1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Metadata.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "memory-builtins" 33 34 enum AllocType : uint8_t { 35 OpNewLike = 1<<0, // allocates; never returns null 36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 37 CallocLike = 1<<2, // allocates + bzero 38 ReallocLike = 1<<3, // reallocates 39 StrDupLike = 1<<4, 40 AllocLike = MallocLike | CallocLike | StrDupLike, 41 AnyAlloc = AllocLike | ReallocLike 42 }; 43 44 struct AllocFnsTy { 45 AllocType AllocTy; 46 unsigned NumParams; 47 // First and Second size parameters (or -1 if unused) 48 int FstParam, SndParam; 49 }; 50 51 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 52 // know which functions are nounwind, noalias, nocapture parameters, etc. 53 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 54 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 55 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 56 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 57 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 58 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 59 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 60 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 61 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 62 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 63 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 64 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 65 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 66 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 67 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 68 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 69 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 70 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 71 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 72 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 73 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 74 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 75 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 76 {LibFunc_strndup, {StrDupLike, 2, 1, -1}} 77 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 78 }; 79 80 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 81 bool &IsNoBuiltin) { 82 // Don't care about intrinsics in this case. 83 if (isa<IntrinsicInst>(V)) 84 return nullptr; 85 86 if (LookThroughBitCast) 87 V = V->stripPointerCasts(); 88 89 ImmutableCallSite CS(V); 90 if (!CS.getInstruction()) 91 return nullptr; 92 93 IsNoBuiltin = CS.isNoBuiltin(); 94 95 const Function *Callee = CS.getCalledFunction(); 96 if (!Callee || !Callee->isDeclaration()) 97 return nullptr; 98 return Callee; 99 } 100 101 /// Returns the allocation data for the given value if it's either a call to a 102 /// known allocation function, or a call to a function with the allocsize 103 /// attribute. 104 static Optional<AllocFnsTy> 105 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 106 const TargetLibraryInfo *TLI) { 107 // Make sure that the function is available. 108 StringRef FnName = Callee->getName(); 109 LibFunc TLIFn; 110 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 111 return None; 112 113 const auto *Iter = find_if( 114 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 115 return P.first == TLIFn; 116 }); 117 118 if (Iter == std::end(AllocationFnData)) 119 return None; 120 121 const AllocFnsTy *FnData = &Iter->second; 122 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 123 return None; 124 125 // Check function prototype. 126 int FstParam = FnData->FstParam; 127 int SndParam = FnData->SndParam; 128 FunctionType *FTy = Callee->getFunctionType(); 129 130 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 131 FTy->getNumParams() == FnData->NumParams && 132 (FstParam < 0 || 133 (FTy->getParamType(FstParam)->isIntegerTy(32) || 134 FTy->getParamType(FstParam)->isIntegerTy(64))) && 135 (SndParam < 0 || 136 FTy->getParamType(SndParam)->isIntegerTy(32) || 137 FTy->getParamType(SndParam)->isIntegerTy(64))) 138 return *FnData; 139 return None; 140 } 141 142 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 143 const TargetLibraryInfo *TLI, 144 bool LookThroughBitCast = false) { 145 bool IsNoBuiltinCall; 146 if (const Function *Callee = 147 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 148 if (!IsNoBuiltinCall) 149 return getAllocationDataForFunction(Callee, AllocTy, TLI); 150 return None; 151 } 152 153 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 154 const TargetLibraryInfo *TLI) { 155 bool IsNoBuiltinCall; 156 const Function *Callee = 157 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 158 if (!Callee) 159 return None; 160 161 // Prefer to use existing information over allocsize. This will give us an 162 // accurate AllocTy. 163 if (!IsNoBuiltinCall) 164 if (Optional<AllocFnsTy> Data = 165 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 166 return Data; 167 168 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 169 if (Attr == Attribute()) 170 return None; 171 172 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 173 174 AllocFnsTy Result; 175 // Because allocsize only tells us how many bytes are allocated, we're not 176 // really allowed to assume anything, so we use MallocLike. 177 Result.AllocTy = MallocLike; 178 Result.NumParams = Callee->getNumOperands(); 179 Result.FstParam = Args.first; 180 Result.SndParam = Args.second.getValueOr(-1); 181 return Result; 182 } 183 184 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 185 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 186 return CS && CS.hasRetAttr(Attribute::NoAlias); 187 } 188 189 190 /// \brief Tests if a value is a call or invoke to a library function that 191 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 192 /// like). 193 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 194 bool LookThroughBitCast) { 195 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 196 } 197 198 /// \brief Tests if a value is a call or invoke to a function that returns a 199 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 200 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 201 bool LookThroughBitCast) { 202 // it's safe to consider realloc as noalias since accessing the original 203 // pointer is undefined behavior 204 return isAllocationFn(V, TLI, LookThroughBitCast) || 205 hasNoAliasAttr(V, LookThroughBitCast); 206 } 207 208 /// \brief Tests if a value is a call or invoke to a library function that 209 /// allocates uninitialized memory (such as malloc). 210 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 211 bool LookThroughBitCast) { 212 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 213 } 214 215 /// \brief Tests if a value is a call or invoke to a library function that 216 /// allocates zero-filled memory (such as calloc). 217 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 218 bool LookThroughBitCast) { 219 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 220 } 221 222 /// \brief Tests if a value is a call or invoke to a library function that 223 /// allocates memory (either malloc, calloc, or strdup like). 224 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 225 bool LookThroughBitCast) { 226 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 227 } 228 229 /// extractMallocCall - Returns the corresponding CallInst if the instruction 230 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 231 /// ignore InvokeInst here. 232 const CallInst *llvm::extractMallocCall(const Value *I, 233 const TargetLibraryInfo *TLI) { 234 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 235 } 236 237 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 238 const TargetLibraryInfo *TLI, 239 bool LookThroughSExt = false) { 240 if (!CI) 241 return nullptr; 242 243 // The size of the malloc's result type must be known to determine array size. 244 Type *T = getMallocAllocatedType(CI, TLI); 245 if (!T || !T->isSized()) 246 return nullptr; 247 248 unsigned ElementSize = DL.getTypeAllocSize(T); 249 if (StructType *ST = dyn_cast<StructType>(T)) 250 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 251 252 // If malloc call's arg can be determined to be a multiple of ElementSize, 253 // return the multiple. Otherwise, return NULL. 254 Value *MallocArg = CI->getArgOperand(0); 255 Value *Multiple = nullptr; 256 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 257 return Multiple; 258 259 return nullptr; 260 } 261 262 /// getMallocType - Returns the PointerType resulting from the malloc call. 263 /// The PointerType depends on the number of bitcast uses of the malloc call: 264 /// 0: PointerType is the calls' return type. 265 /// 1: PointerType is the bitcast's result type. 266 /// >1: Unique PointerType cannot be determined, return NULL. 267 PointerType *llvm::getMallocType(const CallInst *CI, 268 const TargetLibraryInfo *TLI) { 269 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 270 271 PointerType *MallocType = nullptr; 272 unsigned NumOfBitCastUses = 0; 273 274 // Determine if CallInst has a bitcast use. 275 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 276 UI != E;) 277 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 278 MallocType = cast<PointerType>(BCI->getDestTy()); 279 NumOfBitCastUses++; 280 } 281 282 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 283 if (NumOfBitCastUses == 1) 284 return MallocType; 285 286 // Malloc call was not bitcast, so type is the malloc function's return type. 287 if (NumOfBitCastUses == 0) 288 return cast<PointerType>(CI->getType()); 289 290 // Type could not be determined. 291 return nullptr; 292 } 293 294 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 295 /// The Type depends on the number of bitcast uses of the malloc call: 296 /// 0: PointerType is the malloc calls' return type. 297 /// 1: PointerType is the bitcast's result type. 298 /// >1: Unique PointerType cannot be determined, return NULL. 299 Type *llvm::getMallocAllocatedType(const CallInst *CI, 300 const TargetLibraryInfo *TLI) { 301 PointerType *PT = getMallocType(CI, TLI); 302 return PT ? PT->getElementType() : nullptr; 303 } 304 305 /// getMallocArraySize - Returns the array size of a malloc call. If the 306 /// argument passed to malloc is a multiple of the size of the malloced type, 307 /// then return that multiple. For non-array mallocs, the multiple is 308 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 309 /// determined. 310 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 311 const TargetLibraryInfo *TLI, 312 bool LookThroughSExt) { 313 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 314 return computeArraySize(CI, DL, TLI, LookThroughSExt); 315 } 316 317 318 /// extractCallocCall - Returns the corresponding CallInst if the instruction 319 /// is a calloc call. 320 const CallInst *llvm::extractCallocCall(const Value *I, 321 const TargetLibraryInfo *TLI) { 322 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 323 } 324 325 326 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 327 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 328 const CallInst *CI = dyn_cast<CallInst>(I); 329 if (!CI || isa<IntrinsicInst>(CI)) 330 return nullptr; 331 Function *Callee = CI->getCalledFunction(); 332 if (Callee == nullptr) 333 return nullptr; 334 335 StringRef FnName = Callee->getName(); 336 LibFunc TLIFn; 337 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 338 return nullptr; 339 340 unsigned ExpectedNumParams; 341 if (TLIFn == LibFunc_free || 342 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 343 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 344 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 345 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 346 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 347 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 348 ExpectedNumParams = 1; 349 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 350 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 351 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 352 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 353 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 354 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 355 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 356 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 357 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 358 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 359 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 360 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 361 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 362 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 363 ExpectedNumParams = 2; 364 else 365 return nullptr; 366 367 // Check free prototype. 368 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 369 // attribute will exist. 370 FunctionType *FTy = Callee->getFunctionType(); 371 if (!FTy->getReturnType()->isVoidTy()) 372 return nullptr; 373 if (FTy->getNumParams() != ExpectedNumParams) 374 return nullptr; 375 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 376 return nullptr; 377 378 return CI; 379 } 380 381 382 383 //===----------------------------------------------------------------------===// 384 // Utility functions to compute size of objects. 385 // 386 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 387 if (Data.second.isNegative() || Data.first.ult(Data.second)) 388 return APInt(Data.first.getBitWidth(), 0); 389 return Data.first - Data.second; 390 } 391 392 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 393 /// object size in Size if successful, and false otherwise. 394 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas, 395 /// byval arguments, and global variables. 396 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 397 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 398 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 399 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 400 if (!Visitor.bothKnown(Data)) 401 return false; 402 403 Size = getSizeWithOverflow(Data).getZExtValue(); 404 return true; 405 } 406 407 ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 408 const DataLayout &DL, 409 const TargetLibraryInfo *TLI, 410 bool MustSucceed) { 411 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 412 "ObjectSize must be a call to llvm.objectsize!"); 413 414 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 415 ObjectSizeOpts EvalOptions; 416 // Unless we have to fold this to something, try to be as accurate as 417 // possible. 418 if (MustSucceed) 419 EvalOptions.EvalMode = 420 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 421 else 422 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 423 424 EvalOptions.NullIsUnknownSize = 425 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 426 427 // FIXME: Does it make sense to just return a failure value if the size won't 428 // fit in the output and `!MustSucceed`? 429 uint64_t Size; 430 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 431 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 432 isUIntN(ResultType->getBitWidth(), Size)) 433 return ConstantInt::get(ResultType, Size); 434 435 if (!MustSucceed) 436 return nullptr; 437 438 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 439 } 440 441 STATISTIC(ObjectVisitorArgument, 442 "Number of arguments with unsolved size and offset"); 443 STATISTIC(ObjectVisitorLoad, 444 "Number of load instructions with unsolved size and offset"); 445 446 447 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 448 if (Options.RoundToAlign && Align) 449 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); 450 return Size; 451 } 452 453 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 454 const TargetLibraryInfo *TLI, 455 LLVMContext &Context, 456 ObjectSizeOpts Options) 457 : DL(DL), TLI(TLI), Options(Options) { 458 // Pointer size must be rechecked for each object visited since it could have 459 // a different address space. 460 } 461 462 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 463 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 464 Zero = APInt::getNullValue(IntTyBits); 465 466 V = V->stripPointerCasts(); 467 if (Instruction *I = dyn_cast<Instruction>(V)) { 468 // If we have already seen this instruction, bail out. Cycles can happen in 469 // unreachable code after constant propagation. 470 if (!SeenInsts.insert(I).second) 471 return unknown(); 472 473 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 474 return visitGEPOperator(*GEP); 475 return visit(*I); 476 } 477 if (Argument *A = dyn_cast<Argument>(V)) 478 return visitArgument(*A); 479 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 480 return visitConstantPointerNull(*P); 481 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 482 return visitGlobalAlias(*GA); 483 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 484 return visitGlobalVariable(*GV); 485 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 486 return visitUndefValue(*UV); 487 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 488 if (CE->getOpcode() == Instruction::IntToPtr) 489 return unknown(); // clueless 490 if (CE->getOpcode() == Instruction::GetElementPtr) 491 return visitGEPOperator(cast<GEPOperator>(*CE)); 492 } 493 494 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 495 << '\n'); 496 return unknown(); 497 } 498 499 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 500 if (!I.getAllocatedType()->isSized()) 501 return unknown(); 502 503 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 504 if (!I.isArrayAllocation()) 505 return std::make_pair(align(Size, I.getAlignment()), Zero); 506 507 Value *ArraySize = I.getArraySize(); 508 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 509 Size *= C->getValue().zextOrSelf(IntTyBits); 510 return std::make_pair(align(Size, I.getAlignment()), Zero); 511 } 512 return unknown(); 513 } 514 515 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 516 // No interprocedural analysis is done at the moment. 517 if (!A.hasByValOrInAllocaAttr()) { 518 ++ObjectVisitorArgument; 519 return unknown(); 520 } 521 PointerType *PT = cast<PointerType>(A.getType()); 522 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 523 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 524 } 525 526 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 527 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 528 if (!FnData) 529 return unknown(); 530 531 // Handle strdup-like functions separately. 532 if (FnData->AllocTy == StrDupLike) { 533 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 534 if (!Size) 535 return unknown(); 536 537 // Strndup limits strlen. 538 if (FnData->FstParam > 0) { 539 ConstantInt *Arg = 540 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 541 if (!Arg) 542 return unknown(); 543 544 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 545 if (Size.ugt(MaxSize)) 546 Size = MaxSize + 1; 547 } 548 return std::make_pair(Size, Zero); 549 } 550 551 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 552 if (!Arg) 553 return unknown(); 554 555 // When we're compiling N-bit code, and the user uses parameters that are 556 // greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 557 // trouble with APInt size issues. This function handles resizing + overflow 558 // checks for us. 559 auto CheckedZextOrTrunc = [&](APInt &I) { 560 // More bits than we can handle. Checking the bit width isn't necessary, but 561 // it's faster than checking active bits, and should give `false` in the 562 // vast majority of cases. 563 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 564 return false; 565 if (I.getBitWidth() != IntTyBits) 566 I = I.zextOrTrunc(IntTyBits); 567 return true; 568 }; 569 570 APInt Size = Arg->getValue(); 571 if (!CheckedZextOrTrunc(Size)) 572 return unknown(); 573 574 // Size is determined by just 1 parameter. 575 if (FnData->SndParam < 0) 576 return std::make_pair(Size, Zero); 577 578 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 579 if (!Arg) 580 return unknown(); 581 582 APInt NumElems = Arg->getValue(); 583 if (!CheckedZextOrTrunc(NumElems)) 584 return unknown(); 585 586 bool Overflow; 587 Size = Size.umul_ov(NumElems, Overflow); 588 return Overflow ? unknown() : std::make_pair(Size, Zero); 589 590 // TODO: handle more standard functions (+ wchar cousins): 591 // - strdup / strndup 592 // - strcpy / strncpy 593 // - strcat / strncat 594 // - memcpy / memmove 595 // - strcat / strncat 596 // - memset 597 } 598 599 SizeOffsetType 600 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 601 if (Options.NullIsUnknownSize && CPN.getType()->getAddressSpace() == 0) 602 return unknown(); 603 return std::make_pair(Zero, Zero); 604 } 605 606 SizeOffsetType 607 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 608 return unknown(); 609 } 610 611 SizeOffsetType 612 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 613 // Easy cases were already folded by previous passes. 614 return unknown(); 615 } 616 617 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 618 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 619 APInt Offset(IntTyBits, 0); 620 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 621 return unknown(); 622 623 return std::make_pair(PtrData.first, PtrData.second + Offset); 624 } 625 626 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 627 if (GA.isInterposable()) 628 return unknown(); 629 return compute(GA.getAliasee()); 630 } 631 632 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 633 if (!GV.hasDefinitiveInitializer()) 634 return unknown(); 635 636 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); 637 return std::make_pair(align(Size, GV.getAlignment()), Zero); 638 } 639 640 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 641 // clueless 642 return unknown(); 643 } 644 645 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 646 ++ObjectVisitorLoad; 647 return unknown(); 648 } 649 650 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 651 // too complex to analyze statically. 652 return unknown(); 653 } 654 655 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 656 SizeOffsetType TrueSide = compute(I.getTrueValue()); 657 SizeOffsetType FalseSide = compute(I.getFalseValue()); 658 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 659 if (TrueSide == FalseSide) { 660 return TrueSide; 661 } 662 663 APInt TrueResult = getSizeWithOverflow(TrueSide); 664 APInt FalseResult = getSizeWithOverflow(FalseSide); 665 666 if (TrueResult == FalseResult) { 667 return TrueSide; 668 } 669 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 670 if (TrueResult.slt(FalseResult)) 671 return TrueSide; 672 return FalseSide; 673 } 674 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 675 if (TrueResult.sgt(FalseResult)) 676 return TrueSide; 677 return FalseSide; 678 } 679 } 680 return unknown(); 681 } 682 683 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 684 return std::make_pair(Zero, Zero); 685 } 686 687 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 688 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 689 return unknown(); 690 } 691 692 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 693 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 694 bool RoundToAlign) 695 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 696 RoundToAlign(RoundToAlign) { 697 // IntTy and Zero must be set for each compute() since the address space may 698 // be different for later objects. 699 } 700 701 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 702 // XXX - Are vectors of pointers possible here? 703 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 704 Zero = ConstantInt::get(IntTy, 0); 705 706 SizeOffsetEvalType Result = compute_(V); 707 708 if (!bothKnown(Result)) { 709 // Erase everything that was computed in this iteration from the cache, so 710 // that no dangling references are left behind. We could be a bit smarter if 711 // we kept a dependency graph. It's probably not worth the complexity. 712 for (const Value *SeenVal : SeenVals) { 713 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 714 // non-computable results can be safely cached 715 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 716 CacheMap.erase(CacheIt); 717 } 718 } 719 720 SeenVals.clear(); 721 return Result; 722 } 723 724 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 725 ObjectSizeOpts ObjSizeOptions; 726 ObjSizeOptions.RoundToAlign = RoundToAlign; 727 728 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions); 729 SizeOffsetType Const = Visitor.compute(V); 730 if (Visitor.bothKnown(Const)) 731 return std::make_pair(ConstantInt::get(Context, Const.first), 732 ConstantInt::get(Context, Const.second)); 733 734 V = V->stripPointerCasts(); 735 736 // Check cache. 737 CacheMapTy::iterator CacheIt = CacheMap.find(V); 738 if (CacheIt != CacheMap.end()) 739 return CacheIt->second; 740 741 // Always generate code immediately before the instruction being 742 // processed, so that the generated code dominates the same BBs. 743 BuilderTy::InsertPointGuard Guard(Builder); 744 if (Instruction *I = dyn_cast<Instruction>(V)) 745 Builder.SetInsertPoint(I); 746 747 // Now compute the size and offset. 748 SizeOffsetEvalType Result; 749 750 // Record the pointers that were handled in this run, so that they can be 751 // cleaned later if something fails. We also use this set to break cycles that 752 // can occur in dead code. 753 if (!SeenVals.insert(V).second) { 754 Result = unknown(); 755 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 756 Result = visitGEPOperator(*GEP); 757 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 758 Result = visit(*I); 759 } else if (isa<Argument>(V) || 760 (isa<ConstantExpr>(V) && 761 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 762 isa<GlobalAlias>(V) || 763 isa<GlobalVariable>(V)) { 764 // Ignore values where we cannot do more than ObjectSizeVisitor. 765 Result = unknown(); 766 } else { 767 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 768 << *V << '\n'); 769 Result = unknown(); 770 } 771 772 // Don't reuse CacheIt since it may be invalid at this point. 773 CacheMap[V] = Result; 774 return Result; 775 } 776 777 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 778 if (!I.getAllocatedType()->isSized()) 779 return unknown(); 780 781 // must be a VLA 782 assert(I.isArrayAllocation()); 783 Value *ArraySize = I.getArraySize(); 784 Value *Size = ConstantInt::get(ArraySize->getType(), 785 DL.getTypeAllocSize(I.getAllocatedType())); 786 Size = Builder.CreateMul(Size, ArraySize); 787 return std::make_pair(Size, Zero); 788 } 789 790 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 791 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 792 if (!FnData) 793 return unknown(); 794 795 // Handle strdup-like functions separately. 796 if (FnData->AllocTy == StrDupLike) { 797 // TODO 798 return unknown(); 799 } 800 801 Value *FirstArg = CS.getArgument(FnData->FstParam); 802 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 803 if (FnData->SndParam < 0) 804 return std::make_pair(FirstArg, Zero); 805 806 Value *SecondArg = CS.getArgument(FnData->SndParam); 807 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 808 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 809 return std::make_pair(Size, Zero); 810 811 // TODO: handle more standard functions (+ wchar cousins): 812 // - strdup / strndup 813 // - strcpy / strncpy 814 // - strcat / strncat 815 // - memcpy / memmove 816 // - strcat / strncat 817 // - memset 818 } 819 820 SizeOffsetEvalType 821 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 822 return unknown(); 823 } 824 825 SizeOffsetEvalType 826 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 827 return unknown(); 828 } 829 830 SizeOffsetEvalType 831 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 832 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 833 if (!bothKnown(PtrData)) 834 return unknown(); 835 836 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 837 Offset = Builder.CreateAdd(PtrData.second, Offset); 838 return std::make_pair(PtrData.first, Offset); 839 } 840 841 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 842 // clueless 843 return unknown(); 844 } 845 846 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 847 return unknown(); 848 } 849 850 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 851 // Create 2 PHIs: one for size and another for offset. 852 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 853 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 854 855 // Insert right away in the cache to handle recursive PHIs. 856 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 857 858 // Compute offset/size for each PHI incoming pointer. 859 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 860 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 861 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 862 863 if (!bothKnown(EdgeData)) { 864 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 865 OffsetPHI->eraseFromParent(); 866 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 867 SizePHI->eraseFromParent(); 868 return unknown(); 869 } 870 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 871 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 872 } 873 874 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 875 if ((Tmp = SizePHI->hasConstantValue())) { 876 Size = Tmp; 877 SizePHI->replaceAllUsesWith(Size); 878 SizePHI->eraseFromParent(); 879 } 880 if ((Tmp = OffsetPHI->hasConstantValue())) { 881 Offset = Tmp; 882 OffsetPHI->replaceAllUsesWith(Offset); 883 OffsetPHI->eraseFromParent(); 884 } 885 return std::make_pair(Size, Offset); 886 } 887 888 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 889 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 890 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 891 892 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 893 return unknown(); 894 if (TrueSide == FalseSide) 895 return TrueSide; 896 897 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 898 FalseSide.first); 899 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 900 FalseSide.second); 901 return std::make_pair(Size, Offset); 902 } 903 904 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 905 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 906 return unknown(); 907 } 908