1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/TargetFolder.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/Utils/Local.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <type_traits>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrOpNewLike  = MallocLike | OpNewLike,
60   MallocOrCallocLike = MallocLike | OpNewLike | CallocLike | AlignedAllocLike,
61   AllocLike          = MallocOrCallocLike | StrDupLike,
62   AnyAlloc           = AllocLike | ReallocLike
63 };
64 
65 enum class MallocFamily {
66   Malloc,
67   CPPNew,             // new(unsigned int)
68   CPPNewAligned,      // new(unsigned int, align_val_t)
69   CPPNewArray,        // new[](unsigned int)
70   CPPNewArrayAligned, // new[](unsigned long, align_val_t)
71   MSVCNew,            // new(unsigned int)
72   MSVCArrayNew,       // new[](unsigned int)
73   VecMalloc,
74   KmpcAllocShared,
75 };
76 
77 StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
78   switch (Family) {
79   case MallocFamily::Malloc:
80     return "malloc";
81   case MallocFamily::CPPNew:
82     return "_Znwm";
83   case MallocFamily::CPPNewAligned:
84     return "_ZnwmSt11align_val_t";
85   case MallocFamily::CPPNewArray:
86     return "_Znam";
87   case MallocFamily::CPPNewArrayAligned:
88     return "_ZnamSt11align_val_t";
89   case MallocFamily::MSVCNew:
90     return "??2@YAPAXI@Z";
91   case MallocFamily::MSVCArrayNew:
92     return "??_U@YAPAXI@Z";
93   case MallocFamily::VecMalloc:
94     return "vec_malloc";
95   case MallocFamily::KmpcAllocShared:
96     return "__kmpc_alloc_shared";
97   }
98   llvm_unreachable("missing an alloc family");
99 }
100 
101 struct AllocFnsTy {
102   AllocType AllocTy;
103   unsigned NumParams;
104   // First and Second size parameters (or -1 if unused)
105   int FstParam, SndParam;
106   // Alignment parameter for aligned_alloc and aligned new
107   int AlignParam;
108   // Name of default allocator function to group malloc/free calls by family
109   MallocFamily Family;
110 };
111 
112 // clang-format off
113 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
114 // know which functions are nounwind, noalias, nocapture parameters, etc.
115 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
116     {LibFunc_malloc,                            {MallocLike,       1,  0, -1, -1, MallocFamily::Malloc}},
117     {LibFunc_vec_malloc,                        {MallocLike,       1,  0, -1, -1, MallocFamily::VecMalloc}},
118     {LibFunc_valloc,                            {MallocLike,       1,  0, -1, -1, MallocFamily::Malloc}},
119     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int)
120     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int, nothrow)
121     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t)
122     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t, nothrow)
123     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long)
124     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long, nothrow)
125     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t)
126     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t, nothrow)
127     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int)
128     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int, nothrow)
129     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
130     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
131     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long)
132     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long, nothrow)
133     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
134     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
135     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int)
136     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int, nothrow)
137     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long)
138     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long, nothrow)
139     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int)
140     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int, nothrow)
141     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long)
142     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long, nothrow)
143     {LibFunc_aligned_alloc,                     {AlignedAllocLike, 2,  1, -1,  0, MallocFamily::Malloc}},
144     {LibFunc_memalign,                          {AlignedAllocLike, 2,  1, -1,  0, MallocFamily::Malloc}},
145     {LibFunc_calloc,                            {CallocLike,       2,  0,  1, -1, MallocFamily::Malloc}},
146     {LibFunc_vec_calloc,                        {CallocLike,       2,  0,  1, -1, MallocFamily::VecMalloc}},
147     {LibFunc_realloc,                           {ReallocLike,      2,  1, -1, -1, MallocFamily::Malloc}},
148     {LibFunc_vec_realloc,                       {ReallocLike,      2,  1, -1, -1, MallocFamily::VecMalloc}},
149     {LibFunc_reallocf,                          {ReallocLike,      2,  1, -1, -1, MallocFamily::Malloc}},
150     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
151     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
152     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1, MallocFamily::KmpcAllocShared}},
153     // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
154 };
155 // clang-format on
156 
157 static const Function *getCalledFunction(const Value *V,
158                                          bool &IsNoBuiltin) {
159   // Don't care about intrinsics in this case.
160   if (isa<IntrinsicInst>(V))
161     return nullptr;
162 
163   const auto *CB = dyn_cast<CallBase>(V);
164   if (!CB)
165     return nullptr;
166 
167   IsNoBuiltin = CB->isNoBuiltin();
168 
169   if (const Function *Callee = CB->getCalledFunction())
170     return Callee;
171   return nullptr;
172 }
173 
174 /// Returns the allocation data for the given value if it's a call to a known
175 /// allocation function.
176 static Optional<AllocFnsTy>
177 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
178                              const TargetLibraryInfo *TLI) {
179   // Make sure that the function is available.
180   LibFunc TLIFn;
181   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
182     return None;
183 
184   const auto *Iter = find_if(
185       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
186         return P.first == TLIFn;
187       });
188 
189   if (Iter == std::end(AllocationFnData))
190     return None;
191 
192   const AllocFnsTy *FnData = &Iter->second;
193   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
194     return None;
195 
196   // Check function prototype.
197   int FstParam = FnData->FstParam;
198   int SndParam = FnData->SndParam;
199   FunctionType *FTy = Callee->getFunctionType();
200 
201   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
202       FTy->getNumParams() == FnData->NumParams &&
203       (FstParam < 0 ||
204        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
205         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
206       (SndParam < 0 ||
207        FTy->getParamType(SndParam)->isIntegerTy(32) ||
208        FTy->getParamType(SndParam)->isIntegerTy(64)))
209     return *FnData;
210   return None;
211 }
212 
213 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
214                                               const TargetLibraryInfo *TLI) {
215   bool IsNoBuiltinCall;
216   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
217     if (!IsNoBuiltinCall)
218       return getAllocationDataForFunction(Callee, AllocTy, TLI);
219   return None;
220 }
221 
222 static Optional<AllocFnsTy>
223 getAllocationData(const Value *V, AllocType AllocTy,
224                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
225   bool IsNoBuiltinCall;
226   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
227     if (!IsNoBuiltinCall)
228       return getAllocationDataForFunction(
229           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
230   return None;
231 }
232 
233 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
234                                               const TargetLibraryInfo *TLI) {
235   bool IsNoBuiltinCall;
236   const Function *Callee =
237       getCalledFunction(V, IsNoBuiltinCall);
238   if (!Callee)
239     return None;
240 
241   // Prefer to use existing information over allocsize. This will give us an
242   // accurate AllocTy.
243   if (!IsNoBuiltinCall)
244     if (Optional<AllocFnsTy> Data =
245             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
246       return Data;
247 
248   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
249   if (Attr == Attribute())
250     return None;
251 
252   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
253 
254   AllocFnsTy Result;
255   // Because allocsize only tells us how many bytes are allocated, we're not
256   // really allowed to assume anything, so we use MallocLike.
257   Result.AllocTy = MallocLike;
258   Result.NumParams = Callee->getNumOperands();
259   Result.FstParam = Args.first;
260   Result.SndParam = Args.second.getValueOr(-1);
261   // Allocsize has no way to specify an alignment argument
262   Result.AlignParam = -1;
263   return Result;
264 }
265 
266 /// Tests if a value is a call or invoke to a library function that
267 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
268 /// like).
269 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
270   return getAllocationData(V, AnyAlloc, TLI).hasValue();
271 }
272 bool llvm::isAllocationFn(
273     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
274   return getAllocationData(V, AnyAlloc, GetTLI).hasValue();
275 }
276 
277 /// Tests if a value is a call or invoke to a library function that
278 /// allocates uninitialized memory (such as malloc).
279 static bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
280   return getAllocationData(V, MallocOrOpNewLike, TLI).hasValue();
281 }
282 
283 /// Tests if a value is a call or invoke to a library function that
284 /// allocates uninitialized memory with alignment (such as aligned_alloc).
285 static bool isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
286   return getAllocationData(V, AlignedAllocLike, TLI)
287       .hasValue();
288 }
289 
290 /// Tests if a value is a call or invoke to a library function that
291 /// allocates zero-filled memory (such as calloc).
292 static bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
293   return getAllocationData(V, CallocLike, TLI).hasValue();
294 }
295 
296 /// Tests if a value is a call or invoke to a library function that
297 /// allocates memory similar to malloc or calloc.
298 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
299   return getAllocationData(V, MallocOrCallocLike, TLI).hasValue();
300 }
301 
302 /// Tests if a value is a call or invoke to a library function that
303 /// allocates memory (either malloc, calloc, or strdup like).
304 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
305   return getAllocationData(V, AllocLike, TLI).hasValue();
306 }
307 
308 /// Tests if a value is a call or invoke to a library function that
309 /// reallocates memory (e.g., realloc).
310 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
311   return getAllocationData(V, ReallocLike, TLI).hasValue();
312 }
313 
314 /// Tests if a functions is a call or invoke to a library function that
315 /// reallocates memory (e.g., realloc).
316 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
317   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
318 }
319 
320 bool llvm::isAllocRemovable(const CallBase *CB, const TargetLibraryInfo *TLI) {
321   assert(isAllocationFn(CB, TLI));
322 
323   // Note: Removability is highly dependent on the source language.  For
324   // example, recent C++ requires direct calls to the global allocation
325   // [basic.stc.dynamic.allocation] to be observable unless part of a new
326   // expression [expr.new paragraph 13].
327 
328   // Historically we've treated the C family allocation routines as removable
329   return isAllocLikeFn(CB, TLI);
330 }
331 
332 Value *llvm::getAllocAlignment(const CallBase *V,
333                                const TargetLibraryInfo *TLI) {
334   assert(isAllocationFn(V, TLI));
335 
336   const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
337   if (FnData.hasValue() && FnData->AlignParam >= 0) {
338     return V->getOperand(FnData->AlignParam);
339   }
340   unsigned AllocAlignParam;
341   if (V->getAttributes().hasAttrSomewhere(Attribute::AllocAlign,
342                                           &AllocAlignParam)) {
343     return V->getOperand(AllocAlignParam-1);
344   }
345   return nullptr;
346 }
347 
348 /// When we're compiling N-bit code, and the user uses parameters that are
349 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
350 /// trouble with APInt size issues. This function handles resizing + overflow
351 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
352 /// I's value.
353 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
354   // More bits than we can handle. Checking the bit width isn't necessary, but
355   // it's faster than checking active bits, and should give `false` in the
356   // vast majority of cases.
357   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
358     return false;
359   if (I.getBitWidth() != IntTyBits)
360     I = I.zextOrTrunc(IntTyBits);
361   return true;
362 }
363 
364 Optional<APInt>
365 llvm::getAllocSize(const CallBase *CB,
366                    const TargetLibraryInfo *TLI,
367                    std::function<const Value*(const Value*)> Mapper) {
368   // Note: This handles both explicitly listed allocation functions and
369   // allocsize.  The code structure could stand to be cleaned up a bit.
370   Optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
371   if (!FnData)
372     return None;
373 
374   // Get the index type for this address space, results and intermediate
375   // computations are performed at that width.
376   auto &DL = CB->getModule()->getDataLayout();
377   const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
378 
379   // Handle strdup-like functions separately.
380   if (FnData->AllocTy == StrDupLike) {
381     APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
382     if (!Size)
383       return None;
384 
385     // Strndup limits strlen.
386     if (FnData->FstParam > 0) {
387       const ConstantInt *Arg =
388         dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
389       if (!Arg)
390         return None;
391 
392       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
393       if (Size.ugt(MaxSize))
394         Size = MaxSize + 1;
395     }
396     return Size;
397   }
398 
399   const ConstantInt *Arg =
400     dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
401   if (!Arg)
402     return None;
403 
404   APInt Size = Arg->getValue();
405   if (!CheckedZextOrTrunc(Size, IntTyBits))
406     return None;
407 
408   // Size is determined by just 1 parameter.
409   if (FnData->SndParam < 0)
410     return Size;
411 
412   Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
413   if (!Arg)
414     return None;
415 
416   APInt NumElems = Arg->getValue();
417   if (!CheckedZextOrTrunc(NumElems, IntTyBits))
418     return None;
419 
420   bool Overflow;
421   Size = Size.umul_ov(NumElems, Overflow);
422   if (Overflow)
423     return None;
424   return Size;
425 }
426 
427 Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc,
428                                             const TargetLibraryInfo *TLI,
429                                             Type *Ty) {
430   assert(isAllocationFn(Alloc, TLI));
431 
432   // malloc and aligned_alloc are uninitialized (undef)
433   if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
434     return UndefValue::get(Ty);
435 
436   // calloc zero initializes
437   if (isCallocLikeFn(Alloc, TLI))
438     return Constant::getNullValue(Ty);
439 
440   return nullptr;
441 }
442 
443 struct FreeFnsTy {
444   unsigned NumParams;
445   // Name of default allocator function to group malloc/free calls by family
446   MallocFamily Family;
447 };
448 
449 // clang-format off
450 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
451     {LibFunc_free,                               {1, MallocFamily::Malloc}},
452     {LibFunc_ZdlPv,                              {1, MallocFamily::CPPNew}},             // operator delete(void*)
453     {LibFunc_ZdaPv,                              {1, MallocFamily::CPPNewArray}},        // operator delete[](void*)
454     {LibFunc_msvc_delete_ptr32,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
455     {LibFunc_msvc_delete_ptr64,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
456     {LibFunc_msvc_delete_array_ptr32,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
457     {LibFunc_msvc_delete_array_ptr64,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
458     {LibFunc_ZdlPvj,                             {2, MallocFamily::CPPNew}},             // delete(void*, uint)
459     {LibFunc_ZdlPvm,                             {2, MallocFamily::CPPNew}},             // delete(void*, ulong)
460     {LibFunc_ZdlPvRKSt9nothrow_t,                {2, MallocFamily::CPPNew}},             // delete(void*, nothrow)
461     {LibFunc_ZdlPvSt11align_val_t,               {2, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t)
462     {LibFunc_ZdaPvj,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, uint)
463     {LibFunc_ZdaPvm,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, ulong)
464     {LibFunc_ZdaPvRKSt9nothrow_t,                {2, MallocFamily::CPPNewArray}},        // delete[](void*, nothrow)
465     {LibFunc_ZdaPvSt11align_val_t,               {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
466     {LibFunc_msvc_delete_ptr32_int,              {2, MallocFamily::MSVCNew}},            // delete(void*, uint)
467     {LibFunc_msvc_delete_ptr64_longlong,         {2, MallocFamily::MSVCNew}},            // delete(void*, ulonglong)
468     {LibFunc_msvc_delete_ptr32_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
469     {LibFunc_msvc_delete_ptr64_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
470     {LibFunc_msvc_delete_array_ptr32_int,        {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, uint)
471     {LibFunc_msvc_delete_array_ptr64_longlong,   {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, ulonglong)
472     {LibFunc_msvc_delete_array_ptr32_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
473     {LibFunc_msvc_delete_array_ptr64_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
474     {LibFunc___kmpc_free_shared,                 {2, MallocFamily::KmpcAllocShared}},    // OpenMP Offloading RTL free
475     {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t, nothrow)
476     {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
477     {LibFunc_ZdlPvjSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned int, align_val_t)
478     {LibFunc_ZdlPvmSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned long, align_val_t)
479     {LibFunc_ZdaPvjSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
480     {LibFunc_ZdaPvmSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
481 };
482 // clang-format on
483 
484 Optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
485                                                    const LibFunc TLIFn) {
486   const auto *Iter =
487       find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
488         return P.first == TLIFn;
489       });
490   if (Iter == std::end(FreeFnData))
491     return None;
492   return Iter->second;
493 }
494 
495 Optional<StringRef> llvm::getAllocationFamily(const Value *I,
496                                               const TargetLibraryInfo *TLI) {
497   bool IsNoBuiltin;
498   const Function *Callee = getCalledFunction(I, IsNoBuiltin);
499   if (Callee == nullptr)
500     return None;
501   LibFunc TLIFn;
502   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
503     return None;
504   const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI);
505   if (AllocData.hasValue())
506     return mangledNameForMallocFamily(AllocData.getValue().Family);
507   const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
508   if (FreeData.hasValue())
509     return mangledNameForMallocFamily(FreeData.getValue().Family);
510   return None;
511 }
512 
513 /// isLibFreeFunction - Returns true if the function is a builtin free()
514 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
515   Optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
516   if (!FnData.hasValue())
517     return false;
518 
519   // Check free prototype.
520   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
521   // attribute will exist.
522   FunctionType *FTy = F->getFunctionType();
523   if (!FTy->getReturnType()->isVoidTy())
524     return false;
525   if (FTy->getNumParams() != FnData->NumParams)
526     return false;
527   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
528     return false;
529 
530   return true;
531 }
532 
533 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
534 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
535   bool IsNoBuiltinCall;
536   const Function *Callee = getCalledFunction(I, IsNoBuiltinCall);
537   if (Callee == nullptr || IsNoBuiltinCall)
538     return nullptr;
539 
540   LibFunc TLIFn;
541   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
542     return nullptr;
543 
544   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
545 }
546 
547 
548 //===----------------------------------------------------------------------===//
549 //  Utility functions to compute size of objects.
550 //
551 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
552   if (Data.second.isNegative() || Data.first.ult(Data.second))
553     return APInt(Data.first.getBitWidth(), 0);
554   return Data.first - Data.second;
555 }
556 
557 /// Compute the size of the object pointed by Ptr. Returns true and the
558 /// object size in Size if successful, and false otherwise.
559 /// If RoundToAlign is true, then Size is rounded up to the alignment of
560 /// allocas, byval arguments, and global variables.
561 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
562                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
563   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
564   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
565   if (!Visitor.bothKnown(Data))
566     return false;
567 
568   Size = getSizeWithOverflow(Data).getZExtValue();
569   return true;
570 }
571 
572 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
573                                  const DataLayout &DL,
574                                  const TargetLibraryInfo *TLI,
575                                  bool MustSucceed) {
576   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
577          "ObjectSize must be a call to llvm.objectsize!");
578 
579   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
580   ObjectSizeOpts EvalOptions;
581   // Unless we have to fold this to something, try to be as accurate as
582   // possible.
583   if (MustSucceed)
584     EvalOptions.EvalMode =
585         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
586   else
587     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
588 
589   EvalOptions.NullIsUnknownSize =
590       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
591 
592   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
593   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
594   if (StaticOnly) {
595     // FIXME: Does it make sense to just return a failure value if the size won't
596     // fit in the output and `!MustSucceed`?
597     uint64_t Size;
598     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
599         isUIntN(ResultType->getBitWidth(), Size))
600       return ConstantInt::get(ResultType, Size);
601   } else {
602     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
603     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
604     SizeOffsetEvalType SizeOffsetPair =
605         Eval.compute(ObjectSize->getArgOperand(0));
606 
607     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
608       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
609       Builder.SetInsertPoint(ObjectSize);
610 
611       // If we've outside the end of the object, then we can always access
612       // exactly 0 bytes.
613       Value *ResultSize =
614           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
615       Value *UseZero =
616           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
617       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
618       Value *Ret = Builder.CreateSelect(
619           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
620 
621       // The non-constant size expression cannot evaluate to -1.
622       if (!isa<Constant>(SizeOffsetPair.first) ||
623           !isa<Constant>(SizeOffsetPair.second))
624         Builder.CreateAssumption(
625             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
626 
627       return Ret;
628     }
629   }
630 
631   if (!MustSucceed)
632     return nullptr;
633 
634   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
635 }
636 
637 STATISTIC(ObjectVisitorArgument,
638           "Number of arguments with unsolved size and offset");
639 STATISTIC(ObjectVisitorLoad,
640           "Number of load instructions with unsolved size and offset");
641 
642 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
643   if (Options.RoundToAlign && Alignment)
644     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment));
645   return Size;
646 }
647 
648 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
649                                                  const TargetLibraryInfo *TLI,
650                                                  LLVMContext &Context,
651                                                  ObjectSizeOpts Options)
652     : DL(DL), TLI(TLI), Options(Options) {
653   // Pointer size must be rechecked for each object visited since it could have
654   // a different address space.
655 }
656 
657 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
658   unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
659 
660   // Stripping pointer casts can strip address space casts which can change the
661   // index type size. The invariant is that we use the value type to determine
662   // the index type size and if we stripped address space casts we have to
663   // readjust the APInt as we pass it upwards in order for the APInt to match
664   // the type the caller passed in.
665   APInt Offset(InitialIntTyBits, 0);
666   V = V->stripAndAccumulateConstantOffsets(
667       DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
668 
669   // Later we use the index type size and zero but it will match the type of the
670   // value that is passed to computeImpl.
671   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
672   Zero = APInt::getZero(IntTyBits);
673 
674   bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
675   if (!IndexTypeSizeChanged && Offset.isZero())
676     return computeImpl(V);
677 
678   // We stripped an address space cast that changed the index type size or we
679   // accumulated some constant offset (or both). Readjust the bit width to match
680   // the argument index type size and apply the offset, as required.
681   SizeOffsetType SOT = computeImpl(V);
682   if (IndexTypeSizeChanged) {
683     if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits))
684       SOT.first = APInt();
685     if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits))
686       SOT.second = APInt();
687   }
688   // If the computed offset is "unknown" we cannot add the stripped offset.
689   return {SOT.first,
690           SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second};
691 }
692 
693 SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) {
694   if (Instruction *I = dyn_cast<Instruction>(V)) {
695     // If we have already seen this instruction, bail out. Cycles can happen in
696     // unreachable code after constant propagation.
697     if (!SeenInsts.insert(I).second)
698       return unknown();
699 
700     return visit(*I);
701   }
702   if (Argument *A = dyn_cast<Argument>(V))
703     return visitArgument(*A);
704   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
705     return visitConstantPointerNull(*P);
706   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
707     return visitGlobalAlias(*GA);
708   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
709     return visitGlobalVariable(*GV);
710   if (UndefValue *UV = dyn_cast<UndefValue>(V))
711     return visitUndefValue(*UV);
712 
713   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
714                     << *V << '\n');
715   return unknown();
716 }
717 
718 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
719   return ::CheckedZextOrTrunc(I, IntTyBits);
720 }
721 
722 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
723   if (!I.getAllocatedType()->isSized())
724     return unknown();
725 
726   TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
727   if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
728     return unknown();
729   APInt Size(IntTyBits, ElemSize.getKnownMinSize());
730   if (!I.isArrayAllocation())
731     return std::make_pair(align(Size, I.getAlign()), Zero);
732 
733   Value *ArraySize = I.getArraySize();
734   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
735     APInt NumElems = C->getValue();
736     if (!CheckedZextOrTrunc(NumElems))
737       return unknown();
738 
739     bool Overflow;
740     Size = Size.umul_ov(NumElems, Overflow);
741     return Overflow ? unknown()
742                     : std::make_pair(align(Size, I.getAlign()), Zero);
743   }
744   return unknown();
745 }
746 
747 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
748   Type *MemoryTy = A.getPointeeInMemoryValueType();
749   // No interprocedural analysis is done at the moment.
750   if (!MemoryTy|| !MemoryTy->isSized()) {
751     ++ObjectVisitorArgument;
752     return unknown();
753   }
754 
755   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
756   return std::make_pair(align(Size, A.getParamAlign()), Zero);
757 }
758 
759 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
760   auto Mapper = [](const Value *V) { return V; };
761   if (Optional<APInt> Size = getAllocSize(&CB, TLI, Mapper))
762     return std::make_pair(*Size, Zero);
763   return unknown();
764 }
765 
766 SizeOffsetType
767 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
768   // If null is unknown, there's nothing we can do. Additionally, non-zero
769   // address spaces can make use of null, so we don't presume to know anything
770   // about that.
771   //
772   // TODO: How should this work with address space casts? We currently just drop
773   // them on the floor, but it's unclear what we should do when a NULL from
774   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
775   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
776     return unknown();
777   return std::make_pair(Zero, Zero);
778 }
779 
780 SizeOffsetType
781 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
782   return unknown();
783 }
784 
785 SizeOffsetType
786 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
787   // Easy cases were already folded by previous passes.
788   return unknown();
789 }
790 
791 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
792   if (GA.isInterposable())
793     return unknown();
794   return compute(GA.getAliasee());
795 }
796 
797 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
798   if (!GV.hasDefinitiveInitializer())
799     return unknown();
800 
801   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
802   return std::make_pair(align(Size, GV.getAlign()), Zero);
803 }
804 
805 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
806   // clueless
807   return unknown();
808 }
809 
810 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
811   ++ObjectVisitorLoad;
812   return unknown();
813 }
814 
815 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
816   // too complex to analyze statically.
817   return unknown();
818 }
819 
820 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
821   SizeOffsetType TrueSide  = compute(I.getTrueValue());
822   SizeOffsetType FalseSide = compute(I.getFalseValue());
823   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
824     if (TrueSide == FalseSide) {
825         return TrueSide;
826     }
827 
828     APInt TrueResult = getSizeWithOverflow(TrueSide);
829     APInt FalseResult = getSizeWithOverflow(FalseSide);
830 
831     if (TrueResult == FalseResult) {
832       return TrueSide;
833     }
834     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
835       if (TrueResult.slt(FalseResult))
836         return TrueSide;
837       return FalseSide;
838     }
839     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
840       if (TrueResult.sgt(FalseResult))
841         return TrueSide;
842       return FalseSide;
843     }
844   }
845   return unknown();
846 }
847 
848 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
849   return std::make_pair(Zero, Zero);
850 }
851 
852 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
853   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
854                     << '\n');
855   return unknown();
856 }
857 
858 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
859     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
860     ObjectSizeOpts EvalOpts)
861     : DL(DL), TLI(TLI), Context(Context),
862       Builder(Context, TargetFolder(DL),
863               IRBuilderCallbackInserter(
864                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
865       EvalOpts(EvalOpts) {
866   // IntTy and Zero must be set for each compute() since the address space may
867   // be different for later objects.
868 }
869 
870 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
871   // XXX - Are vectors of pointers possible here?
872   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
873   Zero = ConstantInt::get(IntTy, 0);
874 
875   SizeOffsetEvalType Result = compute_(V);
876 
877   if (!bothKnown(Result)) {
878     // Erase everything that was computed in this iteration from the cache, so
879     // that no dangling references are left behind. We could be a bit smarter if
880     // we kept a dependency graph. It's probably not worth the complexity.
881     for (const Value *SeenVal : SeenVals) {
882       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
883       // non-computable results can be safely cached
884       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
885         CacheMap.erase(CacheIt);
886     }
887 
888     // Erase any instructions we inserted as part of the traversal.
889     for (Instruction *I : InsertedInstructions) {
890       I->replaceAllUsesWith(UndefValue::get(I->getType()));
891       I->eraseFromParent();
892     }
893   }
894 
895   SeenVals.clear();
896   InsertedInstructions.clear();
897   return Result;
898 }
899 
900 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
901   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
902   SizeOffsetType Const = Visitor.compute(V);
903   if (Visitor.bothKnown(Const))
904     return std::make_pair(ConstantInt::get(Context, Const.first),
905                           ConstantInt::get(Context, Const.second));
906 
907   V = V->stripPointerCasts();
908 
909   // Check cache.
910   CacheMapTy::iterator CacheIt = CacheMap.find(V);
911   if (CacheIt != CacheMap.end())
912     return CacheIt->second;
913 
914   // Always generate code immediately before the instruction being
915   // processed, so that the generated code dominates the same BBs.
916   BuilderTy::InsertPointGuard Guard(Builder);
917   if (Instruction *I = dyn_cast<Instruction>(V))
918     Builder.SetInsertPoint(I);
919 
920   // Now compute the size and offset.
921   SizeOffsetEvalType Result;
922 
923   // Record the pointers that were handled in this run, so that they can be
924   // cleaned later if something fails. We also use this set to break cycles that
925   // can occur in dead code.
926   if (!SeenVals.insert(V).second) {
927     Result = unknown();
928   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
929     Result = visitGEPOperator(*GEP);
930   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
931     Result = visit(*I);
932   } else if (isa<Argument>(V) ||
933              (isa<ConstantExpr>(V) &&
934               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
935              isa<GlobalAlias>(V) ||
936              isa<GlobalVariable>(V)) {
937     // Ignore values where we cannot do more than ObjectSizeVisitor.
938     Result = unknown();
939   } else {
940     LLVM_DEBUG(
941         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
942                << '\n');
943     Result = unknown();
944   }
945 
946   // Don't reuse CacheIt since it may be invalid at this point.
947   CacheMap[V] = Result;
948   return Result;
949 }
950 
951 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
952   if (!I.getAllocatedType()->isSized())
953     return unknown();
954 
955   // must be a VLA
956   assert(I.isArrayAllocation());
957 
958   // If needed, adjust the alloca's operand size to match the pointer size.
959   // Subsequent math operations expect the types to match.
960   Value *ArraySize = Builder.CreateZExtOrTrunc(
961       I.getArraySize(), DL.getIntPtrType(I.getContext()));
962   assert(ArraySize->getType() == Zero->getType() &&
963          "Expected zero constant to have pointer type");
964 
965   Value *Size = ConstantInt::get(ArraySize->getType(),
966                                  DL.getTypeAllocSize(I.getAllocatedType()));
967   Size = Builder.CreateMul(Size, ArraySize);
968   return std::make_pair(Size, Zero);
969 }
970 
971 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
972   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
973   if (!FnData)
974     return unknown();
975 
976   // Handle strdup-like functions separately.
977   if (FnData->AllocTy == StrDupLike) {
978     // TODO: implement evaluation of strdup/strndup
979     return unknown();
980   }
981 
982   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
983   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
984   if (FnData->SndParam < 0)
985     return std::make_pair(FirstArg, Zero);
986 
987   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
988   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
989   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
990   return std::make_pair(Size, Zero);
991 }
992 
993 SizeOffsetEvalType
994 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
995   return unknown();
996 }
997 
998 SizeOffsetEvalType
999 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
1000   return unknown();
1001 }
1002 
1003 SizeOffsetEvalType
1004 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1005   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
1006   if (!bothKnown(PtrData))
1007     return unknown();
1008 
1009   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1010   Offset = Builder.CreateAdd(PtrData.second, Offset);
1011   return std::make_pair(PtrData.first, Offset);
1012 }
1013 
1014 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
1015   // clueless
1016   return unknown();
1017 }
1018 
1019 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
1020   return unknown();
1021 }
1022 
1023 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1024   // Create 2 PHIs: one for size and another for offset.
1025   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1026   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1027 
1028   // Insert right away in the cache to handle recursive PHIs.
1029   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
1030 
1031   // Compute offset/size for each PHI incoming pointer.
1032   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1033     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
1034     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
1035 
1036     if (!bothKnown(EdgeData)) {
1037       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
1038       OffsetPHI->eraseFromParent();
1039       InsertedInstructions.erase(OffsetPHI);
1040       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
1041       SizePHI->eraseFromParent();
1042       InsertedInstructions.erase(SizePHI);
1043       return unknown();
1044     }
1045     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
1046     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
1047   }
1048 
1049   Value *Size = SizePHI, *Offset = OffsetPHI;
1050   if (Value *Tmp = SizePHI->hasConstantValue()) {
1051     Size = Tmp;
1052     SizePHI->replaceAllUsesWith(Size);
1053     SizePHI->eraseFromParent();
1054     InsertedInstructions.erase(SizePHI);
1055   }
1056   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1057     Offset = Tmp;
1058     OffsetPHI->replaceAllUsesWith(Offset);
1059     OffsetPHI->eraseFromParent();
1060     InsertedInstructions.erase(OffsetPHI);
1061   }
1062   return std::make_pair(Size, Offset);
1063 }
1064 
1065 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1066   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
1067   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
1068 
1069   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
1070     return unknown();
1071   if (TrueSide == FalseSide)
1072     return TrueSide;
1073 
1074   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1075                                      FalseSide.first);
1076   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1077                                        FalseSide.second);
1078   return std::make_pair(Size, Offset);
1079 }
1080 
1081 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1082   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1083                     << '\n');
1084   return unknown();
1085 }
1086