1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Analysis/TargetFolder.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "memory-builtins" 51 52 enum AllocType : uint8_t { 53 OpNewLike = 1<<0, // allocates; never returns null 54 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 55 CallocLike = 1<<2, // allocates + bzero 56 ReallocLike = 1<<3, // reallocates 57 StrDupLike = 1<<4, 58 MallocOrCallocLike = MallocLike | CallocLike, 59 AllocLike = MallocLike | CallocLike | StrDupLike, 60 AnyAlloc = AllocLike | ReallocLike 61 }; 62 63 struct AllocFnsTy { 64 AllocType AllocTy; 65 unsigned NumParams; 66 // First and Second size parameters (or -1 if unused) 67 int FstParam, SndParam; 68 }; 69 70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 71 // know which functions are nounwind, noalias, nocapture parameters, etc. 72 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 73 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 74 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 75 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 76 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 77 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t) 78 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow) 79 {MallocLike, 3, 0, -1}}, 80 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 81 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 82 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t) 83 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow) 84 {MallocLike, 3, 0, -1}}, 85 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 86 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 87 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t) 88 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow) 89 {MallocLike, 3, 0, -1}}, 90 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 91 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 92 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t) 93 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow) 94 {MallocLike, 3, 0, -1}}, 95 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 96 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 97 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 98 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 99 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 100 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 101 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 102 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 103 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 104 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 105 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 106 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 107 {LibFunc_strndup, {StrDupLike, 2, 1, -1}} 108 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 109 }; 110 111 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 112 bool &IsNoBuiltin) { 113 // Don't care about intrinsics in this case. 114 if (isa<IntrinsicInst>(V)) 115 return nullptr; 116 117 if (LookThroughBitCast) 118 V = V->stripPointerCasts(); 119 120 ImmutableCallSite CS(V); 121 if (!CS.getInstruction()) 122 return nullptr; 123 124 IsNoBuiltin = CS.isNoBuiltin(); 125 126 if (const Function *Callee = CS.getCalledFunction()) 127 return Callee; 128 return nullptr; 129 } 130 131 /// Returns the allocation data for the given value if it's either a call to a 132 /// known allocation function, or a call to a function with the allocsize 133 /// attribute. 134 static Optional<AllocFnsTy> 135 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 136 const TargetLibraryInfo *TLI) { 137 // Make sure that the function is available. 138 StringRef FnName = Callee->getName(); 139 LibFunc TLIFn; 140 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 141 return None; 142 143 const auto *Iter = find_if( 144 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 145 return P.first == TLIFn; 146 }); 147 148 if (Iter == std::end(AllocationFnData)) 149 return None; 150 151 const AllocFnsTy *FnData = &Iter->second; 152 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 153 return None; 154 155 // Check function prototype. 156 int FstParam = FnData->FstParam; 157 int SndParam = FnData->SndParam; 158 FunctionType *FTy = Callee->getFunctionType(); 159 160 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 161 FTy->getNumParams() == FnData->NumParams && 162 (FstParam < 0 || 163 (FTy->getParamType(FstParam)->isIntegerTy(32) || 164 FTy->getParamType(FstParam)->isIntegerTy(64))) && 165 (SndParam < 0 || 166 FTy->getParamType(SndParam)->isIntegerTy(32) || 167 FTy->getParamType(SndParam)->isIntegerTy(64))) 168 return *FnData; 169 return None; 170 } 171 172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 173 const TargetLibraryInfo *TLI, 174 bool LookThroughBitCast = false) { 175 bool IsNoBuiltinCall; 176 if (const Function *Callee = 177 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 178 if (!IsNoBuiltinCall) 179 return getAllocationDataForFunction(Callee, AllocTy, TLI); 180 return None; 181 } 182 183 static Optional<AllocFnsTy> 184 getAllocationData(const Value *V, AllocType AllocTy, 185 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 186 bool LookThroughBitCast = false) { 187 bool IsNoBuiltinCall; 188 if (const Function *Callee = 189 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 190 if (!IsNoBuiltinCall) 191 return getAllocationDataForFunction( 192 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 193 return None; 194 } 195 196 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 197 const TargetLibraryInfo *TLI) { 198 bool IsNoBuiltinCall; 199 const Function *Callee = 200 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 201 if (!Callee) 202 return None; 203 204 // Prefer to use existing information over allocsize. This will give us an 205 // accurate AllocTy. 206 if (!IsNoBuiltinCall) 207 if (Optional<AllocFnsTy> Data = 208 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 209 return Data; 210 211 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 212 if (Attr == Attribute()) 213 return None; 214 215 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 216 217 AllocFnsTy Result; 218 // Because allocsize only tells us how many bytes are allocated, we're not 219 // really allowed to assume anything, so we use MallocLike. 220 Result.AllocTy = MallocLike; 221 Result.NumParams = Callee->getNumOperands(); 222 Result.FstParam = Args.first; 223 Result.SndParam = Args.second.getValueOr(-1); 224 return Result; 225 } 226 227 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 228 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 229 return CS && CS.hasRetAttr(Attribute::NoAlias); 230 } 231 232 /// Tests if a value is a call or invoke to a library function that 233 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 234 /// like). 235 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 236 bool LookThroughBitCast) { 237 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 238 } 239 bool llvm::isAllocationFn( 240 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 241 bool LookThroughBitCast) { 242 return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue(); 243 } 244 245 /// Tests if a value is a call or invoke to a function that returns a 246 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 247 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 248 bool LookThroughBitCast) { 249 // it's safe to consider realloc as noalias since accessing the original 250 // pointer is undefined behavior 251 return isAllocationFn(V, TLI, LookThroughBitCast) || 252 hasNoAliasAttr(V, LookThroughBitCast); 253 } 254 255 /// Tests if a value is a call or invoke to a library function that 256 /// allocates uninitialized memory (such as malloc). 257 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 258 bool LookThroughBitCast) { 259 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 260 } 261 bool llvm::isMallocLikeFn( 262 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 263 bool LookThroughBitCast) { 264 return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast) 265 .hasValue(); 266 } 267 268 /// Tests if a value is a call or invoke to a library function that 269 /// allocates zero-filled memory (such as calloc). 270 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 271 bool LookThroughBitCast) { 272 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 273 } 274 275 /// Tests if a value is a call or invoke to a library function that 276 /// allocates memory similar to malloc or calloc. 277 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 278 bool LookThroughBitCast) { 279 return getAllocationData(V, MallocOrCallocLike, TLI, 280 LookThroughBitCast).hasValue(); 281 } 282 283 /// Tests if a value is a call or invoke to a library function that 284 /// allocates memory (either malloc, calloc, or strdup like). 285 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 286 bool LookThroughBitCast) { 287 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 288 } 289 290 /// Tests if a value is a call or invoke to a library function that 291 /// reallocates memory (e.g., realloc). 292 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 293 bool LookThroughBitCast) { 294 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue(); 295 } 296 297 /// Tests if a functions is a call or invoke to a library function that 298 /// reallocates memory (e.g., realloc). 299 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) { 300 return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue(); 301 } 302 303 /// Tests if a value is a call or invoke to a library function that 304 /// allocates memory and throws if an allocation failed (e.g., new). 305 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI, 306 bool LookThroughBitCast) { 307 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue(); 308 } 309 310 /// Tests if a value is a call or invoke to a library function that 311 /// allocates memory (strdup, strndup). 312 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI, 313 bool LookThroughBitCast) { 314 return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue(); 315 } 316 317 /// extractMallocCall - Returns the corresponding CallInst if the instruction 318 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 319 /// ignore InvokeInst here. 320 const CallInst *llvm::extractMallocCall( 321 const Value *I, 322 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 323 return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr; 324 } 325 326 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 327 const TargetLibraryInfo *TLI, 328 bool LookThroughSExt = false) { 329 if (!CI) 330 return nullptr; 331 332 // The size of the malloc's result type must be known to determine array size. 333 Type *T = getMallocAllocatedType(CI, TLI); 334 if (!T || !T->isSized()) 335 return nullptr; 336 337 unsigned ElementSize = DL.getTypeAllocSize(T); 338 if (StructType *ST = dyn_cast<StructType>(T)) 339 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 340 341 // If malloc call's arg can be determined to be a multiple of ElementSize, 342 // return the multiple. Otherwise, return NULL. 343 Value *MallocArg = CI->getArgOperand(0); 344 Value *Multiple = nullptr; 345 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 346 return Multiple; 347 348 return nullptr; 349 } 350 351 /// getMallocType - Returns the PointerType resulting from the malloc call. 352 /// The PointerType depends on the number of bitcast uses of the malloc call: 353 /// 0: PointerType is the calls' return type. 354 /// 1: PointerType is the bitcast's result type. 355 /// >1: Unique PointerType cannot be determined, return NULL. 356 PointerType *llvm::getMallocType(const CallInst *CI, 357 const TargetLibraryInfo *TLI) { 358 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 359 360 PointerType *MallocType = nullptr; 361 unsigned NumOfBitCastUses = 0; 362 363 // Determine if CallInst has a bitcast use. 364 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 365 UI != E;) 366 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 367 MallocType = cast<PointerType>(BCI->getDestTy()); 368 NumOfBitCastUses++; 369 } 370 371 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 372 if (NumOfBitCastUses == 1) 373 return MallocType; 374 375 // Malloc call was not bitcast, so type is the malloc function's return type. 376 if (NumOfBitCastUses == 0) 377 return cast<PointerType>(CI->getType()); 378 379 // Type could not be determined. 380 return nullptr; 381 } 382 383 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 384 /// The Type depends on the number of bitcast uses of the malloc call: 385 /// 0: PointerType is the malloc calls' return type. 386 /// 1: PointerType is the bitcast's result type. 387 /// >1: Unique PointerType cannot be determined, return NULL. 388 Type *llvm::getMallocAllocatedType(const CallInst *CI, 389 const TargetLibraryInfo *TLI) { 390 PointerType *PT = getMallocType(CI, TLI); 391 return PT ? PT->getElementType() : nullptr; 392 } 393 394 /// getMallocArraySize - Returns the array size of a malloc call. If the 395 /// argument passed to malloc is a multiple of the size of the malloced type, 396 /// then return that multiple. For non-array mallocs, the multiple is 397 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 398 /// determined. 399 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 400 const TargetLibraryInfo *TLI, 401 bool LookThroughSExt) { 402 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 403 return computeArraySize(CI, DL, TLI, LookThroughSExt); 404 } 405 406 /// extractCallocCall - Returns the corresponding CallInst if the instruction 407 /// is a calloc call. 408 const CallInst *llvm::extractCallocCall(const Value *I, 409 const TargetLibraryInfo *TLI) { 410 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 411 } 412 413 /// isLibFreeFunction - Returns true if the function is a builtin free() 414 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 415 unsigned ExpectedNumParams; 416 if (TLIFn == LibFunc_free || 417 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 418 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 419 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 420 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 421 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 422 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 423 ExpectedNumParams = 1; 424 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 425 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 426 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 427 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t) 428 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 429 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 430 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 431 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t) 432 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 433 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 434 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 435 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 436 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 437 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 438 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 439 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 440 ExpectedNumParams = 2; 441 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow) 442 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow) 443 ExpectedNumParams = 3; 444 else 445 return false; 446 447 // Check free prototype. 448 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 449 // attribute will exist. 450 FunctionType *FTy = F->getFunctionType(); 451 if (!FTy->getReturnType()->isVoidTy()) 452 return false; 453 if (FTy->getNumParams() != ExpectedNumParams) 454 return false; 455 if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext())) 456 return false; 457 458 return true; 459 } 460 461 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 462 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 463 bool IsNoBuiltinCall; 464 const Function *Callee = 465 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 466 if (Callee == nullptr || IsNoBuiltinCall) 467 return nullptr; 468 469 StringRef FnName = Callee->getName(); 470 LibFunc TLIFn; 471 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 472 return nullptr; 473 474 return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr; 475 } 476 477 478 //===----------------------------------------------------------------------===// 479 // Utility functions to compute size of objects. 480 // 481 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 482 if (Data.second.isNegative() || Data.first.ult(Data.second)) 483 return APInt(Data.first.getBitWidth(), 0); 484 return Data.first - Data.second; 485 } 486 487 /// Compute the size of the object pointed by Ptr. Returns true and the 488 /// object size in Size if successful, and false otherwise. 489 /// If RoundToAlign is true, then Size is rounded up to the alignment of 490 /// allocas, byval arguments, and global variables. 491 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 492 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 493 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 494 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 495 if (!Visitor.bothKnown(Data)) 496 return false; 497 498 Size = getSizeWithOverflow(Data).getZExtValue(); 499 return true; 500 } 501 502 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 503 const DataLayout &DL, 504 const TargetLibraryInfo *TLI, 505 bool MustSucceed) { 506 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 507 "ObjectSize must be a call to llvm.objectsize!"); 508 509 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 510 ObjectSizeOpts EvalOptions; 511 // Unless we have to fold this to something, try to be as accurate as 512 // possible. 513 if (MustSucceed) 514 EvalOptions.EvalMode = 515 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 516 else 517 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 518 519 EvalOptions.NullIsUnknownSize = 520 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 521 522 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 523 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 524 if (StaticOnly) { 525 // FIXME: Does it make sense to just return a failure value if the size won't 526 // fit in the output and `!MustSucceed`? 527 uint64_t Size; 528 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 529 isUIntN(ResultType->getBitWidth(), Size)) 530 return ConstantInt::get(ResultType, Size); 531 } else { 532 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 533 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 534 SizeOffsetEvalType SizeOffsetPair = 535 Eval.compute(ObjectSize->getArgOperand(0)); 536 537 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 538 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL)); 539 Builder.SetInsertPoint(ObjectSize); 540 541 // If we've outside the end of the object, then we can always access 542 // exactly 0 bytes. 543 Value *ResultSize = 544 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); 545 Value *UseZero = 546 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); 547 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 548 return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0), 549 ResultSize); 550 } 551 } 552 553 if (!MustSucceed) 554 return nullptr; 555 556 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 557 } 558 559 STATISTIC(ObjectVisitorArgument, 560 "Number of arguments with unsolved size and offset"); 561 STATISTIC(ObjectVisitorLoad, 562 "Number of load instructions with unsolved size and offset"); 563 564 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) { 565 if (Options.RoundToAlign && Alignment) 566 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment))); 567 return Size; 568 } 569 570 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 571 const TargetLibraryInfo *TLI, 572 LLVMContext &Context, 573 ObjectSizeOpts Options) 574 : DL(DL), TLI(TLI), Options(Options) { 575 // Pointer size must be rechecked for each object visited since it could have 576 // a different address space. 577 } 578 579 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 580 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 581 Zero = APInt::getNullValue(IntTyBits); 582 583 V = V->stripPointerCasts(); 584 if (Instruction *I = dyn_cast<Instruction>(V)) { 585 // If we have already seen this instruction, bail out. Cycles can happen in 586 // unreachable code after constant propagation. 587 if (!SeenInsts.insert(I).second) 588 return unknown(); 589 590 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 591 return visitGEPOperator(*GEP); 592 return visit(*I); 593 } 594 if (Argument *A = dyn_cast<Argument>(V)) 595 return visitArgument(*A); 596 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 597 return visitConstantPointerNull(*P); 598 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 599 return visitGlobalAlias(*GA); 600 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 601 return visitGlobalVariable(*GV); 602 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 603 return visitUndefValue(*UV); 604 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 605 if (CE->getOpcode() == Instruction::IntToPtr) 606 return unknown(); // clueless 607 if (CE->getOpcode() == Instruction::GetElementPtr) 608 return visitGEPOperator(cast<GEPOperator>(*CE)); 609 } 610 611 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 612 << *V << '\n'); 613 return unknown(); 614 } 615 616 /// When we're compiling N-bit code, and the user uses parameters that are 617 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 618 /// trouble with APInt size issues. This function handles resizing + overflow 619 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 620 /// I's value. 621 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 622 // More bits than we can handle. Checking the bit width isn't necessary, but 623 // it's faster than checking active bits, and should give `false` in the 624 // vast majority of cases. 625 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 626 return false; 627 if (I.getBitWidth() != IntTyBits) 628 I = I.zextOrTrunc(IntTyBits); 629 return true; 630 } 631 632 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 633 if (!I.getAllocatedType()->isSized()) 634 return unknown(); 635 636 if (I.getAllocatedType()->isVectorTy() && 637 I.getAllocatedType()->getVectorIsScalable()) 638 return unknown(); 639 640 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 641 if (!I.isArrayAllocation()) 642 return std::make_pair(align(Size, I.getAlignment()), Zero); 643 644 Value *ArraySize = I.getArraySize(); 645 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 646 APInt NumElems = C->getValue(); 647 if (!CheckedZextOrTrunc(NumElems)) 648 return unknown(); 649 650 bool Overflow; 651 Size = Size.umul_ov(NumElems, Overflow); 652 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), 653 Zero); 654 } 655 return unknown(); 656 } 657 658 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 659 // No interprocedural analysis is done at the moment. 660 if (!A.hasByValOrInAllocaAttr()) { 661 ++ObjectVisitorArgument; 662 return unknown(); 663 } 664 PointerType *PT = cast<PointerType>(A.getType()); 665 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 666 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 667 } 668 669 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 670 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 671 if (!FnData) 672 return unknown(); 673 674 // Handle strdup-like functions separately. 675 if (FnData->AllocTy == StrDupLike) { 676 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 677 if (!Size) 678 return unknown(); 679 680 // Strndup limits strlen. 681 if (FnData->FstParam > 0) { 682 ConstantInt *Arg = 683 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 684 if (!Arg) 685 return unknown(); 686 687 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 688 if (Size.ugt(MaxSize)) 689 Size = MaxSize + 1; 690 } 691 return std::make_pair(Size, Zero); 692 } 693 694 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 695 if (!Arg) 696 return unknown(); 697 698 APInt Size = Arg->getValue(); 699 if (!CheckedZextOrTrunc(Size)) 700 return unknown(); 701 702 // Size is determined by just 1 parameter. 703 if (FnData->SndParam < 0) 704 return std::make_pair(Size, Zero); 705 706 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 707 if (!Arg) 708 return unknown(); 709 710 APInt NumElems = Arg->getValue(); 711 if (!CheckedZextOrTrunc(NumElems)) 712 return unknown(); 713 714 bool Overflow; 715 Size = Size.umul_ov(NumElems, Overflow); 716 return Overflow ? unknown() : std::make_pair(Size, Zero); 717 718 // TODO: handle more standard functions (+ wchar cousins): 719 // - strdup / strndup 720 // - strcpy / strncpy 721 // - strcat / strncat 722 // - memcpy / memmove 723 // - strcat / strncat 724 // - memset 725 } 726 727 SizeOffsetType 728 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 729 // If null is unknown, there's nothing we can do. Additionally, non-zero 730 // address spaces can make use of null, so we don't presume to know anything 731 // about that. 732 // 733 // TODO: How should this work with address space casts? We currently just drop 734 // them on the floor, but it's unclear what we should do when a NULL from 735 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 736 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 737 return unknown(); 738 return std::make_pair(Zero, Zero); 739 } 740 741 SizeOffsetType 742 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 743 return unknown(); 744 } 745 746 SizeOffsetType 747 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 748 // Easy cases were already folded by previous passes. 749 return unknown(); 750 } 751 752 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 753 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 754 APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0); 755 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 756 return unknown(); 757 758 return std::make_pair(PtrData.first, PtrData.second + Offset); 759 } 760 761 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 762 if (GA.isInterposable()) 763 return unknown(); 764 return compute(GA.getAliasee()); 765 } 766 767 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 768 if (!GV.hasDefinitiveInitializer()) 769 return unknown(); 770 771 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 772 return std::make_pair(align(Size, GV.getAlignment()), Zero); 773 } 774 775 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 776 // clueless 777 return unknown(); 778 } 779 780 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 781 ++ObjectVisitorLoad; 782 return unknown(); 783 } 784 785 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 786 // too complex to analyze statically. 787 return unknown(); 788 } 789 790 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 791 SizeOffsetType TrueSide = compute(I.getTrueValue()); 792 SizeOffsetType FalseSide = compute(I.getFalseValue()); 793 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 794 if (TrueSide == FalseSide) { 795 return TrueSide; 796 } 797 798 APInt TrueResult = getSizeWithOverflow(TrueSide); 799 APInt FalseResult = getSizeWithOverflow(FalseSide); 800 801 if (TrueResult == FalseResult) { 802 return TrueSide; 803 } 804 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 805 if (TrueResult.slt(FalseResult)) 806 return TrueSide; 807 return FalseSide; 808 } 809 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 810 if (TrueResult.sgt(FalseResult)) 811 return TrueSide; 812 return FalseSide; 813 } 814 } 815 return unknown(); 816 } 817 818 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 819 return std::make_pair(Zero, Zero); 820 } 821 822 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 823 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 824 << '\n'); 825 return unknown(); 826 } 827 828 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 829 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 830 ObjectSizeOpts EvalOpts) 831 : DL(DL), TLI(TLI), Context(Context), 832 Builder(Context, TargetFolder(DL), 833 IRBuilderCallbackInserter( 834 [&](Instruction *I) { InsertedInstructions.insert(I); })), 835 EvalOpts(EvalOpts) { 836 // IntTy and Zero must be set for each compute() since the address space may 837 // be different for later objects. 838 } 839 840 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 841 // XXX - Are vectors of pointers possible here? 842 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 843 Zero = ConstantInt::get(IntTy, 0); 844 845 SizeOffsetEvalType Result = compute_(V); 846 847 if (!bothKnown(Result)) { 848 // Erase everything that was computed in this iteration from the cache, so 849 // that no dangling references are left behind. We could be a bit smarter if 850 // we kept a dependency graph. It's probably not worth the complexity. 851 for (const Value *SeenVal : SeenVals) { 852 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 853 // non-computable results can be safely cached 854 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 855 CacheMap.erase(CacheIt); 856 } 857 858 // Erase any instructions we inserted as part of the traversal. 859 for (Instruction *I : InsertedInstructions) { 860 I->replaceAllUsesWith(UndefValue::get(I->getType())); 861 I->eraseFromParent(); 862 } 863 } 864 865 SeenVals.clear(); 866 InsertedInstructions.clear(); 867 return Result; 868 } 869 870 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 871 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); 872 SizeOffsetType Const = Visitor.compute(V); 873 if (Visitor.bothKnown(Const)) 874 return std::make_pair(ConstantInt::get(Context, Const.first), 875 ConstantInt::get(Context, Const.second)); 876 877 V = V->stripPointerCasts(); 878 879 // Check cache. 880 CacheMapTy::iterator CacheIt = CacheMap.find(V); 881 if (CacheIt != CacheMap.end()) 882 return CacheIt->second; 883 884 // Always generate code immediately before the instruction being 885 // processed, so that the generated code dominates the same BBs. 886 BuilderTy::InsertPointGuard Guard(Builder); 887 if (Instruction *I = dyn_cast<Instruction>(V)) 888 Builder.SetInsertPoint(I); 889 890 // Now compute the size and offset. 891 SizeOffsetEvalType Result; 892 893 // Record the pointers that were handled in this run, so that they can be 894 // cleaned later if something fails. We also use this set to break cycles that 895 // can occur in dead code. 896 if (!SeenVals.insert(V).second) { 897 Result = unknown(); 898 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 899 Result = visitGEPOperator(*GEP); 900 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 901 Result = visit(*I); 902 } else if (isa<Argument>(V) || 903 (isa<ConstantExpr>(V) && 904 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 905 isa<GlobalAlias>(V) || 906 isa<GlobalVariable>(V)) { 907 // Ignore values where we cannot do more than ObjectSizeVisitor. 908 Result = unknown(); 909 } else { 910 LLVM_DEBUG( 911 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 912 << '\n'); 913 Result = unknown(); 914 } 915 916 // Don't reuse CacheIt since it may be invalid at this point. 917 CacheMap[V] = Result; 918 return Result; 919 } 920 921 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 922 if (!I.getAllocatedType()->isSized()) 923 return unknown(); 924 925 // must be a VLA 926 assert(I.isArrayAllocation()); 927 Value *ArraySize = I.getArraySize(); 928 Value *Size = ConstantInt::get(ArraySize->getType(), 929 DL.getTypeAllocSize(I.getAllocatedType())); 930 Size = Builder.CreateMul(Size, ArraySize); 931 return std::make_pair(Size, Zero); 932 } 933 934 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 935 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 936 if (!FnData) 937 return unknown(); 938 939 // Handle strdup-like functions separately. 940 if (FnData->AllocTy == StrDupLike) { 941 // TODO 942 return unknown(); 943 } 944 945 Value *FirstArg = CS.getArgument(FnData->FstParam); 946 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 947 if (FnData->SndParam < 0) 948 return std::make_pair(FirstArg, Zero); 949 950 Value *SecondArg = CS.getArgument(FnData->SndParam); 951 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 952 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 953 return std::make_pair(Size, Zero); 954 955 // TODO: handle more standard functions (+ wchar cousins): 956 // - strdup / strndup 957 // - strcpy / strncpy 958 // - strcat / strncat 959 // - memcpy / memmove 960 // - strcat / strncat 961 // - memset 962 } 963 964 SizeOffsetEvalType 965 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 966 return unknown(); 967 } 968 969 SizeOffsetEvalType 970 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 971 return unknown(); 972 } 973 974 SizeOffsetEvalType 975 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 976 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 977 if (!bothKnown(PtrData)) 978 return unknown(); 979 980 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 981 Offset = Builder.CreateAdd(PtrData.second, Offset); 982 return std::make_pair(PtrData.first, Offset); 983 } 984 985 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 986 // clueless 987 return unknown(); 988 } 989 990 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 991 return unknown(); 992 } 993 994 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 995 // Create 2 PHIs: one for size and another for offset. 996 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 997 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 998 999 // Insert right away in the cache to handle recursive PHIs. 1000 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 1001 1002 // Compute offset/size for each PHI incoming pointer. 1003 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 1004 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 1005 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 1006 1007 if (!bothKnown(EdgeData)) { 1008 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 1009 OffsetPHI->eraseFromParent(); 1010 InsertedInstructions.erase(OffsetPHI); 1011 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 1012 SizePHI->eraseFromParent(); 1013 InsertedInstructions.erase(SizePHI); 1014 return unknown(); 1015 } 1016 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 1017 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 1018 } 1019 1020 Value *Size = SizePHI, *Offset = OffsetPHI; 1021 if (Value *Tmp = SizePHI->hasConstantValue()) { 1022 Size = Tmp; 1023 SizePHI->replaceAllUsesWith(Size); 1024 SizePHI->eraseFromParent(); 1025 InsertedInstructions.erase(SizePHI); 1026 } 1027 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1028 Offset = Tmp; 1029 OffsetPHI->replaceAllUsesWith(Offset); 1030 OffsetPHI->eraseFromParent(); 1031 InsertedInstructions.erase(OffsetPHI); 1032 } 1033 return std::make_pair(Size, Offset); 1034 } 1035 1036 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1037 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 1038 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 1039 1040 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 1041 return unknown(); 1042 if (TrueSide == FalseSide) 1043 return TrueSide; 1044 1045 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 1046 FalseSide.first); 1047 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 1048 FalseSide.second); 1049 return std::make_pair(Size, Offset); 1050 } 1051 1052 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1053 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1054 << '\n'); 1055 return unknown(); 1056 } 1057