1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Metadata.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "memory-builtins" 33 34 enum AllocType : uint8_t { 35 OpNewLike = 1<<0, // allocates; never returns null 36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 37 CallocLike = 1<<2, // allocates + bzero 38 ReallocLike = 1<<3, // reallocates 39 StrDupLike = 1<<4, 40 AllocLike = MallocLike | CallocLike | StrDupLike, 41 AnyAlloc = AllocLike | ReallocLike 42 }; 43 44 struct AllocFnsTy { 45 AllocType AllocTy; 46 unsigned NumParams; 47 // First and Second size parameters (or -1 if unused) 48 int FstParam, SndParam; 49 }; 50 51 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 52 // know which functions are nounwind, noalias, nocapture parameters, etc. 53 static const std::pair<LibFunc::Func, AllocFnsTy> AllocationFnData[] = { 54 {LibFunc::malloc, {MallocLike, 1, 0, -1}}, 55 {LibFunc::valloc, {MallocLike, 1, 0, -1}}, 56 {LibFunc::Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 57 {LibFunc::ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 58 {LibFunc::Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 59 {LibFunc::ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 60 {LibFunc::Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 61 {LibFunc::ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 62 {LibFunc::Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 63 {LibFunc::ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 64 {LibFunc::msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 65 {LibFunc::msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 66 {LibFunc::msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 67 {LibFunc::msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 68 {LibFunc::msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 69 {LibFunc::msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 70 {LibFunc::msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 71 {LibFunc::msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 72 {LibFunc::calloc, {CallocLike, 2, 0, 1}}, 73 {LibFunc::realloc, {ReallocLike, 2, 1, -1}}, 74 {LibFunc::reallocf, {ReallocLike, 2, 1, -1}}, 75 {LibFunc::strdup, {StrDupLike, 1, -1, -1}}, 76 {LibFunc::strndup, {StrDupLike, 2, 1, -1}} 77 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 78 }; 79 80 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 81 bool &IsNoBuiltin) { 82 // Don't care about intrinsics in this case. 83 if (isa<IntrinsicInst>(V)) 84 return nullptr; 85 86 if (LookThroughBitCast) 87 V = V->stripPointerCasts(); 88 89 CallSite CS(const_cast<Value*>(V)); 90 if (!CS.getInstruction()) 91 return nullptr; 92 93 IsNoBuiltin = CS.isNoBuiltin(); 94 95 Function *Callee = CS.getCalledFunction(); 96 if (!Callee || !Callee->isDeclaration()) 97 return nullptr; 98 return Callee; 99 } 100 101 /// Returns the allocation data for the given value if it's either a call to a 102 /// known allocation function, or a call to a function with the allocsize 103 /// attribute. 104 static Optional<AllocFnsTy> 105 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 106 const TargetLibraryInfo *TLI) { 107 // Make sure that the function is available. 108 StringRef FnName = Callee->getName(); 109 LibFunc::Func TLIFn; 110 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 111 return None; 112 113 const auto *Iter = find_if( 114 AllocationFnData, [TLIFn](const std::pair<LibFunc::Func, AllocFnsTy> &P) { 115 return P.first == TLIFn; 116 }); 117 118 if (Iter == std::end(AllocationFnData)) 119 return None; 120 121 const AllocFnsTy *FnData = &Iter->second; 122 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 123 return None; 124 125 // Check function prototype. 126 int FstParam = FnData->FstParam; 127 int SndParam = FnData->SndParam; 128 FunctionType *FTy = Callee->getFunctionType(); 129 130 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 131 FTy->getNumParams() == FnData->NumParams && 132 (FstParam < 0 || 133 (FTy->getParamType(FstParam)->isIntegerTy(32) || 134 FTy->getParamType(FstParam)->isIntegerTy(64))) && 135 (SndParam < 0 || 136 FTy->getParamType(SndParam)->isIntegerTy(32) || 137 FTy->getParamType(SndParam)->isIntegerTy(64))) 138 return *FnData; 139 return None; 140 } 141 142 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 143 const TargetLibraryInfo *TLI, 144 bool LookThroughBitCast = false) { 145 bool IsNoBuiltinCall; 146 if (const Function *Callee = 147 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 148 if (!IsNoBuiltinCall) 149 return getAllocationDataForFunction(Callee, AllocTy, TLI); 150 return None; 151 } 152 153 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 154 const TargetLibraryInfo *TLI) { 155 bool IsNoBuiltinCall; 156 const Function *Callee = 157 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 158 if (!Callee) 159 return None; 160 161 // Prefer to use existing information over allocsize. This will give us an 162 // accurate AllocTy. 163 if (!IsNoBuiltinCall) 164 if (Optional<AllocFnsTy> Data = 165 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 166 return Data; 167 168 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 169 if (Attr == Attribute()) 170 return None; 171 172 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 173 174 AllocFnsTy Result; 175 // Because allocsize only tells us how many bytes are allocated, we're not 176 // really allowed to assume anything, so we use MallocLike. 177 Result.AllocTy = MallocLike; 178 Result.NumParams = Callee->getNumOperands(); 179 Result.FstParam = Args.first; 180 Result.SndParam = Args.second.getValueOr(-1); 181 return Result; 182 } 183 184 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 185 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 186 return CS && CS.paramHasAttr(AttributeSet::ReturnIndex, Attribute::NoAlias); 187 } 188 189 190 /// \brief Tests if a value is a call or invoke to a library function that 191 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 192 /// like). 193 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 194 bool LookThroughBitCast) { 195 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 196 } 197 198 /// \brief Tests if a value is a call or invoke to a function that returns a 199 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 200 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 201 bool LookThroughBitCast) { 202 // it's safe to consider realloc as noalias since accessing the original 203 // pointer is undefined behavior 204 return isAllocationFn(V, TLI, LookThroughBitCast) || 205 hasNoAliasAttr(V, LookThroughBitCast); 206 } 207 208 /// \brief Tests if a value is a call or invoke to a library function that 209 /// allocates uninitialized memory (such as malloc). 210 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 211 bool LookThroughBitCast) { 212 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 213 } 214 215 /// \brief Tests if a value is a call or invoke to a library function that 216 /// allocates zero-filled memory (such as calloc). 217 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 218 bool LookThroughBitCast) { 219 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 220 } 221 222 /// \brief Tests if a value is a call or invoke to a library function that 223 /// allocates memory (either malloc, calloc, or strdup like). 224 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 225 bool LookThroughBitCast) { 226 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 227 } 228 229 /// extractMallocCall - Returns the corresponding CallInst if the instruction 230 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 231 /// ignore InvokeInst here. 232 const CallInst *llvm::extractMallocCall(const Value *I, 233 const TargetLibraryInfo *TLI) { 234 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 235 } 236 237 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 238 const TargetLibraryInfo *TLI, 239 bool LookThroughSExt = false) { 240 if (!CI) 241 return nullptr; 242 243 // The size of the malloc's result type must be known to determine array size. 244 Type *T = getMallocAllocatedType(CI, TLI); 245 if (!T || !T->isSized()) 246 return nullptr; 247 248 unsigned ElementSize = DL.getTypeAllocSize(T); 249 if (StructType *ST = dyn_cast<StructType>(T)) 250 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 251 252 // If malloc call's arg can be determined to be a multiple of ElementSize, 253 // return the multiple. Otherwise, return NULL. 254 Value *MallocArg = CI->getArgOperand(0); 255 Value *Multiple = nullptr; 256 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 257 return Multiple; 258 259 return nullptr; 260 } 261 262 /// getMallocType - Returns the PointerType resulting from the malloc call. 263 /// The PointerType depends on the number of bitcast uses of the malloc call: 264 /// 0: PointerType is the calls' return type. 265 /// 1: PointerType is the bitcast's result type. 266 /// >1: Unique PointerType cannot be determined, return NULL. 267 PointerType *llvm::getMallocType(const CallInst *CI, 268 const TargetLibraryInfo *TLI) { 269 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 270 271 PointerType *MallocType = nullptr; 272 unsigned NumOfBitCastUses = 0; 273 274 // Determine if CallInst has a bitcast use. 275 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 276 UI != E;) 277 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 278 MallocType = cast<PointerType>(BCI->getDestTy()); 279 NumOfBitCastUses++; 280 } 281 282 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 283 if (NumOfBitCastUses == 1) 284 return MallocType; 285 286 // Malloc call was not bitcast, so type is the malloc function's return type. 287 if (NumOfBitCastUses == 0) 288 return cast<PointerType>(CI->getType()); 289 290 // Type could not be determined. 291 return nullptr; 292 } 293 294 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 295 /// The Type depends on the number of bitcast uses of the malloc call: 296 /// 0: PointerType is the malloc calls' return type. 297 /// 1: PointerType is the bitcast's result type. 298 /// >1: Unique PointerType cannot be determined, return NULL. 299 Type *llvm::getMallocAllocatedType(const CallInst *CI, 300 const TargetLibraryInfo *TLI) { 301 PointerType *PT = getMallocType(CI, TLI); 302 return PT ? PT->getElementType() : nullptr; 303 } 304 305 /// getMallocArraySize - Returns the array size of a malloc call. If the 306 /// argument passed to malloc is a multiple of the size of the malloced type, 307 /// then return that multiple. For non-array mallocs, the multiple is 308 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 309 /// determined. 310 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 311 const TargetLibraryInfo *TLI, 312 bool LookThroughSExt) { 313 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 314 return computeArraySize(CI, DL, TLI, LookThroughSExt); 315 } 316 317 318 /// extractCallocCall - Returns the corresponding CallInst if the instruction 319 /// is a calloc call. 320 const CallInst *llvm::extractCallocCall(const Value *I, 321 const TargetLibraryInfo *TLI) { 322 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 323 } 324 325 326 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 327 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 328 const CallInst *CI = dyn_cast<CallInst>(I); 329 if (!CI || isa<IntrinsicInst>(CI)) 330 return nullptr; 331 Function *Callee = CI->getCalledFunction(); 332 if (Callee == nullptr) 333 return nullptr; 334 335 StringRef FnName = Callee->getName(); 336 LibFunc::Func TLIFn; 337 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 338 return nullptr; 339 340 unsigned ExpectedNumParams; 341 if (TLIFn == LibFunc::free || 342 TLIFn == LibFunc::ZdlPv || // operator delete(void*) 343 TLIFn == LibFunc::ZdaPv || // operator delete[](void*) 344 TLIFn == LibFunc::msvc_delete_ptr32 || // operator delete(void*) 345 TLIFn == LibFunc::msvc_delete_ptr64 || // operator delete(void*) 346 TLIFn == LibFunc::msvc_delete_array_ptr32 || // operator delete[](void*) 347 TLIFn == LibFunc::msvc_delete_array_ptr64) // operator delete[](void*) 348 ExpectedNumParams = 1; 349 else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint) 350 TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong) 351 TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 352 TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint) 353 TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong) 354 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 355 TLIFn == LibFunc::msvc_delete_ptr32_int || // delete(void*, uint) 356 TLIFn == LibFunc::msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 357 TLIFn == LibFunc::msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 358 TLIFn == LibFunc::msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 359 TLIFn == LibFunc::msvc_delete_array_ptr32_int || // delete[](void*, uint) 360 TLIFn == LibFunc::msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 361 TLIFn == LibFunc::msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 362 TLIFn == LibFunc::msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 363 ExpectedNumParams = 2; 364 else 365 return nullptr; 366 367 // Check free prototype. 368 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 369 // attribute will exist. 370 FunctionType *FTy = Callee->getFunctionType(); 371 if (!FTy->getReturnType()->isVoidTy()) 372 return nullptr; 373 if (FTy->getNumParams() != ExpectedNumParams) 374 return nullptr; 375 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 376 return nullptr; 377 378 return CI; 379 } 380 381 382 383 //===----------------------------------------------------------------------===// 384 // Utility functions to compute size of objects. 385 // 386 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 387 if (Data.second.isNegative() || Data.first.ult(Data.second)) 388 return APInt(Data.first.getBitWidth(), 0); 389 return Data.first - Data.second; 390 } 391 392 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 393 /// object size in Size if successful, and false otherwise. 394 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas, 395 /// byval arguments, and global variables. 396 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 397 const TargetLibraryInfo *TLI, bool RoundToAlign, 398 llvm::ObjSizeMode Mode) { 399 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), 400 RoundToAlign, Mode); 401 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 402 if (!Visitor.bothKnown(Data)) 403 return false; 404 405 Size = getSizeWithOverflow(Data).getZExtValue(); 406 return true; 407 } 408 409 ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 410 const DataLayout &DL, 411 const TargetLibraryInfo *TLI, 412 bool MustSucceed) { 413 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 414 "ObjectSize must be a call to llvm.objectsize!"); 415 416 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 417 ObjSizeMode Mode; 418 // Unless we have to fold this to something, try to be as accurate as 419 // possible. 420 if (MustSucceed) 421 Mode = MaxVal ? ObjSizeMode::Max : ObjSizeMode::Min; 422 else 423 Mode = ObjSizeMode::Exact; 424 425 // FIXME: Does it make sense to just return a failure value if the size won't 426 // fit in the output and `!MustSucceed`? 427 uint64_t Size; 428 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 429 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, false, Mode) && 430 isUIntN(ResultType->getBitWidth(), Size)) 431 return ConstantInt::get(ResultType, Size); 432 433 if (!MustSucceed) 434 return nullptr; 435 436 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 437 } 438 439 STATISTIC(ObjectVisitorArgument, 440 "Number of arguments with unsolved size and offset"); 441 STATISTIC(ObjectVisitorLoad, 442 "Number of load instructions with unsolved size and offset"); 443 444 445 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 446 if (RoundToAlign && Align) 447 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); 448 return Size; 449 } 450 451 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 452 const TargetLibraryInfo *TLI, 453 LLVMContext &Context, 454 bool RoundToAlign, 455 ObjSizeMode Mode) 456 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign), Mode(Mode) { 457 // Pointer size must be rechecked for each object visited since it could have 458 // a different address space. 459 } 460 461 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 462 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 463 Zero = APInt::getNullValue(IntTyBits); 464 465 V = V->stripPointerCasts(); 466 if (Instruction *I = dyn_cast<Instruction>(V)) { 467 // If we have already seen this instruction, bail out. Cycles can happen in 468 // unreachable code after constant propagation. 469 if (!SeenInsts.insert(I).second) 470 return unknown(); 471 472 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 473 return visitGEPOperator(*GEP); 474 return visit(*I); 475 } 476 if (Argument *A = dyn_cast<Argument>(V)) 477 return visitArgument(*A); 478 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 479 return visitConstantPointerNull(*P); 480 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 481 return visitGlobalAlias(*GA); 482 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 483 return visitGlobalVariable(*GV); 484 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 485 return visitUndefValue(*UV); 486 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 487 if (CE->getOpcode() == Instruction::IntToPtr) 488 return unknown(); // clueless 489 if (CE->getOpcode() == Instruction::GetElementPtr) 490 return visitGEPOperator(cast<GEPOperator>(*CE)); 491 } 492 493 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 494 << '\n'); 495 return unknown(); 496 } 497 498 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 499 if (!I.getAllocatedType()->isSized()) 500 return unknown(); 501 502 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 503 if (!I.isArrayAllocation()) 504 return std::make_pair(align(Size, I.getAlignment()), Zero); 505 506 Value *ArraySize = I.getArraySize(); 507 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 508 Size *= C->getValue().zextOrSelf(IntTyBits); 509 return std::make_pair(align(Size, I.getAlignment()), Zero); 510 } 511 return unknown(); 512 } 513 514 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 515 // No interprocedural analysis is done at the moment. 516 if (!A.hasByValOrInAllocaAttr()) { 517 ++ObjectVisitorArgument; 518 return unknown(); 519 } 520 PointerType *PT = cast<PointerType>(A.getType()); 521 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 522 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 523 } 524 525 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 526 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 527 if (!FnData) 528 return unknown(); 529 530 // Handle strdup-like functions separately. 531 if (FnData->AllocTy == StrDupLike) { 532 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 533 if (!Size) 534 return unknown(); 535 536 // Strndup limits strlen. 537 if (FnData->FstParam > 0) { 538 ConstantInt *Arg = 539 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 540 if (!Arg) 541 return unknown(); 542 543 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 544 if (Size.ugt(MaxSize)) 545 Size = MaxSize + 1; 546 } 547 return std::make_pair(Size, Zero); 548 } 549 550 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 551 if (!Arg) 552 return unknown(); 553 554 // When we're compiling N-bit code, and the user uses parameters that are 555 // greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 556 // trouble with APInt size issues. This function handles resizing + overflow 557 // checks for us. 558 auto CheckedZextOrTrunc = [&](APInt &I) { 559 // More bits than we can handle. Checking the bit width isn't necessary, but 560 // it's faster than checking active bits, and should give `false` in the 561 // vast majority of cases. 562 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 563 return false; 564 if (I.getBitWidth() != IntTyBits) 565 I = I.zextOrTrunc(IntTyBits); 566 return true; 567 }; 568 569 APInt Size = Arg->getValue(); 570 if (!CheckedZextOrTrunc(Size)) 571 return unknown(); 572 573 // Size is determined by just 1 parameter. 574 if (FnData->SndParam < 0) 575 return std::make_pair(Size, Zero); 576 577 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 578 if (!Arg) 579 return unknown(); 580 581 APInt NumElems = Arg->getValue(); 582 if (!CheckedZextOrTrunc(NumElems)) 583 return unknown(); 584 585 bool Overflow; 586 Size = Size.umul_ov(NumElems, Overflow); 587 return Overflow ? unknown() : std::make_pair(Size, Zero); 588 589 // TODO: handle more standard functions (+ wchar cousins): 590 // - strdup / strndup 591 // - strcpy / strncpy 592 // - strcat / strncat 593 // - memcpy / memmove 594 // - strcat / strncat 595 // - memset 596 } 597 598 SizeOffsetType 599 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) { 600 return std::make_pair(Zero, Zero); 601 } 602 603 SizeOffsetType 604 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 605 return unknown(); 606 } 607 608 SizeOffsetType 609 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 610 // Easy cases were already folded by previous passes. 611 return unknown(); 612 } 613 614 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 615 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 616 APInt Offset(IntTyBits, 0); 617 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 618 return unknown(); 619 620 return std::make_pair(PtrData.first, PtrData.second + Offset); 621 } 622 623 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 624 if (GA.isInterposable()) 625 return unknown(); 626 return compute(GA.getAliasee()); 627 } 628 629 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 630 if (!GV.hasDefinitiveInitializer()) 631 return unknown(); 632 633 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); 634 return std::make_pair(align(Size, GV.getAlignment()), Zero); 635 } 636 637 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 638 // clueless 639 return unknown(); 640 } 641 642 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 643 ++ObjectVisitorLoad; 644 return unknown(); 645 } 646 647 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 648 // too complex to analyze statically. 649 return unknown(); 650 } 651 652 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 653 SizeOffsetType TrueSide = compute(I.getTrueValue()); 654 SizeOffsetType FalseSide = compute(I.getFalseValue()); 655 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 656 if (TrueSide == FalseSide) { 657 return TrueSide; 658 } 659 660 APInt TrueResult = getSizeWithOverflow(TrueSide); 661 APInt FalseResult = getSizeWithOverflow(FalseSide); 662 663 if (TrueResult == FalseResult) { 664 return TrueSide; 665 } 666 if (Mode == ObjSizeMode::Min) { 667 if (TrueResult.slt(FalseResult)) 668 return TrueSide; 669 return FalseSide; 670 } 671 if (Mode == ObjSizeMode::Max) { 672 if (TrueResult.sgt(FalseResult)) 673 return TrueSide; 674 return FalseSide; 675 } 676 } 677 return unknown(); 678 } 679 680 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 681 return std::make_pair(Zero, Zero); 682 } 683 684 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 685 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 686 return unknown(); 687 } 688 689 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 690 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 691 bool RoundToAlign) 692 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 693 RoundToAlign(RoundToAlign) { 694 // IntTy and Zero must be set for each compute() since the address space may 695 // be different for later objects. 696 } 697 698 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 699 // XXX - Are vectors of pointers possible here? 700 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 701 Zero = ConstantInt::get(IntTy, 0); 702 703 SizeOffsetEvalType Result = compute_(V); 704 705 if (!bothKnown(Result)) { 706 // Erase everything that was computed in this iteration from the cache, so 707 // that no dangling references are left behind. We could be a bit smarter if 708 // we kept a dependency graph. It's probably not worth the complexity. 709 for (const Value *SeenVal : SeenVals) { 710 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 711 // non-computable results can be safely cached 712 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 713 CacheMap.erase(CacheIt); 714 } 715 } 716 717 SeenVals.clear(); 718 return Result; 719 } 720 721 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 722 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign); 723 SizeOffsetType Const = Visitor.compute(V); 724 if (Visitor.bothKnown(Const)) 725 return std::make_pair(ConstantInt::get(Context, Const.first), 726 ConstantInt::get(Context, Const.second)); 727 728 V = V->stripPointerCasts(); 729 730 // Check cache. 731 CacheMapTy::iterator CacheIt = CacheMap.find(V); 732 if (CacheIt != CacheMap.end()) 733 return CacheIt->second; 734 735 // Always generate code immediately before the instruction being 736 // processed, so that the generated code dominates the same BBs. 737 BuilderTy::InsertPointGuard Guard(Builder); 738 if (Instruction *I = dyn_cast<Instruction>(V)) 739 Builder.SetInsertPoint(I); 740 741 // Now compute the size and offset. 742 SizeOffsetEvalType Result; 743 744 // Record the pointers that were handled in this run, so that they can be 745 // cleaned later if something fails. We also use this set to break cycles that 746 // can occur in dead code. 747 if (!SeenVals.insert(V).second) { 748 Result = unknown(); 749 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 750 Result = visitGEPOperator(*GEP); 751 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 752 Result = visit(*I); 753 } else if (isa<Argument>(V) || 754 (isa<ConstantExpr>(V) && 755 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 756 isa<GlobalAlias>(V) || 757 isa<GlobalVariable>(V)) { 758 // Ignore values where we cannot do more than ObjectSizeVisitor. 759 Result = unknown(); 760 } else { 761 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 762 << *V << '\n'); 763 Result = unknown(); 764 } 765 766 // Don't reuse CacheIt since it may be invalid at this point. 767 CacheMap[V] = Result; 768 return Result; 769 } 770 771 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 772 if (!I.getAllocatedType()->isSized()) 773 return unknown(); 774 775 // must be a VLA 776 assert(I.isArrayAllocation()); 777 Value *ArraySize = I.getArraySize(); 778 Value *Size = ConstantInt::get(ArraySize->getType(), 779 DL.getTypeAllocSize(I.getAllocatedType())); 780 Size = Builder.CreateMul(Size, ArraySize); 781 return std::make_pair(Size, Zero); 782 } 783 784 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 785 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 786 if (!FnData) 787 return unknown(); 788 789 // Handle strdup-like functions separately. 790 if (FnData->AllocTy == StrDupLike) { 791 // TODO 792 return unknown(); 793 } 794 795 Value *FirstArg = CS.getArgument(FnData->FstParam); 796 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 797 if (FnData->SndParam < 0) 798 return std::make_pair(FirstArg, Zero); 799 800 Value *SecondArg = CS.getArgument(FnData->SndParam); 801 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 802 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 803 return std::make_pair(Size, Zero); 804 805 // TODO: handle more standard functions (+ wchar cousins): 806 // - strdup / strndup 807 // - strcpy / strncpy 808 // - strcat / strncat 809 // - memcpy / memmove 810 // - strcat / strncat 811 // - memset 812 } 813 814 SizeOffsetEvalType 815 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 816 return unknown(); 817 } 818 819 SizeOffsetEvalType 820 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 821 return unknown(); 822 } 823 824 SizeOffsetEvalType 825 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 826 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 827 if (!bothKnown(PtrData)) 828 return unknown(); 829 830 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 831 Offset = Builder.CreateAdd(PtrData.second, Offset); 832 return std::make_pair(PtrData.first, Offset); 833 } 834 835 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 836 // clueless 837 return unknown(); 838 } 839 840 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 841 return unknown(); 842 } 843 844 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 845 // Create 2 PHIs: one for size and another for offset. 846 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 847 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 848 849 // Insert right away in the cache to handle recursive PHIs. 850 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 851 852 // Compute offset/size for each PHI incoming pointer. 853 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 854 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 855 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 856 857 if (!bothKnown(EdgeData)) { 858 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 859 OffsetPHI->eraseFromParent(); 860 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 861 SizePHI->eraseFromParent(); 862 return unknown(); 863 } 864 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 865 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 866 } 867 868 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 869 if ((Tmp = SizePHI->hasConstantValue())) { 870 Size = Tmp; 871 SizePHI->replaceAllUsesWith(Size); 872 SizePHI->eraseFromParent(); 873 } 874 if ((Tmp = OffsetPHI->hasConstantValue())) { 875 Offset = Tmp; 876 OffsetPHI->replaceAllUsesWith(Offset); 877 OffsetPHI->eraseFromParent(); 878 } 879 return std::make_pair(Size, Offset); 880 } 881 882 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 883 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 884 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 885 886 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 887 return unknown(); 888 if (TrueSide == FalseSide) 889 return TrueSide; 890 891 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 892 FalseSide.first); 893 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 894 FalseSide.second); 895 return std::make_pair(Size, Offset); 896 } 897 898 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 899 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 900 return unknown(); 901 } 902