1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrOpNewLike  = MallocLike | OpNewLike,
60   MallocOrCallocLike = MallocLike | OpNewLike | CallocLike | AlignedAllocLike,
61   AllocLike          = MallocOrCallocLike | StrDupLike,
62   AnyAlloc           = AllocLike | ReallocLike
63 };
64 
65 struct AllocFnsTy {
66   AllocType AllocTy;
67   unsigned NumParams;
68   // First and Second size parameters (or -1 if unused)
69   int FstParam, SndParam;
70   // Alignment parameter for aligned_alloc and aligned new
71   int AlignParam;
72 };
73 
74 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
75 // know which functions are nounwind, noalias, nocapture parameters, etc.
76 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
77     {LibFunc_malloc,                            {MallocLike,       1,  0, -1, -1}},
78     {LibFunc_vec_malloc,                        {MallocLike,       1,  0, -1, -1}},
79     {LibFunc_valloc,                            {MallocLike,       1,  0, -1, -1}},
80     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1}}, // new(unsigned int)
81     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new(unsigned int, nothrow)
82     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new(unsigned int, align_val_t)
83     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new(unsigned int, align_val_t, nothrow)
84     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1}}, // new(unsigned long)
85     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new(unsigned long, nothrow)
86     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new(unsigned long, align_val_t)
87     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new(unsigned long, align_val_t, nothrow)
88     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned int)
89     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new[](unsigned int, nothrow)
90     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new[](unsigned int, align_val_t)
91     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new[](unsigned int, align_val_t, nothrow)
92     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned long)
93     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new[](unsigned long, nothrow)
94     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new[](unsigned long, align_val_t)
95     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new[](unsigned long, align_val_t, nothrow)
96     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1}}, // new(unsigned int)
97     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1}}, // new(unsigned int, nothrow)
98     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1}}, // new(unsigned long long)
99     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1}}, // new(unsigned long long, nothrow)
100     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned int)
101     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1}}, // new[](unsigned int, nothrow)
102     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned long long)
103     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1}}, // new[](unsigned long long, nothrow)
104     {LibFunc_aligned_alloc,                     {AlignedAllocLike, 2,  1, -1,  0}},
105     {LibFunc_memalign,                          {AlignedAllocLike, 2,  1, -1,  0}},
106     {LibFunc_calloc,                            {CallocLike,       2,  0,  1, -1}},
107     {LibFunc_vec_calloc,                        {CallocLike,       2,  0,  1, -1}},
108     {LibFunc_realloc,                           {ReallocLike,      2,  1, -1, -1}},
109     {LibFunc_vec_realloc,                       {ReallocLike,      2,  1, -1, -1}},
110     {LibFunc_reallocf,                          {ReallocLike,      2,  1, -1, -1}},
111     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1}},
112     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1}},
113     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1}},
114     // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
115 };
116 
117 static const Function *getCalledFunction(const Value *V,
118                                          bool &IsNoBuiltin) {
119   // Don't care about intrinsics in this case.
120   if (isa<IntrinsicInst>(V))
121     return nullptr;
122 
123   const auto *CB = dyn_cast<CallBase>(V);
124   if (!CB)
125     return nullptr;
126 
127   IsNoBuiltin = CB->isNoBuiltin();
128 
129   if (const Function *Callee = CB->getCalledFunction())
130     return Callee;
131   return nullptr;
132 }
133 
134 /// Returns the allocation data for the given value if it's a call to a known
135 /// allocation function.
136 static Optional<AllocFnsTy>
137 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
138                              const TargetLibraryInfo *TLI) {
139   // Make sure that the function is available.
140   LibFunc TLIFn;
141   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
142     return None;
143 
144   const auto *Iter = find_if(
145       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
146         return P.first == TLIFn;
147       });
148 
149   if (Iter == std::end(AllocationFnData))
150     return None;
151 
152   const AllocFnsTy *FnData = &Iter->second;
153   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
154     return None;
155 
156   // Check function prototype.
157   int FstParam = FnData->FstParam;
158   int SndParam = FnData->SndParam;
159   FunctionType *FTy = Callee->getFunctionType();
160 
161   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
162       FTy->getNumParams() == FnData->NumParams &&
163       (FstParam < 0 ||
164        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
165         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
166       (SndParam < 0 ||
167        FTy->getParamType(SndParam)->isIntegerTy(32) ||
168        FTy->getParamType(SndParam)->isIntegerTy(64)))
169     return *FnData;
170   return None;
171 }
172 
173 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
174                                               const TargetLibraryInfo *TLI) {
175   bool IsNoBuiltinCall;
176   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
177     if (!IsNoBuiltinCall)
178       return getAllocationDataForFunction(Callee, AllocTy, TLI);
179   return None;
180 }
181 
182 static Optional<AllocFnsTy>
183 getAllocationData(const Value *V, AllocType AllocTy,
184                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
185   bool IsNoBuiltinCall;
186   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
187     if (!IsNoBuiltinCall)
188       return getAllocationDataForFunction(
189           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
190   return None;
191 }
192 
193 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
194                                               const TargetLibraryInfo *TLI) {
195   bool IsNoBuiltinCall;
196   const Function *Callee =
197       getCalledFunction(V, IsNoBuiltinCall);
198   if (!Callee)
199     return None;
200 
201   // Prefer to use existing information over allocsize. This will give us an
202   // accurate AllocTy.
203   if (!IsNoBuiltinCall)
204     if (Optional<AllocFnsTy> Data =
205             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
206       return Data;
207 
208   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
209   if (Attr == Attribute())
210     return None;
211 
212   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
213 
214   AllocFnsTy Result;
215   // Because allocsize only tells us how many bytes are allocated, we're not
216   // really allowed to assume anything, so we use MallocLike.
217   Result.AllocTy = MallocLike;
218   Result.NumParams = Callee->getNumOperands();
219   Result.FstParam = Args.first;
220   Result.SndParam = Args.second.getValueOr(-1);
221   // Allocsize has no way to specify an alignment argument
222   Result.AlignParam = -1;
223   return Result;
224 }
225 
226 /// Tests if a value is a call or invoke to a library function that
227 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
228 /// like).
229 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
230   return getAllocationData(V, AnyAlloc, TLI).hasValue();
231 }
232 bool llvm::isAllocationFn(
233     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
234   return getAllocationData(V, AnyAlloc, GetTLI).hasValue();
235 }
236 
237 /// Tests if a value is a call or invoke to a library function that
238 /// allocates uninitialized memory (such as malloc).
239 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
240   return getAllocationData(V, MallocOrOpNewLike, TLI).hasValue();
241 }
242 bool llvm::isMallocLikeFn(
243     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
244   return getAllocationData(V, MallocOrOpNewLike, GetTLI)
245       .hasValue();
246 }
247 
248 /// Tests if a value is a call or invoke to a library function that
249 /// allocates uninitialized memory with alignment (such as aligned_alloc).
250 static bool isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
251   return getAllocationData(V, AlignedAllocLike, TLI)
252       .hasValue();
253 }
254 
255 /// Tests if a value is a call or invoke to a library function that
256 /// allocates zero-filled memory (such as calloc).
257 static bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
258   return getAllocationData(V, CallocLike, TLI).hasValue();
259 }
260 
261 /// Tests if a value is a call or invoke to a library function that
262 /// allocates memory similar to malloc or calloc.
263 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
264   return getAllocationData(V, MallocOrCallocLike, TLI).hasValue();
265 }
266 
267 /// Tests if a value is a call or invoke to a library function that
268 /// allocates memory (either malloc, calloc, or strdup like).
269 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
270   return getAllocationData(V, AllocLike, TLI).hasValue();
271 }
272 
273 /// Tests if a value is a call or invoke to a library function that
274 /// reallocates memory (e.g., realloc).
275 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
276   return getAllocationData(V, ReallocLike, TLI).hasValue();
277 }
278 
279 /// Tests if a functions is a call or invoke to a library function that
280 /// reallocates memory (e.g., realloc).
281 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
282   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
283 }
284 
285 bool llvm::isAllocRemovable(const CallBase *CB, const TargetLibraryInfo *TLI) {
286   assert(isAllocationFn(CB, TLI));
287 
288   // Note: Removability is highly dependent on the source language.  For
289   // example, recent C++ requires direct calls to the global allocation
290   // [basic.stc.dynamic.allocation] to be observable unless part of a new
291   // expression [expr.new paragraph 13].
292 
293   // Historically we've treated the C family allocation routines as removable
294   return isAllocLikeFn(CB, TLI);
295 }
296 
297 Value *llvm::getAllocAlignment(const CallBase *V,
298                                const TargetLibraryInfo *TLI) {
299   assert(isAllocationFn(V, TLI));
300 
301   const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
302   if (!FnData.hasValue() || FnData->AlignParam < 0) {
303     return nullptr;
304   }
305   return V->getOperand(FnData->AlignParam);
306 }
307 
308 /// When we're compiling N-bit code, and the user uses parameters that are
309 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
310 /// trouble with APInt size issues. This function handles resizing + overflow
311 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
312 /// I's value.
313 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
314   // More bits than we can handle. Checking the bit width isn't necessary, but
315   // it's faster than checking active bits, and should give `false` in the
316   // vast majority of cases.
317   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
318     return false;
319   if (I.getBitWidth() != IntTyBits)
320     I = I.zextOrTrunc(IntTyBits);
321   return true;
322 }
323 
324 Optional<APInt>
325 llvm::getAllocSize(const CallBase *CB,
326                    const TargetLibraryInfo *TLI,
327                    std::function<const Value*(const Value*)> Mapper) {
328   // Note: This handles both explicitly listed allocation functions and
329   // allocsize.  The code structure could stand to be cleaned up a bit.
330   Optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
331   if (!FnData)
332     return None;
333 
334   // Get the index type for this address space, results and intermediate
335   // computations are performed at that width.
336   auto &DL = CB->getModule()->getDataLayout();
337   const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
338 
339   // Handle strdup-like functions separately.
340   if (FnData->AllocTy == StrDupLike) {
341     APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
342     if (!Size)
343       return None;
344 
345     // Strndup limits strlen.
346     if (FnData->FstParam > 0) {
347       const ConstantInt *Arg =
348         dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
349       if (!Arg)
350         return None;
351 
352       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
353       if (Size.ugt(MaxSize))
354         Size = MaxSize + 1;
355     }
356     return Size;
357   }
358 
359   const ConstantInt *Arg =
360     dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
361   if (!Arg)
362     return None;
363 
364   APInt Size = Arg->getValue();
365   if (!CheckedZextOrTrunc(Size, IntTyBits))
366     return None;
367 
368   // Size is determined by just 1 parameter.
369   if (FnData->SndParam < 0)
370     return Size;
371 
372   Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
373   if (!Arg)
374     return None;
375 
376   APInt NumElems = Arg->getValue();
377   if (!CheckedZextOrTrunc(NumElems, IntTyBits))
378     return None;
379 
380   bool Overflow;
381   Size = Size.umul_ov(NumElems, Overflow);
382   if (Overflow)
383     return None;
384   return Size;
385 }
386 
387 Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc,
388                                             const TargetLibraryInfo *TLI,
389                                             Type *Ty) {
390   assert(isAllocationFn(Alloc, TLI));
391 
392   // malloc and aligned_alloc are uninitialized (undef)
393   if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
394     return UndefValue::get(Ty);
395 
396   // calloc zero initializes
397   if (isCallocLikeFn(Alloc, TLI))
398     return Constant::getNullValue(Ty);
399 
400   return nullptr;
401 }
402 
403 /// isLibFreeFunction - Returns true if the function is a builtin free()
404 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
405   unsigned ExpectedNumParams;
406   if (TLIFn == LibFunc_free ||
407       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
408       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
409       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
410       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
411       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
412       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
413     ExpectedNumParams = 1;
414   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
415            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
416            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
417            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
418            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
419            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
420            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
421            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
422            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
423            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
424            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
425            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
426            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
427            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
428            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
429            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow)
430            TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free
431     ExpectedNumParams = 2;
432   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
433            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
434            TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
435            TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
436            TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
437            TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
438     ExpectedNumParams = 3;
439   else
440     return false;
441 
442   // Check free prototype.
443   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
444   // attribute will exist.
445   FunctionType *FTy = F->getFunctionType();
446   if (!FTy->getReturnType()->isVoidTy())
447     return false;
448   if (FTy->getNumParams() != ExpectedNumParams)
449     return false;
450   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
451     return false;
452 
453   return true;
454 }
455 
456 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
457 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
458   bool IsNoBuiltinCall;
459   const Function *Callee = getCalledFunction(I, IsNoBuiltinCall);
460   if (Callee == nullptr || IsNoBuiltinCall)
461     return nullptr;
462 
463   LibFunc TLIFn;
464   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
465     return nullptr;
466 
467   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
468 }
469 
470 
471 //===----------------------------------------------------------------------===//
472 //  Utility functions to compute size of objects.
473 //
474 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
475   if (Data.second.isNegative() || Data.first.ult(Data.second))
476     return APInt(Data.first.getBitWidth(), 0);
477   return Data.first - Data.second;
478 }
479 
480 /// Compute the size of the object pointed by Ptr. Returns true and the
481 /// object size in Size if successful, and false otherwise.
482 /// If RoundToAlign is true, then Size is rounded up to the alignment of
483 /// allocas, byval arguments, and global variables.
484 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
485                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
486   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
487   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
488   if (!Visitor.bothKnown(Data))
489     return false;
490 
491   Size = getSizeWithOverflow(Data).getZExtValue();
492   return true;
493 }
494 
495 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
496                                  const DataLayout &DL,
497                                  const TargetLibraryInfo *TLI,
498                                  bool MustSucceed) {
499   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
500          "ObjectSize must be a call to llvm.objectsize!");
501 
502   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
503   ObjectSizeOpts EvalOptions;
504   // Unless we have to fold this to something, try to be as accurate as
505   // possible.
506   if (MustSucceed)
507     EvalOptions.EvalMode =
508         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
509   else
510     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
511 
512   EvalOptions.NullIsUnknownSize =
513       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
514 
515   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
516   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
517   if (StaticOnly) {
518     // FIXME: Does it make sense to just return a failure value if the size won't
519     // fit in the output and `!MustSucceed`?
520     uint64_t Size;
521     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
522         isUIntN(ResultType->getBitWidth(), Size))
523       return ConstantInt::get(ResultType, Size);
524   } else {
525     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
526     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
527     SizeOffsetEvalType SizeOffsetPair =
528         Eval.compute(ObjectSize->getArgOperand(0));
529 
530     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
531       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
532       Builder.SetInsertPoint(ObjectSize);
533 
534       // If we've outside the end of the object, then we can always access
535       // exactly 0 bytes.
536       Value *ResultSize =
537           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
538       Value *UseZero =
539           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
540       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
541       Value *Ret = Builder.CreateSelect(
542           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
543 
544       // The non-constant size expression cannot evaluate to -1.
545       if (!isa<Constant>(SizeOffsetPair.first) ||
546           !isa<Constant>(SizeOffsetPair.second))
547         Builder.CreateAssumption(
548             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
549 
550       return Ret;
551     }
552   }
553 
554   if (!MustSucceed)
555     return nullptr;
556 
557   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
558 }
559 
560 STATISTIC(ObjectVisitorArgument,
561           "Number of arguments with unsolved size and offset");
562 STATISTIC(ObjectVisitorLoad,
563           "Number of load instructions with unsolved size and offset");
564 
565 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
566   if (Options.RoundToAlign && Alignment)
567     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment));
568   return Size;
569 }
570 
571 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
572                                                  const TargetLibraryInfo *TLI,
573                                                  LLVMContext &Context,
574                                                  ObjectSizeOpts Options)
575     : DL(DL), TLI(TLI), Options(Options) {
576   // Pointer size must be rechecked for each object visited since it could have
577   // a different address space.
578 }
579 
580 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
581   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
582   Zero = APInt::getZero(IntTyBits);
583 
584   V = V->stripPointerCasts();
585   if (Instruction *I = dyn_cast<Instruction>(V)) {
586     // If we have already seen this instruction, bail out. Cycles can happen in
587     // unreachable code after constant propagation.
588     if (!SeenInsts.insert(I).second)
589       return unknown();
590 
591     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
592       return visitGEPOperator(*GEP);
593     return visit(*I);
594   }
595   if (Argument *A = dyn_cast<Argument>(V))
596     return visitArgument(*A);
597   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
598     return visitConstantPointerNull(*P);
599   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
600     return visitGlobalAlias(*GA);
601   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
602     return visitGlobalVariable(*GV);
603   if (UndefValue *UV = dyn_cast<UndefValue>(V))
604     return visitUndefValue(*UV);
605   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
606     if (CE->getOpcode() == Instruction::IntToPtr)
607       return unknown(); // clueless
608     if (CE->getOpcode() == Instruction::GetElementPtr)
609       return visitGEPOperator(cast<GEPOperator>(*CE));
610   }
611 
612   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
613                     << *V << '\n');
614   return unknown();
615 }
616 
617 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
618   return ::CheckedZextOrTrunc(I, IntTyBits);
619 }
620 
621 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
622   if (!I.getAllocatedType()->isSized())
623     return unknown();
624 
625   if (isa<ScalableVectorType>(I.getAllocatedType()))
626     return unknown();
627 
628   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
629   if (!I.isArrayAllocation())
630     return std::make_pair(align(Size, I.getAlign()), Zero);
631 
632   Value *ArraySize = I.getArraySize();
633   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
634     APInt NumElems = C->getValue();
635     if (!CheckedZextOrTrunc(NumElems))
636       return unknown();
637 
638     bool Overflow;
639     Size = Size.umul_ov(NumElems, Overflow);
640     return Overflow ? unknown()
641                     : std::make_pair(align(Size, I.getAlign()), Zero);
642   }
643   return unknown();
644 }
645 
646 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
647   Type *MemoryTy = A.getPointeeInMemoryValueType();
648   // No interprocedural analysis is done at the moment.
649   if (!MemoryTy|| !MemoryTy->isSized()) {
650     ++ObjectVisitorArgument;
651     return unknown();
652   }
653 
654   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
655   return std::make_pair(align(Size, A.getParamAlign()), Zero);
656 }
657 
658 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
659   auto Mapper = [](const Value *V) { return V; };
660   if (Optional<APInt> Size = getAllocSize(&CB, TLI, Mapper))
661     return std::make_pair(*Size, Zero);
662   return unknown();
663 }
664 
665 SizeOffsetType
666 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
667   // If null is unknown, there's nothing we can do. Additionally, non-zero
668   // address spaces can make use of null, so we don't presume to know anything
669   // about that.
670   //
671   // TODO: How should this work with address space casts? We currently just drop
672   // them on the floor, but it's unclear what we should do when a NULL from
673   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
674   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
675     return unknown();
676   return std::make_pair(Zero, Zero);
677 }
678 
679 SizeOffsetType
680 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
681   return unknown();
682 }
683 
684 SizeOffsetType
685 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
686   // Easy cases were already folded by previous passes.
687   return unknown();
688 }
689 
690 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
691   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
692   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
693   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
694     return unknown();
695 
696   return std::make_pair(PtrData.first, PtrData.second + Offset);
697 }
698 
699 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
700   if (GA.isInterposable())
701     return unknown();
702   return compute(GA.getAliasee());
703 }
704 
705 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
706   if (!GV.hasDefinitiveInitializer())
707     return unknown();
708 
709   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
710   return std::make_pair(align(Size, GV.getAlign()), Zero);
711 }
712 
713 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
714   // clueless
715   return unknown();
716 }
717 
718 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
719   ++ObjectVisitorLoad;
720   return unknown();
721 }
722 
723 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
724   // too complex to analyze statically.
725   return unknown();
726 }
727 
728 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
729   SizeOffsetType TrueSide  = compute(I.getTrueValue());
730   SizeOffsetType FalseSide = compute(I.getFalseValue());
731   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
732     if (TrueSide == FalseSide) {
733         return TrueSide;
734     }
735 
736     APInt TrueResult = getSizeWithOverflow(TrueSide);
737     APInt FalseResult = getSizeWithOverflow(FalseSide);
738 
739     if (TrueResult == FalseResult) {
740       return TrueSide;
741     }
742     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
743       if (TrueResult.slt(FalseResult))
744         return TrueSide;
745       return FalseSide;
746     }
747     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
748       if (TrueResult.sgt(FalseResult))
749         return TrueSide;
750       return FalseSide;
751     }
752   }
753   return unknown();
754 }
755 
756 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
757   return std::make_pair(Zero, Zero);
758 }
759 
760 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
761   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
762                     << '\n');
763   return unknown();
764 }
765 
766 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
767     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
768     ObjectSizeOpts EvalOpts)
769     : DL(DL), TLI(TLI), Context(Context),
770       Builder(Context, TargetFolder(DL),
771               IRBuilderCallbackInserter(
772                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
773       EvalOpts(EvalOpts) {
774   // IntTy and Zero must be set for each compute() since the address space may
775   // be different for later objects.
776 }
777 
778 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
779   // XXX - Are vectors of pointers possible here?
780   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
781   Zero = ConstantInt::get(IntTy, 0);
782 
783   SizeOffsetEvalType Result = compute_(V);
784 
785   if (!bothKnown(Result)) {
786     // Erase everything that was computed in this iteration from the cache, so
787     // that no dangling references are left behind. We could be a bit smarter if
788     // we kept a dependency graph. It's probably not worth the complexity.
789     for (const Value *SeenVal : SeenVals) {
790       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
791       // non-computable results can be safely cached
792       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
793         CacheMap.erase(CacheIt);
794     }
795 
796     // Erase any instructions we inserted as part of the traversal.
797     for (Instruction *I : InsertedInstructions) {
798       I->replaceAllUsesWith(UndefValue::get(I->getType()));
799       I->eraseFromParent();
800     }
801   }
802 
803   SeenVals.clear();
804   InsertedInstructions.clear();
805   return Result;
806 }
807 
808 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
809   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
810   SizeOffsetType Const = Visitor.compute(V);
811   if (Visitor.bothKnown(Const))
812     return std::make_pair(ConstantInt::get(Context, Const.first),
813                           ConstantInt::get(Context, Const.second));
814 
815   V = V->stripPointerCasts();
816 
817   // Check cache.
818   CacheMapTy::iterator CacheIt = CacheMap.find(V);
819   if (CacheIt != CacheMap.end())
820     return CacheIt->second;
821 
822   // Always generate code immediately before the instruction being
823   // processed, so that the generated code dominates the same BBs.
824   BuilderTy::InsertPointGuard Guard(Builder);
825   if (Instruction *I = dyn_cast<Instruction>(V))
826     Builder.SetInsertPoint(I);
827 
828   // Now compute the size and offset.
829   SizeOffsetEvalType Result;
830 
831   // Record the pointers that were handled in this run, so that they can be
832   // cleaned later if something fails. We also use this set to break cycles that
833   // can occur in dead code.
834   if (!SeenVals.insert(V).second) {
835     Result = unknown();
836   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
837     Result = visitGEPOperator(*GEP);
838   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
839     Result = visit(*I);
840   } else if (isa<Argument>(V) ||
841              (isa<ConstantExpr>(V) &&
842               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
843              isa<GlobalAlias>(V) ||
844              isa<GlobalVariable>(V)) {
845     // Ignore values where we cannot do more than ObjectSizeVisitor.
846     Result = unknown();
847   } else {
848     LLVM_DEBUG(
849         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
850                << '\n');
851     Result = unknown();
852   }
853 
854   // Don't reuse CacheIt since it may be invalid at this point.
855   CacheMap[V] = Result;
856   return Result;
857 }
858 
859 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
860   if (!I.getAllocatedType()->isSized())
861     return unknown();
862 
863   // must be a VLA
864   assert(I.isArrayAllocation());
865 
866   // If needed, adjust the alloca's operand size to match the pointer size.
867   // Subsequent math operations expect the types to match.
868   Value *ArraySize = Builder.CreateZExtOrTrunc(
869       I.getArraySize(), DL.getIntPtrType(I.getContext()));
870   assert(ArraySize->getType() == Zero->getType() &&
871          "Expected zero constant to have pointer type");
872 
873   Value *Size = ConstantInt::get(ArraySize->getType(),
874                                  DL.getTypeAllocSize(I.getAllocatedType()));
875   Size = Builder.CreateMul(Size, ArraySize);
876   return std::make_pair(Size, Zero);
877 }
878 
879 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
880   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
881   if (!FnData)
882     return unknown();
883 
884   // Handle strdup-like functions separately.
885   if (FnData->AllocTy == StrDupLike) {
886     // TODO: implement evaluation of strdup/strndup
887     return unknown();
888   }
889 
890   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
891   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
892   if (FnData->SndParam < 0)
893     return std::make_pair(FirstArg, Zero);
894 
895   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
896   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
897   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
898   return std::make_pair(Size, Zero);
899 }
900 
901 SizeOffsetEvalType
902 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
903   return unknown();
904 }
905 
906 SizeOffsetEvalType
907 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
908   return unknown();
909 }
910 
911 SizeOffsetEvalType
912 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
913   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
914   if (!bothKnown(PtrData))
915     return unknown();
916 
917   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
918   Offset = Builder.CreateAdd(PtrData.second, Offset);
919   return std::make_pair(PtrData.first, Offset);
920 }
921 
922 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
923   // clueless
924   return unknown();
925 }
926 
927 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
928   return unknown();
929 }
930 
931 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
932   // Create 2 PHIs: one for size and another for offset.
933   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
934   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
935 
936   // Insert right away in the cache to handle recursive PHIs.
937   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
938 
939   // Compute offset/size for each PHI incoming pointer.
940   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
941     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
942     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
943 
944     if (!bothKnown(EdgeData)) {
945       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
946       OffsetPHI->eraseFromParent();
947       InsertedInstructions.erase(OffsetPHI);
948       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
949       SizePHI->eraseFromParent();
950       InsertedInstructions.erase(SizePHI);
951       return unknown();
952     }
953     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
954     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
955   }
956 
957   Value *Size = SizePHI, *Offset = OffsetPHI;
958   if (Value *Tmp = SizePHI->hasConstantValue()) {
959     Size = Tmp;
960     SizePHI->replaceAllUsesWith(Size);
961     SizePHI->eraseFromParent();
962     InsertedInstructions.erase(SizePHI);
963   }
964   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
965     Offset = Tmp;
966     OffsetPHI->replaceAllUsesWith(Offset);
967     OffsetPHI->eraseFromParent();
968     InsertedInstructions.erase(OffsetPHI);
969   }
970   return std::make_pair(Size, Offset);
971 }
972 
973 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
974   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
975   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
976 
977   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
978     return unknown();
979   if (TrueSide == FalseSide)
980     return TrueSide;
981 
982   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
983                                      FalseSide.first);
984   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
985                                        FalseSide.second);
986   return std::make_pair(Size, Offset);
987 }
988 
989 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
990   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
991                     << '\n');
992   return unknown();
993 }
994