1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrOpNewLike  = MallocLike | OpNewLike,
60   MallocOrCallocLike = MallocLike | OpNewLike | CallocLike | AlignedAllocLike,
61   AllocLike          = MallocOrCallocLike | StrDupLike,
62   AnyAlloc           = AllocLike | ReallocLike
63 };
64 
65 struct AllocFnsTy {
66   AllocType AllocTy;
67   unsigned NumParams;
68   // First and Second size parameters (or -1 if unused)
69   int FstParam, SndParam;
70   // Alignment parameter for aligned_alloc and aligned new
71   int AlignParam;
72 };
73 
74 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
75 // know which functions are nounwind, noalias, nocapture parameters, etc.
76 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
77     {LibFunc_malloc,                            {MallocLike,       1,  0, -1, -1}},
78     {LibFunc_vec_malloc,                        {MallocLike,       1,  0, -1, -1}},
79     {LibFunc_valloc,                            {MallocLike,       1,  0, -1, -1}},
80     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1}}, // new(unsigned int)
81     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new(unsigned int, nothrow)
82     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new(unsigned int, align_val_t)
83     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new(unsigned int, align_val_t, nothrow)
84     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1}}, // new(unsigned long)
85     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new(unsigned long, nothrow)
86     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new(unsigned long, align_val_t)
87     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new(unsigned long, align_val_t, nothrow)
88     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned int)
89     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new[](unsigned int, nothrow)
90     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new[](unsigned int, align_val_t)
91     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new[](unsigned int, align_val_t, nothrow)
92     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned long)
93     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new[](unsigned long, nothrow)
94     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new[](unsigned long, align_val_t)
95     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new[](unsigned long, align_val_t, nothrow)
96     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1}}, // new(unsigned int)
97     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1}}, // new(unsigned int, nothrow)
98     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1}}, // new(unsigned long long)
99     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1}}, // new(unsigned long long, nothrow)
100     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned int)
101     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1}}, // new[](unsigned int, nothrow)
102     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned long long)
103     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1}}, // new[](unsigned long long, nothrow)
104     {LibFunc_aligned_alloc,                     {AlignedAllocLike, 2,  1, -1,  0}},
105     {LibFunc_memalign,                          {AlignedAllocLike, 2,  1, -1,  0}},
106     {LibFunc_calloc,                            {CallocLike,       2,  0,  1, -1}},
107     {LibFunc_vec_calloc,                        {CallocLike,       2,  0,  1, -1}},
108     {LibFunc_realloc,                           {ReallocLike,      2,  1, -1, -1}},
109     {LibFunc_vec_realloc,                       {ReallocLike,      2,  1, -1, -1}},
110     {LibFunc_reallocf,                          {ReallocLike,      2,  1, -1, -1}},
111     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1}},
112     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1}},
113     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1}},
114     // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
115 };
116 
117 static const Function *getCalledFunction(const Value *V,
118                                          bool &IsNoBuiltin) {
119   // Don't care about intrinsics in this case.
120   if (isa<IntrinsicInst>(V))
121     return nullptr;
122 
123   const auto *CB = dyn_cast<CallBase>(V);
124   if (!CB)
125     return nullptr;
126 
127   IsNoBuiltin = CB->isNoBuiltin();
128 
129   if (const Function *Callee = CB->getCalledFunction())
130     return Callee;
131   return nullptr;
132 }
133 
134 /// Returns the allocation data for the given value if it's a call to a known
135 /// allocation function.
136 static Optional<AllocFnsTy>
137 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
138                              const TargetLibraryInfo *TLI) {
139   // Make sure that the function is available.
140   LibFunc TLIFn;
141   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
142     return None;
143 
144   const auto *Iter = find_if(
145       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
146         return P.first == TLIFn;
147       });
148 
149   if (Iter == std::end(AllocationFnData))
150     return None;
151 
152   const AllocFnsTy *FnData = &Iter->second;
153   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
154     return None;
155 
156   // Check function prototype.
157   int FstParam = FnData->FstParam;
158   int SndParam = FnData->SndParam;
159   FunctionType *FTy = Callee->getFunctionType();
160 
161   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
162       FTy->getNumParams() == FnData->NumParams &&
163       (FstParam < 0 ||
164        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
165         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
166       (SndParam < 0 ||
167        FTy->getParamType(SndParam)->isIntegerTy(32) ||
168        FTy->getParamType(SndParam)->isIntegerTy(64)))
169     return *FnData;
170   return None;
171 }
172 
173 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
174                                               const TargetLibraryInfo *TLI) {
175   bool IsNoBuiltinCall;
176   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
177     if (!IsNoBuiltinCall)
178       return getAllocationDataForFunction(Callee, AllocTy, TLI);
179   return None;
180 }
181 
182 static Optional<AllocFnsTy>
183 getAllocationData(const Value *V, AllocType AllocTy,
184                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
185   bool IsNoBuiltinCall;
186   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
187     if (!IsNoBuiltinCall)
188       return getAllocationDataForFunction(
189           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
190   return None;
191 }
192 
193 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
194                                               const TargetLibraryInfo *TLI) {
195   bool IsNoBuiltinCall;
196   const Function *Callee =
197       getCalledFunction(V, IsNoBuiltinCall);
198   if (!Callee)
199     return None;
200 
201   // Prefer to use existing information over allocsize. This will give us an
202   // accurate AllocTy.
203   if (!IsNoBuiltinCall)
204     if (Optional<AllocFnsTy> Data =
205             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
206       return Data;
207 
208   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
209   if (Attr == Attribute())
210     return None;
211 
212   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
213 
214   AllocFnsTy Result;
215   // Because allocsize only tells us how many bytes are allocated, we're not
216   // really allowed to assume anything, so we use MallocLike.
217   Result.AllocTy = MallocLike;
218   Result.NumParams = Callee->getNumOperands();
219   Result.FstParam = Args.first;
220   Result.SndParam = Args.second.getValueOr(-1);
221   // Allocsize has no way to specify an alignment argument
222   Result.AlignParam = -1;
223   return Result;
224 }
225 
226 
227 //===----------------------------------------------------------------------===//
228 //  Properties of allocation functions
229 //
230 /// Tests if a value is a call or invoke to a library function that
231 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
232 /// like).
233 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
234   return getAllocationData(V, AnyAlloc, TLI).hasValue();
235 }
236 bool llvm::isAllocationFn(
237     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
238   return getAllocationData(V, AnyAlloc, GetTLI).hasValue();
239 }
240 
241 /// Tests if a value is a call or invoke to a library function that
242 /// allocates uninitialized memory (such as malloc).
243 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
244   return getAllocationData(V, MallocOrOpNewLike, TLI).hasValue();
245 }
246 bool llvm::isMallocLikeFn(
247     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
248   return getAllocationData(V, MallocOrOpNewLike, GetTLI)
249       .hasValue();
250 }
251 
252 /// Tests if a value is a call or invoke to a library function that
253 /// allocates uninitialized memory with alignment (such as aligned_alloc).
254 static bool isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
255   return getAllocationData(V, AlignedAllocLike, TLI)
256       .hasValue();
257 }
258 
259 /// Tests if a value is a call or invoke to a library function that
260 /// allocates zero-filled memory (such as calloc).
261 static bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
262   return getAllocationData(V, CallocLike, TLI).hasValue();
263 }
264 
265 /// Tests if a value is a call or invoke to a library function that
266 /// allocates memory similar to malloc or calloc.
267 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
268   return getAllocationData(V, MallocOrCallocLike, TLI).hasValue();
269 }
270 
271 /// Tests if a value is a call or invoke to a library function that
272 /// allocates memory (either malloc, calloc, or strdup like).
273 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
274   return getAllocationData(V, AllocLike, TLI).hasValue();
275 }
276 
277 /// Tests if a value is a call or invoke to a library function that
278 /// reallocates memory (e.g., realloc).
279 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
280   return getAllocationData(V, ReallocLike, TLI).hasValue();
281 }
282 
283 /// Tests if a functions is a call or invoke to a library function that
284 /// reallocates memory (e.g., realloc).
285 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
286   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
287 }
288 
289 
290 //===----------------------------------------------------------------------===//
291 //  Properties of allocation functions
292 //
293 bool llvm::isAllocRemovable(const CallBase *CB, const TargetLibraryInfo *TLI) {
294   assert(isAllocationFn(CB, TLI));
295 
296   // Note: Removability is highly dependent on the source language.  For
297   // example, recent C++ requires direct calls to the global allocation
298   // [basic.stc.dynamic.allocation] to be observable unless part of a new
299   // expression [expr.new paragraph 13].
300 
301   // Historically we've treated the C family allocation routines as removable
302   return isAllocLikeFn(CB, TLI);
303 }
304 
305 Value *llvm::getAllocAlignment(const CallBase *V,
306                                const TargetLibraryInfo *TLI) {
307   assert(isAllocationFn(V, TLI));
308 
309   const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
310   if (!FnData.hasValue() || FnData->AlignParam < 0) {
311     return nullptr;
312   }
313   return V->getOperand(FnData->AlignParam);
314 }
315 
316 /// When we're compiling N-bit code, and the user uses parameters that are
317 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
318 /// trouble with APInt size issues. This function handles resizing + overflow
319 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
320 /// I's value.
321 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
322   // More bits than we can handle. Checking the bit width isn't necessary, but
323   // it's faster than checking active bits, and should give `false` in the
324   // vast majority of cases.
325   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
326     return false;
327   if (I.getBitWidth() != IntTyBits)
328     I = I.zextOrTrunc(IntTyBits);
329   return true;
330 }
331 
332 Optional<APInt>
333 llvm::getAllocSize(const CallBase *CB,
334                    const TargetLibraryInfo *TLI,
335                    std::function<const Value*(const Value*)> Mapper) {
336   // Note: This handles both explicitly listed allocation functions and
337   // allocsize.  The code structure could stand to be cleaned up a bit.
338   Optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
339   if (!FnData)
340     return None;
341 
342   // Get the index type for this address space, results and intermediate
343   // computations are performed at that width.
344   auto &DL = CB->getModule()->getDataLayout();
345   const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
346 
347   // Handle strdup-like functions separately.
348   if (FnData->AllocTy == StrDupLike) {
349     APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
350     if (!Size)
351       return None;
352 
353     // Strndup limits strlen.
354     if (FnData->FstParam > 0) {
355       const ConstantInt *Arg =
356         dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
357       if (!Arg)
358         return None;
359 
360       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
361       if (Size.ugt(MaxSize))
362         Size = MaxSize + 1;
363     }
364     return Size;
365   }
366 
367   const ConstantInt *Arg =
368     dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
369   if (!Arg)
370     return None;
371 
372   APInt Size = Arg->getValue();
373   if (!CheckedZextOrTrunc(Size, IntTyBits))
374     return None;
375 
376   // Size is determined by just 1 parameter.
377   if (FnData->SndParam < 0)
378     return Size;
379 
380   Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
381   if (!Arg)
382     return None;
383 
384   APInt NumElems = Arg->getValue();
385   if (!CheckedZextOrTrunc(NumElems, IntTyBits))
386     return None;
387 
388   bool Overflow;
389   Size = Size.umul_ov(NumElems, Overflow);
390   if (Overflow)
391     return None;
392   return Size;
393 }
394 
395 Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc,
396                                             const TargetLibraryInfo *TLI,
397                                             Type *Ty) {
398   assert(isAllocationFn(Alloc, TLI));
399 
400   // malloc and aligned_alloc are uninitialized (undef)
401   if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
402     return UndefValue::get(Ty);
403 
404   // calloc zero initializes
405   if (isCallocLikeFn(Alloc, TLI))
406     return Constant::getNullValue(Ty);
407 
408   return nullptr;
409 }
410 
411 
412 //===----------------------------------------------------------------------===//
413 //  free Call Utility Functions.
414 //
415 /// isLibFreeFunction - Returns true if the function is a builtin free()
416 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
417   unsigned ExpectedNumParams;
418   if (TLIFn == LibFunc_free ||
419       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
420       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
421       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
422       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
423       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
424       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
425     ExpectedNumParams = 1;
426   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
427            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
428            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
429            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
430            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
431            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
432            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
433            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
434            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
435            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
436            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
437            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
438            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
439            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
440            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
441            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow)
442            TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free
443     ExpectedNumParams = 2;
444   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
445            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
446            TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
447            TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
448            TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
449            TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
450     ExpectedNumParams = 3;
451   else
452     return false;
453 
454   // Check free prototype.
455   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
456   // attribute will exist.
457   FunctionType *FTy = F->getFunctionType();
458   if (!FTy->getReturnType()->isVoidTy())
459     return false;
460   if (FTy->getNumParams() != ExpectedNumParams)
461     return false;
462   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
463     return false;
464 
465   return true;
466 }
467 
468 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
469 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
470   bool IsNoBuiltinCall;
471   const Function *Callee = getCalledFunction(I, IsNoBuiltinCall);
472   if (Callee == nullptr || IsNoBuiltinCall)
473     return nullptr;
474 
475   LibFunc TLIFn;
476   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
477     return nullptr;
478 
479   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
480 }
481 
482 
483 //===----------------------------------------------------------------------===//
484 //  Utility functions to compute size of objects.
485 //
486 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
487   if (Data.second.isNegative() || Data.first.ult(Data.second))
488     return APInt(Data.first.getBitWidth(), 0);
489   return Data.first - Data.second;
490 }
491 
492 /// Compute the size of the object pointed by Ptr. Returns true and the
493 /// object size in Size if successful, and false otherwise.
494 /// If RoundToAlign is true, then Size is rounded up to the alignment of
495 /// allocas, byval arguments, and global variables.
496 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
497                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
498   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
499   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
500   if (!Visitor.bothKnown(Data))
501     return false;
502 
503   Size = getSizeWithOverflow(Data).getZExtValue();
504   return true;
505 }
506 
507 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
508                                  const DataLayout &DL,
509                                  const TargetLibraryInfo *TLI,
510                                  bool MustSucceed) {
511   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
512          "ObjectSize must be a call to llvm.objectsize!");
513 
514   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
515   ObjectSizeOpts EvalOptions;
516   // Unless we have to fold this to something, try to be as accurate as
517   // possible.
518   if (MustSucceed)
519     EvalOptions.EvalMode =
520         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
521   else
522     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
523 
524   EvalOptions.NullIsUnknownSize =
525       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
526 
527   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
528   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
529   if (StaticOnly) {
530     // FIXME: Does it make sense to just return a failure value if the size won't
531     // fit in the output and `!MustSucceed`?
532     uint64_t Size;
533     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
534         isUIntN(ResultType->getBitWidth(), Size))
535       return ConstantInt::get(ResultType, Size);
536   } else {
537     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
538     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
539     SizeOffsetEvalType SizeOffsetPair =
540         Eval.compute(ObjectSize->getArgOperand(0));
541 
542     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
543       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
544       Builder.SetInsertPoint(ObjectSize);
545 
546       // If we've outside the end of the object, then we can always access
547       // exactly 0 bytes.
548       Value *ResultSize =
549           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
550       Value *UseZero =
551           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
552       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
553       Value *Ret = Builder.CreateSelect(
554           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
555 
556       // The non-constant size expression cannot evaluate to -1.
557       if (!isa<Constant>(SizeOffsetPair.first) ||
558           !isa<Constant>(SizeOffsetPair.second))
559         Builder.CreateAssumption(
560             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
561 
562       return Ret;
563     }
564   }
565 
566   if (!MustSucceed)
567     return nullptr;
568 
569   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
570 }
571 
572 STATISTIC(ObjectVisitorArgument,
573           "Number of arguments with unsolved size and offset");
574 STATISTIC(ObjectVisitorLoad,
575           "Number of load instructions with unsolved size and offset");
576 
577 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
578   if (Options.RoundToAlign && Alignment)
579     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment));
580   return Size;
581 }
582 
583 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
584                                                  const TargetLibraryInfo *TLI,
585                                                  LLVMContext &Context,
586                                                  ObjectSizeOpts Options)
587     : DL(DL), TLI(TLI), Options(Options) {
588   // Pointer size must be rechecked for each object visited since it could have
589   // a different address space.
590 }
591 
592 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
593   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
594   Zero = APInt::getZero(IntTyBits);
595 
596   V = V->stripPointerCasts();
597   if (Instruction *I = dyn_cast<Instruction>(V)) {
598     // If we have already seen this instruction, bail out. Cycles can happen in
599     // unreachable code after constant propagation.
600     if (!SeenInsts.insert(I).second)
601       return unknown();
602 
603     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
604       return visitGEPOperator(*GEP);
605     return visit(*I);
606   }
607   if (Argument *A = dyn_cast<Argument>(V))
608     return visitArgument(*A);
609   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
610     return visitConstantPointerNull(*P);
611   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
612     return visitGlobalAlias(*GA);
613   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
614     return visitGlobalVariable(*GV);
615   if (UndefValue *UV = dyn_cast<UndefValue>(V))
616     return visitUndefValue(*UV);
617   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
618     if (CE->getOpcode() == Instruction::IntToPtr)
619       return unknown(); // clueless
620     if (CE->getOpcode() == Instruction::GetElementPtr)
621       return visitGEPOperator(cast<GEPOperator>(*CE));
622   }
623 
624   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
625                     << *V << '\n');
626   return unknown();
627 }
628 
629 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
630   return ::CheckedZextOrTrunc(I, IntTyBits);
631 }
632 
633 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
634   if (!I.getAllocatedType()->isSized())
635     return unknown();
636 
637   if (isa<ScalableVectorType>(I.getAllocatedType()))
638     return unknown();
639 
640   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
641   if (!I.isArrayAllocation())
642     return std::make_pair(align(Size, I.getAlign()), Zero);
643 
644   Value *ArraySize = I.getArraySize();
645   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
646     APInt NumElems = C->getValue();
647     if (!CheckedZextOrTrunc(NumElems))
648       return unknown();
649 
650     bool Overflow;
651     Size = Size.umul_ov(NumElems, Overflow);
652     return Overflow ? unknown()
653                     : std::make_pair(align(Size, I.getAlign()), Zero);
654   }
655   return unknown();
656 }
657 
658 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
659   Type *MemoryTy = A.getPointeeInMemoryValueType();
660   // No interprocedural analysis is done at the moment.
661   if (!MemoryTy|| !MemoryTy->isSized()) {
662     ++ObjectVisitorArgument;
663     return unknown();
664   }
665 
666   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
667   return std::make_pair(align(Size, A.getParamAlign()), Zero);
668 }
669 
670 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
671   auto Mapper = [](const Value *V) { return V; };
672   if (Optional<APInt> Size = getAllocSize(&CB, TLI, Mapper))
673     return std::make_pair(*Size, Zero);
674   return unknown();
675 }
676 
677 SizeOffsetType
678 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
679   // If null is unknown, there's nothing we can do. Additionally, non-zero
680   // address spaces can make use of null, so we don't presume to know anything
681   // about that.
682   //
683   // TODO: How should this work with address space casts? We currently just drop
684   // them on the floor, but it's unclear what we should do when a NULL from
685   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
686   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
687     return unknown();
688   return std::make_pair(Zero, Zero);
689 }
690 
691 SizeOffsetType
692 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
693   return unknown();
694 }
695 
696 SizeOffsetType
697 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
698   // Easy cases were already folded by previous passes.
699   return unknown();
700 }
701 
702 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
703   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
704   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
705   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
706     return unknown();
707 
708   return std::make_pair(PtrData.first, PtrData.second + Offset);
709 }
710 
711 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
712   if (GA.isInterposable())
713     return unknown();
714   return compute(GA.getAliasee());
715 }
716 
717 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
718   if (!GV.hasDefinitiveInitializer())
719     return unknown();
720 
721   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
722   return std::make_pair(align(Size, GV.getAlign()), Zero);
723 }
724 
725 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
726   // clueless
727   return unknown();
728 }
729 
730 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
731   ++ObjectVisitorLoad;
732   return unknown();
733 }
734 
735 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
736   // too complex to analyze statically.
737   return unknown();
738 }
739 
740 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
741   SizeOffsetType TrueSide  = compute(I.getTrueValue());
742   SizeOffsetType FalseSide = compute(I.getFalseValue());
743   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
744     if (TrueSide == FalseSide) {
745         return TrueSide;
746     }
747 
748     APInt TrueResult = getSizeWithOverflow(TrueSide);
749     APInt FalseResult = getSizeWithOverflow(FalseSide);
750 
751     if (TrueResult == FalseResult) {
752       return TrueSide;
753     }
754     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
755       if (TrueResult.slt(FalseResult))
756         return TrueSide;
757       return FalseSide;
758     }
759     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
760       if (TrueResult.sgt(FalseResult))
761         return TrueSide;
762       return FalseSide;
763     }
764   }
765   return unknown();
766 }
767 
768 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
769   return std::make_pair(Zero, Zero);
770 }
771 
772 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
773   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
774                     << '\n');
775   return unknown();
776 }
777 
778 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
779     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
780     ObjectSizeOpts EvalOpts)
781     : DL(DL), TLI(TLI), Context(Context),
782       Builder(Context, TargetFolder(DL),
783               IRBuilderCallbackInserter(
784                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
785       EvalOpts(EvalOpts) {
786   // IntTy and Zero must be set for each compute() since the address space may
787   // be different for later objects.
788 }
789 
790 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
791   // XXX - Are vectors of pointers possible here?
792   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
793   Zero = ConstantInt::get(IntTy, 0);
794 
795   SizeOffsetEvalType Result = compute_(V);
796 
797   if (!bothKnown(Result)) {
798     // Erase everything that was computed in this iteration from the cache, so
799     // that no dangling references are left behind. We could be a bit smarter if
800     // we kept a dependency graph. It's probably not worth the complexity.
801     for (const Value *SeenVal : SeenVals) {
802       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
803       // non-computable results can be safely cached
804       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
805         CacheMap.erase(CacheIt);
806     }
807 
808     // Erase any instructions we inserted as part of the traversal.
809     for (Instruction *I : InsertedInstructions) {
810       I->replaceAllUsesWith(UndefValue::get(I->getType()));
811       I->eraseFromParent();
812     }
813   }
814 
815   SeenVals.clear();
816   InsertedInstructions.clear();
817   return Result;
818 }
819 
820 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
821   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
822   SizeOffsetType Const = Visitor.compute(V);
823   if (Visitor.bothKnown(Const))
824     return std::make_pair(ConstantInt::get(Context, Const.first),
825                           ConstantInt::get(Context, Const.second));
826 
827   V = V->stripPointerCasts();
828 
829   // Check cache.
830   CacheMapTy::iterator CacheIt = CacheMap.find(V);
831   if (CacheIt != CacheMap.end())
832     return CacheIt->second;
833 
834   // Always generate code immediately before the instruction being
835   // processed, so that the generated code dominates the same BBs.
836   BuilderTy::InsertPointGuard Guard(Builder);
837   if (Instruction *I = dyn_cast<Instruction>(V))
838     Builder.SetInsertPoint(I);
839 
840   // Now compute the size and offset.
841   SizeOffsetEvalType Result;
842 
843   // Record the pointers that were handled in this run, so that they can be
844   // cleaned later if something fails. We also use this set to break cycles that
845   // can occur in dead code.
846   if (!SeenVals.insert(V).second) {
847     Result = unknown();
848   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
849     Result = visitGEPOperator(*GEP);
850   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
851     Result = visit(*I);
852   } else if (isa<Argument>(V) ||
853              (isa<ConstantExpr>(V) &&
854               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
855              isa<GlobalAlias>(V) ||
856              isa<GlobalVariable>(V)) {
857     // Ignore values where we cannot do more than ObjectSizeVisitor.
858     Result = unknown();
859   } else {
860     LLVM_DEBUG(
861         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
862                << '\n');
863     Result = unknown();
864   }
865 
866   // Don't reuse CacheIt since it may be invalid at this point.
867   CacheMap[V] = Result;
868   return Result;
869 }
870 
871 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
872   if (!I.getAllocatedType()->isSized())
873     return unknown();
874 
875   // must be a VLA
876   assert(I.isArrayAllocation());
877 
878   // If needed, adjust the alloca's operand size to match the pointer size.
879   // Subsequent math operations expect the types to match.
880   Value *ArraySize = Builder.CreateZExtOrTrunc(
881       I.getArraySize(), DL.getIntPtrType(I.getContext()));
882   assert(ArraySize->getType() == Zero->getType() &&
883          "Expected zero constant to have pointer type");
884 
885   Value *Size = ConstantInt::get(ArraySize->getType(),
886                                  DL.getTypeAllocSize(I.getAllocatedType()));
887   Size = Builder.CreateMul(Size, ArraySize);
888   return std::make_pair(Size, Zero);
889 }
890 
891 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
892   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
893   if (!FnData)
894     return unknown();
895 
896   // Handle strdup-like functions separately.
897   if (FnData->AllocTy == StrDupLike) {
898     // TODO: implement evaluation of strdup/strndup
899     return unknown();
900   }
901 
902   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
903   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
904   if (FnData->SndParam < 0)
905     return std::make_pair(FirstArg, Zero);
906 
907   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
908   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
909   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
910   return std::make_pair(Size, Zero);
911 }
912 
913 SizeOffsetEvalType
914 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
915   return unknown();
916 }
917 
918 SizeOffsetEvalType
919 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
920   return unknown();
921 }
922 
923 SizeOffsetEvalType
924 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
925   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
926   if (!bothKnown(PtrData))
927     return unknown();
928 
929   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
930   Offset = Builder.CreateAdd(PtrData.second, Offset);
931   return std::make_pair(PtrData.first, Offset);
932 }
933 
934 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
935   // clueless
936   return unknown();
937 }
938 
939 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
940   return unknown();
941 }
942 
943 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
944   // Create 2 PHIs: one for size and another for offset.
945   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
946   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
947 
948   // Insert right away in the cache to handle recursive PHIs.
949   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
950 
951   // Compute offset/size for each PHI incoming pointer.
952   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
953     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
954     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
955 
956     if (!bothKnown(EdgeData)) {
957       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
958       OffsetPHI->eraseFromParent();
959       InsertedInstructions.erase(OffsetPHI);
960       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
961       SizePHI->eraseFromParent();
962       InsertedInstructions.erase(SizePHI);
963       return unknown();
964     }
965     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
966     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
967   }
968 
969   Value *Size = SizePHI, *Offset = OffsetPHI;
970   if (Value *Tmp = SizePHI->hasConstantValue()) {
971     Size = Tmp;
972     SizePHI->replaceAllUsesWith(Size);
973     SizePHI->eraseFromParent();
974     InsertedInstructions.erase(SizePHI);
975   }
976   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
977     Offset = Tmp;
978     OffsetPHI->replaceAllUsesWith(Offset);
979     OffsetPHI->eraseFromParent();
980     InsertedInstructions.erase(OffsetPHI);
981   }
982   return std::make_pair(Size, Offset);
983 }
984 
985 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
986   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
987   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
988 
989   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
990     return unknown();
991   if (TrueSide == FalseSide)
992     return TrueSide;
993 
994   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
995                                      FalseSide.first);
996   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
997                                        FalseSide.second);
998   return std::make_pair(Size, Offset);
999 }
1000 
1001 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1002   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1003                     << '\n');
1004   return unknown();
1005 }
1006