1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Analysis/TargetFolder.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/Utils/Local.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "memory-builtins" 52 53 enum AllocType : uint8_t { 54 OpNewLike = 1<<0, // allocates; never returns null 55 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 56 CallocLike = 1<<2, // allocates + bzero 57 ReallocLike = 1<<3, // reallocates 58 StrDupLike = 1<<4, 59 MallocOrCallocLike = MallocLike | CallocLike, 60 AllocLike = MallocLike | CallocLike | StrDupLike, 61 AnyAlloc = AllocLike | ReallocLike 62 }; 63 64 struct AllocFnsTy { 65 AllocType AllocTy; 66 unsigned NumParams; 67 // First and Second size parameters (or -1 if unused) 68 int FstParam, SndParam; 69 }; 70 71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 72 // know which functions are nounwind, noalias, nocapture parameters, etc. 73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 74 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 75 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 76 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 77 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 78 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t) 79 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow) 80 {MallocLike, 3, 0, -1}}, 81 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 82 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 83 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t) 84 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow) 85 {MallocLike, 3, 0, -1}}, 86 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 87 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 88 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t) 89 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow) 90 {MallocLike, 3, 0, -1}}, 91 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 92 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 93 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t) 94 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow) 95 {MallocLike, 3, 0, -1}}, 96 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 97 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 98 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 99 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 100 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 101 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 102 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 103 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 104 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 105 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 106 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 107 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 108 {LibFunc_strndup, {StrDupLike, 2, 1, -1}} 109 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 110 }; 111 112 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 113 bool &IsNoBuiltin) { 114 // Don't care about intrinsics in this case. 115 if (isa<IntrinsicInst>(V)) 116 return nullptr; 117 118 if (LookThroughBitCast) 119 V = V->stripPointerCasts(); 120 121 ImmutableCallSite CS(V); 122 if (!CS.getInstruction()) 123 return nullptr; 124 125 IsNoBuiltin = CS.isNoBuiltin(); 126 127 if (const Function *Callee = CS.getCalledFunction()) 128 return Callee; 129 return nullptr; 130 } 131 132 /// Returns the allocation data for the given value if it's either a call to a 133 /// known allocation function, or a call to a function with the allocsize 134 /// attribute. 135 static Optional<AllocFnsTy> 136 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 137 const TargetLibraryInfo *TLI) { 138 // Make sure that the function is available. 139 StringRef FnName = Callee->getName(); 140 LibFunc TLIFn; 141 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 142 return None; 143 144 const auto *Iter = find_if( 145 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 146 return P.first == TLIFn; 147 }); 148 149 if (Iter == std::end(AllocationFnData)) 150 return None; 151 152 const AllocFnsTy *FnData = &Iter->second; 153 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 154 return None; 155 156 // Check function prototype. 157 int FstParam = FnData->FstParam; 158 int SndParam = FnData->SndParam; 159 FunctionType *FTy = Callee->getFunctionType(); 160 161 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 162 FTy->getNumParams() == FnData->NumParams && 163 (FstParam < 0 || 164 (FTy->getParamType(FstParam)->isIntegerTy(32) || 165 FTy->getParamType(FstParam)->isIntegerTy(64))) && 166 (SndParam < 0 || 167 FTy->getParamType(SndParam)->isIntegerTy(32) || 168 FTy->getParamType(SndParam)->isIntegerTy(64))) 169 return *FnData; 170 return None; 171 } 172 173 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 174 const TargetLibraryInfo *TLI, 175 bool LookThroughBitCast = false) { 176 bool IsNoBuiltinCall; 177 if (const Function *Callee = 178 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 179 if (!IsNoBuiltinCall) 180 return getAllocationDataForFunction(Callee, AllocTy, TLI); 181 return None; 182 } 183 184 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 185 const TargetLibraryInfo *TLI) { 186 bool IsNoBuiltinCall; 187 const Function *Callee = 188 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 189 if (!Callee) 190 return None; 191 192 // Prefer to use existing information over allocsize. This will give us an 193 // accurate AllocTy. 194 if (!IsNoBuiltinCall) 195 if (Optional<AllocFnsTy> Data = 196 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 197 return Data; 198 199 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 200 if (Attr == Attribute()) 201 return None; 202 203 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 204 205 AllocFnsTy Result; 206 // Because allocsize only tells us how many bytes are allocated, we're not 207 // really allowed to assume anything, so we use MallocLike. 208 Result.AllocTy = MallocLike; 209 Result.NumParams = Callee->getNumOperands(); 210 Result.FstParam = Args.first; 211 Result.SndParam = Args.second.getValueOr(-1); 212 return Result; 213 } 214 215 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 216 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 217 return CS && CS.hasRetAttr(Attribute::NoAlias); 218 } 219 220 /// Tests if a value is a call or invoke to a library function that 221 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 222 /// like). 223 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 224 bool LookThroughBitCast) { 225 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 226 } 227 228 /// Tests if a value is a call or invoke to a function that returns a 229 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 230 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 231 bool LookThroughBitCast) { 232 // it's safe to consider realloc as noalias since accessing the original 233 // pointer is undefined behavior 234 return isAllocationFn(V, TLI, LookThroughBitCast) || 235 hasNoAliasAttr(V, LookThroughBitCast); 236 } 237 238 /// Tests if a value is a call or invoke to a library function that 239 /// allocates uninitialized memory (such as malloc). 240 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 241 bool LookThroughBitCast) { 242 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 243 } 244 245 /// Tests if a value is a call or invoke to a library function that 246 /// allocates zero-filled memory (such as calloc). 247 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 248 bool LookThroughBitCast) { 249 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 250 } 251 252 /// Tests if a value is a call or invoke to a library function that 253 /// allocates memory similar to malloc or calloc. 254 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 255 bool LookThroughBitCast) { 256 return getAllocationData(V, MallocOrCallocLike, TLI, 257 LookThroughBitCast).hasValue(); 258 } 259 260 /// Tests if a value is a call or invoke to a library function that 261 /// allocates memory (either malloc, calloc, or strdup like). 262 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 263 bool LookThroughBitCast) { 264 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 265 } 266 267 /// extractMallocCall - Returns the corresponding CallInst if the instruction 268 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 269 /// ignore InvokeInst here. 270 const CallInst *llvm::extractMallocCall(const Value *I, 271 const TargetLibraryInfo *TLI) { 272 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 273 } 274 275 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 276 const TargetLibraryInfo *TLI, 277 bool LookThroughSExt = false) { 278 if (!CI) 279 return nullptr; 280 281 // The size of the malloc's result type must be known to determine array size. 282 Type *T = getMallocAllocatedType(CI, TLI); 283 if (!T || !T->isSized()) 284 return nullptr; 285 286 unsigned ElementSize = DL.getTypeAllocSize(T); 287 if (StructType *ST = dyn_cast<StructType>(T)) 288 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 289 290 // If malloc call's arg can be determined to be a multiple of ElementSize, 291 // return the multiple. Otherwise, return NULL. 292 Value *MallocArg = CI->getArgOperand(0); 293 Value *Multiple = nullptr; 294 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 295 return Multiple; 296 297 return nullptr; 298 } 299 300 /// getMallocType - Returns the PointerType resulting from the malloc call. 301 /// The PointerType depends on the number of bitcast uses of the malloc call: 302 /// 0: PointerType is the calls' return type. 303 /// 1: PointerType is the bitcast's result type. 304 /// >1: Unique PointerType cannot be determined, return NULL. 305 PointerType *llvm::getMallocType(const CallInst *CI, 306 const TargetLibraryInfo *TLI) { 307 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 308 309 PointerType *MallocType = nullptr; 310 unsigned NumOfBitCastUses = 0; 311 312 // Determine if CallInst has a bitcast use. 313 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 314 UI != E;) 315 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 316 MallocType = cast<PointerType>(BCI->getDestTy()); 317 NumOfBitCastUses++; 318 } 319 320 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 321 if (NumOfBitCastUses == 1) 322 return MallocType; 323 324 // Malloc call was not bitcast, so type is the malloc function's return type. 325 if (NumOfBitCastUses == 0) 326 return cast<PointerType>(CI->getType()); 327 328 // Type could not be determined. 329 return nullptr; 330 } 331 332 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 333 /// The Type depends on the number of bitcast uses of the malloc call: 334 /// 0: PointerType is the malloc calls' return type. 335 /// 1: PointerType is the bitcast's result type. 336 /// >1: Unique PointerType cannot be determined, return NULL. 337 Type *llvm::getMallocAllocatedType(const CallInst *CI, 338 const TargetLibraryInfo *TLI) { 339 PointerType *PT = getMallocType(CI, TLI); 340 return PT ? PT->getElementType() : nullptr; 341 } 342 343 /// getMallocArraySize - Returns the array size of a malloc call. If the 344 /// argument passed to malloc is a multiple of the size of the malloced type, 345 /// then return that multiple. For non-array mallocs, the multiple is 346 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 347 /// determined. 348 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 349 const TargetLibraryInfo *TLI, 350 bool LookThroughSExt) { 351 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 352 return computeArraySize(CI, DL, TLI, LookThroughSExt); 353 } 354 355 /// extractCallocCall - Returns the corresponding CallInst if the instruction 356 /// is a calloc call. 357 const CallInst *llvm::extractCallocCall(const Value *I, 358 const TargetLibraryInfo *TLI) { 359 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 360 } 361 362 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 363 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 364 bool IsNoBuiltinCall; 365 const Function *Callee = 366 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 367 if (Callee == nullptr || IsNoBuiltinCall) 368 return nullptr; 369 370 StringRef FnName = Callee->getName(); 371 LibFunc TLIFn; 372 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 373 return nullptr; 374 375 unsigned ExpectedNumParams; 376 if (TLIFn == LibFunc_free || 377 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 378 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 379 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 380 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 381 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 382 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 383 ExpectedNumParams = 1; 384 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 385 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 386 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 387 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t) 388 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 389 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 390 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 391 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t) 392 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 393 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 394 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 395 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 396 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 397 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 398 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 399 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 400 ExpectedNumParams = 2; 401 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow) 402 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow) 403 ExpectedNumParams = 3; 404 else 405 return nullptr; 406 407 // Check free prototype. 408 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 409 // attribute will exist. 410 FunctionType *FTy = Callee->getFunctionType(); 411 if (!FTy->getReturnType()->isVoidTy()) 412 return nullptr; 413 if (FTy->getNumParams() != ExpectedNumParams) 414 return nullptr; 415 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 416 return nullptr; 417 418 return dyn_cast<CallInst>(I); 419 } 420 421 //===----------------------------------------------------------------------===// 422 // Utility functions to compute size of objects. 423 // 424 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 425 if (Data.second.isNegative() || Data.first.ult(Data.second)) 426 return APInt(Data.first.getBitWidth(), 0); 427 return Data.first - Data.second; 428 } 429 430 /// Compute the size of the object pointed by Ptr. Returns true and the 431 /// object size in Size if successful, and false otherwise. 432 /// If RoundToAlign is true, then Size is rounded up to the alignment of 433 /// allocas, byval arguments, and global variables. 434 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 435 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 436 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 437 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 438 if (!Visitor.bothKnown(Data)) 439 return false; 440 441 Size = getSizeWithOverflow(Data).getZExtValue(); 442 return true; 443 } 444 445 ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 446 const DataLayout &DL, 447 const TargetLibraryInfo *TLI, 448 bool MustSucceed) { 449 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 450 "ObjectSize must be a call to llvm.objectsize!"); 451 452 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 453 ObjectSizeOpts EvalOptions; 454 // Unless we have to fold this to something, try to be as accurate as 455 // possible. 456 if (MustSucceed) 457 EvalOptions.EvalMode = 458 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 459 else 460 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 461 462 EvalOptions.NullIsUnknownSize = 463 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 464 465 // FIXME: Does it make sense to just return a failure value if the size won't 466 // fit in the output and `!MustSucceed`? 467 uint64_t Size; 468 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 469 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 470 isUIntN(ResultType->getBitWidth(), Size)) 471 return ConstantInt::get(ResultType, Size); 472 473 if (!MustSucceed) 474 return nullptr; 475 476 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 477 } 478 479 STATISTIC(ObjectVisitorArgument, 480 "Number of arguments with unsolved size and offset"); 481 STATISTIC(ObjectVisitorLoad, 482 "Number of load instructions with unsolved size and offset"); 483 484 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 485 if (Options.RoundToAlign && Align) 486 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); 487 return Size; 488 } 489 490 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 491 const TargetLibraryInfo *TLI, 492 LLVMContext &Context, 493 ObjectSizeOpts Options) 494 : DL(DL), TLI(TLI), Options(Options) { 495 // Pointer size must be rechecked for each object visited since it could have 496 // a different address space. 497 } 498 499 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 500 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 501 Zero = APInt::getNullValue(IntTyBits); 502 503 V = V->stripPointerCasts(); 504 if (Instruction *I = dyn_cast<Instruction>(V)) { 505 // If we have already seen this instruction, bail out. Cycles can happen in 506 // unreachable code after constant propagation. 507 if (!SeenInsts.insert(I).second) 508 return unknown(); 509 510 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 511 return visitGEPOperator(*GEP); 512 return visit(*I); 513 } 514 if (Argument *A = dyn_cast<Argument>(V)) 515 return visitArgument(*A); 516 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 517 return visitConstantPointerNull(*P); 518 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 519 return visitGlobalAlias(*GA); 520 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 521 return visitGlobalVariable(*GV); 522 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 523 return visitUndefValue(*UV); 524 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 525 if (CE->getOpcode() == Instruction::IntToPtr) 526 return unknown(); // clueless 527 if (CE->getOpcode() == Instruction::GetElementPtr) 528 return visitGEPOperator(cast<GEPOperator>(*CE)); 529 } 530 531 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 532 << *V << '\n'); 533 return unknown(); 534 } 535 536 /// When we're compiling N-bit code, and the user uses parameters that are 537 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 538 /// trouble with APInt size issues. This function handles resizing + overflow 539 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 540 /// I's value. 541 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 542 // More bits than we can handle. Checking the bit width isn't necessary, but 543 // it's faster than checking active bits, and should give `false` in the 544 // vast majority of cases. 545 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 546 return false; 547 if (I.getBitWidth() != IntTyBits) 548 I = I.zextOrTrunc(IntTyBits); 549 return true; 550 } 551 552 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 553 if (!I.getAllocatedType()->isSized()) 554 return unknown(); 555 556 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 557 if (!I.isArrayAllocation()) 558 return std::make_pair(align(Size, I.getAlignment()), Zero); 559 560 Value *ArraySize = I.getArraySize(); 561 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 562 APInt NumElems = C->getValue(); 563 if (!CheckedZextOrTrunc(NumElems)) 564 return unknown(); 565 566 bool Overflow; 567 Size = Size.umul_ov(NumElems, Overflow); 568 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), 569 Zero); 570 } 571 return unknown(); 572 } 573 574 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 575 // No interprocedural analysis is done at the moment. 576 if (!A.hasByValOrInAllocaAttr()) { 577 ++ObjectVisitorArgument; 578 return unknown(); 579 } 580 PointerType *PT = cast<PointerType>(A.getType()); 581 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 582 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 583 } 584 585 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 586 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 587 if (!FnData) 588 return unknown(); 589 590 // Handle strdup-like functions separately. 591 if (FnData->AllocTy == StrDupLike) { 592 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 593 if (!Size) 594 return unknown(); 595 596 // Strndup limits strlen. 597 if (FnData->FstParam > 0) { 598 ConstantInt *Arg = 599 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 600 if (!Arg) 601 return unknown(); 602 603 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 604 if (Size.ugt(MaxSize)) 605 Size = MaxSize + 1; 606 } 607 return std::make_pair(Size, Zero); 608 } 609 610 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 611 if (!Arg) 612 return unknown(); 613 614 APInt Size = Arg->getValue(); 615 if (!CheckedZextOrTrunc(Size)) 616 return unknown(); 617 618 // Size is determined by just 1 parameter. 619 if (FnData->SndParam < 0) 620 return std::make_pair(Size, Zero); 621 622 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 623 if (!Arg) 624 return unknown(); 625 626 APInt NumElems = Arg->getValue(); 627 if (!CheckedZextOrTrunc(NumElems)) 628 return unknown(); 629 630 bool Overflow; 631 Size = Size.umul_ov(NumElems, Overflow); 632 return Overflow ? unknown() : std::make_pair(Size, Zero); 633 634 // TODO: handle more standard functions (+ wchar cousins): 635 // - strdup / strndup 636 // - strcpy / strncpy 637 // - strcat / strncat 638 // - memcpy / memmove 639 // - strcat / strncat 640 // - memset 641 } 642 643 SizeOffsetType 644 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 645 // If null is unknown, there's nothing we can do. Additionally, non-zero 646 // address spaces can make use of null, so we don't presume to know anything 647 // about that. 648 // 649 // TODO: How should this work with address space casts? We currently just drop 650 // them on the floor, but it's unclear what we should do when a NULL from 651 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 652 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 653 return unknown(); 654 return std::make_pair(Zero, Zero); 655 } 656 657 SizeOffsetType 658 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 659 return unknown(); 660 } 661 662 SizeOffsetType 663 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 664 // Easy cases were already folded by previous passes. 665 return unknown(); 666 } 667 668 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 669 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 670 APInt Offset(IntTyBits, 0); 671 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 672 return unknown(); 673 674 return std::make_pair(PtrData.first, PtrData.second + Offset); 675 } 676 677 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 678 if (GA.isInterposable()) 679 return unknown(); 680 return compute(GA.getAliasee()); 681 } 682 683 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 684 if (!GV.hasDefinitiveInitializer()) 685 return unknown(); 686 687 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); 688 return std::make_pair(align(Size, GV.getAlignment()), Zero); 689 } 690 691 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 692 // clueless 693 return unknown(); 694 } 695 696 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 697 ++ObjectVisitorLoad; 698 return unknown(); 699 } 700 701 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 702 // too complex to analyze statically. 703 return unknown(); 704 } 705 706 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 707 SizeOffsetType TrueSide = compute(I.getTrueValue()); 708 SizeOffsetType FalseSide = compute(I.getFalseValue()); 709 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 710 if (TrueSide == FalseSide) { 711 return TrueSide; 712 } 713 714 APInt TrueResult = getSizeWithOverflow(TrueSide); 715 APInt FalseResult = getSizeWithOverflow(FalseSide); 716 717 if (TrueResult == FalseResult) { 718 return TrueSide; 719 } 720 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 721 if (TrueResult.slt(FalseResult)) 722 return TrueSide; 723 return FalseSide; 724 } 725 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 726 if (TrueResult.sgt(FalseResult)) 727 return TrueSide; 728 return FalseSide; 729 } 730 } 731 return unknown(); 732 } 733 734 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 735 return std::make_pair(Zero, Zero); 736 } 737 738 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 739 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 740 << '\n'); 741 return unknown(); 742 } 743 744 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 745 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 746 bool RoundToAlign) 747 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 748 RoundToAlign(RoundToAlign) { 749 // IntTy and Zero must be set for each compute() since the address space may 750 // be different for later objects. 751 } 752 753 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 754 // XXX - Are vectors of pointers possible here? 755 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 756 Zero = ConstantInt::get(IntTy, 0); 757 758 SizeOffsetEvalType Result = compute_(V); 759 760 if (!bothKnown(Result)) { 761 // Erase everything that was computed in this iteration from the cache, so 762 // that no dangling references are left behind. We could be a bit smarter if 763 // we kept a dependency graph. It's probably not worth the complexity. 764 for (const Value *SeenVal : SeenVals) { 765 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 766 // non-computable results can be safely cached 767 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 768 CacheMap.erase(CacheIt); 769 } 770 } 771 772 SeenVals.clear(); 773 return Result; 774 } 775 776 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 777 ObjectSizeOpts ObjSizeOptions; 778 ObjSizeOptions.RoundToAlign = RoundToAlign; 779 780 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions); 781 SizeOffsetType Const = Visitor.compute(V); 782 if (Visitor.bothKnown(Const)) 783 return std::make_pair(ConstantInt::get(Context, Const.first), 784 ConstantInt::get(Context, Const.second)); 785 786 V = V->stripPointerCasts(); 787 788 // Check cache. 789 CacheMapTy::iterator CacheIt = CacheMap.find(V); 790 if (CacheIt != CacheMap.end()) 791 return CacheIt->second; 792 793 // Always generate code immediately before the instruction being 794 // processed, so that the generated code dominates the same BBs. 795 BuilderTy::InsertPointGuard Guard(Builder); 796 if (Instruction *I = dyn_cast<Instruction>(V)) 797 Builder.SetInsertPoint(I); 798 799 // Now compute the size and offset. 800 SizeOffsetEvalType Result; 801 802 // Record the pointers that were handled in this run, so that they can be 803 // cleaned later if something fails. We also use this set to break cycles that 804 // can occur in dead code. 805 if (!SeenVals.insert(V).second) { 806 Result = unknown(); 807 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 808 Result = visitGEPOperator(*GEP); 809 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 810 Result = visit(*I); 811 } else if (isa<Argument>(V) || 812 (isa<ConstantExpr>(V) && 813 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 814 isa<GlobalAlias>(V) || 815 isa<GlobalVariable>(V)) { 816 // Ignore values where we cannot do more than ObjectSizeVisitor. 817 Result = unknown(); 818 } else { 819 LLVM_DEBUG( 820 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 821 << '\n'); 822 Result = unknown(); 823 } 824 825 // Don't reuse CacheIt since it may be invalid at this point. 826 CacheMap[V] = Result; 827 return Result; 828 } 829 830 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 831 if (!I.getAllocatedType()->isSized()) 832 return unknown(); 833 834 // must be a VLA 835 assert(I.isArrayAllocation()); 836 Value *ArraySize = I.getArraySize(); 837 Value *Size = ConstantInt::get(ArraySize->getType(), 838 DL.getTypeAllocSize(I.getAllocatedType())); 839 Size = Builder.CreateMul(Size, ArraySize); 840 return std::make_pair(Size, Zero); 841 } 842 843 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 844 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 845 if (!FnData) 846 return unknown(); 847 848 // Handle strdup-like functions separately. 849 if (FnData->AllocTy == StrDupLike) { 850 // TODO 851 return unknown(); 852 } 853 854 Value *FirstArg = CS.getArgument(FnData->FstParam); 855 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 856 if (FnData->SndParam < 0) 857 return std::make_pair(FirstArg, Zero); 858 859 Value *SecondArg = CS.getArgument(FnData->SndParam); 860 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 861 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 862 return std::make_pair(Size, Zero); 863 864 // TODO: handle more standard functions (+ wchar cousins): 865 // - strdup / strndup 866 // - strcpy / strncpy 867 // - strcat / strncat 868 // - memcpy / memmove 869 // - strcat / strncat 870 // - memset 871 } 872 873 SizeOffsetEvalType 874 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 875 return unknown(); 876 } 877 878 SizeOffsetEvalType 879 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 880 return unknown(); 881 } 882 883 SizeOffsetEvalType 884 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 885 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 886 if (!bothKnown(PtrData)) 887 return unknown(); 888 889 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 890 Offset = Builder.CreateAdd(PtrData.second, Offset); 891 return std::make_pair(PtrData.first, Offset); 892 } 893 894 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 895 // clueless 896 return unknown(); 897 } 898 899 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 900 return unknown(); 901 } 902 903 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 904 // Create 2 PHIs: one for size and another for offset. 905 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 906 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 907 908 // Insert right away in the cache to handle recursive PHIs. 909 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 910 911 // Compute offset/size for each PHI incoming pointer. 912 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 913 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 914 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 915 916 if (!bothKnown(EdgeData)) { 917 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 918 OffsetPHI->eraseFromParent(); 919 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 920 SizePHI->eraseFromParent(); 921 return unknown(); 922 } 923 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 924 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 925 } 926 927 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 928 if ((Tmp = SizePHI->hasConstantValue())) { 929 Size = Tmp; 930 SizePHI->replaceAllUsesWith(Size); 931 SizePHI->eraseFromParent(); 932 } 933 if ((Tmp = OffsetPHI->hasConstantValue())) { 934 Offset = Tmp; 935 OffsetPHI->replaceAllUsesWith(Offset); 936 OffsetPHI->eraseFromParent(); 937 } 938 return std::make_pair(Size, Offset); 939 } 940 941 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 942 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 943 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 944 945 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 946 return unknown(); 947 if (TrueSide == FalseSide) 948 return TrueSide; 949 950 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 951 FalseSide.first); 952 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 953 FalseSide.second); 954 return std::make_pair(Size, Offset); 955 } 956 957 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 958 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 959 << '\n'); 960 return unknown(); 961 } 962