1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Analysis/TargetFolder.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "memory-builtins" 51 52 enum AllocType : uint8_t { 53 OpNewLike = 1<<0, // allocates; never returns null 54 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 55 AlignedAllocLike = 1<<2, // allocates with alignment; may return null 56 CallocLike = 1<<3, // allocates + bzero 57 ReallocLike = 1<<4, // reallocates 58 StrDupLike = 1<<5, 59 MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike, 60 AllocLike = MallocOrCallocLike | StrDupLike, 61 AnyAlloc = AllocLike | ReallocLike 62 }; 63 64 struct AllocFnsTy { 65 AllocType AllocTy; 66 unsigned NumParams; 67 // First and Second size parameters (or -1 if unused) 68 int FstParam, SndParam; 69 }; 70 71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 72 // know which functions are nounwind, noalias, nocapture parameters, etc. 73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 74 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 75 {LibFunc_vec_malloc, {MallocLike, 1, 0, -1}}, 76 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 77 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 78 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 79 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t) 80 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow) 81 {MallocLike, 3, 0, -1}}, 82 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 83 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 84 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t) 85 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow) 86 {MallocLike, 3, 0, -1}}, 87 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 88 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 89 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t) 90 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow) 91 {MallocLike, 3, 0, -1}}, 92 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 93 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 94 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t) 95 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow) 96 {MallocLike, 3, 0, -1}}, 97 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 98 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 99 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 100 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 101 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 102 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 103 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 104 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 105 {LibFunc_aligned_alloc, {AlignedAllocLike, 2, 1, -1}}, 106 {LibFunc_memalign, {AlignedAllocLike, 2, 1, -1}}, 107 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 108 {LibFunc_vec_calloc, {CallocLike, 2, 0, 1}}, 109 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 110 {LibFunc_vec_realloc, {ReallocLike, 2, 1, -1}}, 111 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 112 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 113 {LibFunc_strndup, {StrDupLike, 2, 1, -1}}, 114 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1}} 115 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 116 }; 117 118 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 119 bool &IsNoBuiltin) { 120 // Don't care about intrinsics in this case. 121 if (isa<IntrinsicInst>(V)) 122 return nullptr; 123 124 if (LookThroughBitCast) 125 V = V->stripPointerCasts(); 126 127 const auto *CB = dyn_cast<CallBase>(V); 128 if (!CB) 129 return nullptr; 130 131 IsNoBuiltin = CB->isNoBuiltin(); 132 133 if (const Function *Callee = CB->getCalledFunction()) 134 return Callee; 135 return nullptr; 136 } 137 138 /// Returns the allocation data for the given value if it's either a call to a 139 /// known allocation function, or a call to a function with the allocsize 140 /// attribute. 141 static Optional<AllocFnsTy> 142 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 143 const TargetLibraryInfo *TLI) { 144 // Make sure that the function is available. 145 StringRef FnName = Callee->getName(); 146 LibFunc TLIFn; 147 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 148 return None; 149 150 const auto *Iter = find_if( 151 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 152 return P.first == TLIFn; 153 }); 154 155 if (Iter == std::end(AllocationFnData)) 156 return None; 157 158 const AllocFnsTy *FnData = &Iter->second; 159 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 160 return None; 161 162 // Check function prototype. 163 int FstParam = FnData->FstParam; 164 int SndParam = FnData->SndParam; 165 FunctionType *FTy = Callee->getFunctionType(); 166 167 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 168 FTy->getNumParams() == FnData->NumParams && 169 (FstParam < 0 || 170 (FTy->getParamType(FstParam)->isIntegerTy(32) || 171 FTy->getParamType(FstParam)->isIntegerTy(64))) && 172 (SndParam < 0 || 173 FTy->getParamType(SndParam)->isIntegerTy(32) || 174 FTy->getParamType(SndParam)->isIntegerTy(64))) 175 return *FnData; 176 return None; 177 } 178 179 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 180 const TargetLibraryInfo *TLI, 181 bool LookThroughBitCast = false) { 182 bool IsNoBuiltinCall; 183 if (const Function *Callee = 184 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 185 if (!IsNoBuiltinCall) 186 return getAllocationDataForFunction(Callee, AllocTy, TLI); 187 return None; 188 } 189 190 static Optional<AllocFnsTy> 191 getAllocationData(const Value *V, AllocType AllocTy, 192 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 193 bool LookThroughBitCast = false) { 194 bool IsNoBuiltinCall; 195 if (const Function *Callee = 196 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 197 if (!IsNoBuiltinCall) 198 return getAllocationDataForFunction( 199 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 200 return None; 201 } 202 203 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 204 const TargetLibraryInfo *TLI) { 205 bool IsNoBuiltinCall; 206 const Function *Callee = 207 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 208 if (!Callee) 209 return None; 210 211 // Prefer to use existing information over allocsize. This will give us an 212 // accurate AllocTy. 213 if (!IsNoBuiltinCall) 214 if (Optional<AllocFnsTy> Data = 215 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 216 return Data; 217 218 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 219 if (Attr == Attribute()) 220 return None; 221 222 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 223 224 AllocFnsTy Result; 225 // Because allocsize only tells us how many bytes are allocated, we're not 226 // really allowed to assume anything, so we use MallocLike. 227 Result.AllocTy = MallocLike; 228 Result.NumParams = Callee->getNumOperands(); 229 Result.FstParam = Args.first; 230 Result.SndParam = Args.second.getValueOr(-1); 231 return Result; 232 } 233 234 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 235 const auto *CB = 236 dyn_cast<CallBase>(LookThroughBitCast ? V->stripPointerCasts() : V); 237 return CB && CB->hasRetAttr(Attribute::NoAlias); 238 } 239 240 /// Tests if a value is a call or invoke to a library function that 241 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 242 /// like). 243 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 244 bool LookThroughBitCast) { 245 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 246 } 247 bool llvm::isAllocationFn( 248 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 249 bool LookThroughBitCast) { 250 return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue(); 251 } 252 253 /// Tests if a value is a call or invoke to a function that returns a 254 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 255 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 256 bool LookThroughBitCast) { 257 // it's safe to consider realloc as noalias since accessing the original 258 // pointer is undefined behavior 259 return isAllocationFn(V, TLI, LookThroughBitCast) || 260 hasNoAliasAttr(V, LookThroughBitCast); 261 } 262 263 /// Tests if a value is a call or invoke to a library function that 264 /// allocates uninitialized memory (such as malloc). 265 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 266 bool LookThroughBitCast) { 267 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 268 } 269 bool llvm::isMallocLikeFn( 270 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 271 bool LookThroughBitCast) { 272 return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast) 273 .hasValue(); 274 } 275 276 /// Tests if a value is a call or invoke to a library function that 277 /// allocates uninitialized memory with alignment (such as aligned_alloc). 278 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 279 bool LookThroughBitCast) { 280 return getAllocationData(V, AlignedAllocLike, TLI, LookThroughBitCast) 281 .hasValue(); 282 } 283 bool llvm::isAlignedAllocLikeFn( 284 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 285 bool LookThroughBitCast) { 286 return getAllocationData(V, AlignedAllocLike, GetTLI, LookThroughBitCast) 287 .hasValue(); 288 } 289 290 /// Tests if a value is a call or invoke to a library function that 291 /// allocates zero-filled memory (such as calloc). 292 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 293 bool LookThroughBitCast) { 294 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 295 } 296 297 /// Tests if a value is a call or invoke to a library function that 298 /// allocates memory similar to malloc or calloc. 299 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 300 bool LookThroughBitCast) { 301 return getAllocationData(V, MallocOrCallocLike, TLI, 302 LookThroughBitCast).hasValue(); 303 } 304 305 /// Tests if a value is a call or invoke to a library function that 306 /// allocates memory (either malloc, calloc, or strdup like). 307 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 308 bool LookThroughBitCast) { 309 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 310 } 311 312 /// Tests if a value is a call or invoke to a library function that 313 /// reallocates memory (e.g., realloc). 314 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 315 bool LookThroughBitCast) { 316 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue(); 317 } 318 319 /// Tests if a functions is a call or invoke to a library function that 320 /// reallocates memory (e.g., realloc). 321 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) { 322 return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue(); 323 } 324 325 /// Tests if a value is a call or invoke to a library function that 326 /// allocates memory and throws if an allocation failed (e.g., new). 327 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI, 328 bool LookThroughBitCast) { 329 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue(); 330 } 331 332 /// Tests if a value is a call or invoke to a library function that 333 /// allocates memory (strdup, strndup). 334 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI, 335 bool LookThroughBitCast) { 336 return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue(); 337 } 338 339 /// extractMallocCall - Returns the corresponding CallInst if the instruction 340 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 341 /// ignore InvokeInst here. 342 const CallInst *llvm::extractMallocCall( 343 const Value *I, 344 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 345 return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr; 346 } 347 348 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 349 const TargetLibraryInfo *TLI, 350 bool LookThroughSExt = false) { 351 if (!CI) 352 return nullptr; 353 354 // The size of the malloc's result type must be known to determine array size. 355 Type *T = getMallocAllocatedType(CI, TLI); 356 if (!T || !T->isSized()) 357 return nullptr; 358 359 unsigned ElementSize = DL.getTypeAllocSize(T); 360 if (StructType *ST = dyn_cast<StructType>(T)) 361 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 362 363 // If malloc call's arg can be determined to be a multiple of ElementSize, 364 // return the multiple. Otherwise, return NULL. 365 Value *MallocArg = CI->getArgOperand(0); 366 Value *Multiple = nullptr; 367 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 368 return Multiple; 369 370 return nullptr; 371 } 372 373 /// getMallocType - Returns the PointerType resulting from the malloc call. 374 /// The PointerType depends on the number of bitcast uses of the malloc call: 375 /// 0: PointerType is the calls' return type. 376 /// 1: PointerType is the bitcast's result type. 377 /// >1: Unique PointerType cannot be determined, return NULL. 378 PointerType *llvm::getMallocType(const CallInst *CI, 379 const TargetLibraryInfo *TLI) { 380 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 381 382 PointerType *MallocType = nullptr; 383 unsigned NumOfBitCastUses = 0; 384 385 // Determine if CallInst has a bitcast use. 386 for (const User *U : CI->users()) 387 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 388 MallocType = cast<PointerType>(BCI->getDestTy()); 389 NumOfBitCastUses++; 390 } 391 392 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 393 if (NumOfBitCastUses == 1) 394 return MallocType; 395 396 // Malloc call was not bitcast, so type is the malloc function's return type. 397 if (NumOfBitCastUses == 0) 398 return cast<PointerType>(CI->getType()); 399 400 // Type could not be determined. 401 return nullptr; 402 } 403 404 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 405 /// The Type depends on the number of bitcast uses of the malloc call: 406 /// 0: PointerType is the malloc calls' return type. 407 /// 1: PointerType is the bitcast's result type. 408 /// >1: Unique PointerType cannot be determined, return NULL. 409 Type *llvm::getMallocAllocatedType(const CallInst *CI, 410 const TargetLibraryInfo *TLI) { 411 PointerType *PT = getMallocType(CI, TLI); 412 return PT ? PT->getElementType() : nullptr; 413 } 414 415 /// getMallocArraySize - Returns the array size of a malloc call. If the 416 /// argument passed to malloc is a multiple of the size of the malloced type, 417 /// then return that multiple. For non-array mallocs, the multiple is 418 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 419 /// determined. 420 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 421 const TargetLibraryInfo *TLI, 422 bool LookThroughSExt) { 423 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 424 return computeArraySize(CI, DL, TLI, LookThroughSExt); 425 } 426 427 /// extractCallocCall - Returns the corresponding CallInst if the instruction 428 /// is a calloc call. 429 const CallInst *llvm::extractCallocCall(const Value *I, 430 const TargetLibraryInfo *TLI) { 431 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 432 } 433 434 /// isLibFreeFunction - Returns true if the function is a builtin free() 435 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 436 unsigned ExpectedNumParams; 437 if (TLIFn == LibFunc_free || 438 TLIFn == LibFunc___kmpc_free_shared || // OpenMP Offloading RTL free 439 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 440 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 441 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 442 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 443 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 444 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 445 ExpectedNumParams = 1; 446 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 447 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 448 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 449 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t) 450 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 451 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 452 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 453 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t) 454 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 455 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 456 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 457 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 458 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 459 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 460 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 461 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 462 ExpectedNumParams = 2; 463 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow) 464 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow) 465 TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t) 466 TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t) 467 TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t) 468 TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t) 469 ExpectedNumParams = 3; 470 else 471 return false; 472 473 // Check free prototype. 474 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 475 // attribute will exist. 476 FunctionType *FTy = F->getFunctionType(); 477 if (!FTy->getReturnType()->isVoidTy()) 478 return false; 479 if (FTy->getNumParams() != ExpectedNumParams) 480 return false; 481 if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext())) 482 return false; 483 484 return true; 485 } 486 487 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 488 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 489 bool IsNoBuiltinCall; 490 const Function *Callee = 491 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 492 if (Callee == nullptr || IsNoBuiltinCall) 493 return nullptr; 494 495 StringRef FnName = Callee->getName(); 496 LibFunc TLIFn; 497 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 498 return nullptr; 499 500 return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr; 501 } 502 503 504 //===----------------------------------------------------------------------===// 505 // Utility functions to compute size of objects. 506 // 507 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 508 if (Data.second.isNegative() || Data.first.ult(Data.second)) 509 return APInt(Data.first.getBitWidth(), 0); 510 return Data.first - Data.second; 511 } 512 513 /// Compute the size of the object pointed by Ptr. Returns true and the 514 /// object size in Size if successful, and false otherwise. 515 /// If RoundToAlign is true, then Size is rounded up to the alignment of 516 /// allocas, byval arguments, and global variables. 517 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 518 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 519 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 520 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 521 if (!Visitor.bothKnown(Data)) 522 return false; 523 524 Size = getSizeWithOverflow(Data).getZExtValue(); 525 return true; 526 } 527 528 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 529 const DataLayout &DL, 530 const TargetLibraryInfo *TLI, 531 bool MustSucceed) { 532 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 533 "ObjectSize must be a call to llvm.objectsize!"); 534 535 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 536 ObjectSizeOpts EvalOptions; 537 // Unless we have to fold this to something, try to be as accurate as 538 // possible. 539 if (MustSucceed) 540 EvalOptions.EvalMode = 541 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 542 else 543 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 544 545 EvalOptions.NullIsUnknownSize = 546 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 547 548 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 549 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 550 if (StaticOnly) { 551 // FIXME: Does it make sense to just return a failure value if the size won't 552 // fit in the output and `!MustSucceed`? 553 uint64_t Size; 554 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 555 isUIntN(ResultType->getBitWidth(), Size)) 556 return ConstantInt::get(ResultType, Size); 557 } else { 558 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 559 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 560 SizeOffsetEvalType SizeOffsetPair = 561 Eval.compute(ObjectSize->getArgOperand(0)); 562 563 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 564 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL)); 565 Builder.SetInsertPoint(ObjectSize); 566 567 // If we've outside the end of the object, then we can always access 568 // exactly 0 bytes. 569 Value *ResultSize = 570 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); 571 Value *UseZero = 572 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); 573 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 574 Value *Ret = Builder.CreateSelect( 575 UseZero, ConstantInt::get(ResultType, 0), ResultSize); 576 577 // The non-constant size expression cannot evaluate to -1. 578 if (!isa<Constant>(SizeOffsetPair.first) || 579 !isa<Constant>(SizeOffsetPair.second)) 580 Builder.CreateAssumption( 581 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); 582 583 return Ret; 584 } 585 } 586 587 if (!MustSucceed) 588 return nullptr; 589 590 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 591 } 592 593 STATISTIC(ObjectVisitorArgument, 594 "Number of arguments with unsolved size and offset"); 595 STATISTIC(ObjectVisitorLoad, 596 "Number of load instructions with unsolved size and offset"); 597 598 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) { 599 if (Options.RoundToAlign && Alignment) 600 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment))); 601 return Size; 602 } 603 604 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 605 const TargetLibraryInfo *TLI, 606 LLVMContext &Context, 607 ObjectSizeOpts Options) 608 : DL(DL), TLI(TLI), Options(Options) { 609 // Pointer size must be rechecked for each object visited since it could have 610 // a different address space. 611 } 612 613 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 614 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 615 Zero = APInt::getNullValue(IntTyBits); 616 617 V = V->stripPointerCasts(); 618 if (Instruction *I = dyn_cast<Instruction>(V)) { 619 // If we have already seen this instruction, bail out. Cycles can happen in 620 // unreachable code after constant propagation. 621 if (!SeenInsts.insert(I).second) 622 return unknown(); 623 624 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 625 return visitGEPOperator(*GEP); 626 return visit(*I); 627 } 628 if (Argument *A = dyn_cast<Argument>(V)) 629 return visitArgument(*A); 630 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 631 return visitConstantPointerNull(*P); 632 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 633 return visitGlobalAlias(*GA); 634 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 635 return visitGlobalVariable(*GV); 636 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 637 return visitUndefValue(*UV); 638 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 639 if (CE->getOpcode() == Instruction::IntToPtr) 640 return unknown(); // clueless 641 if (CE->getOpcode() == Instruction::GetElementPtr) 642 return visitGEPOperator(cast<GEPOperator>(*CE)); 643 } 644 645 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 646 << *V << '\n'); 647 return unknown(); 648 } 649 650 /// When we're compiling N-bit code, and the user uses parameters that are 651 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 652 /// trouble with APInt size issues. This function handles resizing + overflow 653 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 654 /// I's value. 655 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 656 // More bits than we can handle. Checking the bit width isn't necessary, but 657 // it's faster than checking active bits, and should give `false` in the 658 // vast majority of cases. 659 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 660 return false; 661 if (I.getBitWidth() != IntTyBits) 662 I = I.zextOrTrunc(IntTyBits); 663 return true; 664 } 665 666 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 667 if (!I.getAllocatedType()->isSized()) 668 return unknown(); 669 670 if (isa<ScalableVectorType>(I.getAllocatedType())) 671 return unknown(); 672 673 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 674 if (!I.isArrayAllocation()) 675 return std::make_pair(align(Size, I.getAlignment()), Zero); 676 677 Value *ArraySize = I.getArraySize(); 678 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 679 APInt NumElems = C->getValue(); 680 if (!CheckedZextOrTrunc(NumElems)) 681 return unknown(); 682 683 bool Overflow; 684 Size = Size.umul_ov(NumElems, Overflow); 685 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), 686 Zero); 687 } 688 return unknown(); 689 } 690 691 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 692 Type *MemoryTy = A.getPointeeInMemoryValueType(); 693 // No interprocedural analysis is done at the moment. 694 if (!MemoryTy|| !MemoryTy->isSized()) { 695 ++ObjectVisitorArgument; 696 return unknown(); 697 } 698 699 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); 700 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 701 } 702 703 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { 704 Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 705 if (!FnData) 706 return unknown(); 707 708 // Handle strdup-like functions separately. 709 if (FnData->AllocTy == StrDupLike) { 710 APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0))); 711 if (!Size) 712 return unknown(); 713 714 // Strndup limits strlen. 715 if (FnData->FstParam > 0) { 716 ConstantInt *Arg = 717 dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam)); 718 if (!Arg) 719 return unknown(); 720 721 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 722 if (Size.ugt(MaxSize)) 723 Size = MaxSize + 1; 724 } 725 return std::make_pair(Size, Zero); 726 } 727 728 ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam)); 729 if (!Arg) 730 return unknown(); 731 732 APInt Size = Arg->getValue(); 733 if (!CheckedZextOrTrunc(Size)) 734 return unknown(); 735 736 // Size is determined by just 1 parameter. 737 if (FnData->SndParam < 0) 738 return std::make_pair(Size, Zero); 739 740 Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam)); 741 if (!Arg) 742 return unknown(); 743 744 APInt NumElems = Arg->getValue(); 745 if (!CheckedZextOrTrunc(NumElems)) 746 return unknown(); 747 748 bool Overflow; 749 Size = Size.umul_ov(NumElems, Overflow); 750 return Overflow ? unknown() : std::make_pair(Size, Zero); 751 752 // TODO: handle more standard functions (+ wchar cousins): 753 // - strdup / strndup 754 // - strcpy / strncpy 755 // - strcat / strncat 756 // - memcpy / memmove 757 // - strcat / strncat 758 // - memset 759 } 760 761 SizeOffsetType 762 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 763 // If null is unknown, there's nothing we can do. Additionally, non-zero 764 // address spaces can make use of null, so we don't presume to know anything 765 // about that. 766 // 767 // TODO: How should this work with address space casts? We currently just drop 768 // them on the floor, but it's unclear what we should do when a NULL from 769 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 770 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 771 return unknown(); 772 return std::make_pair(Zero, Zero); 773 } 774 775 SizeOffsetType 776 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 777 return unknown(); 778 } 779 780 SizeOffsetType 781 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 782 // Easy cases were already folded by previous passes. 783 return unknown(); 784 } 785 786 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 787 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 788 APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0); 789 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 790 return unknown(); 791 792 return std::make_pair(PtrData.first, PtrData.second + Offset); 793 } 794 795 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 796 if (GA.isInterposable()) 797 return unknown(); 798 return compute(GA.getAliasee()); 799 } 800 801 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 802 if (!GV.hasDefinitiveInitializer()) 803 return unknown(); 804 805 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 806 return std::make_pair(align(Size, GV.getAlignment()), Zero); 807 } 808 809 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 810 // clueless 811 return unknown(); 812 } 813 814 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 815 ++ObjectVisitorLoad; 816 return unknown(); 817 } 818 819 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 820 // too complex to analyze statically. 821 return unknown(); 822 } 823 824 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 825 SizeOffsetType TrueSide = compute(I.getTrueValue()); 826 SizeOffsetType FalseSide = compute(I.getFalseValue()); 827 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 828 if (TrueSide == FalseSide) { 829 return TrueSide; 830 } 831 832 APInt TrueResult = getSizeWithOverflow(TrueSide); 833 APInt FalseResult = getSizeWithOverflow(FalseSide); 834 835 if (TrueResult == FalseResult) { 836 return TrueSide; 837 } 838 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 839 if (TrueResult.slt(FalseResult)) 840 return TrueSide; 841 return FalseSide; 842 } 843 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 844 if (TrueResult.sgt(FalseResult)) 845 return TrueSide; 846 return FalseSide; 847 } 848 } 849 return unknown(); 850 } 851 852 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 853 return std::make_pair(Zero, Zero); 854 } 855 856 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 857 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 858 << '\n'); 859 return unknown(); 860 } 861 862 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 863 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 864 ObjectSizeOpts EvalOpts) 865 : DL(DL), TLI(TLI), Context(Context), 866 Builder(Context, TargetFolder(DL), 867 IRBuilderCallbackInserter( 868 [&](Instruction *I) { InsertedInstructions.insert(I); })), 869 EvalOpts(EvalOpts) { 870 // IntTy and Zero must be set for each compute() since the address space may 871 // be different for later objects. 872 } 873 874 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 875 // XXX - Are vectors of pointers possible here? 876 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 877 Zero = ConstantInt::get(IntTy, 0); 878 879 SizeOffsetEvalType Result = compute_(V); 880 881 if (!bothKnown(Result)) { 882 // Erase everything that was computed in this iteration from the cache, so 883 // that no dangling references are left behind. We could be a bit smarter if 884 // we kept a dependency graph. It's probably not worth the complexity. 885 for (const Value *SeenVal : SeenVals) { 886 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 887 // non-computable results can be safely cached 888 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 889 CacheMap.erase(CacheIt); 890 } 891 892 // Erase any instructions we inserted as part of the traversal. 893 for (Instruction *I : InsertedInstructions) { 894 I->replaceAllUsesWith(UndefValue::get(I->getType())); 895 I->eraseFromParent(); 896 } 897 } 898 899 SeenVals.clear(); 900 InsertedInstructions.clear(); 901 return Result; 902 } 903 904 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 905 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); 906 SizeOffsetType Const = Visitor.compute(V); 907 if (Visitor.bothKnown(Const)) 908 return std::make_pair(ConstantInt::get(Context, Const.first), 909 ConstantInt::get(Context, Const.second)); 910 911 V = V->stripPointerCasts(); 912 913 // Check cache. 914 CacheMapTy::iterator CacheIt = CacheMap.find(V); 915 if (CacheIt != CacheMap.end()) 916 return CacheIt->second; 917 918 // Always generate code immediately before the instruction being 919 // processed, so that the generated code dominates the same BBs. 920 BuilderTy::InsertPointGuard Guard(Builder); 921 if (Instruction *I = dyn_cast<Instruction>(V)) 922 Builder.SetInsertPoint(I); 923 924 // Now compute the size and offset. 925 SizeOffsetEvalType Result; 926 927 // Record the pointers that were handled in this run, so that they can be 928 // cleaned later if something fails. We also use this set to break cycles that 929 // can occur in dead code. 930 if (!SeenVals.insert(V).second) { 931 Result = unknown(); 932 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 933 Result = visitGEPOperator(*GEP); 934 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 935 Result = visit(*I); 936 } else if (isa<Argument>(V) || 937 (isa<ConstantExpr>(V) && 938 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 939 isa<GlobalAlias>(V) || 940 isa<GlobalVariable>(V)) { 941 // Ignore values where we cannot do more than ObjectSizeVisitor. 942 Result = unknown(); 943 } else { 944 LLVM_DEBUG( 945 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 946 << '\n'); 947 Result = unknown(); 948 } 949 950 // Don't reuse CacheIt since it may be invalid at this point. 951 CacheMap[V] = Result; 952 return Result; 953 } 954 955 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 956 if (!I.getAllocatedType()->isSized()) 957 return unknown(); 958 959 // must be a VLA 960 assert(I.isArrayAllocation()); 961 962 // If needed, adjust the alloca's operand size to match the pointer size. 963 // Subsequent math operations expect the types to match. 964 Value *ArraySize = Builder.CreateZExtOrTrunc( 965 I.getArraySize(), DL.getIntPtrType(I.getContext())); 966 assert(ArraySize->getType() == Zero->getType() && 967 "Expected zero constant to have pointer type"); 968 969 Value *Size = ConstantInt::get(ArraySize->getType(), 970 DL.getTypeAllocSize(I.getAllocatedType())); 971 Size = Builder.CreateMul(Size, ArraySize); 972 return std::make_pair(Size, Zero); 973 } 974 975 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { 976 Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 977 if (!FnData) 978 return unknown(); 979 980 // Handle strdup-like functions separately. 981 if (FnData->AllocTy == StrDupLike) { 982 // TODO 983 return unknown(); 984 } 985 986 Value *FirstArg = CB.getArgOperand(FnData->FstParam); 987 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 988 if (FnData->SndParam < 0) 989 return std::make_pair(FirstArg, Zero); 990 991 Value *SecondArg = CB.getArgOperand(FnData->SndParam); 992 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 993 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 994 return std::make_pair(Size, Zero); 995 996 // TODO: handle more standard functions (+ wchar cousins): 997 // - strdup / strndup 998 // - strcpy / strncpy 999 // - strcat / strncat 1000 // - memcpy / memmove 1001 // - strcat / strncat 1002 // - memset 1003 } 1004 1005 SizeOffsetEvalType 1006 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 1007 return unknown(); 1008 } 1009 1010 SizeOffsetEvalType 1011 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 1012 return unknown(); 1013 } 1014 1015 SizeOffsetEvalType 1016 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 1017 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 1018 if (!bothKnown(PtrData)) 1019 return unknown(); 1020 1021 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 1022 Offset = Builder.CreateAdd(PtrData.second, Offset); 1023 return std::make_pair(PtrData.first, Offset); 1024 } 1025 1026 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 1027 // clueless 1028 return unknown(); 1029 } 1030 1031 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 1032 return unknown(); 1033 } 1034 1035 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 1036 // Create 2 PHIs: one for size and another for offset. 1037 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1038 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1039 1040 // Insert right away in the cache to handle recursive PHIs. 1041 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 1042 1043 // Compute offset/size for each PHI incoming pointer. 1044 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 1045 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 1046 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 1047 1048 if (!bothKnown(EdgeData)) { 1049 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 1050 OffsetPHI->eraseFromParent(); 1051 InsertedInstructions.erase(OffsetPHI); 1052 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 1053 SizePHI->eraseFromParent(); 1054 InsertedInstructions.erase(SizePHI); 1055 return unknown(); 1056 } 1057 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 1058 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 1059 } 1060 1061 Value *Size = SizePHI, *Offset = OffsetPHI; 1062 if (Value *Tmp = SizePHI->hasConstantValue()) { 1063 Size = Tmp; 1064 SizePHI->replaceAllUsesWith(Size); 1065 SizePHI->eraseFromParent(); 1066 InsertedInstructions.erase(SizePHI); 1067 } 1068 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1069 Offset = Tmp; 1070 OffsetPHI->replaceAllUsesWith(Offset); 1071 OffsetPHI->eraseFromParent(); 1072 InsertedInstructions.erase(OffsetPHI); 1073 } 1074 return std::make_pair(Size, Offset); 1075 } 1076 1077 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1078 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 1079 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 1080 1081 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 1082 return unknown(); 1083 if (TrueSide == FalseSide) 1084 return TrueSide; 1085 1086 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 1087 FalseSide.first); 1088 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 1089 FalseSide.second); 1090 return std::make_pair(Size, Offset); 1091 } 1092 1093 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1094 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1095 << '\n'); 1096 return unknown(); 1097 } 1098