1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike,
60   AllocLike          = MallocOrCallocLike | StrDupLike,
61   AnyAlloc           = AllocLike | ReallocLike
62 };
63 
64 struct AllocFnsTy {
65   AllocType AllocTy;
66   unsigned NumParams;
67   // First and Second size parameters (or -1 if unused)
68   int FstParam, SndParam;
69   // Alignment parameter for aligned_alloc and aligned new
70   int AlignParam;
71 };
72 
73 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
74 // know which functions are nounwind, noalias, nocapture parameters, etc.
75 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
76     {LibFunc_malloc,                            {MallocLike,       1,  0, -1, -1}},
77     {LibFunc_vec_malloc,                        {MallocLike,       1,  0, -1, -1}},
78     {LibFunc_valloc,                            {MallocLike,       1,  0, -1, -1}},
79     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1}}, // new(unsigned int)
80     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new(unsigned int, nothrow)
81     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new(unsigned int, align_val_t)
82     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new(unsigned int, align_val_t, nothrow)
83     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1}}, // new(unsigned long)
84     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new(unsigned long, nothrow)
85     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new(unsigned long, align_val_t)
86     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new(unsigned long, align_val_t, nothrow)
87     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned int)
88     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new[](unsigned int, nothrow)
89     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new[](unsigned int, align_val_t)
90     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new[](unsigned int, align_val_t, nothrow)
91     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned long)
92     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new[](unsigned long, nothrow)
93     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new[](unsigned long, align_val_t)
94     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new[](unsigned long, align_val_t, nothrow)
95     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1}}, // new(unsigned int)
96     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1}}, // new(unsigned int, nothrow)
97     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1}}, // new(unsigned long long)
98     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1}}, // new(unsigned long long, nothrow)
99     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned int)
100     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1}}, // new[](unsigned int, nothrow)
101     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned long long)
102     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1}}, // new[](unsigned long long, nothrow)
103     {LibFunc_aligned_alloc,                     {AlignedAllocLike, 2,  1, -1,  0}},
104     {LibFunc_memalign,                          {AlignedAllocLike, 2,  1, -1,  0}},
105     {LibFunc_calloc,                            {CallocLike,       2,  0,  1, -1}},
106     {LibFunc_vec_calloc,                        {CallocLike,       2,  0,  1, -1}},
107     {LibFunc_realloc,                           {ReallocLike,      2,  1, -1, -1}},
108     {LibFunc_vec_realloc,                       {ReallocLike,      2,  1, -1, -1}},
109     {LibFunc_reallocf,                          {ReallocLike,      2,  1, -1, -1}},
110     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1}},
111     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1}},
112     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1}},
113     // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
114 };
115 
116 static const Function *getCalledFunction(const Value *V,
117                                          bool &IsNoBuiltin) {
118   // Don't care about intrinsics in this case.
119   if (isa<IntrinsicInst>(V))
120     return nullptr;
121 
122   const auto *CB = dyn_cast<CallBase>(V);
123   if (!CB)
124     return nullptr;
125 
126   IsNoBuiltin = CB->isNoBuiltin();
127 
128   if (const Function *Callee = CB->getCalledFunction())
129     return Callee;
130   return nullptr;
131 }
132 
133 /// Returns the allocation data for the given value if it's a call to a known
134 /// allocation function.
135 static Optional<AllocFnsTy>
136 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
137                              const TargetLibraryInfo *TLI) {
138   // Make sure that the function is available.
139   LibFunc TLIFn;
140   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
141     return None;
142 
143   const auto *Iter = find_if(
144       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
145         return P.first == TLIFn;
146       });
147 
148   if (Iter == std::end(AllocationFnData))
149     return None;
150 
151   const AllocFnsTy *FnData = &Iter->second;
152   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
153     return None;
154 
155   // Check function prototype.
156   int FstParam = FnData->FstParam;
157   int SndParam = FnData->SndParam;
158   FunctionType *FTy = Callee->getFunctionType();
159 
160   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
161       FTy->getNumParams() == FnData->NumParams &&
162       (FstParam < 0 ||
163        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
164         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
165       (SndParam < 0 ||
166        FTy->getParamType(SndParam)->isIntegerTy(32) ||
167        FTy->getParamType(SndParam)->isIntegerTy(64)))
168     return *FnData;
169   return None;
170 }
171 
172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
173                                               const TargetLibraryInfo *TLI) {
174   bool IsNoBuiltinCall;
175   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
176     if (!IsNoBuiltinCall)
177       return getAllocationDataForFunction(Callee, AllocTy, TLI);
178   return None;
179 }
180 
181 static Optional<AllocFnsTy>
182 getAllocationData(const Value *V, AllocType AllocTy,
183                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
184   bool IsNoBuiltinCall;
185   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
186     if (!IsNoBuiltinCall)
187       return getAllocationDataForFunction(
188           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
189   return None;
190 }
191 
192 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
193                                               const TargetLibraryInfo *TLI) {
194   bool IsNoBuiltinCall;
195   const Function *Callee =
196       getCalledFunction(V, IsNoBuiltinCall);
197   if (!Callee)
198     return None;
199 
200   // Prefer to use existing information over allocsize. This will give us an
201   // accurate AllocTy.
202   if (!IsNoBuiltinCall)
203     if (Optional<AllocFnsTy> Data =
204             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
205       return Data;
206 
207   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
208   if (Attr == Attribute())
209     return None;
210 
211   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
212 
213   AllocFnsTy Result;
214   // Because allocsize only tells us how many bytes are allocated, we're not
215   // really allowed to assume anything, so we use MallocLike.
216   Result.AllocTy = MallocLike;
217   Result.NumParams = Callee->getNumOperands();
218   Result.FstParam = Args.first;
219   Result.SndParam = Args.second.getValueOr(-1);
220   // Allocsize has no way to specify an alignment argument
221   Result.AlignParam = -1;
222   return Result;
223 }
224 
225 /// Tests if a value is a call or invoke to a library function that
226 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
227 /// like).
228 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
229   return getAllocationData(V, AnyAlloc, TLI).hasValue();
230 }
231 bool llvm::isAllocationFn(
232     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
233   return getAllocationData(V, AnyAlloc, GetTLI).hasValue();
234 }
235 
236 /// Tests if a value is a call or invoke to a library function that
237 /// allocates uninitialized memory (such as malloc).
238 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
239   return getAllocationData(V, MallocLike, TLI).hasValue();
240 }
241 bool llvm::isMallocLikeFn(
242     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
243   return getAllocationData(V, MallocLike, GetTLI)
244       .hasValue();
245 }
246 
247 /// Tests if a value is a call or invoke to a library function that
248 /// allocates uninitialized memory with alignment (such as aligned_alloc).
249 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
250   return getAllocationData(V, AlignedAllocLike, TLI)
251       .hasValue();
252 }
253 bool llvm::isAlignedAllocLikeFn(
254     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
255   return getAllocationData(V, AlignedAllocLike, GetTLI)
256       .hasValue();
257 }
258 
259 /// Tests if a value is a call or invoke to a library function that
260 /// allocates zero-filled memory (such as calloc).
261 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
262   return getAllocationData(V, CallocLike, TLI).hasValue();
263 }
264 
265 /// Tests if a value is a call or invoke to a library function that
266 /// allocates memory similar to malloc or calloc.
267 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
268   return getAllocationData(V, MallocOrCallocLike, TLI).hasValue();
269 }
270 
271 /// Tests if a value is a call or invoke to a library function that
272 /// allocates memory (either malloc, calloc, or strdup like).
273 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
274   return getAllocationData(V, AllocLike, TLI).hasValue();
275 }
276 
277 /// Tests if a value is a call or invoke to a library function that
278 /// reallocates memory (e.g., realloc).
279 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
280   return getAllocationData(V, ReallocLike, TLI).hasValue();
281 }
282 
283 /// Tests if a functions is a call or invoke to a library function that
284 /// reallocates memory (e.g., realloc).
285 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
286   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
287 }
288 
289 bool llvm::isAllocRemovable(const CallBase *CB, const TargetLibraryInfo *TLI) {
290   assert(isAllocationFn(CB, TLI));
291 
292   // Note: Removability is highly dependent on the source language.  For
293   // example, recent C++ requires direct calls to the global allocation
294   // [basic.stc.dynamic.allocation] to be observable unless part of a new
295   // expression [expr.new paragraph 13].
296 
297   // Historically we've treated the C family allocation routines as removable
298   return isAllocLikeFn(CB, TLI);
299 }
300 
301 Value *llvm::getAllocAlignment(const CallBase *V,
302                                const TargetLibraryInfo *TLI) {
303   assert(isAllocationFn(V, TLI));
304 
305   const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
306   if (!FnData.hasValue() || FnData->AlignParam < 0) {
307     return nullptr;
308   }
309   return V->getOperand(FnData->AlignParam);
310 }
311 
312 Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc,
313                                             const TargetLibraryInfo *TLI,
314                                             Type *Ty) {
315   assert(isAllocationFn(Alloc, TLI));
316 
317   // malloc and aligned_alloc are uninitialized (undef)
318   if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
319     return UndefValue::get(Ty);
320 
321   // calloc zero initializes
322   if (isCallocLikeFn(Alloc, TLI))
323     return Constant::getNullValue(Ty);
324 
325   return nullptr;
326 }
327 
328 /// isLibFreeFunction - Returns true if the function is a builtin free()
329 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
330   unsigned ExpectedNumParams;
331   if (TLIFn == LibFunc_free ||
332       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
333       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
334       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
335       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
336       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
337       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
338     ExpectedNumParams = 1;
339   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
340            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
341            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
342            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
343            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
344            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
345            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
346            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
347            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
348            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
349            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
350            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
351            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
352            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
353            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
354            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow)
355            TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free
356     ExpectedNumParams = 2;
357   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
358            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
359            TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
360            TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
361            TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
362            TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
363     ExpectedNumParams = 3;
364   else
365     return false;
366 
367   // Check free prototype.
368   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
369   // attribute will exist.
370   FunctionType *FTy = F->getFunctionType();
371   if (!FTy->getReturnType()->isVoidTy())
372     return false;
373   if (FTy->getNumParams() != ExpectedNumParams)
374     return false;
375   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
376     return false;
377 
378   return true;
379 }
380 
381 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
382 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
383   bool IsNoBuiltinCall;
384   const Function *Callee = getCalledFunction(I, IsNoBuiltinCall);
385   if (Callee == nullptr || IsNoBuiltinCall)
386     return nullptr;
387 
388   LibFunc TLIFn;
389   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
390     return nullptr;
391 
392   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
393 }
394 
395 
396 //===----------------------------------------------------------------------===//
397 //  Utility functions to compute size of objects.
398 //
399 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
400   if (Data.second.isNegative() || Data.first.ult(Data.second))
401     return APInt(Data.first.getBitWidth(), 0);
402   return Data.first - Data.second;
403 }
404 
405 /// Compute the size of the object pointed by Ptr. Returns true and the
406 /// object size in Size if successful, and false otherwise.
407 /// If RoundToAlign is true, then Size is rounded up to the alignment of
408 /// allocas, byval arguments, and global variables.
409 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
410                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
411   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
412   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
413   if (!Visitor.bothKnown(Data))
414     return false;
415 
416   Size = getSizeWithOverflow(Data).getZExtValue();
417   return true;
418 }
419 
420 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
421                                  const DataLayout &DL,
422                                  const TargetLibraryInfo *TLI,
423                                  bool MustSucceed) {
424   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
425          "ObjectSize must be a call to llvm.objectsize!");
426 
427   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
428   ObjectSizeOpts EvalOptions;
429   // Unless we have to fold this to something, try to be as accurate as
430   // possible.
431   if (MustSucceed)
432     EvalOptions.EvalMode =
433         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
434   else
435     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
436 
437   EvalOptions.NullIsUnknownSize =
438       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
439 
440   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
441   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
442   if (StaticOnly) {
443     // FIXME: Does it make sense to just return a failure value if the size won't
444     // fit in the output and `!MustSucceed`?
445     uint64_t Size;
446     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
447         isUIntN(ResultType->getBitWidth(), Size))
448       return ConstantInt::get(ResultType, Size);
449   } else {
450     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
451     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
452     SizeOffsetEvalType SizeOffsetPair =
453         Eval.compute(ObjectSize->getArgOperand(0));
454 
455     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
456       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
457       Builder.SetInsertPoint(ObjectSize);
458 
459       // If we've outside the end of the object, then we can always access
460       // exactly 0 bytes.
461       Value *ResultSize =
462           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
463       Value *UseZero =
464           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
465       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
466       Value *Ret = Builder.CreateSelect(
467           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
468 
469       // The non-constant size expression cannot evaluate to -1.
470       if (!isa<Constant>(SizeOffsetPair.first) ||
471           !isa<Constant>(SizeOffsetPair.second))
472         Builder.CreateAssumption(
473             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
474 
475       return Ret;
476     }
477   }
478 
479   if (!MustSucceed)
480     return nullptr;
481 
482   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
483 }
484 
485 STATISTIC(ObjectVisitorArgument,
486           "Number of arguments with unsolved size and offset");
487 STATISTIC(ObjectVisitorLoad,
488           "Number of load instructions with unsolved size and offset");
489 
490 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
491   if (Options.RoundToAlign && Alignment)
492     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment));
493   return Size;
494 }
495 
496 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
497                                                  const TargetLibraryInfo *TLI,
498                                                  LLVMContext &Context,
499                                                  ObjectSizeOpts Options)
500     : DL(DL), TLI(TLI), Options(Options) {
501   // Pointer size must be rechecked for each object visited since it could have
502   // a different address space.
503 }
504 
505 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
506   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
507   Zero = APInt::getZero(IntTyBits);
508 
509   V = V->stripPointerCasts();
510   if (Instruction *I = dyn_cast<Instruction>(V)) {
511     // If we have already seen this instruction, bail out. Cycles can happen in
512     // unreachable code after constant propagation.
513     if (!SeenInsts.insert(I).second)
514       return unknown();
515 
516     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
517       return visitGEPOperator(*GEP);
518     return visit(*I);
519   }
520   if (Argument *A = dyn_cast<Argument>(V))
521     return visitArgument(*A);
522   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
523     return visitConstantPointerNull(*P);
524   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
525     return visitGlobalAlias(*GA);
526   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
527     return visitGlobalVariable(*GV);
528   if (UndefValue *UV = dyn_cast<UndefValue>(V))
529     return visitUndefValue(*UV);
530   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
531     if (CE->getOpcode() == Instruction::IntToPtr)
532       return unknown(); // clueless
533     if (CE->getOpcode() == Instruction::GetElementPtr)
534       return visitGEPOperator(cast<GEPOperator>(*CE));
535   }
536 
537   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
538                     << *V << '\n');
539   return unknown();
540 }
541 
542 /// When we're compiling N-bit code, and the user uses parameters that are
543 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
544 /// trouble with APInt size issues. This function handles resizing + overflow
545 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
546 /// I's value.
547 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
548   // More bits than we can handle. Checking the bit width isn't necessary, but
549   // it's faster than checking active bits, and should give `false` in the
550   // vast majority of cases.
551   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
552     return false;
553   if (I.getBitWidth() != IntTyBits)
554     I = I.zextOrTrunc(IntTyBits);
555   return true;
556 }
557 
558 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
559   if (!I.getAllocatedType()->isSized())
560     return unknown();
561 
562   if (isa<ScalableVectorType>(I.getAllocatedType()))
563     return unknown();
564 
565   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
566   if (!I.isArrayAllocation())
567     return std::make_pair(align(Size, I.getAlign()), Zero);
568 
569   Value *ArraySize = I.getArraySize();
570   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
571     APInt NumElems = C->getValue();
572     if (!CheckedZextOrTrunc(NumElems))
573       return unknown();
574 
575     bool Overflow;
576     Size = Size.umul_ov(NumElems, Overflow);
577     return Overflow ? unknown()
578                     : std::make_pair(align(Size, I.getAlign()), Zero);
579   }
580   return unknown();
581 }
582 
583 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
584   Type *MemoryTy = A.getPointeeInMemoryValueType();
585   // No interprocedural analysis is done at the moment.
586   if (!MemoryTy|| !MemoryTy->isSized()) {
587     ++ObjectVisitorArgument;
588     return unknown();
589   }
590 
591   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
592   return std::make_pair(align(Size, A.getParamAlign()), Zero);
593 }
594 
595 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
596   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
597   if (!FnData)
598     return unknown();
599 
600   // Handle strdup-like functions separately.
601   if (FnData->AllocTy == StrDupLike) {
602     APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0)));
603     if (!Size)
604       return unknown();
605 
606     // Strndup limits strlen.
607     if (FnData->FstParam > 0) {
608       ConstantInt *Arg =
609           dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
610       if (!Arg)
611         return unknown();
612 
613       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
614       if (Size.ugt(MaxSize))
615         Size = MaxSize + 1;
616     }
617     return std::make_pair(Size, Zero);
618   }
619 
620   ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
621   if (!Arg)
622     return unknown();
623 
624   APInt Size = Arg->getValue();
625   if (!CheckedZextOrTrunc(Size))
626     return unknown();
627 
628   // Size is determined by just 1 parameter.
629   if (FnData->SndParam < 0)
630     return std::make_pair(Size, Zero);
631 
632   Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam));
633   if (!Arg)
634     return unknown();
635 
636   APInt NumElems = Arg->getValue();
637   if (!CheckedZextOrTrunc(NumElems))
638     return unknown();
639 
640   bool Overflow;
641   Size = Size.umul_ov(NumElems, Overflow);
642   return Overflow ? unknown() : std::make_pair(Size, Zero);
643 }
644 
645 SizeOffsetType
646 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
647   // If null is unknown, there's nothing we can do. Additionally, non-zero
648   // address spaces can make use of null, so we don't presume to know anything
649   // about that.
650   //
651   // TODO: How should this work with address space casts? We currently just drop
652   // them on the floor, but it's unclear what we should do when a NULL from
653   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
654   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
655     return unknown();
656   return std::make_pair(Zero, Zero);
657 }
658 
659 SizeOffsetType
660 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
661   return unknown();
662 }
663 
664 SizeOffsetType
665 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
666   // Easy cases were already folded by previous passes.
667   return unknown();
668 }
669 
670 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
671   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
672   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
673   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
674     return unknown();
675 
676   return std::make_pair(PtrData.first, PtrData.second + Offset);
677 }
678 
679 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
680   if (GA.isInterposable())
681     return unknown();
682   return compute(GA.getAliasee());
683 }
684 
685 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
686   if (!GV.hasDefinitiveInitializer())
687     return unknown();
688 
689   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
690   return std::make_pair(align(Size, GV.getAlign()), Zero);
691 }
692 
693 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
694   // clueless
695   return unknown();
696 }
697 
698 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
699   ++ObjectVisitorLoad;
700   return unknown();
701 }
702 
703 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
704   // too complex to analyze statically.
705   return unknown();
706 }
707 
708 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
709   SizeOffsetType TrueSide  = compute(I.getTrueValue());
710   SizeOffsetType FalseSide = compute(I.getFalseValue());
711   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
712     if (TrueSide == FalseSide) {
713         return TrueSide;
714     }
715 
716     APInt TrueResult = getSizeWithOverflow(TrueSide);
717     APInt FalseResult = getSizeWithOverflow(FalseSide);
718 
719     if (TrueResult == FalseResult) {
720       return TrueSide;
721     }
722     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
723       if (TrueResult.slt(FalseResult))
724         return TrueSide;
725       return FalseSide;
726     }
727     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
728       if (TrueResult.sgt(FalseResult))
729         return TrueSide;
730       return FalseSide;
731     }
732   }
733   return unknown();
734 }
735 
736 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
737   return std::make_pair(Zero, Zero);
738 }
739 
740 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
741   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
742                     << '\n');
743   return unknown();
744 }
745 
746 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
747     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
748     ObjectSizeOpts EvalOpts)
749     : DL(DL), TLI(TLI), Context(Context),
750       Builder(Context, TargetFolder(DL),
751               IRBuilderCallbackInserter(
752                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
753       EvalOpts(EvalOpts) {
754   // IntTy and Zero must be set for each compute() since the address space may
755   // be different for later objects.
756 }
757 
758 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
759   // XXX - Are vectors of pointers possible here?
760   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
761   Zero = ConstantInt::get(IntTy, 0);
762 
763   SizeOffsetEvalType Result = compute_(V);
764 
765   if (!bothKnown(Result)) {
766     // Erase everything that was computed in this iteration from the cache, so
767     // that no dangling references are left behind. We could be a bit smarter if
768     // we kept a dependency graph. It's probably not worth the complexity.
769     for (const Value *SeenVal : SeenVals) {
770       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
771       // non-computable results can be safely cached
772       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
773         CacheMap.erase(CacheIt);
774     }
775 
776     // Erase any instructions we inserted as part of the traversal.
777     for (Instruction *I : InsertedInstructions) {
778       I->replaceAllUsesWith(UndefValue::get(I->getType()));
779       I->eraseFromParent();
780     }
781   }
782 
783   SeenVals.clear();
784   InsertedInstructions.clear();
785   return Result;
786 }
787 
788 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
789   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
790   SizeOffsetType Const = Visitor.compute(V);
791   if (Visitor.bothKnown(Const))
792     return std::make_pair(ConstantInt::get(Context, Const.first),
793                           ConstantInt::get(Context, Const.second));
794 
795   V = V->stripPointerCasts();
796 
797   // Check cache.
798   CacheMapTy::iterator CacheIt = CacheMap.find(V);
799   if (CacheIt != CacheMap.end())
800     return CacheIt->second;
801 
802   // Always generate code immediately before the instruction being
803   // processed, so that the generated code dominates the same BBs.
804   BuilderTy::InsertPointGuard Guard(Builder);
805   if (Instruction *I = dyn_cast<Instruction>(V))
806     Builder.SetInsertPoint(I);
807 
808   // Now compute the size and offset.
809   SizeOffsetEvalType Result;
810 
811   // Record the pointers that were handled in this run, so that they can be
812   // cleaned later if something fails. We also use this set to break cycles that
813   // can occur in dead code.
814   if (!SeenVals.insert(V).second) {
815     Result = unknown();
816   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
817     Result = visitGEPOperator(*GEP);
818   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
819     Result = visit(*I);
820   } else if (isa<Argument>(V) ||
821              (isa<ConstantExpr>(V) &&
822               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
823              isa<GlobalAlias>(V) ||
824              isa<GlobalVariable>(V)) {
825     // Ignore values where we cannot do more than ObjectSizeVisitor.
826     Result = unknown();
827   } else {
828     LLVM_DEBUG(
829         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
830                << '\n');
831     Result = unknown();
832   }
833 
834   // Don't reuse CacheIt since it may be invalid at this point.
835   CacheMap[V] = Result;
836   return Result;
837 }
838 
839 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
840   if (!I.getAllocatedType()->isSized())
841     return unknown();
842 
843   // must be a VLA
844   assert(I.isArrayAllocation());
845 
846   // If needed, adjust the alloca's operand size to match the pointer size.
847   // Subsequent math operations expect the types to match.
848   Value *ArraySize = Builder.CreateZExtOrTrunc(
849       I.getArraySize(), DL.getIntPtrType(I.getContext()));
850   assert(ArraySize->getType() == Zero->getType() &&
851          "Expected zero constant to have pointer type");
852 
853   Value *Size = ConstantInt::get(ArraySize->getType(),
854                                  DL.getTypeAllocSize(I.getAllocatedType()));
855   Size = Builder.CreateMul(Size, ArraySize);
856   return std::make_pair(Size, Zero);
857 }
858 
859 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
860   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
861   if (!FnData)
862     return unknown();
863 
864   // Handle strdup-like functions separately.
865   if (FnData->AllocTy == StrDupLike) {
866     // TODO: implement evaluation of strdup/strndup
867     return unknown();
868   }
869 
870   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
871   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
872   if (FnData->SndParam < 0)
873     return std::make_pair(FirstArg, Zero);
874 
875   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
876   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
877   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
878   return std::make_pair(Size, Zero);
879 }
880 
881 SizeOffsetEvalType
882 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
883   return unknown();
884 }
885 
886 SizeOffsetEvalType
887 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
888   return unknown();
889 }
890 
891 SizeOffsetEvalType
892 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
893   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
894   if (!bothKnown(PtrData))
895     return unknown();
896 
897   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
898   Offset = Builder.CreateAdd(PtrData.second, Offset);
899   return std::make_pair(PtrData.first, Offset);
900 }
901 
902 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
903   // clueless
904   return unknown();
905 }
906 
907 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
908   return unknown();
909 }
910 
911 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
912   // Create 2 PHIs: one for size and another for offset.
913   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
914   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
915 
916   // Insert right away in the cache to handle recursive PHIs.
917   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
918 
919   // Compute offset/size for each PHI incoming pointer.
920   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
921     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
922     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
923 
924     if (!bothKnown(EdgeData)) {
925       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
926       OffsetPHI->eraseFromParent();
927       InsertedInstructions.erase(OffsetPHI);
928       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
929       SizePHI->eraseFromParent();
930       InsertedInstructions.erase(SizePHI);
931       return unknown();
932     }
933     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
934     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
935   }
936 
937   Value *Size = SizePHI, *Offset = OffsetPHI;
938   if (Value *Tmp = SizePHI->hasConstantValue()) {
939     Size = Tmp;
940     SizePHI->replaceAllUsesWith(Size);
941     SizePHI->eraseFromParent();
942     InsertedInstructions.erase(SizePHI);
943   }
944   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
945     Offset = Tmp;
946     OffsetPHI->replaceAllUsesWith(Offset);
947     OffsetPHI->eraseFromParent();
948     InsertedInstructions.erase(OffsetPHI);
949   }
950   return std::make_pair(Size, Offset);
951 }
952 
953 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
954   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
955   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
956 
957   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
958     return unknown();
959   if (TrueSide == FalseSide)
960     return TrueSide;
961 
962   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
963                                      FalseSide.first);
964   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
965                                        FalseSide.second);
966   return std::make_pair(Size, Offset);
967 }
968 
969 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
970   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
971                     << '\n');
972   return unknown();
973 }
974