1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Analysis/TargetFolder.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "memory-builtins" 52 53 enum AllocType : uint8_t { 54 OpNewLike = 1<<0, // allocates; never returns null 55 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 56 CallocLike = 1<<2, // allocates + bzero 57 ReallocLike = 1<<3, // reallocates 58 StrDupLike = 1<<4, 59 MallocOrCallocLike = MallocLike | CallocLike, 60 AllocLike = MallocLike | CallocLike | StrDupLike, 61 AnyAlloc = AllocLike | ReallocLike 62 }; 63 64 struct AllocFnsTy { 65 AllocType AllocTy; 66 unsigned NumParams; 67 // First and Second size parameters (or -1 if unused) 68 int FstParam, SndParam; 69 }; 70 71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 72 // know which functions are nounwind, noalias, nocapture parameters, etc. 73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 74 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 75 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 76 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 77 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 78 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 79 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 80 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 81 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 82 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 83 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 84 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 85 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 86 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 87 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 88 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 89 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 90 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 91 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 92 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 93 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 94 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 95 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 96 {LibFunc_strndup, {StrDupLike, 2, 1, -1}} 97 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 98 }; 99 100 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 101 bool &IsNoBuiltin) { 102 // Don't care about intrinsics in this case. 103 if (isa<IntrinsicInst>(V)) 104 return nullptr; 105 106 if (LookThroughBitCast) 107 V = V->stripPointerCasts(); 108 109 ImmutableCallSite CS(V); 110 if (!CS.getInstruction()) 111 return nullptr; 112 113 IsNoBuiltin = CS.isNoBuiltin(); 114 115 const Function *Callee = CS.getCalledFunction(); 116 if (!Callee || !Callee->isDeclaration()) 117 return nullptr; 118 return Callee; 119 } 120 121 /// Returns the allocation data for the given value if it's either a call to a 122 /// known allocation function, or a call to a function with the allocsize 123 /// attribute. 124 static Optional<AllocFnsTy> 125 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 126 const TargetLibraryInfo *TLI) { 127 // Make sure that the function is available. 128 StringRef FnName = Callee->getName(); 129 LibFunc TLIFn; 130 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 131 return None; 132 133 const auto *Iter = find_if( 134 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 135 return P.first == TLIFn; 136 }); 137 138 if (Iter == std::end(AllocationFnData)) 139 return None; 140 141 const AllocFnsTy *FnData = &Iter->second; 142 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 143 return None; 144 145 // Check function prototype. 146 int FstParam = FnData->FstParam; 147 int SndParam = FnData->SndParam; 148 FunctionType *FTy = Callee->getFunctionType(); 149 150 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 151 FTy->getNumParams() == FnData->NumParams && 152 (FstParam < 0 || 153 (FTy->getParamType(FstParam)->isIntegerTy(32) || 154 FTy->getParamType(FstParam)->isIntegerTy(64))) && 155 (SndParam < 0 || 156 FTy->getParamType(SndParam)->isIntegerTy(32) || 157 FTy->getParamType(SndParam)->isIntegerTy(64))) 158 return *FnData; 159 return None; 160 } 161 162 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 163 const TargetLibraryInfo *TLI, 164 bool LookThroughBitCast = false) { 165 bool IsNoBuiltinCall; 166 if (const Function *Callee = 167 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 168 if (!IsNoBuiltinCall) 169 return getAllocationDataForFunction(Callee, AllocTy, TLI); 170 return None; 171 } 172 173 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 174 const TargetLibraryInfo *TLI) { 175 bool IsNoBuiltinCall; 176 const Function *Callee = 177 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 178 if (!Callee) 179 return None; 180 181 // Prefer to use existing information over allocsize. This will give us an 182 // accurate AllocTy. 183 if (!IsNoBuiltinCall) 184 if (Optional<AllocFnsTy> Data = 185 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 186 return Data; 187 188 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 189 if (Attr == Attribute()) 190 return None; 191 192 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 193 194 AllocFnsTy Result; 195 // Because allocsize only tells us how many bytes are allocated, we're not 196 // really allowed to assume anything, so we use MallocLike. 197 Result.AllocTy = MallocLike; 198 Result.NumParams = Callee->getNumOperands(); 199 Result.FstParam = Args.first; 200 Result.SndParam = Args.second.getValueOr(-1); 201 return Result; 202 } 203 204 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 205 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 206 return CS && CS.hasRetAttr(Attribute::NoAlias); 207 } 208 209 /// \brief Tests if a value is a call or invoke to a library function that 210 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 211 /// like). 212 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 213 bool LookThroughBitCast) { 214 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 215 } 216 217 /// \brief Tests if a value is a call or invoke to a function that returns a 218 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 219 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 220 bool LookThroughBitCast) { 221 // it's safe to consider realloc as noalias since accessing the original 222 // pointer is undefined behavior 223 return isAllocationFn(V, TLI, LookThroughBitCast) || 224 hasNoAliasAttr(V, LookThroughBitCast); 225 } 226 227 /// \brief Tests if a value is a call or invoke to a library function that 228 /// allocates uninitialized memory (such as malloc). 229 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 230 bool LookThroughBitCast) { 231 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 232 } 233 234 /// \brief Tests if a value is a call or invoke to a library function that 235 /// allocates zero-filled memory (such as calloc). 236 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 237 bool LookThroughBitCast) { 238 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 239 } 240 241 /// \brief Tests if a value is a call or invoke to a library function that 242 /// allocates memory similiar to malloc or calloc. 243 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 244 bool LookThroughBitCast) { 245 return getAllocationData(V, MallocOrCallocLike, TLI, 246 LookThroughBitCast).hasValue(); 247 } 248 249 /// \brief Tests if a value is a call or invoke to a library function that 250 /// allocates memory (either malloc, calloc, or strdup like). 251 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 252 bool LookThroughBitCast) { 253 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 254 } 255 256 /// extractMallocCall - Returns the corresponding CallInst if the instruction 257 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 258 /// ignore InvokeInst here. 259 const CallInst *llvm::extractMallocCall(const Value *I, 260 const TargetLibraryInfo *TLI) { 261 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 262 } 263 264 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 265 const TargetLibraryInfo *TLI, 266 bool LookThroughSExt = false) { 267 if (!CI) 268 return nullptr; 269 270 // The size of the malloc's result type must be known to determine array size. 271 Type *T = getMallocAllocatedType(CI, TLI); 272 if (!T || !T->isSized()) 273 return nullptr; 274 275 unsigned ElementSize = DL.getTypeAllocSize(T); 276 if (StructType *ST = dyn_cast<StructType>(T)) 277 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 278 279 // If malloc call's arg can be determined to be a multiple of ElementSize, 280 // return the multiple. Otherwise, return NULL. 281 Value *MallocArg = CI->getArgOperand(0); 282 Value *Multiple = nullptr; 283 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 284 return Multiple; 285 286 return nullptr; 287 } 288 289 /// getMallocType - Returns the PointerType resulting from the malloc call. 290 /// The PointerType depends on the number of bitcast uses of the malloc call: 291 /// 0: PointerType is the calls' return type. 292 /// 1: PointerType is the bitcast's result type. 293 /// >1: Unique PointerType cannot be determined, return NULL. 294 PointerType *llvm::getMallocType(const CallInst *CI, 295 const TargetLibraryInfo *TLI) { 296 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 297 298 PointerType *MallocType = nullptr; 299 unsigned NumOfBitCastUses = 0; 300 301 // Determine if CallInst has a bitcast use. 302 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 303 UI != E;) 304 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 305 MallocType = cast<PointerType>(BCI->getDestTy()); 306 NumOfBitCastUses++; 307 } 308 309 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 310 if (NumOfBitCastUses == 1) 311 return MallocType; 312 313 // Malloc call was not bitcast, so type is the malloc function's return type. 314 if (NumOfBitCastUses == 0) 315 return cast<PointerType>(CI->getType()); 316 317 // Type could not be determined. 318 return nullptr; 319 } 320 321 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 322 /// The Type depends on the number of bitcast uses of the malloc call: 323 /// 0: PointerType is the malloc calls' return type. 324 /// 1: PointerType is the bitcast's result type. 325 /// >1: Unique PointerType cannot be determined, return NULL. 326 Type *llvm::getMallocAllocatedType(const CallInst *CI, 327 const TargetLibraryInfo *TLI) { 328 PointerType *PT = getMallocType(CI, TLI); 329 return PT ? PT->getElementType() : nullptr; 330 } 331 332 /// getMallocArraySize - Returns the array size of a malloc call. If the 333 /// argument passed to malloc is a multiple of the size of the malloced type, 334 /// then return that multiple. For non-array mallocs, the multiple is 335 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 336 /// determined. 337 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 338 const TargetLibraryInfo *TLI, 339 bool LookThroughSExt) { 340 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 341 return computeArraySize(CI, DL, TLI, LookThroughSExt); 342 } 343 344 /// extractCallocCall - Returns the corresponding CallInst if the instruction 345 /// is a calloc call. 346 const CallInst *llvm::extractCallocCall(const Value *I, 347 const TargetLibraryInfo *TLI) { 348 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 349 } 350 351 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 352 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 353 const CallInst *CI = dyn_cast<CallInst>(I); 354 if (!CI || isa<IntrinsicInst>(CI)) 355 return nullptr; 356 Function *Callee = CI->getCalledFunction(); 357 if (Callee == nullptr) 358 return nullptr; 359 360 StringRef FnName = Callee->getName(); 361 LibFunc TLIFn; 362 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 363 return nullptr; 364 365 unsigned ExpectedNumParams; 366 if (TLIFn == LibFunc_free || 367 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 368 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 369 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 370 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 371 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 372 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 373 ExpectedNumParams = 1; 374 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 375 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 376 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 377 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 378 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 379 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 380 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 381 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 382 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 383 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 384 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 385 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 386 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 387 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 388 ExpectedNumParams = 2; 389 else 390 return nullptr; 391 392 // Check free prototype. 393 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 394 // attribute will exist. 395 FunctionType *FTy = Callee->getFunctionType(); 396 if (!FTy->getReturnType()->isVoidTy()) 397 return nullptr; 398 if (FTy->getNumParams() != ExpectedNumParams) 399 return nullptr; 400 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 401 return nullptr; 402 403 return CI; 404 } 405 406 //===----------------------------------------------------------------------===// 407 // Utility functions to compute size of objects. 408 // 409 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 410 if (Data.second.isNegative() || Data.first.ult(Data.second)) 411 return APInt(Data.first.getBitWidth(), 0); 412 return Data.first - Data.second; 413 } 414 415 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 416 /// object size in Size if successful, and false otherwise. 417 /// If RoundToAlign is true, then Size is rounded up to the alignment of 418 /// allocas, byval arguments, and global variables. 419 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 420 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 421 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 422 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 423 if (!Visitor.bothKnown(Data)) 424 return false; 425 426 Size = getSizeWithOverflow(Data).getZExtValue(); 427 return true; 428 } 429 430 ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 431 const DataLayout &DL, 432 const TargetLibraryInfo *TLI, 433 bool MustSucceed) { 434 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 435 "ObjectSize must be a call to llvm.objectsize!"); 436 437 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 438 ObjectSizeOpts EvalOptions; 439 // Unless we have to fold this to something, try to be as accurate as 440 // possible. 441 if (MustSucceed) 442 EvalOptions.EvalMode = 443 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 444 else 445 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 446 447 EvalOptions.NullIsUnknownSize = 448 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 449 450 // FIXME: Does it make sense to just return a failure value if the size won't 451 // fit in the output and `!MustSucceed`? 452 uint64_t Size; 453 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 454 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 455 isUIntN(ResultType->getBitWidth(), Size)) 456 return ConstantInt::get(ResultType, Size); 457 458 if (!MustSucceed) 459 return nullptr; 460 461 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 462 } 463 464 STATISTIC(ObjectVisitorArgument, 465 "Number of arguments with unsolved size and offset"); 466 STATISTIC(ObjectVisitorLoad, 467 "Number of load instructions with unsolved size and offset"); 468 469 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 470 if (Options.RoundToAlign && Align) 471 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); 472 return Size; 473 } 474 475 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 476 const TargetLibraryInfo *TLI, 477 LLVMContext &Context, 478 ObjectSizeOpts Options) 479 : DL(DL), TLI(TLI), Options(Options) { 480 // Pointer size must be rechecked for each object visited since it could have 481 // a different address space. 482 } 483 484 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 485 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 486 Zero = APInt::getNullValue(IntTyBits); 487 488 V = V->stripPointerCasts(); 489 if (Instruction *I = dyn_cast<Instruction>(V)) { 490 // If we have already seen this instruction, bail out. Cycles can happen in 491 // unreachable code after constant propagation. 492 if (!SeenInsts.insert(I).second) 493 return unknown(); 494 495 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 496 return visitGEPOperator(*GEP); 497 return visit(*I); 498 } 499 if (Argument *A = dyn_cast<Argument>(V)) 500 return visitArgument(*A); 501 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 502 return visitConstantPointerNull(*P); 503 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 504 return visitGlobalAlias(*GA); 505 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 506 return visitGlobalVariable(*GV); 507 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 508 return visitUndefValue(*UV); 509 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 510 if (CE->getOpcode() == Instruction::IntToPtr) 511 return unknown(); // clueless 512 if (CE->getOpcode() == Instruction::GetElementPtr) 513 return visitGEPOperator(cast<GEPOperator>(*CE)); 514 } 515 516 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 517 << '\n'); 518 return unknown(); 519 } 520 521 /// When we're compiling N-bit code, and the user uses parameters that are 522 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 523 /// trouble with APInt size issues. This function handles resizing + overflow 524 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 525 /// I's value. 526 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 527 // More bits than we can handle. Checking the bit width isn't necessary, but 528 // it's faster than checking active bits, and should give `false` in the 529 // vast majority of cases. 530 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 531 return false; 532 if (I.getBitWidth() != IntTyBits) 533 I = I.zextOrTrunc(IntTyBits); 534 return true; 535 } 536 537 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 538 if (!I.getAllocatedType()->isSized()) 539 return unknown(); 540 541 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 542 if (!I.isArrayAllocation()) 543 return std::make_pair(align(Size, I.getAlignment()), Zero); 544 545 Value *ArraySize = I.getArraySize(); 546 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 547 APInt NumElems = C->getValue(); 548 if (!CheckedZextOrTrunc(NumElems)) 549 return unknown(); 550 551 bool Overflow; 552 Size = Size.umul_ov(NumElems, Overflow); 553 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), 554 Zero); 555 } 556 return unknown(); 557 } 558 559 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 560 // No interprocedural analysis is done at the moment. 561 if (!A.hasByValOrInAllocaAttr()) { 562 ++ObjectVisitorArgument; 563 return unknown(); 564 } 565 PointerType *PT = cast<PointerType>(A.getType()); 566 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 567 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 568 } 569 570 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 571 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 572 if (!FnData) 573 return unknown(); 574 575 // Handle strdup-like functions separately. 576 if (FnData->AllocTy == StrDupLike) { 577 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 578 if (!Size) 579 return unknown(); 580 581 // Strndup limits strlen. 582 if (FnData->FstParam > 0) { 583 ConstantInt *Arg = 584 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 585 if (!Arg) 586 return unknown(); 587 588 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 589 if (Size.ugt(MaxSize)) 590 Size = MaxSize + 1; 591 } 592 return std::make_pair(Size, Zero); 593 } 594 595 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 596 if (!Arg) 597 return unknown(); 598 599 APInt Size = Arg->getValue(); 600 if (!CheckedZextOrTrunc(Size)) 601 return unknown(); 602 603 // Size is determined by just 1 parameter. 604 if (FnData->SndParam < 0) 605 return std::make_pair(Size, Zero); 606 607 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 608 if (!Arg) 609 return unknown(); 610 611 APInt NumElems = Arg->getValue(); 612 if (!CheckedZextOrTrunc(NumElems)) 613 return unknown(); 614 615 bool Overflow; 616 Size = Size.umul_ov(NumElems, Overflow); 617 return Overflow ? unknown() : std::make_pair(Size, Zero); 618 619 // TODO: handle more standard functions (+ wchar cousins): 620 // - strdup / strndup 621 // - strcpy / strncpy 622 // - strcat / strncat 623 // - memcpy / memmove 624 // - strcat / strncat 625 // - memset 626 } 627 628 SizeOffsetType 629 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 630 if (Options.NullIsUnknownSize && CPN.getType()->getAddressSpace() == 0) 631 return unknown(); 632 return std::make_pair(Zero, Zero); 633 } 634 635 SizeOffsetType 636 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 637 return unknown(); 638 } 639 640 SizeOffsetType 641 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 642 // Easy cases were already folded by previous passes. 643 return unknown(); 644 } 645 646 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 647 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 648 APInt Offset(IntTyBits, 0); 649 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 650 return unknown(); 651 652 return std::make_pair(PtrData.first, PtrData.second + Offset); 653 } 654 655 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 656 if (GA.isInterposable()) 657 return unknown(); 658 return compute(GA.getAliasee()); 659 } 660 661 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 662 if (!GV.hasDefinitiveInitializer()) 663 return unknown(); 664 665 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); 666 return std::make_pair(align(Size, GV.getAlignment()), Zero); 667 } 668 669 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 670 // clueless 671 return unknown(); 672 } 673 674 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 675 ++ObjectVisitorLoad; 676 return unknown(); 677 } 678 679 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 680 // too complex to analyze statically. 681 return unknown(); 682 } 683 684 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 685 SizeOffsetType TrueSide = compute(I.getTrueValue()); 686 SizeOffsetType FalseSide = compute(I.getFalseValue()); 687 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 688 if (TrueSide == FalseSide) { 689 return TrueSide; 690 } 691 692 APInt TrueResult = getSizeWithOverflow(TrueSide); 693 APInt FalseResult = getSizeWithOverflow(FalseSide); 694 695 if (TrueResult == FalseResult) { 696 return TrueSide; 697 } 698 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 699 if (TrueResult.slt(FalseResult)) 700 return TrueSide; 701 return FalseSide; 702 } 703 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 704 if (TrueResult.sgt(FalseResult)) 705 return TrueSide; 706 return FalseSide; 707 } 708 } 709 return unknown(); 710 } 711 712 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 713 return std::make_pair(Zero, Zero); 714 } 715 716 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 717 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 718 return unknown(); 719 } 720 721 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 722 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 723 bool RoundToAlign) 724 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 725 RoundToAlign(RoundToAlign) { 726 // IntTy and Zero must be set for each compute() since the address space may 727 // be different for later objects. 728 } 729 730 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 731 // XXX - Are vectors of pointers possible here? 732 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 733 Zero = ConstantInt::get(IntTy, 0); 734 735 SizeOffsetEvalType Result = compute_(V); 736 737 if (!bothKnown(Result)) { 738 // Erase everything that was computed in this iteration from the cache, so 739 // that no dangling references are left behind. We could be a bit smarter if 740 // we kept a dependency graph. It's probably not worth the complexity. 741 for (const Value *SeenVal : SeenVals) { 742 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 743 // non-computable results can be safely cached 744 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 745 CacheMap.erase(CacheIt); 746 } 747 } 748 749 SeenVals.clear(); 750 return Result; 751 } 752 753 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 754 ObjectSizeOpts ObjSizeOptions; 755 ObjSizeOptions.RoundToAlign = RoundToAlign; 756 757 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions); 758 SizeOffsetType Const = Visitor.compute(V); 759 if (Visitor.bothKnown(Const)) 760 return std::make_pair(ConstantInt::get(Context, Const.first), 761 ConstantInt::get(Context, Const.second)); 762 763 V = V->stripPointerCasts(); 764 765 // Check cache. 766 CacheMapTy::iterator CacheIt = CacheMap.find(V); 767 if (CacheIt != CacheMap.end()) 768 return CacheIt->second; 769 770 // Always generate code immediately before the instruction being 771 // processed, so that the generated code dominates the same BBs. 772 BuilderTy::InsertPointGuard Guard(Builder); 773 if (Instruction *I = dyn_cast<Instruction>(V)) 774 Builder.SetInsertPoint(I); 775 776 // Now compute the size and offset. 777 SizeOffsetEvalType Result; 778 779 // Record the pointers that were handled in this run, so that they can be 780 // cleaned later if something fails. We also use this set to break cycles that 781 // can occur in dead code. 782 if (!SeenVals.insert(V).second) { 783 Result = unknown(); 784 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 785 Result = visitGEPOperator(*GEP); 786 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 787 Result = visit(*I); 788 } else if (isa<Argument>(V) || 789 (isa<ConstantExpr>(V) && 790 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 791 isa<GlobalAlias>(V) || 792 isa<GlobalVariable>(V)) { 793 // Ignore values where we cannot do more than ObjectSizeVisitor. 794 Result = unknown(); 795 } else { 796 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 797 << *V << '\n'); 798 Result = unknown(); 799 } 800 801 // Don't reuse CacheIt since it may be invalid at this point. 802 CacheMap[V] = Result; 803 return Result; 804 } 805 806 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 807 if (!I.getAllocatedType()->isSized()) 808 return unknown(); 809 810 // must be a VLA 811 assert(I.isArrayAllocation()); 812 Value *ArraySize = I.getArraySize(); 813 Value *Size = ConstantInt::get(ArraySize->getType(), 814 DL.getTypeAllocSize(I.getAllocatedType())); 815 Size = Builder.CreateMul(Size, ArraySize); 816 return std::make_pair(Size, Zero); 817 } 818 819 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 820 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 821 if (!FnData) 822 return unknown(); 823 824 // Handle strdup-like functions separately. 825 if (FnData->AllocTy == StrDupLike) { 826 // TODO 827 return unknown(); 828 } 829 830 Value *FirstArg = CS.getArgument(FnData->FstParam); 831 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 832 if (FnData->SndParam < 0) 833 return std::make_pair(FirstArg, Zero); 834 835 Value *SecondArg = CS.getArgument(FnData->SndParam); 836 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 837 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 838 return std::make_pair(Size, Zero); 839 840 // TODO: handle more standard functions (+ wchar cousins): 841 // - strdup / strndup 842 // - strcpy / strncpy 843 // - strcat / strncat 844 // - memcpy / memmove 845 // - strcat / strncat 846 // - memset 847 } 848 849 SizeOffsetEvalType 850 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 851 return unknown(); 852 } 853 854 SizeOffsetEvalType 855 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 856 return unknown(); 857 } 858 859 SizeOffsetEvalType 860 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 861 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 862 if (!bothKnown(PtrData)) 863 return unknown(); 864 865 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 866 Offset = Builder.CreateAdd(PtrData.second, Offset); 867 return std::make_pair(PtrData.first, Offset); 868 } 869 870 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 871 // clueless 872 return unknown(); 873 } 874 875 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 876 return unknown(); 877 } 878 879 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 880 // Create 2 PHIs: one for size and another for offset. 881 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 882 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 883 884 // Insert right away in the cache to handle recursive PHIs. 885 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 886 887 // Compute offset/size for each PHI incoming pointer. 888 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 889 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 890 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 891 892 if (!bothKnown(EdgeData)) { 893 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 894 OffsetPHI->eraseFromParent(); 895 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 896 SizePHI->eraseFromParent(); 897 return unknown(); 898 } 899 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 900 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 901 } 902 903 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 904 if ((Tmp = SizePHI->hasConstantValue())) { 905 Size = Tmp; 906 SizePHI->replaceAllUsesWith(Size); 907 SizePHI->eraseFromParent(); 908 } 909 if ((Tmp = OffsetPHI->hasConstantValue())) { 910 Offset = Tmp; 911 OffsetPHI->replaceAllUsesWith(Offset); 912 OffsetPHI->eraseFromParent(); 913 } 914 return std::make_pair(Size, Offset); 915 } 916 917 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 918 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 919 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 920 921 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 922 return unknown(); 923 if (TrueSide == FalseSide) 924 return TrueSide; 925 926 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 927 FalseSide.first); 928 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 929 FalseSide.second); 930 return std::make_pair(Size, Offset); 931 } 932 933 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 934 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 935 return unknown(); 936 } 937