1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Metadata.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "memory-builtins" 33 34 enum AllocType : uint8_t { 35 OpNewLike = 1<<0, // allocates; never returns null 36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 37 CallocLike = 1<<2, // allocates + bzero 38 ReallocLike = 1<<3, // reallocates 39 StrDupLike = 1<<4, 40 AllocLike = MallocLike | CallocLike | StrDupLike, 41 AnyAlloc = AllocLike | ReallocLike 42 }; 43 44 struct AllocFnsTy { 45 LibFunc::Func Func; 46 AllocType AllocTy; 47 unsigned char NumParams; 48 // First and Second size parameters (or -1 if unused) 49 signed char FstParam, SndParam; 50 }; 51 52 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 53 // know which functions are nounwind, noalias, nocapture parameters, etc. 54 static const AllocFnsTy AllocationFnData[] = { 55 {LibFunc::malloc, MallocLike, 1, 0, -1}, 56 {LibFunc::valloc, MallocLike, 1, 0, -1}, 57 {LibFunc::Znwj, OpNewLike, 1, 0, -1}, // new(unsigned int) 58 {LibFunc::ZnwjRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned int, nothrow) 59 {LibFunc::Znwm, OpNewLike, 1, 0, -1}, // new(unsigned long) 60 {LibFunc::ZnwmRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned long, nothrow) 61 {LibFunc::Znaj, OpNewLike, 1, 0, -1}, // new[](unsigned int) 62 {LibFunc::ZnajRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned int, nothrow) 63 {LibFunc::Znam, OpNewLike, 1, 0, -1}, // new[](unsigned long) 64 {LibFunc::ZnamRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned long, nothrow) 65 {LibFunc::calloc, CallocLike, 2, 0, 1}, 66 {LibFunc::realloc, ReallocLike, 2, 1, -1}, 67 {LibFunc::reallocf, ReallocLike, 2, 1, -1}, 68 {LibFunc::strdup, StrDupLike, 1, -1, -1}, 69 {LibFunc::strndup, StrDupLike, 2, 1, -1} 70 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 71 }; 72 73 74 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) { 75 if (LookThroughBitCast) 76 V = V->stripPointerCasts(); 77 78 CallSite CS(const_cast<Value*>(V)); 79 if (!CS.getInstruction()) 80 return nullptr; 81 82 if (CS.isNoBuiltin()) 83 return nullptr; 84 85 Function *Callee = CS.getCalledFunction(); 86 if (!Callee || !Callee->isDeclaration()) 87 return nullptr; 88 return Callee; 89 } 90 91 /// \brief Returns the allocation data for the given value if it is a call to a 92 /// known allocation function, and NULL otherwise. 93 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy, 94 const TargetLibraryInfo *TLI, 95 bool LookThroughBitCast = false) { 96 // Skip intrinsics 97 if (isa<IntrinsicInst>(V)) 98 return nullptr; 99 100 Function *Callee = getCalledFunction(V, LookThroughBitCast); 101 if (!Callee) 102 return nullptr; 103 104 // Make sure that the function is available. 105 StringRef FnName = Callee->getName(); 106 LibFunc::Func TLIFn; 107 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 108 return nullptr; 109 110 const AllocFnsTy *FnData = 111 std::find_if(std::begin(AllocationFnData), std::end(AllocationFnData), 112 [TLIFn](const AllocFnsTy &Fn) { return Fn.Func == TLIFn; }); 113 114 if (FnData == std::end(AllocationFnData)) 115 return nullptr; 116 117 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 118 return nullptr; 119 120 // Check function prototype. 121 int FstParam = FnData->FstParam; 122 int SndParam = FnData->SndParam; 123 FunctionType *FTy = Callee->getFunctionType(); 124 125 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 126 FTy->getNumParams() == FnData->NumParams && 127 (FstParam < 0 || 128 (FTy->getParamType(FstParam)->isIntegerTy(32) || 129 FTy->getParamType(FstParam)->isIntegerTy(64))) && 130 (SndParam < 0 || 131 FTy->getParamType(SndParam)->isIntegerTy(32) || 132 FTy->getParamType(SndParam)->isIntegerTy(64))) 133 return FnData; 134 return nullptr; 135 } 136 137 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 138 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 139 return CS && CS.hasFnAttr(Attribute::NoAlias); 140 } 141 142 143 /// \brief Tests if a value is a call or invoke to a library function that 144 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 145 /// like). 146 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 147 bool LookThroughBitCast) { 148 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast); 149 } 150 151 /// \brief Tests if a value is a call or invoke to a function that returns a 152 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 153 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 154 bool LookThroughBitCast) { 155 // it's safe to consider realloc as noalias since accessing the original 156 // pointer is undefined behavior 157 return isAllocationFn(V, TLI, LookThroughBitCast) || 158 hasNoAliasAttr(V, LookThroughBitCast); 159 } 160 161 /// \brief Tests if a value is a call or invoke to a library function that 162 /// allocates uninitialized memory (such as malloc). 163 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 164 bool LookThroughBitCast) { 165 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast); 166 } 167 168 /// \brief Tests if a value is a call or invoke to a library function that 169 /// allocates zero-filled memory (such as calloc). 170 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 171 bool LookThroughBitCast) { 172 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast); 173 } 174 175 /// \brief Tests if a value is a call or invoke to a library function that 176 /// allocates memory (either malloc, calloc, or strdup like). 177 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 178 bool LookThroughBitCast) { 179 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast); 180 } 181 182 /// \brief Tests if a value is a call or invoke to a library function that 183 /// reallocates memory (such as realloc). 184 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 185 bool LookThroughBitCast) { 186 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast); 187 } 188 189 /// \brief Tests if a value is a call or invoke to a library function that 190 /// allocates memory and never returns null (such as operator new). 191 bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI, 192 bool LookThroughBitCast) { 193 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast); 194 } 195 196 /// extractMallocCall - Returns the corresponding CallInst if the instruction 197 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 198 /// ignore InvokeInst here. 199 const CallInst *llvm::extractMallocCall(const Value *I, 200 const TargetLibraryInfo *TLI) { 201 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 202 } 203 204 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 205 const TargetLibraryInfo *TLI, 206 bool LookThroughSExt = false) { 207 if (!CI) 208 return nullptr; 209 210 // The size of the malloc's result type must be known to determine array size. 211 Type *T = getMallocAllocatedType(CI, TLI); 212 if (!T || !T->isSized()) 213 return nullptr; 214 215 unsigned ElementSize = DL.getTypeAllocSize(T); 216 if (StructType *ST = dyn_cast<StructType>(T)) 217 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 218 219 // If malloc call's arg can be determined to be a multiple of ElementSize, 220 // return the multiple. Otherwise, return NULL. 221 Value *MallocArg = CI->getArgOperand(0); 222 Value *Multiple = nullptr; 223 if (ComputeMultiple(MallocArg, ElementSize, Multiple, 224 LookThroughSExt)) 225 return Multiple; 226 227 return nullptr; 228 } 229 230 /// getMallocType - Returns the PointerType resulting from the malloc call. 231 /// The PointerType depends on the number of bitcast uses of the malloc call: 232 /// 0: PointerType is the calls' return type. 233 /// 1: PointerType is the bitcast's result type. 234 /// >1: Unique PointerType cannot be determined, return NULL. 235 PointerType *llvm::getMallocType(const CallInst *CI, 236 const TargetLibraryInfo *TLI) { 237 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 238 239 PointerType *MallocType = nullptr; 240 unsigned NumOfBitCastUses = 0; 241 242 // Determine if CallInst has a bitcast use. 243 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 244 UI != E;) 245 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 246 MallocType = cast<PointerType>(BCI->getDestTy()); 247 NumOfBitCastUses++; 248 } 249 250 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 251 if (NumOfBitCastUses == 1) 252 return MallocType; 253 254 // Malloc call was not bitcast, so type is the malloc function's return type. 255 if (NumOfBitCastUses == 0) 256 return cast<PointerType>(CI->getType()); 257 258 // Type could not be determined. 259 return nullptr; 260 } 261 262 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 263 /// The Type depends on the number of bitcast uses of the malloc call: 264 /// 0: PointerType is the malloc calls' return type. 265 /// 1: PointerType is the bitcast's result type. 266 /// >1: Unique PointerType cannot be determined, return NULL. 267 Type *llvm::getMallocAllocatedType(const CallInst *CI, 268 const TargetLibraryInfo *TLI) { 269 PointerType *PT = getMallocType(CI, TLI); 270 return PT ? PT->getElementType() : nullptr; 271 } 272 273 /// getMallocArraySize - Returns the array size of a malloc call. If the 274 /// argument passed to malloc is a multiple of the size of the malloced type, 275 /// then return that multiple. For non-array mallocs, the multiple is 276 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 277 /// determined. 278 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 279 const TargetLibraryInfo *TLI, 280 bool LookThroughSExt) { 281 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 282 return computeArraySize(CI, DL, TLI, LookThroughSExt); 283 } 284 285 286 /// extractCallocCall - Returns the corresponding CallInst if the instruction 287 /// is a calloc call. 288 const CallInst *llvm::extractCallocCall(const Value *I, 289 const TargetLibraryInfo *TLI) { 290 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 291 } 292 293 294 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 295 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 296 const CallInst *CI = dyn_cast<CallInst>(I); 297 if (!CI || isa<IntrinsicInst>(CI)) 298 return nullptr; 299 Function *Callee = CI->getCalledFunction(); 300 if (Callee == nullptr) 301 return nullptr; 302 303 StringRef FnName = Callee->getName(); 304 LibFunc::Func TLIFn; 305 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 306 return nullptr; 307 308 unsigned ExpectedNumParams; 309 if (TLIFn == LibFunc::free || 310 TLIFn == LibFunc::ZdlPv || // operator delete(void*) 311 TLIFn == LibFunc::ZdaPv) // operator delete[](void*) 312 ExpectedNumParams = 1; 313 else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint) 314 TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong) 315 TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 316 TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint) 317 TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong) 318 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow) 319 ExpectedNumParams = 2; 320 else 321 return nullptr; 322 323 // Check free prototype. 324 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 325 // attribute will exist. 326 FunctionType *FTy = Callee->getFunctionType(); 327 if (!FTy->getReturnType()->isVoidTy()) 328 return nullptr; 329 if (FTy->getNumParams() != ExpectedNumParams) 330 return nullptr; 331 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 332 return nullptr; 333 334 return CI; 335 } 336 337 338 339 //===----------------------------------------------------------------------===// 340 // Utility functions to compute size of objects. 341 // 342 343 344 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 345 /// object size in Size if successful, and false otherwise. 346 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas, 347 /// byval arguments, and global variables. 348 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 349 const TargetLibraryInfo *TLI, bool RoundToAlign) { 350 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign); 351 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 352 if (!Visitor.bothKnown(Data)) 353 return false; 354 355 APInt ObjSize = Data.first, Offset = Data.second; 356 // check for overflow 357 if (Offset.slt(0) || ObjSize.ult(Offset)) 358 Size = 0; 359 else 360 Size = (ObjSize - Offset).getZExtValue(); 361 return true; 362 } 363 364 365 STATISTIC(ObjectVisitorArgument, 366 "Number of arguments with unsolved size and offset"); 367 STATISTIC(ObjectVisitorLoad, 368 "Number of load instructions with unsolved size and offset"); 369 370 371 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 372 if (RoundToAlign && Align) 373 return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align)); 374 return Size; 375 } 376 377 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 378 const TargetLibraryInfo *TLI, 379 LLVMContext &Context, 380 bool RoundToAlign) 381 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) { 382 // Pointer size must be rechecked for each object visited since it could have 383 // a different address space. 384 } 385 386 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 387 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 388 Zero = APInt::getNullValue(IntTyBits); 389 390 V = V->stripPointerCasts(); 391 if (Instruction *I = dyn_cast<Instruction>(V)) { 392 // If we have already seen this instruction, bail out. Cycles can happen in 393 // unreachable code after constant propagation. 394 if (!SeenInsts.insert(I).second) 395 return unknown(); 396 397 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 398 return visitGEPOperator(*GEP); 399 return visit(*I); 400 } 401 if (Argument *A = dyn_cast<Argument>(V)) 402 return visitArgument(*A); 403 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 404 return visitConstantPointerNull(*P); 405 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 406 return visitGlobalAlias(*GA); 407 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 408 return visitGlobalVariable(*GV); 409 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 410 return visitUndefValue(*UV); 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 412 if (CE->getOpcode() == Instruction::IntToPtr) 413 return unknown(); // clueless 414 if (CE->getOpcode() == Instruction::GetElementPtr) 415 return visitGEPOperator(cast<GEPOperator>(*CE)); 416 } 417 418 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 419 << '\n'); 420 return unknown(); 421 } 422 423 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 424 if (!I.getAllocatedType()->isSized()) 425 return unknown(); 426 427 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 428 if (!I.isArrayAllocation()) 429 return std::make_pair(align(Size, I.getAlignment()), Zero); 430 431 Value *ArraySize = I.getArraySize(); 432 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 433 Size *= C->getValue().zextOrSelf(IntTyBits); 434 return std::make_pair(align(Size, I.getAlignment()), Zero); 435 } 436 return unknown(); 437 } 438 439 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 440 // no interprocedural analysis is done at the moment 441 if (!A.hasByValOrInAllocaAttr()) { 442 ++ObjectVisitorArgument; 443 return unknown(); 444 } 445 PointerType *PT = cast<PointerType>(A.getType()); 446 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 447 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 448 } 449 450 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 451 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc, 452 TLI); 453 if (!FnData) 454 return unknown(); 455 456 // handle strdup-like functions separately 457 if (FnData->AllocTy == StrDupLike) { 458 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 459 if (!Size) 460 return unknown(); 461 462 // strndup limits strlen 463 if (FnData->FstParam > 0) { 464 ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 465 if (!Arg) 466 return unknown(); 467 468 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 469 if (Size.ugt(MaxSize)) 470 Size = MaxSize + 1; 471 } 472 return std::make_pair(Size, Zero); 473 } 474 475 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 476 if (!Arg) 477 return unknown(); 478 479 APInt Size = Arg->getValue().zextOrSelf(IntTyBits); 480 // size determined by just 1 parameter 481 if (FnData->SndParam < 0) 482 return std::make_pair(Size, Zero); 483 484 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 485 if (!Arg) 486 return unknown(); 487 488 Size *= Arg->getValue().zextOrSelf(IntTyBits); 489 return std::make_pair(Size, Zero); 490 491 // TODO: handle more standard functions (+ wchar cousins): 492 // - strdup / strndup 493 // - strcpy / strncpy 494 // - strcat / strncat 495 // - memcpy / memmove 496 // - strcat / strncat 497 // - memset 498 } 499 500 SizeOffsetType 501 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) { 502 return std::make_pair(Zero, Zero); 503 } 504 505 SizeOffsetType 506 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 507 return unknown(); 508 } 509 510 SizeOffsetType 511 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 512 // Easy cases were already folded by previous passes. 513 return unknown(); 514 } 515 516 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 517 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 518 APInt Offset(IntTyBits, 0); 519 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 520 return unknown(); 521 522 return std::make_pair(PtrData.first, PtrData.second + Offset); 523 } 524 525 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 526 if (GA.mayBeOverridden()) 527 return unknown(); 528 return compute(GA.getAliasee()); 529 } 530 531 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 532 if (!GV.hasDefinitiveInitializer()) 533 return unknown(); 534 535 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); 536 return std::make_pair(align(Size, GV.getAlignment()), Zero); 537 } 538 539 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 540 // clueless 541 return unknown(); 542 } 543 544 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 545 ++ObjectVisitorLoad; 546 return unknown(); 547 } 548 549 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 550 // too complex to analyze statically. 551 return unknown(); 552 } 553 554 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 555 SizeOffsetType TrueSide = compute(I.getTrueValue()); 556 SizeOffsetType FalseSide = compute(I.getFalseValue()); 557 if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide) 558 return TrueSide; 559 return unknown(); 560 } 561 562 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 563 return std::make_pair(Zero, Zero); 564 } 565 566 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 567 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 568 return unknown(); 569 } 570 571 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 572 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 573 bool RoundToAlign) 574 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 575 RoundToAlign(RoundToAlign) { 576 // IntTy and Zero must be set for each compute() since the address space may 577 // be different for later objects. 578 } 579 580 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 581 // XXX - Are vectors of pointers possible here? 582 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 583 Zero = ConstantInt::get(IntTy, 0); 584 585 SizeOffsetEvalType Result = compute_(V); 586 587 if (!bothKnown(Result)) { 588 // erase everything that was computed in this iteration from the cache, so 589 // that no dangling references are left behind. We could be a bit smarter if 590 // we kept a dependency graph. It's probably not worth the complexity. 591 for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) { 592 CacheMapTy::iterator CacheIt = CacheMap.find(*I); 593 // non-computable results can be safely cached 594 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 595 CacheMap.erase(CacheIt); 596 } 597 } 598 599 SeenVals.clear(); 600 return Result; 601 } 602 603 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 604 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign); 605 SizeOffsetType Const = Visitor.compute(V); 606 if (Visitor.bothKnown(Const)) 607 return std::make_pair(ConstantInt::get(Context, Const.first), 608 ConstantInt::get(Context, Const.second)); 609 610 V = V->stripPointerCasts(); 611 612 // check cache 613 CacheMapTy::iterator CacheIt = CacheMap.find(V); 614 if (CacheIt != CacheMap.end()) 615 return CacheIt->second; 616 617 // always generate code immediately before the instruction being 618 // processed, so that the generated code dominates the same BBs 619 BuilderTy::InsertPointGuard Guard(Builder); 620 if (Instruction *I = dyn_cast<Instruction>(V)) 621 Builder.SetInsertPoint(I); 622 623 // now compute the size and offset 624 SizeOffsetEvalType Result; 625 626 // Record the pointers that were handled in this run, so that they can be 627 // cleaned later if something fails. We also use this set to break cycles that 628 // can occur in dead code. 629 if (!SeenVals.insert(V).second) { 630 Result = unknown(); 631 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 632 Result = visitGEPOperator(*GEP); 633 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 634 Result = visit(*I); 635 } else if (isa<Argument>(V) || 636 (isa<ConstantExpr>(V) && 637 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 638 isa<GlobalAlias>(V) || 639 isa<GlobalVariable>(V)) { 640 // ignore values where we cannot do more than what ObjectSizeVisitor can 641 Result = unknown(); 642 } else { 643 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 644 << *V << '\n'); 645 Result = unknown(); 646 } 647 648 // Don't reuse CacheIt since it may be invalid at this point. 649 CacheMap[V] = Result; 650 return Result; 651 } 652 653 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 654 if (!I.getAllocatedType()->isSized()) 655 return unknown(); 656 657 // must be a VLA 658 assert(I.isArrayAllocation()); 659 Value *ArraySize = I.getArraySize(); 660 Value *Size = ConstantInt::get(ArraySize->getType(), 661 DL.getTypeAllocSize(I.getAllocatedType())); 662 Size = Builder.CreateMul(Size, ArraySize); 663 return std::make_pair(Size, Zero); 664 } 665 666 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 667 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc, 668 TLI); 669 if (!FnData) 670 return unknown(); 671 672 // handle strdup-like functions separately 673 if (FnData->AllocTy == StrDupLike) { 674 // TODO 675 return unknown(); 676 } 677 678 Value *FirstArg = CS.getArgument(FnData->FstParam); 679 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 680 if (FnData->SndParam < 0) 681 return std::make_pair(FirstArg, Zero); 682 683 Value *SecondArg = CS.getArgument(FnData->SndParam); 684 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 685 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 686 return std::make_pair(Size, Zero); 687 688 // TODO: handle more standard functions (+ wchar cousins): 689 // - strdup / strndup 690 // - strcpy / strncpy 691 // - strcat / strncat 692 // - memcpy / memmove 693 // - strcat / strncat 694 // - memset 695 } 696 697 SizeOffsetEvalType 698 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 699 return unknown(); 700 } 701 702 SizeOffsetEvalType 703 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 704 return unknown(); 705 } 706 707 SizeOffsetEvalType 708 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 709 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 710 if (!bothKnown(PtrData)) 711 return unknown(); 712 713 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 714 Offset = Builder.CreateAdd(PtrData.second, Offset); 715 return std::make_pair(PtrData.first, Offset); 716 } 717 718 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 719 // clueless 720 return unknown(); 721 } 722 723 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 724 return unknown(); 725 } 726 727 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 728 // create 2 PHIs: one for size and another for offset 729 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 730 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 731 732 // insert right away in the cache to handle recursive PHIs 733 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 734 735 // compute offset/size for each PHI incoming pointer 736 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 737 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 738 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 739 740 if (!bothKnown(EdgeData)) { 741 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 742 OffsetPHI->eraseFromParent(); 743 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 744 SizePHI->eraseFromParent(); 745 return unknown(); 746 } 747 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 748 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 749 } 750 751 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 752 if ((Tmp = SizePHI->hasConstantValue())) { 753 Size = Tmp; 754 SizePHI->replaceAllUsesWith(Size); 755 SizePHI->eraseFromParent(); 756 } 757 if ((Tmp = OffsetPHI->hasConstantValue())) { 758 Offset = Tmp; 759 OffsetPHI->replaceAllUsesWith(Offset); 760 OffsetPHI->eraseFromParent(); 761 } 762 return std::make_pair(Size, Offset); 763 } 764 765 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 766 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 767 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 768 769 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 770 return unknown(); 771 if (TrueSide == FalseSide) 772 return TrueSide; 773 774 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 775 FalseSide.first); 776 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 777 FalseSide.second); 778 return std::make_pair(Size, Offset); 779 } 780 781 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 782 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 783 return unknown(); 784 } 785