1269554dcd8cSDaniel Berlin AI = Next;
1270554dcd8cSDaniel Berlin }
1271554dcd8cSDaniel Berlin }
1272554dcd8cSDaniel Berlin
MemorySSA(Function & Func,AliasAnalysis * AA,DominatorTree * DT)1273554dcd8cSDaniel Berlin MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1274b752eb88SKazu Hirata : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1275b752eb88SKazu Hirata SkipWalker(nullptr) {
1276bfc779e4SAlina Sbirlea // Build MemorySSA using a batch alias analysis. This reuses the internal
1277bfc779e4SAlina Sbirlea // state that AA collects during an alias()/getModRefInfo() call. This is
1278bfc779e4SAlina Sbirlea // safe because there are no CFG changes while building MemorySSA and can
1279bfc779e4SAlina Sbirlea // significantly reduce the time spent by the compiler in AA, because we will
1280bfc779e4SAlina Sbirlea // make queries about all the instructions in the Function.
1281717965aeSDávid Bolvanský assert(AA && "No alias analysis?");
1282bfc779e4SAlina Sbirlea BatchAAResults BatchAA(*AA);
1283bfc779e4SAlina Sbirlea buildMemorySSA(BatchAA);
1284bfc779e4SAlina Sbirlea // Intentionally leave AA to nullptr while building so we don't accidently
1285bfc779e4SAlina Sbirlea // use non-batch AliasAnalysis.
1286bfc779e4SAlina Sbirlea this->AA = AA;
1287bfc779e4SAlina Sbirlea // Also create the walker here.
1288bfc779e4SAlina Sbirlea getWalker();
1289554dcd8cSDaniel Berlin }
1290554dcd8cSDaniel Berlin
~MemorySSA()1291554dcd8cSDaniel Berlin MemorySSA::~MemorySSA() {
1292554dcd8cSDaniel Berlin // Drop all our references
1293554dcd8cSDaniel Berlin for (const auto &Pair : PerBlockAccesses)
1294554dcd8cSDaniel Berlin for (MemoryAccess &MA : *Pair.second)
1295554dcd8cSDaniel Berlin MA.dropAllReferences();
1296554dcd8cSDaniel Berlin }
1297554dcd8cSDaniel Berlin
getOrCreateAccessList(const BasicBlock * BB)1298554dcd8cSDaniel Berlin MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1299554dcd8cSDaniel Berlin auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1300554dcd8cSDaniel Berlin
1301554dcd8cSDaniel Berlin if (Res.second)
13020eaee545SJonas Devlieghere Res.first->second = std::make_unique<AccessList>();
1303554dcd8cSDaniel Berlin return Res.first->second.get();
1304554dcd8cSDaniel Berlin }
1305bb1b2d09SEugene Zelenko
getOrCreateDefsList(const BasicBlock * BB)1306554dcd8cSDaniel Berlin MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1307554dcd8cSDaniel Berlin auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1308554dcd8cSDaniel Berlin
1309554dcd8cSDaniel Berlin if (Res.second)
13100eaee545SJonas Devlieghere Res.first->second = std::make_unique<DefsList>();
1311554dcd8cSDaniel Berlin return Res.first->second.get();
1312554dcd8cSDaniel Berlin }
1313554dcd8cSDaniel Berlin
1314bb1b2d09SEugene Zelenko namespace llvm {
1315bb1b2d09SEugene Zelenko
1316554dcd8cSDaniel Berlin /// This class is a batch walker of all MemoryUse's in the program, and points
1317554dcd8cSDaniel Berlin /// their defining access at the thing that actually clobbers them. Because it
1318554dcd8cSDaniel Berlin /// is a batch walker that touches everything, it does not operate like the
1319554dcd8cSDaniel Berlin /// other walkers. This walker is basically performing a top-down SSA renaming
1320554dcd8cSDaniel Berlin /// pass, where the version stack is used as the cache. This enables it to be
1321554dcd8cSDaniel Berlin /// significantly more time and memory efficient than using the regular walker,
1322554dcd8cSDaniel Berlin /// which is walking bottom-up.
1323554dcd8cSDaniel Berlin class MemorySSA::OptimizeUses {
1324554dcd8cSDaniel Berlin public:
OptimizeUses(MemorySSA * MSSA,CachingWalker<BatchAAResults> * Walker,BatchAAResults * BAA,DominatorTree * DT)1325f085cc5aSAlina Sbirlea OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1326f085cc5aSAlina Sbirlea BatchAAResults *BAA, DominatorTree *DT)
1327bfc779e4SAlina Sbirlea : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1328554dcd8cSDaniel Berlin
1329554dcd8cSDaniel Berlin void optimizeUses();
1330554dcd8cSDaniel Berlin
1331554dcd8cSDaniel Berlin private:
1332554dcd8cSDaniel Berlin /// This represents where a given memorylocation is in the stack.
1333554dcd8cSDaniel Berlin struct MemlocStackInfo {
1334554dcd8cSDaniel Berlin // This essentially is keeping track of versions of the stack. Whenever
1335554dcd8cSDaniel Berlin // the stack changes due to pushes or pops, these versions increase.
1336554dcd8cSDaniel Berlin unsigned long StackEpoch;
1337554dcd8cSDaniel Berlin unsigned long PopEpoch;
1338554dcd8cSDaniel Berlin // This is the lower bound of places on the stack to check. It is equal to
1339554dcd8cSDaniel Berlin // the place the last stack walk ended.
1340554dcd8cSDaniel Berlin // Note: Correctness depends on this being initialized to 0, which densemap
1341554dcd8cSDaniel Berlin // does
1342554dcd8cSDaniel Berlin unsigned long LowerBound;
1343554dcd8cSDaniel Berlin const BasicBlock *LowerBoundBlock;
1344554dcd8cSDaniel Berlin // This is where the last walk for this memory location ended.
1345554dcd8cSDaniel Berlin unsigned long LastKill;
1346554dcd8cSDaniel Berlin bool LastKillValid;
1347d90c9f4aSAlina Sbirlea Optional<AliasResult> AR;
1348554dcd8cSDaniel Berlin };
1349bb1b2d09SEugene Zelenko
1350554dcd8cSDaniel Berlin void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1351554dcd8cSDaniel Berlin SmallVectorImpl<MemoryAccess *> &,
1352554dcd8cSDaniel Berlin DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1353bb1b2d09SEugene Zelenko
1354554dcd8cSDaniel Berlin MemorySSA *MSSA;
1355f085cc5aSAlina Sbirlea CachingWalker<BatchAAResults> *Walker;
1356bfc779e4SAlina Sbirlea BatchAAResults *AA;
1357554dcd8cSDaniel Berlin DominatorTree *DT;
1358554dcd8cSDaniel Berlin };
1359554dcd8cSDaniel Berlin
1360bb1b2d09SEugene Zelenko } // end namespace llvm
1361bb1b2d09SEugene Zelenko
1362554dcd8cSDaniel Berlin /// Optimize the uses in a given block This is basically the SSA renaming
1363554dcd8cSDaniel Berlin /// algorithm, with one caveat: We are able to use a single stack for all
1364554dcd8cSDaniel Berlin /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1365554dcd8cSDaniel Berlin /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1366554dcd8cSDaniel Berlin /// going to be some position in that stack of possible ones.
1367554dcd8cSDaniel Berlin ///
1368554dcd8cSDaniel Berlin /// We track the stack positions that each MemoryLocation needs
1369554dcd8cSDaniel Berlin /// to check, and last ended at. This is because we only want to check the
1370554dcd8cSDaniel Berlin /// things that changed since last time. The same MemoryLocation should
1371554dcd8cSDaniel Berlin /// get clobbered by the same store (getModRefInfo does not use invariantness or
1372554dcd8cSDaniel Berlin /// things like this, and if they start, we can modify MemoryLocOrCall to
1373554dcd8cSDaniel Berlin /// include relevant data)
optimizeUsesInBlock(const BasicBlock * BB,unsigned long & StackEpoch,unsigned long & PopEpoch,SmallVectorImpl<MemoryAccess * > & VersionStack,DenseMap<MemoryLocOrCall,MemlocStackInfo> & LocStackInfo)1374554dcd8cSDaniel Berlin void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1375554dcd8cSDaniel Berlin const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1376554dcd8cSDaniel Berlin SmallVectorImpl<MemoryAccess *> &VersionStack,
1377554dcd8cSDaniel Berlin DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1378554dcd8cSDaniel Berlin
1379554dcd8cSDaniel Berlin /// If no accesses, nothing to do.
1380554dcd8cSDaniel Berlin MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1381554dcd8cSDaniel Berlin if (Accesses == nullptr)
1382554dcd8cSDaniel Berlin return;
1383554dcd8cSDaniel Berlin
1384554dcd8cSDaniel Berlin // Pop everything that doesn't dominate the current block off the stack,
1385554dcd8cSDaniel Berlin // increment the PopEpoch to account for this.
1386554dcd8cSDaniel Berlin while (true) {
1387554dcd8cSDaniel Berlin assert(
1388554dcd8cSDaniel Berlin !VersionStack.empty() &&
1389554dcd8cSDaniel Berlin "Version stack should have liveOnEntry sentinel dominating everything");
1390554dcd8cSDaniel Berlin BasicBlock *BackBlock = VersionStack.back()->getBlock();
1391554dcd8cSDaniel Berlin if (DT->dominates(BackBlock, BB))
1392554dcd8cSDaniel Berlin break;
1393554dcd8cSDaniel Berlin while (VersionStack.back()->getBlock() == BackBlock)
1394554dcd8cSDaniel Berlin VersionStack.pop_back();
1395554dcd8cSDaniel Berlin ++PopEpoch;
1396554dcd8cSDaniel Berlin }
1397554dcd8cSDaniel Berlin
1398554dcd8cSDaniel Berlin for (MemoryAccess &MA : *Accesses) {
1399554dcd8cSDaniel Berlin auto *MU = dyn_cast<MemoryUse>(&MA);
1400554dcd8cSDaniel Berlin if (!MU) {
1401554dcd8cSDaniel Berlin VersionStack.push_back(&MA);
1402554dcd8cSDaniel Berlin ++StackEpoch;
1403554dcd8cSDaniel Berlin continue;
1404554dcd8cSDaniel Berlin }
1405554dcd8cSDaniel Berlin
1406f96428e1SNikita Popov if (MU->isOptimized())
1407f96428e1SNikita Popov continue;
1408f96428e1SNikita Popov
1409554dcd8cSDaniel Berlin if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1410d90c9f4aSAlina Sbirlea MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1411554dcd8cSDaniel Berlin continue;
1412554dcd8cSDaniel Berlin }
1413554dcd8cSDaniel Berlin
1414554dcd8cSDaniel Berlin MemoryLocOrCall UseMLOC(MU);
1415554dcd8cSDaniel Berlin auto &LocInfo = LocStackInfo[UseMLOC];
1416554dcd8cSDaniel Berlin // If the pop epoch changed, it means we've removed stuff from top of
1417554dcd8cSDaniel Berlin // stack due to changing blocks. We may have to reset the lower bound or
1418554dcd8cSDaniel Berlin // last kill info.
1419554dcd8cSDaniel Berlin if (LocInfo.PopEpoch != PopEpoch) {
1420554dcd8cSDaniel Berlin LocInfo.PopEpoch = PopEpoch;
1421554dcd8cSDaniel Berlin LocInfo.StackEpoch = StackEpoch;
1422554dcd8cSDaniel Berlin // If the lower bound was in something that no longer dominates us, we
1423554dcd8cSDaniel Berlin // have to reset it.
1424554dcd8cSDaniel Berlin // We can't simply track stack size, because the stack may have had
1425554dcd8cSDaniel Berlin // pushes/pops in the meantime.
1426554dcd8cSDaniel Berlin // XXX: This is non-optimal, but only is slower cases with heavily
1427554dcd8cSDaniel Berlin // branching dominator trees. To get the optimal number of queries would
1428554dcd8cSDaniel Berlin // be to make lowerbound and lastkill a per-loc stack, and pop it until
1429554dcd8cSDaniel Berlin // the top of that stack dominates us. This does not seem worth it ATM.
1430554dcd8cSDaniel Berlin // A much cheaper optimization would be to always explore the deepest
1431554dcd8cSDaniel Berlin // branch of the dominator tree first. This will guarantee this resets on
1432554dcd8cSDaniel Berlin // the smallest set of blocks.
1433554dcd8cSDaniel Berlin if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1434554dcd8cSDaniel Berlin !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1435554dcd8cSDaniel Berlin // Reset the lower bound of things to check.
1436554dcd8cSDaniel Berlin // TODO: Some day we should be able to reset to last kill, rather than
1437554dcd8cSDaniel Berlin // 0.
1438554dcd8cSDaniel Berlin LocInfo.LowerBound = 0;
1439554dcd8cSDaniel Berlin LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1440554dcd8cSDaniel Berlin LocInfo.LastKillValid = false;
1441554dcd8cSDaniel Berlin }
1442554dcd8cSDaniel Berlin } else if (LocInfo.StackEpoch != StackEpoch) {
1443554dcd8cSDaniel Berlin // If all that has changed is the StackEpoch, we only have to check the
1444554dcd8cSDaniel Berlin // new things on the stack, because we've checked everything before. In
1445554dcd8cSDaniel Berlin // this case, the lower bound of things to check remains the same.
1446554dcd8cSDaniel Berlin LocInfo.PopEpoch = PopEpoch;
1447554dcd8cSDaniel Berlin LocInfo.StackEpoch = StackEpoch;
1448554dcd8cSDaniel Berlin }
1449554dcd8cSDaniel Berlin if (!LocInfo.LastKillValid) {
1450554dcd8cSDaniel Berlin LocInfo.LastKill = VersionStack.size() - 1;
1451554dcd8cSDaniel Berlin LocInfo.LastKillValid = true;
1452d0660797Sdfukalov LocInfo.AR = AliasResult::MayAlias;
1453554dcd8cSDaniel Berlin }
1454554dcd8cSDaniel Berlin
1455554dcd8cSDaniel Berlin // At this point, we should have corrected last kill and LowerBound to be
1456554dcd8cSDaniel Berlin // in bounds.
1457554dcd8cSDaniel Berlin assert(LocInfo.LowerBound < VersionStack.size() &&
1458554dcd8cSDaniel Berlin "Lower bound out of range");
1459554dcd8cSDaniel Berlin assert(LocInfo.LastKill < VersionStack.size() &&
1460554dcd8cSDaniel Berlin "Last kill info out of range");
1461554dcd8cSDaniel Berlin // In any case, the new upper bound is the top of the stack.
1462554dcd8cSDaniel Berlin unsigned long UpperBound = VersionStack.size() - 1;
1463554dcd8cSDaniel Berlin
1464554dcd8cSDaniel Berlin if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1465d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1466554dcd8cSDaniel Berlin << *(MU->getMemoryInst()) << ")"
1467d34e60caSNicola Zaghen << " because there are "
1468d34e60caSNicola Zaghen << UpperBound - LocInfo.LowerBound
1469554dcd8cSDaniel Berlin << " stores to disambiguate\n");
1470554dcd8cSDaniel Berlin // Because we did not walk, LastKill is no longer valid, as this may
1471554dcd8cSDaniel Berlin // have been a kill.
1472554dcd8cSDaniel Berlin LocInfo.LastKillValid = false;
1473554dcd8cSDaniel Berlin continue;
1474554dcd8cSDaniel Berlin }
1475554dcd8cSDaniel Berlin bool FoundClobberResult = false;
1476f085cc5aSAlina Sbirlea unsigned UpwardWalkLimit = MaxCheckLimit;
1477554dcd8cSDaniel Berlin while (UpperBound > LocInfo.LowerBound) {
1478554dcd8cSDaniel Berlin if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1479b493124aSArthur Eubanks // For phis, use the walker, see where we ended up, go there.
1480b493124aSArthur Eubanks // The invariant.group handling in MemorySSA is ad-hoc and doesn't
1481b493124aSArthur Eubanks // support updates, so don't use it to optimize uses.
1482f085cc5aSAlina Sbirlea MemoryAccess *Result =
1483b493124aSArthur Eubanks Walker->getClobberingMemoryAccessWithoutInvariantGroup(
1484b493124aSArthur Eubanks MU, UpwardWalkLimit);
1485b493124aSArthur Eubanks // We are guaranteed to find it or something is wrong.
1486554dcd8cSDaniel Berlin while (VersionStack[UpperBound] != Result) {
1487554dcd8cSDaniel Berlin assert(UpperBound != 0);
1488554dcd8cSDaniel Berlin --UpperBound;
1489554dcd8cSDaniel Berlin }
1490554dcd8cSDaniel Berlin FoundClobberResult = true;
1491554dcd8cSDaniel Berlin break;
1492554dcd8cSDaniel Berlin }
1493554dcd8cSDaniel Berlin
1494554dcd8cSDaniel Berlin MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1495d90c9f4aSAlina Sbirlea ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1496d90c9f4aSAlina Sbirlea if (CA.IsClobber) {
1497554dcd8cSDaniel Berlin FoundClobberResult = true;
1498d90c9f4aSAlina Sbirlea LocInfo.AR = CA.AR;
1499554dcd8cSDaniel Berlin break;
1500554dcd8cSDaniel Berlin }
1501554dcd8cSDaniel Berlin --UpperBound;
1502554dcd8cSDaniel Berlin }
1503d90c9f4aSAlina Sbirlea
1504d90c9f4aSAlina Sbirlea // Note: Phis always have AliasResult AR set to MayAlias ATM.
1505d90c9f4aSAlina Sbirlea
1506554dcd8cSDaniel Berlin // At the end of this loop, UpperBound is either a clobber, or lower bound
1507554dcd8cSDaniel Berlin // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1508554dcd8cSDaniel Berlin if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1509554dcd8cSDaniel Berlin // We were last killed now by where we got to
1510d90c9f4aSAlina Sbirlea if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1511d90c9f4aSAlina Sbirlea LocInfo.AR = None;
1512d90c9f4aSAlina Sbirlea MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1513554dcd8cSDaniel Berlin LocInfo.LastKill = UpperBound;
1514554dcd8cSDaniel Berlin } else {
1515554dcd8cSDaniel Berlin // Otherwise, we checked all the new ones, and now we know we can get to
1516554dcd8cSDaniel Berlin // LastKill.
1517d90c9f4aSAlina Sbirlea MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1518554dcd8cSDaniel Berlin }
1519554dcd8cSDaniel Berlin LocInfo.LowerBound = VersionStack.size() - 1;
1520554dcd8cSDaniel Berlin LocInfo.LowerBoundBlock = BB;
1521554dcd8cSDaniel Berlin }
1522554dcd8cSDaniel Berlin }
1523554dcd8cSDaniel Berlin
1524554dcd8cSDaniel Berlin /// Optimize uses to point to their actual clobbering definitions.
optimizeUses()1525554dcd8cSDaniel Berlin void MemorySSA::OptimizeUses::optimizeUses() {
1526554dcd8cSDaniel Berlin SmallVector<MemoryAccess *, 16> VersionStack;
1527554dcd8cSDaniel Berlin DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1528554dcd8cSDaniel Berlin VersionStack.push_back(MSSA->getLiveOnEntryDef());
1529554dcd8cSDaniel Berlin
1530554dcd8cSDaniel Berlin unsigned long StackEpoch = 1;
1531554dcd8cSDaniel Berlin unsigned long PopEpoch = 1;
1532554dcd8cSDaniel Berlin // We perform a non-recursive top-down dominator tree walk.
1533554dcd8cSDaniel Berlin for (const auto *DomNode : depth_first(DT->getRootNode()))
1534554dcd8cSDaniel Berlin optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1535554dcd8cSDaniel Berlin LocStackInfo);
1536554dcd8cSDaniel Berlin }
1537554dcd8cSDaniel Berlin
placePHINodes(const SmallPtrSetImpl<BasicBlock * > & DefiningBlocks)1538554dcd8cSDaniel Berlin void MemorySSA::placePHINodes(
153967cfbaacSMichael Zolotukhin const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1540554dcd8cSDaniel Berlin // Determine where our MemoryPhi's should go
1541554dcd8cSDaniel Berlin ForwardIDFCalculator IDFs(*DT);
1542554dcd8cSDaniel Berlin IDFs.setDefiningBlocks(DefiningBlocks);
1543554dcd8cSDaniel Berlin SmallVector<BasicBlock *, 32> IDFBlocks;
1544554dcd8cSDaniel Berlin IDFs.calculate(IDFBlocks);
1545554dcd8cSDaniel Berlin
1546554dcd8cSDaniel Berlin // Now place MemoryPhi nodes.
1547554dcd8cSDaniel Berlin for (auto &BB : IDFBlocks)
1548554dcd8cSDaniel Berlin createMemoryPhi(BB);
1549554dcd8cSDaniel Berlin }
1550554dcd8cSDaniel Berlin
buildMemorySSA(BatchAAResults & BAA)1551bfc779e4SAlina Sbirlea void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1552554dcd8cSDaniel Berlin // We create an access to represent "live on entry", for things like
1553554dcd8cSDaniel Berlin // arguments or users of globals, where the memory they use is defined before
1554554dcd8cSDaniel Berlin // the beginning of the function. We do not actually insert it into the IR.
1555554dcd8cSDaniel Berlin // We do not define a live on exit for the immediate uses, and thus our
1556554dcd8cSDaniel Berlin // semantics do *not* imply that something with no immediate uses can simply
1557554dcd8cSDaniel Berlin // be removed.
1558554dcd8cSDaniel Berlin BasicBlock &StartingPoint = F.getEntryBlock();
1559612cf21eSGeorge Burgess IV LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1560612cf21eSGeorge Burgess IV &StartingPoint, NextID++));
1561554dcd8cSDaniel Berlin
1562554dcd8cSDaniel Berlin // We maintain lists of memory accesses per-block, trading memory for time. We
1563554dcd8cSDaniel Berlin // could just look up the memory access for every possible instruction in the
1564554dcd8cSDaniel Berlin // stream.
1565554dcd8cSDaniel Berlin SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1566554dcd8cSDaniel Berlin // Go through each block, figure out where defs occur, and chain together all
1567554dcd8cSDaniel Berlin // the accesses.
1568554dcd8cSDaniel Berlin for (BasicBlock &B : F) {
1569554dcd8cSDaniel Berlin bool InsertIntoDef = false;
1570554dcd8cSDaniel Berlin AccessList *Accesses = nullptr;
1571554dcd8cSDaniel Berlin DefsList *Defs = nullptr;
1572554dcd8cSDaniel Berlin for (Instruction &I : B) {
1573bfc779e4SAlina Sbirlea MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1574554dcd8cSDaniel Berlin if (!MUD)
1575554dcd8cSDaniel Berlin continue;
1576554dcd8cSDaniel Berlin
1577554dcd8cSDaniel Berlin if (!Accesses)
1578554dcd8cSDaniel Berlin Accesses = getOrCreateAccessList(&B);
1579554dcd8cSDaniel Berlin Accesses->push_back(MUD);
1580554dcd8cSDaniel Berlin if (isa<MemoryDef>(MUD)) {
1581554dcd8cSDaniel Berlin InsertIntoDef = true;
1582554dcd8cSDaniel Berlin if (!Defs)
1583554dcd8cSDaniel Berlin Defs = getOrCreateDefsList(&B);
1584554dcd8cSDaniel Berlin Defs->push_back(*MUD);
1585554dcd8cSDaniel Berlin }
1586554dcd8cSDaniel Berlin }
1587554dcd8cSDaniel Berlin if (InsertIntoDef)
1588554dcd8cSDaniel Berlin DefiningBlocks.insert(&B);
1589554dcd8cSDaniel Berlin }
159067cfbaacSMichael Zolotukhin placePHINodes(DefiningBlocks);
1591554dcd8cSDaniel Berlin
1592554dcd8cSDaniel Berlin // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1593554dcd8cSDaniel Berlin // filled in with all blocks.
1594554dcd8cSDaniel Berlin SmallPtrSet<BasicBlock *, 16> Visited;
1595554dcd8cSDaniel Berlin renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1596554dcd8cSDaniel Berlin
1597554dcd8cSDaniel Berlin // Mark the uses in unreachable blocks as live on entry, so that they go
1598554dcd8cSDaniel Berlin // somewhere.
1599554dcd8cSDaniel Berlin for (auto &BB : F)
1600554dcd8cSDaniel Berlin if (!Visited.count(&BB))
1601554dcd8cSDaniel Berlin markUnreachableAsLiveOnEntry(&BB);
1602554dcd8cSDaniel Berlin }
1603554dcd8cSDaniel Berlin
getWalker()1604554dcd8cSDaniel Berlin MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1605554dcd8cSDaniel Berlin
getWalkerImpl()1606bfc779e4SAlina Sbirlea MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1607554dcd8cSDaniel Berlin if (Walker)
1608554dcd8cSDaniel Berlin return Walker.get();
1609554dcd8cSDaniel Berlin
1610bc8aa24cSAlina Sbirlea if (!WalkerBase)
1611bfc779e4SAlina Sbirlea WalkerBase =
16120eaee545SJonas Devlieghere std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1613bc8aa24cSAlina Sbirlea
1614bfc779e4SAlina Sbirlea Walker =
16150eaee545SJonas Devlieghere std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1616554dcd8cSDaniel Berlin return Walker.get();
1617554dcd8cSDaniel Berlin }
1618554dcd8cSDaniel Berlin
getSkipSelfWalker()161912bbb4feSAlina Sbirlea MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
162012bbb4feSAlina Sbirlea if (SkipWalker)
162112bbb4feSAlina Sbirlea return SkipWalker.get();
162212bbb4feSAlina Sbirlea
162312bbb4feSAlina Sbirlea if (!WalkerBase)
1624bfc779e4SAlina Sbirlea WalkerBase =
16250eaee545SJonas Devlieghere std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
162612bbb4feSAlina Sbirlea
1627bfc779e4SAlina Sbirlea SkipWalker =
16280eaee545SJonas Devlieghere std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
162912bbb4feSAlina Sbirlea return SkipWalker.get();
163012bbb4feSAlina Sbirlea }
163112bbb4feSAlina Sbirlea
163212bbb4feSAlina Sbirlea
1633554dcd8cSDaniel Berlin // This is a helper function used by the creation routines. It places NewAccess
1634554dcd8cSDaniel Berlin // into the access and defs lists for a given basic block, at the given
1635554dcd8cSDaniel Berlin // insertion point.
insertIntoListsForBlock(MemoryAccess * NewAccess,const BasicBlock * BB,InsertionPlace Point)1636554dcd8cSDaniel Berlin void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1637554dcd8cSDaniel Berlin const BasicBlock *BB,
1638554dcd8cSDaniel Berlin InsertionPlace Point) {
1639554dcd8cSDaniel Berlin auto *Accesses = getOrCreateAccessList(BB);
1640554dcd8cSDaniel Berlin if (Point == Beginning) {
1641554dcd8cSDaniel Berlin // If it's a phi node, it goes first, otherwise, it goes after any phi
1642554dcd8cSDaniel Berlin // nodes.
1643554dcd8cSDaniel Berlin if (isa<MemoryPhi>(NewAccess)) {
1644554dcd8cSDaniel Berlin Accesses->push_front(NewAccess);
1645554dcd8cSDaniel Berlin auto *Defs = getOrCreateDefsList(BB);
1646554dcd8cSDaniel Berlin Defs->push_front(*NewAccess);
1647554dcd8cSDaniel Berlin } else {
1648554dcd8cSDaniel Berlin auto AI = find_if_not(
1649554dcd8cSDaniel Berlin *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1650554dcd8cSDaniel Berlin Accesses->insert(AI, NewAccess);
1651554dcd8cSDaniel Berlin if (!isa<MemoryUse>(NewAccess)) {
1652554dcd8cSDaniel Berlin auto *Defs = getOrCreateDefsList(BB);
1653554dcd8cSDaniel Berlin auto DI = find_if_not(
1654554dcd8cSDaniel Berlin *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1655554dcd8cSDaniel Berlin Defs->insert(DI, *NewAccess);
1656554dcd8cSDaniel Berlin }
1657554dcd8cSDaniel Berlin }
1658554dcd8cSDaniel Berlin } else {
1659554dcd8cSDaniel Berlin Accesses->push_back(NewAccess);
1660554dcd8cSDaniel Berlin if (!isa<MemoryUse>(NewAccess)) {
1661554dcd8cSDaniel Berlin auto *Defs = getOrCreateDefsList(BB);
1662554dcd8cSDaniel Berlin Defs->push_back(*NewAccess);
1663554dcd8cSDaniel Berlin }
1664554dcd8cSDaniel Berlin }
1665554dcd8cSDaniel Berlin BlockNumberingValid.erase(BB);
1666554dcd8cSDaniel Berlin }
1667554dcd8cSDaniel Berlin
insertIntoListsBefore(MemoryAccess * What,const BasicBlock * BB,AccessList::iterator InsertPt)1668554dcd8cSDaniel Berlin void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1669554dcd8cSDaniel Berlin AccessList::iterator InsertPt) {
1670554dcd8cSDaniel Berlin auto *Accesses = getWritableBlockAccesses(BB);
1671554dcd8cSDaniel Berlin bool WasEnd = InsertPt == Accesses->end();
1672554dcd8cSDaniel Berlin Accesses->insert(AccessList::iterator(InsertPt), What);
1673554dcd8cSDaniel Berlin if (!isa<MemoryUse>(What)) {
1674554dcd8cSDaniel Berlin auto *Defs = getOrCreateDefsList(BB);
1675554dcd8cSDaniel Berlin // If we got asked to insert at the end, we have an easy job, just shove it
1676554dcd8cSDaniel Berlin // at the end. If we got asked to insert before an existing def, we also get
1677a5531f28SZhaoshi Zheng // an iterator. If we got asked to insert before a use, we have to hunt for
1678554dcd8cSDaniel Berlin // the next def.
1679554dcd8cSDaniel Berlin if (WasEnd) {
1680554dcd8cSDaniel Berlin Defs->push_back(*What);
1681554dcd8cSDaniel Berlin } else if (isa<MemoryDef>(InsertPt)) {
1682554dcd8cSDaniel Berlin Defs->insert(InsertPt->getDefsIterator(), *What);
1683554dcd8cSDaniel Berlin } else {
1684554dcd8cSDaniel Berlin while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1685554dcd8cSDaniel Berlin ++InsertPt;
1686554dcd8cSDaniel Berlin // Either we found a def, or we are inserting at the end
1687554dcd8cSDaniel Berlin if (InsertPt == Accesses->end())
1688554dcd8cSDaniel Berlin Defs->push_back(*What);
1689554dcd8cSDaniel Berlin else
1690554dcd8cSDaniel Berlin Defs->insert(InsertPt->getDefsIterator(), *What);
1691554dcd8cSDaniel Berlin }
1692554dcd8cSDaniel Berlin }
1693554dcd8cSDaniel Berlin BlockNumberingValid.erase(BB);
1694554dcd8cSDaniel Berlin }
1695554dcd8cSDaniel Berlin
prepareForMoveTo(MemoryAccess * What,BasicBlock * BB)16965676a5d4SGeorge Burgess IV void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
16975676a5d4SGeorge Burgess IV // Keep it in the lookup tables, remove from the lists
16985676a5d4SGeorge Burgess IV removeFromLists(What, false);
16995676a5d4SGeorge Burgess IV
17005676a5d4SGeorge Burgess IV // Note that moving should implicitly invalidate the optimized state of a
17015676a5d4SGeorge Burgess IV // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
17025676a5d4SGeorge Burgess IV // MemoryDef.
17035676a5d4SGeorge Burgess IV if (auto *MD = dyn_cast<MemoryDef>(What))
17045676a5d4SGeorge Burgess IV MD->resetOptimized();
17055676a5d4SGeorge Burgess IV What->setBlock(BB);
17065676a5d4SGeorge Burgess IV }
17075676a5d4SGeorge Burgess IV
1708a5531f28SZhaoshi Zheng // Move What before Where in the IR. The end result is that What will belong to
1709554dcd8cSDaniel Berlin // the right lists and have the right Block set, but will not otherwise be
1710554dcd8cSDaniel Berlin // correct. It will not have the right defining access, and if it is a def,
1711554dcd8cSDaniel Berlin // things below it will not properly be updated.
moveTo(MemoryUseOrDef * What,BasicBlock * BB,AccessList::iterator Where)1712554dcd8cSDaniel Berlin void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1713554dcd8cSDaniel Berlin AccessList::iterator Where) {
17145676a5d4SGeorge Burgess IV prepareForMoveTo(What, BB);
1715554dcd8cSDaniel Berlin insertIntoListsBefore(What, BB, Where);
1716554dcd8cSDaniel Berlin }
1717554dcd8cSDaniel Berlin
moveTo(MemoryAccess * What,BasicBlock * BB,InsertionPlace Point)17180f53355eSAlina Sbirlea void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1719554dcd8cSDaniel Berlin InsertionPlace Point) {
17200f53355eSAlina Sbirlea if (isa<MemoryPhi>(What)) {
17210f53355eSAlina Sbirlea assert(Point == Beginning &&
17220f53355eSAlina Sbirlea "Can only move a Phi at the beginning of the block");
17230f53355eSAlina Sbirlea // Update lookup table entry
17240f53355eSAlina Sbirlea ValueToMemoryAccess.erase(What->getBlock());
17250f53355eSAlina Sbirlea bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
17260f53355eSAlina Sbirlea (void)Inserted;
17270f53355eSAlina Sbirlea assert(Inserted && "Cannot move a Phi to a block that already has one");
17280f53355eSAlina Sbirlea }
17290f53355eSAlina Sbirlea
17305676a5d4SGeorge Burgess IV prepareForMoveTo(What, BB);
1731554dcd8cSDaniel Berlin insertIntoListsForBlock(What, BB, Point);
1732554dcd8cSDaniel Berlin }
1733554dcd8cSDaniel Berlin
createMemoryPhi(BasicBlock * BB)1734554dcd8cSDaniel Berlin MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1735554dcd8cSDaniel Berlin assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1736554dcd8cSDaniel Berlin MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1737554dcd8cSDaniel Berlin // Phi's always are placed at the front of the block.
1738554dcd8cSDaniel Berlin insertIntoListsForBlock(Phi, BB, Beginning);
1739554dcd8cSDaniel Berlin ValueToMemoryAccess[BB] = Phi;
1740554dcd8cSDaniel Berlin return Phi;
1741554dcd8cSDaniel Berlin }
1742554dcd8cSDaniel Berlin
createDefinedAccess(Instruction * I,MemoryAccess * Definition,const MemoryUseOrDef * Template,bool CreationMustSucceed)1743554dcd8cSDaniel Berlin MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
17447980099aSAlina Sbirlea MemoryAccess *Definition,
17454bc625caSAlina Sbirlea const MemoryUseOrDef *Template,
17464bc625caSAlina Sbirlea bool CreationMustSucceed) {
1747554dcd8cSDaniel Berlin assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1748bfc779e4SAlina Sbirlea MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
17494bc625caSAlina Sbirlea if (CreationMustSucceed)
17504bc625caSAlina Sbirlea assert(NewAccess != nullptr && "Tried to create a memory access for a "
17514bc625caSAlina Sbirlea "non-memory touching instruction");
1752d370836cSAlina Sbirlea if (NewAccess) {
1753d370836cSAlina Sbirlea assert((!Definition || !isa<MemoryUse>(Definition)) &&
1754d370836cSAlina Sbirlea "A use cannot be a defining access");
1755554dcd8cSDaniel Berlin NewAccess->setDefiningAccess(Definition);
1756d370836cSAlina Sbirlea }
1757554dcd8cSDaniel Berlin return NewAccess;
1758554dcd8cSDaniel Berlin }
1759554dcd8cSDaniel Berlin
1760554dcd8cSDaniel Berlin // Return true if the instruction has ordering constraints.
1761554dcd8cSDaniel Berlin // Note specifically that this only considers stores and loads
1762554dcd8cSDaniel Berlin // because others are still considered ModRef by getModRefInfo.
isOrdered(const Instruction * I)1763554dcd8cSDaniel Berlin static inline bool isOrdered(const Instruction *I) {
1764554dcd8cSDaniel Berlin if (auto *SI = dyn_cast<StoreInst>(I)) {
1765554dcd8cSDaniel Berlin if (!SI->isUnordered())
1766554dcd8cSDaniel Berlin return true;
1767554dcd8cSDaniel Berlin } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1768554dcd8cSDaniel Berlin if (!LI->isUnordered())
1769554dcd8cSDaniel Berlin return true;
1770554dcd8cSDaniel Berlin }
1771554dcd8cSDaniel Berlin return false;
1772554dcd8cSDaniel Berlin }
1773bb1b2d09SEugene Zelenko
17745f8f34e4SAdrian Prantl /// Helper function to create new memory accesses
1775bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
createNewAccess(Instruction * I,AliasAnalysisType * AAP,const MemoryUseOrDef * Template)17767980099aSAlina Sbirlea MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1777bfc779e4SAlina Sbirlea AliasAnalysisType *AAP,
17787980099aSAlina Sbirlea const MemoryUseOrDef *Template) {
1779554dcd8cSDaniel Berlin // The assume intrinsic has a control dependency which we model by claiming
1780f7b4022dSAlina Sbirlea // that it writes arbitrarily. Debuginfo intrinsics may be considered
1781f7b4022dSAlina Sbirlea // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1782f7b4022dSAlina Sbirlea // dependencies here.
1783554dcd8cSDaniel Berlin // FIXME: Replace this special casing with a more accurate modelling of
1784554dcd8cSDaniel Berlin // assume's control dependency.
1785121cac01SJeroen Dobbelaere if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1786121cac01SJeroen Dobbelaere switch (II->getIntrinsicID()) {
1787121cac01SJeroen Dobbelaere default:
1788121cac01SJeroen Dobbelaere break;
1789121cac01SJeroen Dobbelaere case Intrinsic::assume:
1790121cac01SJeroen Dobbelaere case Intrinsic::experimental_noalias_scope_decl:
1791098a0d8fSHongtao Yu case Intrinsic::pseudoprobe:
17926b2d1346SAlina Sbirlea return nullptr;
1793121cac01SJeroen Dobbelaere }
1794121cac01SJeroen Dobbelaere }
17956b2d1346SAlina Sbirlea
17966b2d1346SAlina Sbirlea // Using a nonstandard AA pipelines might leave us with unexpected modref
17976b2d1346SAlina Sbirlea // results for I, so add a check to not model instructions that may not read
17986b2d1346SAlina Sbirlea // from or write to memory. This is necessary for correctness.
17996b2d1346SAlina Sbirlea if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1800554dcd8cSDaniel Berlin return nullptr;
1801554dcd8cSDaniel Berlin
18027980099aSAlina Sbirlea bool Def, Use;
18037980099aSAlina Sbirlea if (Template) {
1804b557c32aSKazu Hirata Def = isa<MemoryDef>(Template);
1805b557c32aSKazu Hirata Use = isa<MemoryUse>(Template);
18067980099aSAlina Sbirlea #if !defined(NDEBUG)
1807bfc779e4SAlina Sbirlea ModRefInfo ModRef = AAP->getModRefInfo(I, None);
18087980099aSAlina Sbirlea bool DefCheck, UseCheck;
18097980099aSAlina Sbirlea DefCheck = isModSet(ModRef) || isOrdered(I);
18107980099aSAlina Sbirlea UseCheck = isRefSet(ModRef);
18117980099aSAlina Sbirlea assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
18127980099aSAlina Sbirlea #endif
18137980099aSAlina Sbirlea } else {
1814554dcd8cSDaniel Berlin // Find out what affect this instruction has on memory.
1815bfc779e4SAlina Sbirlea ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1816554dcd8cSDaniel Berlin // The isOrdered check is used to ensure that volatiles end up as defs
1817554dcd8cSDaniel Berlin // (atomics end up as ModRef right now anyway). Until we separate the
1818554dcd8cSDaniel Berlin // ordering chain from the memory chain, this enables people to see at least
1819554dcd8cSDaniel Berlin // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1820554dcd8cSDaniel Berlin // will still give an answer that bypasses other volatile loads. TODO:
18217980099aSAlina Sbirlea // Separate memory aliasing and ordering into two different chains so that
18227980099aSAlina Sbirlea // we can precisely represent both "what memory will this read/write/is
18237980099aSAlina Sbirlea // clobbered by" and "what instructions can I move this past".
18247980099aSAlina Sbirlea Def = isModSet(ModRef) || isOrdered(I);
18257980099aSAlina Sbirlea Use = isRefSet(ModRef);
18267980099aSAlina Sbirlea }
1827554dcd8cSDaniel Berlin
1828554dcd8cSDaniel Berlin // It's possible for an instruction to not modify memory at all. During
1829554dcd8cSDaniel Berlin // construction, we ignore them.
1830554dcd8cSDaniel Berlin if (!Def && !Use)
1831554dcd8cSDaniel Berlin return nullptr;
1832554dcd8cSDaniel Berlin
1833554dcd8cSDaniel Berlin MemoryUseOrDef *MUD;
1834554dcd8cSDaniel Berlin if (Def)
1835554dcd8cSDaniel Berlin MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1836554dcd8cSDaniel Berlin else
1837554dcd8cSDaniel Berlin MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1838554dcd8cSDaniel Berlin ValueToMemoryAccess[I] = MUD;
1839554dcd8cSDaniel Berlin return MUD;
1840554dcd8cSDaniel Berlin }
1841554dcd8cSDaniel Berlin
18425f8f34e4SAdrian Prantl /// Properly remove \p MA from all of MemorySSA's lookup tables.
removeFromLookups(MemoryAccess * MA)1843554dcd8cSDaniel Berlin void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1844554dcd8cSDaniel Berlin assert(MA->use_empty() &&
1845554dcd8cSDaniel Berlin "Trying to remove memory access that still has uses");
1846554dcd8cSDaniel Berlin BlockNumbering.erase(MA);
18472cbf9730SGeorge Burgess IV if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1848554dcd8cSDaniel Berlin MUD->setDefiningAccess(nullptr);
1849554dcd8cSDaniel Berlin // Invalidate our walker's cache if necessary
1850554dcd8cSDaniel Berlin if (!isa<MemoryUse>(MA))
1851bfc779e4SAlina Sbirlea getWalker()->invalidateInfo(MA);
18522cbf9730SGeorge Burgess IV
1853554dcd8cSDaniel Berlin Value *MemoryInst;
18542cbf9730SGeorge Burgess IV if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1855554dcd8cSDaniel Berlin MemoryInst = MUD->getMemoryInst();
18562cbf9730SGeorge Burgess IV else
1857554dcd8cSDaniel Berlin MemoryInst = MA->getBlock();
18582cbf9730SGeorge Burgess IV
1859554dcd8cSDaniel Berlin auto VMA = ValueToMemoryAccess.find(MemoryInst);
1860554dcd8cSDaniel Berlin if (VMA->second == MA)
1861554dcd8cSDaniel Berlin ValueToMemoryAccess.erase(VMA);
1862554dcd8cSDaniel Berlin }
1863554dcd8cSDaniel Berlin
18645f8f34e4SAdrian Prantl /// Properly remove \p MA from all of MemorySSA's lists.
1865554dcd8cSDaniel Berlin ///
1866554dcd8cSDaniel Berlin /// Because of the way the intrusive list and use lists work, it is important to
1867554dcd8cSDaniel Berlin /// do removal in the right order.
1868554dcd8cSDaniel Berlin /// ShouldDelete defaults to true, and will cause the memory access to also be
1869554dcd8cSDaniel Berlin /// deleted, not just removed.
removeFromLists(MemoryAccess * MA,bool ShouldDelete)1870554dcd8cSDaniel Berlin void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1871da1e80feSAlina Sbirlea BasicBlock *BB = MA->getBlock();
1872554dcd8cSDaniel Berlin // The access list owns the reference, so we erase it from the non-owning list
1873554dcd8cSDaniel Berlin // first.
1874554dcd8cSDaniel Berlin if (!isa<MemoryUse>(MA)) {
1875da1e80feSAlina Sbirlea auto DefsIt = PerBlockDefs.find(BB);
1876554dcd8cSDaniel Berlin std::unique_ptr<DefsList> &Defs = DefsIt->second;
1877554dcd8cSDaniel Berlin Defs->remove(*MA);
1878554dcd8cSDaniel Berlin if (Defs->empty())
1879554dcd8cSDaniel Berlin PerBlockDefs.erase(DefsIt);
1880554dcd8cSDaniel Berlin }
1881554dcd8cSDaniel Berlin
1882554dcd8cSDaniel Berlin // The erase call here will delete it. If we don't want it deleted, we call
1883554dcd8cSDaniel Berlin // remove instead.
1884da1e80feSAlina Sbirlea auto AccessIt = PerBlockAccesses.find(BB);
1885554dcd8cSDaniel Berlin std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1886554dcd8cSDaniel Berlin if (ShouldDelete)
1887554dcd8cSDaniel Berlin Accesses->erase(MA);
1888554dcd8cSDaniel Berlin else
1889554dcd8cSDaniel Berlin Accesses->remove(MA);
1890554dcd8cSDaniel Berlin
1891da1e80feSAlina Sbirlea if (Accesses->empty()) {
1892554dcd8cSDaniel Berlin PerBlockAccesses.erase(AccessIt);
1893da1e80feSAlina Sbirlea BlockNumberingValid.erase(BB);
1894da1e80feSAlina Sbirlea }
1895554dcd8cSDaniel Berlin }
1896554dcd8cSDaniel Berlin
print(raw_ostream & OS) const1897554dcd8cSDaniel Berlin void MemorySSA::print(raw_ostream &OS) const {
1898554dcd8cSDaniel Berlin MemorySSAAnnotatedWriter Writer(this);
1899554dcd8cSDaniel Berlin F.print(OS, &Writer);
1900554dcd8cSDaniel Berlin }
1901554dcd8cSDaniel Berlin
1902615eb470SAaron Ballman #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1903554dcd8cSDaniel Berlin LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1904554dcd8cSDaniel Berlin #endif
1905554dcd8cSDaniel Berlin
verifyMemorySSA(VerificationLevel VL) const1906b759381bSAlina Sbirlea void MemorySSA::verifyMemorySSA(VerificationLevel VL) const {
1907b759381bSAlina Sbirlea #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1908b759381bSAlina Sbirlea VL = VerificationLevel::Full;
1909b759381bSAlina Sbirlea #endif
1910b759381bSAlina Sbirlea
1911b759381bSAlina Sbirlea #ifndef NDEBUG
1912b759381bSAlina Sbirlea verifyOrderingDominationAndDefUses(F, VL);
191397ec6245SGeorge Burgess IV verifyDominationNumbers(F);
1914b759381bSAlina Sbirlea if (VL == VerificationLevel::Full)
191563e97fa0SAlina Sbirlea verifyPrevDefInPhis(F);
1916b759381bSAlina Sbirlea #endif
1917d77edc00SAlina Sbirlea // Previously, the verification used to also verify that the clobberingAccess
1918d77edc00SAlina Sbirlea // cached by MemorySSA is the same as the clobberingAccess found at a later
1919d77edc00SAlina Sbirlea // query to AA. This does not hold true in general due to the current fragility
1920d77edc00SAlina Sbirlea // of BasicAA which has arbitrary caps on the things it analyzes before giving
1921d77edc00SAlina Sbirlea // up. As a result, transformations that are correct, will lead to BasicAA
1922d77edc00SAlina Sbirlea // returning different Alias answers before and after that transformation.
1923d77edc00SAlina Sbirlea // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1924d77edc00SAlina Sbirlea // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1925d77edc00SAlina Sbirlea // every transformation, which defeats the purpose of using it. For such an
1926d77edc00SAlina Sbirlea // example, see test4 added in D51960.
1927554dcd8cSDaniel Berlin }
1928554dcd8cSDaniel Berlin
verifyPrevDefInPhis(Function & F) const192963e97fa0SAlina Sbirlea void MemorySSA::verifyPrevDefInPhis(Function &F) const {
193063e97fa0SAlina Sbirlea for (const BasicBlock &BB : F) {
193163e97fa0SAlina Sbirlea if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
193263e97fa0SAlina Sbirlea for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
193363e97fa0SAlina Sbirlea auto *Pred = Phi->getIncomingBlock(I);
193463e97fa0SAlina Sbirlea auto *IncAcc = Phi->getIncomingValue(I);
193563e97fa0SAlina Sbirlea // If Pred has no unreachable predecessors, get last def looking at
193663e97fa0SAlina Sbirlea // IDoms. If, while walkings IDoms, any of these has an unreachable
19371a3fdaf6SAlina Sbirlea // predecessor, then the incoming def can be any access.
193863e97fa0SAlina Sbirlea if (auto *DTNode = DT->getNode(Pred)) {
193963e97fa0SAlina Sbirlea while (DTNode) {
194063e97fa0SAlina Sbirlea if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
194163e97fa0SAlina Sbirlea auto *LastAcc = &*(--DefList->end());
194263e97fa0SAlina Sbirlea assert(LastAcc == IncAcc &&
194363e97fa0SAlina Sbirlea "Incorrect incoming access into phi.");
1944385f380eSKazu Hirata (void)IncAcc;
1945385f380eSKazu Hirata (void)LastAcc;
194663e97fa0SAlina Sbirlea break;
194763e97fa0SAlina Sbirlea }
194863e97fa0SAlina Sbirlea DTNode = DTNode->getIDom();
194963e97fa0SAlina Sbirlea }
19501a3fdaf6SAlina Sbirlea } else {
195163e97fa0SAlina Sbirlea // If Pred has unreachable predecessors, but has at least a Def, the
195263e97fa0SAlina Sbirlea // incoming access can be the last Def in Pred, or it could have been
19531a3fdaf6SAlina Sbirlea // optimized to LoE. After an update, though, the LoE may have been
19541a3fdaf6SAlina Sbirlea // replaced by another access, so IncAcc may be any access.
195563e97fa0SAlina Sbirlea // If Pred has unreachable predecessors and no Defs, incoming access
19561a3fdaf6SAlina Sbirlea // should be LoE; However, after an update, it may be any access.
195763e97fa0SAlina Sbirlea }
195863e97fa0SAlina Sbirlea }
195963e97fa0SAlina Sbirlea }
196063e97fa0SAlina Sbirlea }
196163e97fa0SAlina Sbirlea }
196263e97fa0SAlina Sbirlea
196397ec6245SGeorge Burgess IV /// Verify that all of the blocks we believe to have valid domination numbers
196497ec6245SGeorge Burgess IV /// actually have valid domination numbers.
verifyDominationNumbers(const Function & F) const196597ec6245SGeorge Burgess IV void MemorySSA::verifyDominationNumbers(const Function &F) const {
196697ec6245SGeorge Burgess IV if (BlockNumberingValid.empty())
196797ec6245SGeorge Burgess IV return;
196897ec6245SGeorge Burgess IV
196997ec6245SGeorge Burgess IV SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
197097ec6245SGeorge Burgess IV for (const BasicBlock &BB : F) {
197197ec6245SGeorge Burgess IV if (!ValidBlocks.count(&BB))
197297ec6245SGeorge Burgess IV continue;
197397ec6245SGeorge Burgess IV
197497ec6245SGeorge Burgess IV ValidBlocks.erase(&BB);
197597ec6245SGeorge Burgess IV
197697ec6245SGeorge Burgess IV const AccessList *Accesses = getBlockAccesses(&BB);
197797ec6245SGeorge Burgess IV // It's correct to say an empty block has valid numbering.
197897ec6245SGeorge Burgess IV if (!Accesses)
197997ec6245SGeorge Burgess IV continue;
198097ec6245SGeorge Burgess IV
198197ec6245SGeorge Burgess IV // Block numbering starts at 1.
198297ec6245SGeorge Burgess IV unsigned long LastNumber = 0;
198397ec6245SGeorge Burgess IV for (const MemoryAccess &MA : *Accesses) {
198497ec6245SGeorge Burgess IV auto ThisNumberIter = BlockNumbering.find(&MA);
198597ec6245SGeorge Burgess IV assert(ThisNumberIter != BlockNumbering.end() &&
198697ec6245SGeorge Burgess IV "MemoryAccess has no domination number in a valid block!");
198797ec6245SGeorge Burgess IV
198897ec6245SGeorge Burgess IV unsigned long ThisNumber = ThisNumberIter->second;
198997ec6245SGeorge Burgess IV assert(ThisNumber > LastNumber &&
199097ec6245SGeorge Burgess IV "Domination numbers should be strictly increasing!");
1991385f380eSKazu Hirata (void)LastNumber;
199297ec6245SGeorge Burgess IV LastNumber = ThisNumber;
199397ec6245SGeorge Burgess IV }
199497ec6245SGeorge Burgess IV }
199597ec6245SGeorge Burgess IV
199697ec6245SGeorge Burgess IV assert(ValidBlocks.empty() &&
199797ec6245SGeorge Burgess IV "All valid BasicBlocks should exist in F -- dangling pointers?");
199897ec6245SGeorge Burgess IV }
199997ec6245SGeorge Burgess IV
200014a2bbb1SAlina Sbirlea /// Verify ordering: the order and existence of MemoryAccesses matches the
2001554dcd8cSDaniel Berlin /// order and existence of memory affecting instructions.
200214a2bbb1SAlina Sbirlea /// Verify domination: each definition dominates all of its uses.
200314a2bbb1SAlina Sbirlea /// Verify def-uses: the immediate use information - walk all the memory
200414a2bbb1SAlina Sbirlea /// accesses and verifying that, for each use, it appears in the appropriate
200514a2bbb1SAlina Sbirlea /// def's use list
verifyOrderingDominationAndDefUses(Function & F,VerificationLevel VL) const2006b759381bSAlina Sbirlea void MemorySSA::verifyOrderingDominationAndDefUses(Function &F,
2007b759381bSAlina Sbirlea VerificationLevel VL) const {
2008554dcd8cSDaniel Berlin // Walk all the blocks, comparing what the lookups think and what the access
2009554dcd8cSDaniel Berlin // lists think, as well as the order in the blocks vs the order in the access
2010554dcd8cSDaniel Berlin // lists.
2011554dcd8cSDaniel Berlin SmallVector<MemoryAccess *, 32> ActualAccesses;
2012554dcd8cSDaniel Berlin SmallVector<MemoryAccess *, 32> ActualDefs;
2013554dcd8cSDaniel Berlin for (BasicBlock &B : F) {
2014554dcd8cSDaniel Berlin const AccessList *AL = getBlockAccesses(&B);
2015554dcd8cSDaniel Berlin const auto *DL = getBlockDefs(&B);
201614a2bbb1SAlina Sbirlea MemoryPhi *Phi = getMemoryAccess(&B);
2017554dcd8cSDaniel Berlin if (Phi) {
201814a2bbb1SAlina Sbirlea // Verify ordering.
2019554dcd8cSDaniel Berlin ActualAccesses.push_back(Phi);
2020554dcd8cSDaniel Berlin ActualDefs.push_back(Phi);
202114a2bbb1SAlina Sbirlea // Verify domination
2022385f380eSKazu Hirata for (const Use &U : Phi->uses()) {
202314a2bbb1SAlina Sbirlea assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
2024385f380eSKazu Hirata (void)U;
2025385f380eSKazu Hirata }
2026b759381bSAlina Sbirlea // Verify def-uses for full verify.
2027b759381bSAlina Sbirlea if (VL == VerificationLevel::Full) {
202814a2bbb1SAlina Sbirlea assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
202914a2bbb1SAlina Sbirlea pred_begin(&B), pred_end(&B))) &&
203014a2bbb1SAlina Sbirlea "Incomplete MemoryPhi Node");
203114a2bbb1SAlina Sbirlea for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
203214a2bbb1SAlina Sbirlea verifyUseInDefs(Phi->getIncomingValue(I), Phi);
2033e6fde1aeSKazu Hirata assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
203414a2bbb1SAlina Sbirlea "Incoming phi block not a block predecessor");
203514a2bbb1SAlina Sbirlea }
2036b759381bSAlina Sbirlea }
2037554dcd8cSDaniel Berlin }
2038554dcd8cSDaniel Berlin
2039554dcd8cSDaniel Berlin for (Instruction &I : B) {
204014a2bbb1SAlina Sbirlea MemoryUseOrDef *MA = getMemoryAccess(&I);
2041554dcd8cSDaniel Berlin assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
2042554dcd8cSDaniel Berlin "We have memory affecting instructions "
2043554dcd8cSDaniel Berlin "in this block but they are not in the "
2044554dcd8cSDaniel Berlin "access list or defs list");
2045554dcd8cSDaniel Berlin if (MA) {
204614a2bbb1SAlina Sbirlea // Verify ordering.
2047554dcd8cSDaniel Berlin ActualAccesses.push_back(MA);
204814a2bbb1SAlina Sbirlea if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
204914a2bbb1SAlina Sbirlea // Verify ordering.
2050554dcd8cSDaniel Berlin ActualDefs.push_back(MA);
205114a2bbb1SAlina Sbirlea // Verify domination.
2052385f380eSKazu Hirata for (const Use &U : MD->uses()) {
205314a2bbb1SAlina Sbirlea assert(dominates(MD, U) &&
205414a2bbb1SAlina Sbirlea "Memory Def does not dominate it's uses");
2055385f380eSKazu Hirata (void)U;
2056385f380eSKazu Hirata }
205714a2bbb1SAlina Sbirlea }
2058b759381bSAlina Sbirlea // Verify def-uses for full verify.
2059b759381bSAlina Sbirlea if (VL == VerificationLevel::Full)
206014a2bbb1SAlina Sbirlea verifyUseInDefs(MA->getDefiningAccess(), MA);
2061554dcd8cSDaniel Berlin }
2062554dcd8cSDaniel Berlin }
2063554dcd8cSDaniel Berlin // Either we hit the assert, really have no accesses, or we have both
206414a2bbb1SAlina Sbirlea // accesses and an access list. Same with defs.
2065554dcd8cSDaniel Berlin if (!AL && !DL)
2066554dcd8cSDaniel Berlin continue;
206714a2bbb1SAlina Sbirlea // Verify ordering.
2068554dcd8cSDaniel Berlin assert(AL->size() == ActualAccesses.size() &&
2069554dcd8cSDaniel Berlin "We don't have the same number of accesses in the block as on the "
2070554dcd8cSDaniel Berlin "access list");
2071554dcd8cSDaniel Berlin assert((DL || ActualDefs.size() == 0) &&
2072554dcd8cSDaniel Berlin "Either we should have a defs list, or we should have no defs");
2073554dcd8cSDaniel Berlin assert((!DL || DL->size() == ActualDefs.size()) &&
2074554dcd8cSDaniel Berlin "We don't have the same number of defs in the block as on the "
2075554dcd8cSDaniel Berlin "def list");
2076554dcd8cSDaniel Berlin auto ALI = AL->begin();
2077554dcd8cSDaniel Berlin auto AAI = ActualAccesses.begin();
2078554dcd8cSDaniel Berlin while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2079554dcd8cSDaniel Berlin assert(&*ALI == *AAI && "Not the same accesses in the same order");
2080554dcd8cSDaniel Berlin ++ALI;
2081554dcd8cSDaniel Berlin ++AAI;
2082554dcd8cSDaniel Berlin }
2083554dcd8cSDaniel Berlin ActualAccesses.clear();
2084554dcd8cSDaniel Berlin if (DL) {
2085554dcd8cSDaniel Berlin auto DLI = DL->begin();
2086554dcd8cSDaniel Berlin auto ADI = ActualDefs.begin();
2087554dcd8cSDaniel Berlin while (DLI != DL->end() && ADI != ActualDefs.end()) {
2088554dcd8cSDaniel Berlin assert(&*DLI == *ADI && "Not the same defs in the same order");
2089554dcd8cSDaniel Berlin ++DLI;
2090554dcd8cSDaniel Berlin ++ADI;
2091554dcd8cSDaniel Berlin }
2092554dcd8cSDaniel Berlin }
2093554dcd8cSDaniel Berlin ActualDefs.clear();
2094554dcd8cSDaniel Berlin }
2095554dcd8cSDaniel Berlin }
2096554dcd8cSDaniel Berlin
20975f8f34e4SAdrian Prantl /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2098554dcd8cSDaniel Berlin /// appears in the use list of \p Def.
verifyUseInDefs(MemoryAccess * Def,MemoryAccess * Use) const2099554dcd8cSDaniel Berlin void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2100554dcd8cSDaniel Berlin // The live on entry use may cause us to get a NULL def here
2101554dcd8cSDaniel Berlin if (!Def)
2102554dcd8cSDaniel Berlin assert(isLiveOnEntryDef(Use) &&
2103554dcd8cSDaniel Berlin "Null def but use not point to live on entry def");
2104554dcd8cSDaniel Berlin else
2105554dcd8cSDaniel Berlin assert(is_contained(Def->users(), Use) &&
2106554dcd8cSDaniel Berlin "Did not find use in def's use list");
2107554dcd8cSDaniel Berlin }
2108554dcd8cSDaniel Berlin
2109554dcd8cSDaniel Berlin /// Perform a local numbering on blocks so that instruction ordering can be
2110554dcd8cSDaniel Berlin /// determined in constant time.
2111554dcd8cSDaniel Berlin /// TODO: We currently just number in order. If we numbered by N, we could
2112554dcd8cSDaniel Berlin /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2113554dcd8cSDaniel Berlin /// log2(N) sequences of mixed before and after) without needing to invalidate
2114554dcd8cSDaniel Berlin /// the numbering.
renumberBlock(const BasicBlock * B) const2115554dcd8cSDaniel Berlin void MemorySSA::renumberBlock(const BasicBlock *B) const {
2116554dcd8cSDaniel Berlin // The pre-increment ensures the numbers really start at 1.
2117554dcd8cSDaniel Berlin unsigned long CurrentNumber = 0;
2118554dcd8cSDaniel Berlin const AccessList *AL = getBlockAccesses(B);
2119554dcd8cSDaniel Berlin assert(AL != nullptr && "Asking to renumber an empty block");
2120554dcd8cSDaniel Berlin for (const auto &I : *AL)
2121554dcd8cSDaniel Berlin BlockNumbering[&I] = ++CurrentNumber;
2122554dcd8cSDaniel Berlin BlockNumberingValid.insert(B);
2123554dcd8cSDaniel Berlin }
2124554dcd8cSDaniel Berlin
21255f8f34e4SAdrian Prantl /// Determine, for two memory accesses in the same block,
2126554dcd8cSDaniel Berlin /// whether \p Dominator dominates \p Dominatee.
2127554dcd8cSDaniel Berlin /// \returns True if \p Dominator dominates \p Dominatee.
locallyDominates(const MemoryAccess * Dominator,const MemoryAccess * Dominatee) const2128554dcd8cSDaniel Berlin bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2129554dcd8cSDaniel Berlin const MemoryAccess *Dominatee) const {
2130554dcd8cSDaniel Berlin const BasicBlock *DominatorBlock = Dominator->getBlock();
2131554dcd8cSDaniel Berlin
2132554dcd8cSDaniel Berlin assert((DominatorBlock == Dominatee->getBlock()) &&
2133554dcd8cSDaniel Berlin "Asking for local domination when accesses are in different blocks!");
2134554dcd8cSDaniel Berlin // A node dominates itself.
2135554dcd8cSDaniel Berlin if (Dominatee == Dominator)
2136554dcd8cSDaniel Berlin return true;
2137554dcd8cSDaniel Berlin
2138554dcd8cSDaniel Berlin // When Dominatee is defined on function entry, it is not dominated by another
2139554dcd8cSDaniel Berlin // memory access.
2140554dcd8cSDaniel Berlin if (isLiveOnEntryDef(Dominatee))
2141554dcd8cSDaniel Berlin return false;
2142554dcd8cSDaniel Berlin
2143554dcd8cSDaniel Berlin // When Dominator is defined on function entry, it dominates the other memory
2144554dcd8cSDaniel Berlin // access.
2145554dcd8cSDaniel Berlin if (isLiveOnEntryDef(Dominator))
2146554dcd8cSDaniel Berlin return true;
2147554dcd8cSDaniel Berlin
2148554dcd8cSDaniel Berlin if (!BlockNumberingValid.count(DominatorBlock))
2149554dcd8cSDaniel Berlin renumberBlock(DominatorBlock);
2150554dcd8cSDaniel Berlin
2151554dcd8cSDaniel Berlin unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2152554dcd8cSDaniel Berlin // All numbers start with 1
2153554dcd8cSDaniel Berlin assert(DominatorNum != 0 && "Block was not numbered properly");
2154554dcd8cSDaniel Berlin unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2155554dcd8cSDaniel Berlin assert(DominateeNum != 0 && "Block was not numbered properly");
2156554dcd8cSDaniel Berlin return DominatorNum < DominateeNum;
2157554dcd8cSDaniel Berlin }
2158554dcd8cSDaniel Berlin
dominates(const MemoryAccess * Dominator,const MemoryAccess * Dominatee) const2159554dcd8cSDaniel Berlin bool MemorySSA::dominates(const MemoryAccess *Dominator,
2160554dcd8cSDaniel Berlin const MemoryAccess *Dominatee) const {
2161554dcd8cSDaniel Berlin if (Dominator == Dominatee)
2162554dcd8cSDaniel Berlin return true;
2163554dcd8cSDaniel Berlin
2164554dcd8cSDaniel Berlin if (isLiveOnEntryDef(Dominatee))
2165554dcd8cSDaniel Berlin return false;
2166554dcd8cSDaniel Berlin
2167554dcd8cSDaniel Berlin if (Dominator->getBlock() != Dominatee->getBlock())
2168554dcd8cSDaniel Berlin return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2169554dcd8cSDaniel Berlin return locallyDominates(Dominator, Dominatee);
2170554dcd8cSDaniel Berlin }
2171554dcd8cSDaniel Berlin
dominates(const MemoryAccess * Dominator,const Use & Dominatee) const2172554dcd8cSDaniel Berlin bool MemorySSA::dominates(const MemoryAccess *Dominator,
2173554dcd8cSDaniel Berlin const Use &Dominatee) const {
2174554dcd8cSDaniel Berlin if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2175554dcd8cSDaniel Berlin BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2176554dcd8cSDaniel Berlin // The def must dominate the incoming block of the phi.
2177554dcd8cSDaniel Berlin if (UseBB != Dominator->getBlock())
2178554dcd8cSDaniel Berlin return DT->dominates(Dominator->getBlock(), UseBB);
2179554dcd8cSDaniel Berlin // If the UseBB and the DefBB are the same, compare locally.
2180554dcd8cSDaniel Berlin return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2181554dcd8cSDaniel Berlin }
2182554dcd8cSDaniel Berlin // If it's not a PHI node use, the normal dominates can already handle it.
2183554dcd8cSDaniel Berlin return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2184554dcd8cSDaniel Berlin }
2185554dcd8cSDaniel Berlin
ensureOptimizedUses()2186f96428e1SNikita Popov void MemorySSA::ensureOptimizedUses() {
2187f96428e1SNikita Popov if (IsOptimized)
2188f96428e1SNikita Popov return;
2189f96428e1SNikita Popov
2190f96428e1SNikita Popov BatchAAResults BatchAA(*AA);
2191f96428e1SNikita Popov ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BatchAA, DT);
2192f96428e1SNikita Popov CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
2193f96428e1SNikita Popov OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses();
2194f96428e1SNikita Popov IsOptimized = true;
2195f96428e1SNikita Popov }
2196f96428e1SNikita Popov
print(raw_ostream & OS) const219796ab8726SReid Kleckner void MemoryAccess::print(raw_ostream &OS) const {
219896ab8726SReid Kleckner switch (getValueID()) {
219996ab8726SReid Kleckner case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
220096ab8726SReid Kleckner case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
220196ab8726SReid Kleckner case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
220296ab8726SReid Kleckner }
220396ab8726SReid Kleckner llvm_unreachable("invalid value id");
220496ab8726SReid Kleckner }
220596ab8726SReid Kleckner
print(raw_ostream & OS) const2206554dcd8cSDaniel Berlin void MemoryDef::print(raw_ostream &OS) const {
2207554dcd8cSDaniel Berlin MemoryAccess *UO = getDefiningAccess();
2208554dcd8cSDaniel Berlin
2209aa283d80SGeorge Burgess IV auto printID = [&OS](MemoryAccess *A) {
2210aa283d80SGeorge Burgess IV if (A && A->getID())
2211aa283d80SGeorge Burgess IV OS << A->getID();
2212554dcd8cSDaniel Berlin else
2213554dcd8cSDaniel Berlin OS << LiveOnEntryStr;
2214aa283d80SGeorge Burgess IV };
2215aa283d80SGeorge Burgess IV
2216aa283d80SGeorge Burgess IV OS << getID() << " = MemoryDef(";
2217aa283d80SGeorge Burgess IV printID(UO);
2218aa283d80SGeorge Burgess IV OS << ")";
2219aa283d80SGeorge Burgess IV
2220aa283d80SGeorge Burgess IV if (isOptimized()) {
2221aa283d80SGeorge Burgess IV OS << "->";
2222aa283d80SGeorge Burgess IV printID(getOptimized());
2223aa283d80SGeorge Burgess IV
2224aa283d80SGeorge Burgess IV if (Optional<AliasResult> AR = getOptimizedAccessType())
2225aa283d80SGeorge Burgess IV OS << " " << *AR;
2226aa283d80SGeorge Burgess IV }
2227554dcd8cSDaniel Berlin }
2228554dcd8cSDaniel Berlin
print(raw_ostream & OS) const2229554dcd8cSDaniel Berlin void MemoryPhi::print(raw_ostream &OS) const {
2230657f5b97SKazu Hirata ListSeparator LS(",");
2231554dcd8cSDaniel Berlin OS << getID() << " = MemoryPhi(";
2232554dcd8cSDaniel Berlin for (const auto &Op : operands()) {
2233554dcd8cSDaniel Berlin BasicBlock *BB = getIncomingBlock(Op);
2234554dcd8cSDaniel Berlin MemoryAccess *MA = cast<MemoryAccess>(Op);
2235554dcd8cSDaniel Berlin
2236657f5b97SKazu Hirata OS << LS << '{';
2237554dcd8cSDaniel Berlin if (BB->hasName())
2238554dcd8cSDaniel Berlin OS << BB->getName();
2239554dcd8cSDaniel Berlin else
2240554dcd8cSDaniel Berlin BB->printAsOperand(OS, false);
2241554dcd8cSDaniel Berlin OS << ',';
2242554dcd8cSDaniel Berlin if (unsigned ID = MA->getID())
2243554dcd8cSDaniel Berlin OS << ID;
2244554dcd8cSDaniel Berlin else
2245554dcd8cSDaniel Berlin OS << LiveOnEntryStr;
2246554dcd8cSDaniel Berlin OS << '}';
2247554dcd8cSDaniel Berlin }
2248554dcd8cSDaniel Berlin OS << ')';
2249554dcd8cSDaniel Berlin }
2250554dcd8cSDaniel Berlin
print(raw_ostream & OS) const2251554dcd8cSDaniel Berlin void MemoryUse::print(raw_ostream &OS) const {
2252554dcd8cSDaniel Berlin MemoryAccess *UO = getDefiningAccess();
2253554dcd8cSDaniel Berlin OS << "MemoryUse(";
2254554dcd8cSDaniel Berlin if (UO && UO->getID())
2255554dcd8cSDaniel Berlin OS << UO->getID();
2256554dcd8cSDaniel Berlin else
2257554dcd8cSDaniel Berlin OS << LiveOnEntryStr;
2258554dcd8cSDaniel Berlin OS << ')';
2259aa283d80SGeorge Burgess IV
2260aa283d80SGeorge Burgess IV if (Optional<AliasResult> AR = getOptimizedAccessType())
2261aa283d80SGeorge Burgess IV OS << " " << *AR;
2262554dcd8cSDaniel Berlin }
2263554dcd8cSDaniel Berlin
dump() const2264554dcd8cSDaniel Berlin void MemoryAccess::dump() const {
2265554dcd8cSDaniel Berlin // Cannot completely remove virtual function even in release mode.
2266615eb470SAaron Ballman #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2267554dcd8cSDaniel Berlin print(dbgs());
2268554dcd8cSDaniel Berlin dbgs() << "\n";
2269554dcd8cSDaniel Berlin #endif
2270554dcd8cSDaniel Berlin }
2271554dcd8cSDaniel Berlin
2272554dcd8cSDaniel Berlin char MemorySSAPrinterLegacyPass::ID = 0;
2273554dcd8cSDaniel Berlin
MemorySSAPrinterLegacyPass()2274554dcd8cSDaniel Berlin MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2275554dcd8cSDaniel Berlin initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2276554dcd8cSDaniel Berlin }
2277554dcd8cSDaniel Berlin
getAnalysisUsage(AnalysisUsage & AU) const2278554dcd8cSDaniel Berlin void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2279554dcd8cSDaniel Berlin AU.setPreservesAll();
2280554dcd8cSDaniel Berlin AU.addRequired<MemorySSAWrapperPass>();
2281554dcd8cSDaniel Berlin }
2282554dcd8cSDaniel Berlin
22835f672fefSJamie Schmeiser class DOTFuncMSSAInfo {
22845f672fefSJamie Schmeiser private:
22855f672fefSJamie Schmeiser const Function &F;
22865f672fefSJamie Schmeiser MemorySSAAnnotatedWriter MSSAWriter;
22875f672fefSJamie Schmeiser
22885f672fefSJamie Schmeiser public:
DOTFuncMSSAInfo(const Function & F,MemorySSA & MSSA)22895f672fefSJamie Schmeiser DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
22905f672fefSJamie Schmeiser : F(F), MSSAWriter(&MSSA) {}
22915f672fefSJamie Schmeiser
getFunction()22925f672fefSJamie Schmeiser const Function *getFunction() { return &F; }
getWriter()22935f672fefSJamie Schmeiser MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
22945f672fefSJamie Schmeiser };
22955f672fefSJamie Schmeiser
22965f672fefSJamie Schmeiser namespace llvm {
22975f672fefSJamie Schmeiser
22985f672fefSJamie Schmeiser template <>
22995f672fefSJamie Schmeiser struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
getEntryNodellvm::GraphTraits23005f672fefSJamie Schmeiser static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
23015f672fefSJamie Schmeiser return &(CFGInfo->getFunction()->getEntryBlock());
23025f672fefSJamie Schmeiser }
23035f672fefSJamie Schmeiser
23045f672fefSJamie Schmeiser // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
23055f672fefSJamie Schmeiser using nodes_iterator = pointer_iterator<Function::const_iterator>;
23065f672fefSJamie Schmeiser
nodes_beginllvm::GraphTraits23075f672fefSJamie Schmeiser static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
23085f672fefSJamie Schmeiser return nodes_iterator(CFGInfo->getFunction()->begin());
23095f672fefSJamie Schmeiser }
23105f672fefSJamie Schmeiser
nodes_endllvm::GraphTraits23115f672fefSJamie Schmeiser static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
23125f672fefSJamie Schmeiser return nodes_iterator(CFGInfo->getFunction()->end());
23135f672fefSJamie Schmeiser }
23145f672fefSJamie Schmeiser
sizellvm::GraphTraits23155f672fefSJamie Schmeiser static size_t size(DOTFuncMSSAInfo *CFGInfo) {
23165f672fefSJamie Schmeiser return CFGInfo->getFunction()->size();
23175f672fefSJamie Schmeiser }
23185f672fefSJamie Schmeiser };
23195f672fefSJamie Schmeiser
23205f672fefSJamie Schmeiser template <>
23215f672fefSJamie Schmeiser struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
23225f672fefSJamie Schmeiser
DOTGraphTraitsllvm::DOTGraphTraits23235f672fefSJamie Schmeiser DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
23245f672fefSJamie Schmeiser
getGraphNamellvm::DOTGraphTraits23255f672fefSJamie Schmeiser static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
23265f672fefSJamie Schmeiser return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
23275f672fefSJamie Schmeiser "' function";
23285f672fefSJamie Schmeiser }
23295f672fefSJamie Schmeiser
getNodeLabelllvm::DOTGraphTraits23305f672fefSJamie Schmeiser std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
23315f672fefSJamie Schmeiser return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
23325f672fefSJamie Schmeiser Node, nullptr,
23335f672fefSJamie Schmeiser [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
23345f672fefSJamie Schmeiser BB.print(OS, &CFGInfo->getWriter(), true, true);
23355f672fefSJamie Schmeiser },
23365f672fefSJamie Schmeiser [](std::string &S, unsigned &I, unsigned Idx) -> void {
23375f672fefSJamie Schmeiser std::string Str = S.substr(I, Idx - I);
23385f672fefSJamie Schmeiser StringRef SR = Str;
23395f672fefSJamie Schmeiser if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
23405f672fefSJamie Schmeiser SR.count("MemoryUse("))
23415f672fefSJamie Schmeiser return;
23425f672fefSJamie Schmeiser DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
23435f672fefSJamie Schmeiser });
23445f672fefSJamie Schmeiser }
23455f672fefSJamie Schmeiser
getEdgeSourceLabelllvm::DOTGraphTraits23465f672fefSJamie Schmeiser static std::string getEdgeSourceLabel(const BasicBlock *Node,
23475f672fefSJamie Schmeiser const_succ_iterator I) {
23485f672fefSJamie Schmeiser return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
23495f672fefSJamie Schmeiser }
23505f672fefSJamie Schmeiser
23515f672fefSJamie Schmeiser /// Display the raw branch weights from PGO.
getEdgeAttributesllvm::DOTGraphTraits23525f672fefSJamie Schmeiser std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
23535f672fefSJamie Schmeiser DOTFuncMSSAInfo *CFGInfo) {
23545f672fefSJamie Schmeiser return "";
23555f672fefSJamie Schmeiser }
23565f672fefSJamie Schmeiser
getNodeAttributesllvm::DOTGraphTraits23575f672fefSJamie Schmeiser std::string getNodeAttributes(const BasicBlock *Node,
23585f672fefSJamie Schmeiser DOTFuncMSSAInfo *CFGInfo) {
23595f672fefSJamie Schmeiser return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
23605f672fefSJamie Schmeiser ? "style=filled, fillcolor=lightpink"
23615f672fefSJamie Schmeiser : "";
23625f672fefSJamie Schmeiser }
23635f672fefSJamie Schmeiser };
23645f672fefSJamie Schmeiser
23655f672fefSJamie Schmeiser } // namespace llvm
23665f672fefSJamie Schmeiser
runOnFunction(Function & F)2367554dcd8cSDaniel Berlin bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2368554dcd8cSDaniel Berlin auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2369f96428e1SNikita Popov MSSA.ensureOptimizedUses();
23705f672fefSJamie Schmeiser if (DotCFGMSSA != "") {
23715f672fefSJamie Schmeiser DOTFuncMSSAInfo CFGInfo(F, MSSA);
23725f672fefSJamie Schmeiser WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
23735f672fefSJamie Schmeiser } else
2374554dcd8cSDaniel Berlin MSSA.print(dbgs());
23755f672fefSJamie Schmeiser
2376554dcd8cSDaniel Berlin if (VerifyMemorySSA)
2377554dcd8cSDaniel Berlin MSSA.verifyMemorySSA();
2378554dcd8cSDaniel Berlin return false;
2379554dcd8cSDaniel Berlin }
2380554dcd8cSDaniel Berlin
2381554dcd8cSDaniel Berlin AnalysisKey MemorySSAAnalysis::Key;
2382554dcd8cSDaniel Berlin
run(Function & F,FunctionAnalysisManager & AM)2383554dcd8cSDaniel Berlin MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2384554dcd8cSDaniel Berlin FunctionAnalysisManager &AM) {
2385554dcd8cSDaniel Berlin auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2386554dcd8cSDaniel Berlin auto &AA = AM.getResult<AAManager>(F);
23870eaee545SJonas Devlieghere return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2388554dcd8cSDaniel Berlin }
2389554dcd8cSDaniel Berlin
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)2390b4683203SAlina Sbirlea bool MemorySSAAnalysis::Result::invalidate(
2391b4683203SAlina Sbirlea Function &F, const PreservedAnalyses &PA,
2392b4683203SAlina Sbirlea FunctionAnalysisManager::Invalidator &Inv) {
2393b4683203SAlina Sbirlea auto PAC = PA.getChecker<MemorySSAAnalysis>();
2394b4683203SAlina Sbirlea return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2395b4683203SAlina Sbirlea Inv.invalidate<AAManager>(F, PA) ||
2396b4683203SAlina Sbirlea Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2397b4683203SAlina Sbirlea }
2398b4683203SAlina Sbirlea
run(Function & F,FunctionAnalysisManager & AM)2399554dcd8cSDaniel Berlin PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2400554dcd8cSDaniel Berlin FunctionAnalysisManager &AM) {
24015f672fefSJamie Schmeiser auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2402f96428e1SNikita Popov MSSA.ensureOptimizedUses();
24035f672fefSJamie Schmeiser if (DotCFGMSSA != "") {
24045f672fefSJamie Schmeiser DOTFuncMSSAInfo CFGInfo(F, MSSA);
24055f672fefSJamie Schmeiser WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
24065f672fefSJamie Schmeiser } else {
2407554dcd8cSDaniel Berlin OS << "MemorySSA for function: " << F.getName() << "\n";
24085f672fefSJamie Schmeiser MSSA.print(OS);
24095f672fefSJamie Schmeiser }
2410554dcd8cSDaniel Berlin
2411554dcd8cSDaniel Berlin return PreservedAnalyses::all();
2412554dcd8cSDaniel Berlin }
2413554dcd8cSDaniel Berlin
run(Function & F,FunctionAnalysisManager & AM)24147b08d9daSArthur Eubanks PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F,
24157b08d9daSArthur Eubanks FunctionAnalysisManager &AM) {
24167b08d9daSArthur Eubanks auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
24177b08d9daSArthur Eubanks OS << "MemorySSA (walker) for function: " << F.getName() << "\n";
24187b08d9daSArthur Eubanks MemorySSAWalkerAnnotatedWriter Writer(&MSSA);
24197b08d9daSArthur Eubanks F.print(OS, &Writer);
24207b08d9daSArthur Eubanks
24217b08d9daSArthur Eubanks return PreservedAnalyses::all();
24227b08d9daSArthur Eubanks }
24237b08d9daSArthur Eubanks
run(Function & F,FunctionAnalysisManager & AM)2424554dcd8cSDaniel Berlin PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2425554dcd8cSDaniel Berlin FunctionAnalysisManager &AM) {
2426554dcd8cSDaniel Berlin AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2427554dcd8cSDaniel Berlin
2428554dcd8cSDaniel Berlin return PreservedAnalyses::all();
2429554dcd8cSDaniel Berlin }
2430554dcd8cSDaniel Berlin
2431554dcd8cSDaniel Berlin char MemorySSAWrapperPass::ID = 0;
2432554dcd8cSDaniel Berlin
MemorySSAWrapperPass()2433554dcd8cSDaniel Berlin MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2434554dcd8cSDaniel Berlin initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2435554dcd8cSDaniel Berlin }
2436554dcd8cSDaniel Berlin
releaseMemory()2437554dcd8cSDaniel Berlin void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2438554dcd8cSDaniel Berlin
getAnalysisUsage(AnalysisUsage & AU) const2439554dcd8cSDaniel Berlin void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2440554dcd8cSDaniel Berlin AU.setPreservesAll();
2441554dcd8cSDaniel Berlin AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2442554dcd8cSDaniel Berlin AU.addRequiredTransitive<AAResultsWrapperPass>();
2443554dcd8cSDaniel Berlin }
2444554dcd8cSDaniel Berlin
runOnFunction(Function & F)2445554dcd8cSDaniel Berlin bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2446554dcd8cSDaniel Berlin auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2447554dcd8cSDaniel Berlin auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2448554dcd8cSDaniel Berlin MSSA.reset(new MemorySSA(F, &AA, &DT));
2449554dcd8cSDaniel Berlin return false;
2450554dcd8cSDaniel Berlin }
2451554dcd8cSDaniel Berlin
verifyAnalysis() const2452f0b57d80SNikita Popov void MemorySSAWrapperPass::verifyAnalysis() const {
2453f0b57d80SNikita Popov if (VerifyMemorySSA)
2454f0b57d80SNikita Popov MSSA->verifyMemorySSA();
2455f0b57d80SNikita Popov }
2456554dcd8cSDaniel Berlin
print(raw_ostream & OS,const Module * M) const2457554dcd8cSDaniel Berlin void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2458554dcd8cSDaniel Berlin MSSA->print(OS);
2459554dcd8cSDaniel Berlin }
2460554dcd8cSDaniel Berlin
MemorySSAWalker(MemorySSA * M)2461554dcd8cSDaniel Berlin MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2462554dcd8cSDaniel Berlin
2463bc8aa24cSAlina Sbirlea /// Walk the use-def chains starting at \p StartingAccess and find
2464554dcd8cSDaniel Berlin /// the MemoryAccess that actually clobbers Loc.
2465554dcd8cSDaniel Berlin ///
2466554dcd8cSDaniel Berlin /// \returns our clobbering memory access
2467bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
2468bfc779e4SAlina Sbirlea MemoryAccess *
getClobberingMemoryAccessBase(MemoryAccess * StartingAccess,const MemoryLocation & Loc,unsigned & UpwardWalkLimit)2469bfc779e4SAlina Sbirlea MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2470f085cc5aSAlina Sbirlea MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2471f085cc5aSAlina Sbirlea unsigned &UpwardWalkLimit) {
2472b2f933a6SNikita Popov assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
2473554dcd8cSDaniel Berlin
2474b2f933a6SNikita Popov Instruction *I = nullptr;
2475b2f933a6SNikita Popov if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
2476554dcd8cSDaniel Berlin if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2477554dcd8cSDaniel Berlin return StartingUseOrDef;
2478554dcd8cSDaniel Berlin
2479b2f933a6SNikita Popov I = StartingUseOrDef->getMemoryInst();
2480554dcd8cSDaniel Berlin
2481b2f933a6SNikita Popov // Conservatively, fences are always clobbers, so don't perform the walk if
2482b2f933a6SNikita Popov // we hit a fence.
2483363ac683SChandler Carruth if (!isa<CallBase>(I) && I->isFenceLike())
2484554dcd8cSDaniel Berlin return StartingUseOrDef;
2485b2f933a6SNikita Popov }
2486554dcd8cSDaniel Berlin
2487554dcd8cSDaniel Berlin UpwardsMemoryQuery Q;
2488b2f933a6SNikita Popov Q.OriginalAccess = StartingAccess;
2489554dcd8cSDaniel Berlin Q.StartingLoc = Loc;
249052b86d35SNikita Popov Q.Inst = nullptr;
2491554dcd8cSDaniel Berlin Q.IsCall = false;
2492554dcd8cSDaniel Berlin
2493554dcd8cSDaniel Berlin // Unlike the other function, do not walk to the def of a def, because we are
2494554dcd8cSDaniel Berlin // handed something we already believe is the clobbering access.
2495bc8aa24cSAlina Sbirlea // We never set SkipSelf to true in Q in this method.
2496f085cc5aSAlina Sbirlea MemoryAccess *Clobber =
2497b2f933a6SNikita Popov Walker.findClobber(StartingAccess, Q, UpwardWalkLimit);
2498b2f933a6SNikita Popov LLVM_DEBUG({
2499b2f933a6SNikita Popov dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
2500b2f933a6SNikita Popov if (I)
2501b2f933a6SNikita Popov dbgs() << " for instruction " << *I << "\n";
2502b2f933a6SNikita Popov dbgs() << " is " << *Clobber << "\n";
2503b2f933a6SNikita Popov });
2504554dcd8cSDaniel Berlin return Clobber;
2505554dcd8cSDaniel Berlin }
2506554dcd8cSDaniel Berlin
2507b493124aSArthur Eubanks static const Instruction *
getInvariantGroupClobberingInstruction(Instruction & I,DominatorTree & DT)2508b493124aSArthur Eubanks getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) {
2509b493124aSArthur Eubanks if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile())
2510b493124aSArthur Eubanks return nullptr;
2511b493124aSArthur Eubanks
2512b493124aSArthur Eubanks // We consider bitcasts and zero GEPs to be the same pointer value. Start by
2513b493124aSArthur Eubanks // stripping bitcasts and zero GEPs, then we will recursively look at loads
2514b493124aSArthur Eubanks // and stores through bitcasts and zero GEPs.
2515b493124aSArthur Eubanks Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts();
2516b493124aSArthur Eubanks
2517b493124aSArthur Eubanks // It's not safe to walk the use list of a global value because function
2518b493124aSArthur Eubanks // passes aren't allowed to look outside their functions.
2519b493124aSArthur Eubanks // FIXME: this could be fixed by filtering instructions from outside of
2520b493124aSArthur Eubanks // current function.
2521b493124aSArthur Eubanks if (isa<Constant>(PointerOperand))
2522b493124aSArthur Eubanks return nullptr;
2523b493124aSArthur Eubanks
2524b493124aSArthur Eubanks // Queue to process all pointers that are equivalent to load operand.
2525b493124aSArthur Eubanks SmallVector<const Value *, 8> PointerUsesQueue;
2526b493124aSArthur Eubanks PointerUsesQueue.push_back(PointerOperand);
2527b493124aSArthur Eubanks
2528b493124aSArthur Eubanks const Instruction *MostDominatingInstruction = &I;
2529b493124aSArthur Eubanks
2530b493124aSArthur Eubanks // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case
2531b493124aSArthur Eubanks // we will see all the instructions. It may not matter in practice. If it
2532b493124aSArthur Eubanks // does, we will have to support MemorySSA construction and updates.
2533b493124aSArthur Eubanks while (!PointerUsesQueue.empty()) {
2534b493124aSArthur Eubanks const Value *Ptr = PointerUsesQueue.pop_back_val();
2535b493124aSArthur Eubanks assert(Ptr && !isa<GlobalValue>(Ptr) &&
2536b493124aSArthur Eubanks "Null or GlobalValue should not be inserted");
2537b493124aSArthur Eubanks
2538b493124aSArthur Eubanks for (const User *Us : Ptr->users()) {
2539b493124aSArthur Eubanks auto *U = dyn_cast<Instruction>(Us);
2540b493124aSArthur Eubanks if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction))
2541b493124aSArthur Eubanks continue;
2542b493124aSArthur Eubanks
2543b493124aSArthur Eubanks // Add bitcasts and zero GEPs to queue.
2544b493124aSArthur Eubanks if (isa<BitCastInst>(U)) {
2545b493124aSArthur Eubanks PointerUsesQueue.push_back(U);
2546b493124aSArthur Eubanks continue;
2547b493124aSArthur Eubanks }
2548b493124aSArthur Eubanks if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
2549b493124aSArthur Eubanks if (GEP->hasAllZeroIndices())
2550b493124aSArthur Eubanks PointerUsesQueue.push_back(U);
2551b493124aSArthur Eubanks continue;
2552b493124aSArthur Eubanks }
2553b493124aSArthur Eubanks
2554b493124aSArthur Eubanks // If we hit a load/store with an invariant.group metadata and the same
2555b493124aSArthur Eubanks // pointer operand, we can assume that value pointed to by the pointer
2556b493124aSArthur Eubanks // operand didn't change.
2557b493124aSArthur Eubanks if (U->hasMetadata(LLVMContext::MD_invariant_group) &&
2558b493124aSArthur Eubanks getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) {
2559b493124aSArthur Eubanks MostDominatingInstruction = U;
2560b493124aSArthur Eubanks }
2561b493124aSArthur Eubanks }
2562b493124aSArthur Eubanks }
2563b493124aSArthur Eubanks return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction;
2564b493124aSArthur Eubanks }
2565b493124aSArthur Eubanks
2566bfc779e4SAlina Sbirlea template <typename AliasAnalysisType>
2567554dcd8cSDaniel Berlin MemoryAccess *
getClobberingMemoryAccessBase(MemoryAccess * MA,unsigned & UpwardWalkLimit,bool SkipSelf,bool UseInvariantGroup)2568bfc779e4SAlina Sbirlea MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2569b493124aSArthur Eubanks MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf,
2570b493124aSArthur Eubanks bool UseInvariantGroup) {
2571554dcd8cSDaniel Berlin auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2572554dcd8cSDaniel Berlin // If this is a MemoryPhi, we can't do anything.
2573554dcd8cSDaniel Berlin if (!StartingAccess)
2574554dcd8cSDaniel Berlin return MA;
2575554dcd8cSDaniel Berlin
2576b493124aSArthur Eubanks if (UseInvariantGroup) {
2577b493124aSArthur Eubanks if (auto *I = getInvariantGroupClobberingInstruction(
2578b493124aSArthur Eubanks *StartingAccess->getMemoryInst(), MSSA->getDomTree())) {
2579b493124aSArthur Eubanks assert(isa<LoadInst>(I) || isa<StoreInst>(I));
2580b493124aSArthur Eubanks
2581b493124aSArthur Eubanks auto *ClobberMA = MSSA->getMemoryAccess(I);
2582b493124aSArthur Eubanks assert(ClobberMA);
2583b493124aSArthur Eubanks if (isa<MemoryUse>(ClobberMA))
2584b493124aSArthur Eubanks return ClobberMA->getDefiningAccess();
2585b493124aSArthur Eubanks return ClobberMA;
2586b493124aSArthur Eubanks }
2587b493124aSArthur Eubanks }
2588b493124aSArthur Eubanks
2589bc8aa24cSAlina Sbirlea bool IsOptimized = false;
2590bc8aa24cSAlina Sbirlea
2591554dcd8cSDaniel Berlin // If this is an already optimized use or def, return the optimized result.
2592d90c9f4aSAlina Sbirlea // Note: Currently, we store the optimized def result in a separate field,
2593d90c9f4aSAlina Sbirlea // since we can't use the defining access.
2594bc8aa24cSAlina Sbirlea if (StartingAccess->isOptimized()) {
2595bc8aa24cSAlina Sbirlea if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
25966f49f4a9SGeorge Burgess IV return StartingAccess->getOptimized();
2597bc8aa24cSAlina Sbirlea IsOptimized = true;
2598bc8aa24cSAlina Sbirlea }
2599554dcd8cSDaniel Berlin
2600554dcd8cSDaniel Berlin const Instruction *I = StartingAccess->getMemoryInst();
260144477c61SGeorge Burgess IV // We can't sanely do anything with a fence, since they conservatively clobber
260244477c61SGeorge Burgess IV // all memory, and have no locations to get pointers from to try to
260344477c61SGeorge Burgess IV // disambiguate.
2604363ac683SChandler Carruth if (!isa<CallBase>(I) && I->isFenceLike())
2605554dcd8cSDaniel Berlin return StartingAccess;
2606554dcd8cSDaniel Berlin
2607b4d088d0SAlina Sbirlea UpwardsMemoryQuery Q(I, StartingAccess);
2608b4d088d0SAlina Sbirlea
2609bfc779e4SAlina Sbirlea if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2610554dcd8cSDaniel Berlin MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
261144477c61SGeorge Burgess IV StartingAccess->setOptimized(LiveOnEntry);
261244477c61SGeorge Burgess IV StartingAccess->setOptimizedAccessType(None);
2613554dcd8cSDaniel Berlin return LiveOnEntry;
2614554dcd8cSDaniel Berlin }
2615554dcd8cSDaniel Berlin
2616bc8aa24cSAlina Sbirlea MemoryAccess *OptimizedAccess;
2617bc8aa24cSAlina Sbirlea if (!IsOptimized) {
2618554dcd8cSDaniel Berlin // Start with the thing we already think clobbers this location
2619554dcd8cSDaniel Berlin MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2620554dcd8cSDaniel Berlin
2621554dcd8cSDaniel Berlin // At this point, DefiningAccess may be the live on entry def.
2622554dcd8cSDaniel Berlin // If it is, we will not get a better result.
2623d90c9f4aSAlina Sbirlea if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
262444477c61SGeorge Burgess IV StartingAccess->setOptimized(DefiningAccess);
262544477c61SGeorge Burgess IV StartingAccess->setOptimizedAccessType(None);
2626554dcd8cSDaniel Berlin return DefiningAccess;
2627d90c9f4aSAlina Sbirlea }
2628554dcd8cSDaniel Berlin
2629f085cc5aSAlina Sbirlea OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2630bc8aa24cSAlina Sbirlea StartingAccess->setOptimized(OptimizedAccess);
2631bc8aa24cSAlina Sbirlea if (MSSA->isLiveOnEntryDef(OptimizedAccess))
263244477c61SGeorge Burgess IV StartingAccess->setOptimizedAccessType(None);
2633c1a88e00Sdfukalov else if (Q.AR && *Q.AR == AliasResult::MustAlias)
2634c1a88e00Sdfukalov StartingAccess->setOptimizedAccessType(
2635c1a88e00Sdfukalov AliasResult(AliasResult::MustAlias));
2636bc8aa24cSAlina Sbirlea } else
2637bc8aa24cSAlina Sbirlea OptimizedAccess = StartingAccess->getOptimized();
2638bc8aa24cSAlina Sbirlea
2639bc8aa24cSAlina Sbirlea LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2640bc8aa24cSAlina Sbirlea LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2641bc8aa24cSAlina Sbirlea LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2642bc8aa24cSAlina Sbirlea LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2643bc8aa24cSAlina Sbirlea
2644bc8aa24cSAlina Sbirlea MemoryAccess *Result;
2645bc8aa24cSAlina Sbirlea if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2646f085cc5aSAlina Sbirlea isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2647bc8aa24cSAlina Sbirlea assert(isa<MemoryDef>(Q.OriginalAccess));
2648bc8aa24cSAlina Sbirlea Q.SkipSelfAccess = true;
2649f085cc5aSAlina Sbirlea Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
2650bc8aa24cSAlina Sbirlea } else
2651bc8aa24cSAlina Sbirlea Result = OptimizedAccess;
2652bc8aa24cSAlina Sbirlea
2653bc8aa24cSAlina Sbirlea LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2654bc8aa24cSAlina Sbirlea LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2655554dcd8cSDaniel Berlin
2656554dcd8cSDaniel Berlin return Result;
2657554dcd8cSDaniel Berlin }
2658554dcd8cSDaniel Berlin
2659554dcd8cSDaniel Berlin MemoryAccess *
getClobberingMemoryAccess(MemoryAccess * MA)2660554dcd8cSDaniel Berlin DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2661554dcd8cSDaniel Berlin if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2662554dcd8cSDaniel Berlin return Use->getDefiningAccess();
2663554dcd8cSDaniel Berlin return MA;
2664554dcd8cSDaniel Berlin }
2665554dcd8cSDaniel Berlin
getClobberingMemoryAccess(MemoryAccess * StartingAccess,const MemoryLocation &)2666554dcd8cSDaniel Berlin MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2667554dcd8cSDaniel Berlin MemoryAccess *StartingAccess, const MemoryLocation &) {
2668554dcd8cSDaniel Berlin if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2669554dcd8cSDaniel Berlin return Use->getDefiningAccess();
2670554dcd8cSDaniel Berlin return StartingAccess;
2671554dcd8cSDaniel Berlin }
267296ab8726SReid Kleckner
deleteMe(DerivedUser * Self)267396ab8726SReid Kleckner void MemoryPhi::deleteMe(DerivedUser *Self) {
267496ab8726SReid Kleckner delete static_cast<MemoryPhi *>(Self);
267596ab8726SReid Kleckner }
267696ab8726SReid Kleckner
deleteMe(DerivedUser * Self)267796ab8726SReid Kleckner void MemoryDef::deleteMe(DerivedUser *Self) {
267896ab8726SReid Kleckner delete static_cast<MemoryDef *>(Self);
267996ab8726SReid Kleckner }
268096ab8726SReid Kleckner
deleteMe(DerivedUser * Self)268196ab8726SReid Kleckner void MemoryUse::deleteMe(DerivedUser *Self) {
268296ab8726SReid Kleckner delete static_cast<MemoryUse *>(Self);
268396ab8726SReid Kleckner }
26849ed8e0caSdfukalov
IsGuaranteedLoopInvariant(Value * Ptr) const26859ed8e0caSdfukalov bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const {
26869ed8e0caSdfukalov auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) {
26879ed8e0caSdfukalov Ptr = Ptr->stripPointerCasts();
26889ed8e0caSdfukalov if (!isa<Instruction>(Ptr))
26899ed8e0caSdfukalov return true;
26909ed8e0caSdfukalov return isa<AllocaInst>(Ptr);
26919ed8e0caSdfukalov };
26929ed8e0caSdfukalov
26939ed8e0caSdfukalov Ptr = Ptr->stripPointerCasts();
2694a4fb8866SMatteo Favaro if (auto *I = dyn_cast<Instruction>(Ptr)) {
2695fb9ed197SNikita Popov if (I->getParent()->isEntryBlock())
2696a4fb8866SMatteo Favaro return true;
2697a4fb8866SMatteo Favaro }
26989ed8e0caSdfukalov if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
26999ed8e0caSdfukalov return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
27009ed8e0caSdfukalov GEP->hasAllConstantIndices();
27019ed8e0caSdfukalov }
27029ed8e0caSdfukalov return IsGuaranteedLoopInvariantBase(Ptr);
27039ed8e0caSdfukalov }
2704