1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetLibraryInfo.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "memory-builtins" 33 34 enum AllocType { 35 OpNewLike = 1<<0, // allocates; never returns null 36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 37 CallocLike = 1<<2, // allocates + bzero 38 ReallocLike = 1<<3, // reallocates 39 StrDupLike = 1<<4, 40 AllocLike = MallocLike | CallocLike | StrDupLike, 41 AnyAlloc = AllocLike | ReallocLike 42 }; 43 44 struct AllocFnsTy { 45 LibFunc::Func Func; 46 AllocType AllocTy; 47 unsigned char NumParams; 48 // First and Second size parameters (or -1 if unused) 49 signed char FstParam, SndParam; 50 }; 51 52 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 53 // know which functions are nounwind, noalias, nocapture parameters, etc. 54 static const AllocFnsTy AllocationFnData[] = { 55 {LibFunc::malloc, MallocLike, 1, 0, -1}, 56 {LibFunc::valloc, MallocLike, 1, 0, -1}, 57 {LibFunc::Znwj, OpNewLike, 1, 0, -1}, // new(unsigned int) 58 {LibFunc::ZnwjRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned int, nothrow) 59 {LibFunc::Znwm, OpNewLike, 1, 0, -1}, // new(unsigned long) 60 {LibFunc::ZnwmRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned long, nothrow) 61 {LibFunc::Znaj, OpNewLike, 1, 0, -1}, // new[](unsigned int) 62 {LibFunc::ZnajRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned int, nothrow) 63 {LibFunc::Znam, OpNewLike, 1, 0, -1}, // new[](unsigned long) 64 {LibFunc::ZnamRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned long, nothrow) 65 {LibFunc::calloc, CallocLike, 2, 0, 1}, 66 {LibFunc::realloc, ReallocLike, 2, 1, -1}, 67 {LibFunc::reallocf, ReallocLike, 2, 1, -1}, 68 {LibFunc::strdup, StrDupLike, 1, -1, -1}, 69 {LibFunc::strndup, StrDupLike, 2, 1, -1} 70 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 71 }; 72 73 74 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) { 75 if (LookThroughBitCast) 76 V = V->stripPointerCasts(); 77 78 CallSite CS(const_cast<Value*>(V)); 79 if (!CS.getInstruction()) 80 return nullptr; 81 82 if (CS.isNoBuiltin()) 83 return nullptr; 84 85 Function *Callee = CS.getCalledFunction(); 86 if (!Callee || !Callee->isDeclaration()) 87 return nullptr; 88 return Callee; 89 } 90 91 /// \brief Returns the allocation data for the given value if it is a call to a 92 /// known allocation function, and NULL otherwise. 93 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy, 94 const TargetLibraryInfo *TLI, 95 bool LookThroughBitCast = false) { 96 // Skip intrinsics 97 if (isa<IntrinsicInst>(V)) 98 return nullptr; 99 100 Function *Callee = getCalledFunction(V, LookThroughBitCast); 101 if (!Callee) 102 return nullptr; 103 104 // Make sure that the function is available. 105 StringRef FnName = Callee->getName(); 106 LibFunc::Func TLIFn; 107 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 108 return nullptr; 109 110 unsigned i = 0; 111 bool found = false; 112 for ( ; i < array_lengthof(AllocationFnData); ++i) { 113 if (AllocationFnData[i].Func == TLIFn) { 114 found = true; 115 break; 116 } 117 } 118 if (!found) 119 return nullptr; 120 121 const AllocFnsTy *FnData = &AllocationFnData[i]; 122 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 123 return nullptr; 124 125 // Check function prototype. 126 int FstParam = FnData->FstParam; 127 int SndParam = FnData->SndParam; 128 FunctionType *FTy = Callee->getFunctionType(); 129 130 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 131 FTy->getNumParams() == FnData->NumParams && 132 (FstParam < 0 || 133 (FTy->getParamType(FstParam)->isIntegerTy(32) || 134 FTy->getParamType(FstParam)->isIntegerTy(64))) && 135 (SndParam < 0 || 136 FTy->getParamType(SndParam)->isIntegerTy(32) || 137 FTy->getParamType(SndParam)->isIntegerTy(64))) 138 return FnData; 139 return nullptr; 140 } 141 142 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 143 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 144 return CS && CS.hasFnAttr(Attribute::NoAlias); 145 } 146 147 148 /// \brief Tests if a value is a call or invoke to a library function that 149 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 150 /// like). 151 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 152 bool LookThroughBitCast) { 153 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast); 154 } 155 156 /// \brief Tests if a value is a call or invoke to a function that returns a 157 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 158 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 159 bool LookThroughBitCast) { 160 // it's safe to consider realloc as noalias since accessing the original 161 // pointer is undefined behavior 162 return isAllocationFn(V, TLI, LookThroughBitCast) || 163 hasNoAliasAttr(V, LookThroughBitCast); 164 } 165 166 /// \brief Tests if a value is a call or invoke to a library function that 167 /// allocates uninitialized memory (such as malloc). 168 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 169 bool LookThroughBitCast) { 170 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast); 171 } 172 173 /// \brief Tests if a value is a call or invoke to a library function that 174 /// allocates zero-filled memory (such as calloc). 175 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 176 bool LookThroughBitCast) { 177 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast); 178 } 179 180 /// \brief Tests if a value is a call or invoke to a library function that 181 /// allocates memory (either malloc, calloc, or strdup like). 182 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 183 bool LookThroughBitCast) { 184 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast); 185 } 186 187 /// \brief Tests if a value is a call or invoke to a library function that 188 /// reallocates memory (such as realloc). 189 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 190 bool LookThroughBitCast) { 191 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast); 192 } 193 194 /// \brief Tests if a value is a call or invoke to a library function that 195 /// allocates memory and never returns null (such as operator new). 196 bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI, 197 bool LookThroughBitCast) { 198 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast); 199 } 200 201 /// extractMallocCall - Returns the corresponding CallInst if the instruction 202 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 203 /// ignore InvokeInst here. 204 const CallInst *llvm::extractMallocCall(const Value *I, 205 const TargetLibraryInfo *TLI) { 206 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 207 } 208 209 static Value *computeArraySize(const CallInst *CI, const DataLayout *DL, 210 const TargetLibraryInfo *TLI, 211 bool LookThroughSExt = false) { 212 if (!CI) 213 return nullptr; 214 215 // The size of the malloc's result type must be known to determine array size. 216 Type *T = getMallocAllocatedType(CI, TLI); 217 if (!T || !T->isSized() || !DL) 218 return nullptr; 219 220 unsigned ElementSize = DL->getTypeAllocSize(T); 221 if (StructType *ST = dyn_cast<StructType>(T)) 222 ElementSize = DL->getStructLayout(ST)->getSizeInBytes(); 223 224 // If malloc call's arg can be determined to be a multiple of ElementSize, 225 // return the multiple. Otherwise, return NULL. 226 Value *MallocArg = CI->getArgOperand(0); 227 Value *Multiple = nullptr; 228 if (ComputeMultiple(MallocArg, ElementSize, Multiple, 229 LookThroughSExt)) 230 return Multiple; 231 232 return nullptr; 233 } 234 235 /// isArrayMalloc - Returns the corresponding CallInst if the instruction 236 /// is a call to malloc whose array size can be determined and the array size 237 /// is not constant 1. Otherwise, return NULL. 238 const CallInst *llvm::isArrayMalloc(const Value *I, 239 const DataLayout *DL, 240 const TargetLibraryInfo *TLI) { 241 const CallInst *CI = extractMallocCall(I, TLI); 242 Value *ArraySize = computeArraySize(CI, DL, TLI); 243 244 if (ConstantInt *ConstSize = dyn_cast_or_null<ConstantInt>(ArraySize)) 245 if (ConstSize->isOne()) 246 return CI; 247 248 // CI is a non-array malloc or we can't figure out that it is an array malloc. 249 return nullptr; 250 } 251 252 /// getMallocType - Returns the PointerType resulting from the malloc call. 253 /// The PointerType depends on the number of bitcast uses of the malloc call: 254 /// 0: PointerType is the calls' return type. 255 /// 1: PointerType is the bitcast's result type. 256 /// >1: Unique PointerType cannot be determined, return NULL. 257 PointerType *llvm::getMallocType(const CallInst *CI, 258 const TargetLibraryInfo *TLI) { 259 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 260 261 PointerType *MallocType = nullptr; 262 unsigned NumOfBitCastUses = 0; 263 264 // Determine if CallInst has a bitcast use. 265 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 266 UI != E;) 267 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 268 MallocType = cast<PointerType>(BCI->getDestTy()); 269 NumOfBitCastUses++; 270 } 271 272 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 273 if (NumOfBitCastUses == 1) 274 return MallocType; 275 276 // Malloc call was not bitcast, so type is the malloc function's return type. 277 if (NumOfBitCastUses == 0) 278 return cast<PointerType>(CI->getType()); 279 280 // Type could not be determined. 281 return nullptr; 282 } 283 284 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 285 /// The Type depends on the number of bitcast uses of the malloc call: 286 /// 0: PointerType is the malloc calls' return type. 287 /// 1: PointerType is the bitcast's result type. 288 /// >1: Unique PointerType cannot be determined, return NULL. 289 Type *llvm::getMallocAllocatedType(const CallInst *CI, 290 const TargetLibraryInfo *TLI) { 291 PointerType *PT = getMallocType(CI, TLI); 292 return PT ? PT->getElementType() : nullptr; 293 } 294 295 /// getMallocArraySize - Returns the array size of a malloc call. If the 296 /// argument passed to malloc is a multiple of the size of the malloced type, 297 /// then return that multiple. For non-array mallocs, the multiple is 298 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 299 /// determined. 300 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout *DL, 301 const TargetLibraryInfo *TLI, 302 bool LookThroughSExt) { 303 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 304 return computeArraySize(CI, DL, TLI, LookThroughSExt); 305 } 306 307 308 /// extractCallocCall - Returns the corresponding CallInst if the instruction 309 /// is a calloc call. 310 const CallInst *llvm::extractCallocCall(const Value *I, 311 const TargetLibraryInfo *TLI) { 312 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 313 } 314 315 316 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 317 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 318 const CallInst *CI = dyn_cast<CallInst>(I); 319 if (!CI || isa<IntrinsicInst>(CI)) 320 return nullptr; 321 Function *Callee = CI->getCalledFunction(); 322 if (Callee == nullptr || !Callee->isDeclaration()) 323 return nullptr; 324 325 StringRef FnName = Callee->getName(); 326 LibFunc::Func TLIFn; 327 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 328 return nullptr; 329 330 unsigned ExpectedNumParams; 331 if (TLIFn == LibFunc::free || 332 TLIFn == LibFunc::ZdlPv || // operator delete(void*) 333 TLIFn == LibFunc::ZdaPv) // operator delete[](void*) 334 ExpectedNumParams = 1; 335 else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint) 336 TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong) 337 TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 338 TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint) 339 TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong) 340 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow) 341 ExpectedNumParams = 2; 342 else 343 return nullptr; 344 345 // Check free prototype. 346 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 347 // attribute will exist. 348 FunctionType *FTy = Callee->getFunctionType(); 349 if (!FTy->getReturnType()->isVoidTy()) 350 return nullptr; 351 if (FTy->getNumParams() != ExpectedNumParams) 352 return nullptr; 353 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 354 return nullptr; 355 356 return CI; 357 } 358 359 360 361 //===----------------------------------------------------------------------===// 362 // Utility functions to compute size of objects. 363 // 364 365 366 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 367 /// object size in Size if successful, and false otherwise. 368 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas, 369 /// byval arguments, and global variables. 370 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *DL, 371 const TargetLibraryInfo *TLI, bool RoundToAlign) { 372 if (!DL) 373 return false; 374 375 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign); 376 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 377 if (!Visitor.bothKnown(Data)) 378 return false; 379 380 APInt ObjSize = Data.first, Offset = Data.second; 381 // check for overflow 382 if (Offset.slt(0) || ObjSize.ult(Offset)) 383 Size = 0; 384 else 385 Size = (ObjSize - Offset).getZExtValue(); 386 return true; 387 } 388 389 390 STATISTIC(ObjectVisitorArgument, 391 "Number of arguments with unsolved size and offset"); 392 STATISTIC(ObjectVisitorLoad, 393 "Number of load instructions with unsolved size and offset"); 394 395 396 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 397 if (RoundToAlign && Align) 398 return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align)); 399 return Size; 400 } 401 402 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *DL, 403 const TargetLibraryInfo *TLI, 404 LLVMContext &Context, 405 bool RoundToAlign) 406 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) { 407 // Pointer size must be rechecked for each object visited since it could have 408 // a different address space. 409 } 410 411 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 412 IntTyBits = DL->getPointerTypeSizeInBits(V->getType()); 413 Zero = APInt::getNullValue(IntTyBits); 414 415 V = V->stripPointerCasts(); 416 if (Instruction *I = dyn_cast<Instruction>(V)) { 417 // If we have already seen this instruction, bail out. Cycles can happen in 418 // unreachable code after constant propagation. 419 if (!SeenInsts.insert(I)) 420 return unknown(); 421 422 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 423 return visitGEPOperator(*GEP); 424 return visit(*I); 425 } 426 if (Argument *A = dyn_cast<Argument>(V)) 427 return visitArgument(*A); 428 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 429 return visitConstantPointerNull(*P); 430 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 431 return visitGlobalAlias(*GA); 432 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 433 return visitGlobalVariable(*GV); 434 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 435 return visitUndefValue(*UV); 436 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 437 if (CE->getOpcode() == Instruction::IntToPtr) 438 return unknown(); // clueless 439 if (CE->getOpcode() == Instruction::GetElementPtr) 440 return visitGEPOperator(cast<GEPOperator>(*CE)); 441 } 442 443 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 444 << '\n'); 445 return unknown(); 446 } 447 448 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 449 if (!I.getAllocatedType()->isSized()) 450 return unknown(); 451 452 APInt Size(IntTyBits, DL->getTypeAllocSize(I.getAllocatedType())); 453 if (!I.isArrayAllocation()) 454 return std::make_pair(align(Size, I.getAlignment()), Zero); 455 456 Value *ArraySize = I.getArraySize(); 457 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 458 Size *= C->getValue().zextOrSelf(IntTyBits); 459 return std::make_pair(align(Size, I.getAlignment()), Zero); 460 } 461 return unknown(); 462 } 463 464 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 465 // no interprocedural analysis is done at the moment 466 if (!A.hasByValOrInAllocaAttr()) { 467 ++ObjectVisitorArgument; 468 return unknown(); 469 } 470 PointerType *PT = cast<PointerType>(A.getType()); 471 APInt Size(IntTyBits, DL->getTypeAllocSize(PT->getElementType())); 472 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 473 } 474 475 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 476 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc, 477 TLI); 478 if (!FnData) 479 return unknown(); 480 481 // handle strdup-like functions separately 482 if (FnData->AllocTy == StrDupLike) { 483 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 484 if (!Size) 485 return unknown(); 486 487 // strndup limits strlen 488 if (FnData->FstParam > 0) { 489 ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 490 if (!Arg) 491 return unknown(); 492 493 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 494 if (Size.ugt(MaxSize)) 495 Size = MaxSize + 1; 496 } 497 return std::make_pair(Size, Zero); 498 } 499 500 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 501 if (!Arg) 502 return unknown(); 503 504 APInt Size = Arg->getValue().zextOrSelf(IntTyBits); 505 // size determined by just 1 parameter 506 if (FnData->SndParam < 0) 507 return std::make_pair(Size, Zero); 508 509 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 510 if (!Arg) 511 return unknown(); 512 513 Size *= Arg->getValue().zextOrSelf(IntTyBits); 514 return std::make_pair(Size, Zero); 515 516 // TODO: handle more standard functions (+ wchar cousins): 517 // - strdup / strndup 518 // - strcpy / strncpy 519 // - strcat / strncat 520 // - memcpy / memmove 521 // - strcat / strncat 522 // - memset 523 } 524 525 SizeOffsetType 526 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) { 527 return std::make_pair(Zero, Zero); 528 } 529 530 SizeOffsetType 531 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 532 return unknown(); 533 } 534 535 SizeOffsetType 536 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 537 // Easy cases were already folded by previous passes. 538 return unknown(); 539 } 540 541 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 542 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 543 APInt Offset(IntTyBits, 0); 544 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(*DL, Offset)) 545 return unknown(); 546 547 return std::make_pair(PtrData.first, PtrData.second + Offset); 548 } 549 550 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 551 if (GA.mayBeOverridden()) 552 return unknown(); 553 return compute(GA.getAliasee()); 554 } 555 556 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 557 if (!GV.hasDefinitiveInitializer()) 558 return unknown(); 559 560 APInt Size(IntTyBits, DL->getTypeAllocSize(GV.getType()->getElementType())); 561 return std::make_pair(align(Size, GV.getAlignment()), Zero); 562 } 563 564 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 565 // clueless 566 return unknown(); 567 } 568 569 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 570 ++ObjectVisitorLoad; 571 return unknown(); 572 } 573 574 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 575 // too complex to analyze statically. 576 return unknown(); 577 } 578 579 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 580 SizeOffsetType TrueSide = compute(I.getTrueValue()); 581 SizeOffsetType FalseSide = compute(I.getFalseValue()); 582 if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide) 583 return TrueSide; 584 return unknown(); 585 } 586 587 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 588 return std::make_pair(Zero, Zero); 589 } 590 591 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 592 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 593 return unknown(); 594 } 595 596 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const DataLayout *DL, 597 const TargetLibraryInfo *TLI, 598 LLVMContext &Context, 599 bool RoundToAlign) 600 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 601 RoundToAlign(RoundToAlign) { 602 // IntTy and Zero must be set for each compute() since the address space may 603 // be different for later objects. 604 } 605 606 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 607 // XXX - Are vectors of pointers possible here? 608 IntTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 609 Zero = ConstantInt::get(IntTy, 0); 610 611 SizeOffsetEvalType Result = compute_(V); 612 613 if (!bothKnown(Result)) { 614 // erase everything that was computed in this iteration from the cache, so 615 // that no dangling references are left behind. We could be a bit smarter if 616 // we kept a dependency graph. It's probably not worth the complexity. 617 for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) { 618 CacheMapTy::iterator CacheIt = CacheMap.find(*I); 619 // non-computable results can be safely cached 620 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 621 CacheMap.erase(CacheIt); 622 } 623 } 624 625 SeenVals.clear(); 626 return Result; 627 } 628 629 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 630 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign); 631 SizeOffsetType Const = Visitor.compute(V); 632 if (Visitor.bothKnown(Const)) 633 return std::make_pair(ConstantInt::get(Context, Const.first), 634 ConstantInt::get(Context, Const.second)); 635 636 V = V->stripPointerCasts(); 637 638 // check cache 639 CacheMapTy::iterator CacheIt = CacheMap.find(V); 640 if (CacheIt != CacheMap.end()) 641 return CacheIt->second; 642 643 // always generate code immediately before the instruction being 644 // processed, so that the generated code dominates the same BBs 645 Instruction *PrevInsertPoint = Builder.GetInsertPoint(); 646 if (Instruction *I = dyn_cast<Instruction>(V)) 647 Builder.SetInsertPoint(I); 648 649 // now compute the size and offset 650 SizeOffsetEvalType Result; 651 652 // Record the pointers that were handled in this run, so that they can be 653 // cleaned later if something fails. We also use this set to break cycles that 654 // can occur in dead code. 655 if (!SeenVals.insert(V)) { 656 Result = unknown(); 657 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 658 Result = visitGEPOperator(*GEP); 659 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 660 Result = visit(*I); 661 } else if (isa<Argument>(V) || 662 (isa<ConstantExpr>(V) && 663 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 664 isa<GlobalAlias>(V) || 665 isa<GlobalVariable>(V)) { 666 // ignore values where we cannot do more than what ObjectSizeVisitor can 667 Result = unknown(); 668 } else { 669 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 670 << *V << '\n'); 671 Result = unknown(); 672 } 673 674 if (PrevInsertPoint) 675 Builder.SetInsertPoint(PrevInsertPoint); 676 677 // Don't reuse CacheIt since it may be invalid at this point. 678 CacheMap[V] = Result; 679 return Result; 680 } 681 682 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 683 if (!I.getAllocatedType()->isSized()) 684 return unknown(); 685 686 // must be a VLA 687 assert(I.isArrayAllocation()); 688 Value *ArraySize = I.getArraySize(); 689 Value *Size = ConstantInt::get(ArraySize->getType(), 690 DL->getTypeAllocSize(I.getAllocatedType())); 691 Size = Builder.CreateMul(Size, ArraySize); 692 return std::make_pair(Size, Zero); 693 } 694 695 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 696 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc, 697 TLI); 698 if (!FnData) 699 return unknown(); 700 701 // handle strdup-like functions separately 702 if (FnData->AllocTy == StrDupLike) { 703 // TODO 704 return unknown(); 705 } 706 707 Value *FirstArg = CS.getArgument(FnData->FstParam); 708 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 709 if (FnData->SndParam < 0) 710 return std::make_pair(FirstArg, Zero); 711 712 Value *SecondArg = CS.getArgument(FnData->SndParam); 713 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 714 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 715 return std::make_pair(Size, Zero); 716 717 // TODO: handle more standard functions (+ wchar cousins): 718 // - strdup / strndup 719 // - strcpy / strncpy 720 // - strcat / strncat 721 // - memcpy / memmove 722 // - strcat / strncat 723 // - memset 724 } 725 726 SizeOffsetEvalType 727 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 728 return unknown(); 729 } 730 731 SizeOffsetEvalType 732 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 733 return unknown(); 734 } 735 736 SizeOffsetEvalType 737 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 738 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 739 if (!bothKnown(PtrData)) 740 return unknown(); 741 742 Value *Offset = EmitGEPOffset(&Builder, *DL, &GEP, /*NoAssumptions=*/true); 743 Offset = Builder.CreateAdd(PtrData.second, Offset); 744 return std::make_pair(PtrData.first, Offset); 745 } 746 747 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 748 // clueless 749 return unknown(); 750 } 751 752 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 753 return unknown(); 754 } 755 756 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 757 // create 2 PHIs: one for size and another for offset 758 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 759 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 760 761 // insert right away in the cache to handle recursive PHIs 762 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 763 764 // compute offset/size for each PHI incoming pointer 765 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 766 Builder.SetInsertPoint(PHI.getIncomingBlock(i)->getFirstInsertionPt()); 767 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 768 769 if (!bothKnown(EdgeData)) { 770 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 771 OffsetPHI->eraseFromParent(); 772 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 773 SizePHI->eraseFromParent(); 774 return unknown(); 775 } 776 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 777 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 778 } 779 780 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 781 if ((Tmp = SizePHI->hasConstantValue())) { 782 Size = Tmp; 783 SizePHI->replaceAllUsesWith(Size); 784 SizePHI->eraseFromParent(); 785 } 786 if ((Tmp = OffsetPHI->hasConstantValue())) { 787 Offset = Tmp; 788 OffsetPHI->replaceAllUsesWith(Offset); 789 OffsetPHI->eraseFromParent(); 790 } 791 return std::make_pair(Size, Offset); 792 } 793 794 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 795 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 796 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 797 798 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 799 return unknown(); 800 if (TrueSide == FalseSide) 801 return TrueSide; 802 803 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 804 FalseSide.first); 805 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 806 FalseSide.second); 807 return std::make_pair(Size, Offset); 808 } 809 810 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 811 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 812 return unknown(); 813 } 814