1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Analysis/TargetFolder.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "memory-builtins" 51 52 enum AllocType : uint8_t { 53 OpNewLike = 1<<0, // allocates; never returns null 54 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 55 AlignedAllocLike = 1<<2, // allocates with alignment; may return null 56 CallocLike = 1<<3, // allocates + bzero 57 ReallocLike = 1<<4, // reallocates 58 StrDupLike = 1<<5, 59 MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike, 60 AllocLike = MallocOrCallocLike | StrDupLike, 61 AnyAlloc = AllocLike | ReallocLike 62 }; 63 64 struct AllocFnsTy { 65 AllocType AllocTy; 66 unsigned NumParams; 67 // First and Second size parameters (or -1 if unused) 68 int FstParam, SndParam; 69 }; 70 71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 72 // know which functions are nounwind, noalias, nocapture parameters, etc. 73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 74 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 75 {LibFunc_vec_malloc, {MallocLike, 1, 0, -1}}, 76 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 77 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 78 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 79 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t) 80 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow) 81 {MallocLike, 3, 0, -1}}, 82 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 83 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 84 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t) 85 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow) 86 {MallocLike, 3, 0, -1}}, 87 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 88 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 89 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t) 90 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow) 91 {MallocLike, 3, 0, -1}}, 92 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 93 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 94 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t) 95 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow) 96 {MallocLike, 3, 0, -1}}, 97 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 98 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 99 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 100 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 101 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 102 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 103 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 104 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 105 {LibFunc_aligned_alloc, {AlignedAllocLike, 2, 1, -1}}, 106 {LibFunc_memalign, {AlignedAllocLike, 2, 1, -1}}, 107 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 108 {LibFunc_vec_calloc, {CallocLike, 2, 0, 1}}, 109 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 110 {LibFunc_vec_realloc, {ReallocLike, 2, 1, -1}}, 111 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 112 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 113 {LibFunc_strndup, {StrDupLike, 2, 1, -1}}, 114 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1}}, 115 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 116 }; 117 118 static const Function *getCalledFunction(const Value *V, 119 bool &IsNoBuiltin) { 120 // Don't care about intrinsics in this case. 121 if (isa<IntrinsicInst>(V)) 122 return nullptr; 123 124 const auto *CB = dyn_cast<CallBase>(V); 125 if (!CB) 126 return nullptr; 127 128 IsNoBuiltin = CB->isNoBuiltin(); 129 130 if (const Function *Callee = CB->getCalledFunction()) 131 return Callee; 132 return nullptr; 133 } 134 135 /// Returns the allocation data for the given value if it's a call to a known 136 /// allocation function. 137 static Optional<AllocFnsTy> 138 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 139 const TargetLibraryInfo *TLI) { 140 // Make sure that the function is available. 141 LibFunc TLIFn; 142 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 143 return None; 144 145 const auto *Iter = find_if( 146 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 147 return P.first == TLIFn; 148 }); 149 150 if (Iter == std::end(AllocationFnData)) 151 return None; 152 153 const AllocFnsTy *FnData = &Iter->second; 154 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 155 return None; 156 157 // Check function prototype. 158 int FstParam = FnData->FstParam; 159 int SndParam = FnData->SndParam; 160 FunctionType *FTy = Callee->getFunctionType(); 161 162 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 163 FTy->getNumParams() == FnData->NumParams && 164 (FstParam < 0 || 165 (FTy->getParamType(FstParam)->isIntegerTy(32) || 166 FTy->getParamType(FstParam)->isIntegerTy(64))) && 167 (SndParam < 0 || 168 FTy->getParamType(SndParam)->isIntegerTy(32) || 169 FTy->getParamType(SndParam)->isIntegerTy(64))) 170 return *FnData; 171 return None; 172 } 173 174 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 175 const TargetLibraryInfo *TLI) { 176 bool IsNoBuiltinCall; 177 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) 178 if (!IsNoBuiltinCall) 179 return getAllocationDataForFunction(Callee, AllocTy, TLI); 180 return None; 181 } 182 183 static Optional<AllocFnsTy> 184 getAllocationData(const Value *V, AllocType AllocTy, 185 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 186 bool IsNoBuiltinCall; 187 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) 188 if (!IsNoBuiltinCall) 189 return getAllocationDataForFunction( 190 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 191 return None; 192 } 193 194 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 195 const TargetLibraryInfo *TLI) { 196 bool IsNoBuiltinCall; 197 const Function *Callee = 198 getCalledFunction(V, IsNoBuiltinCall); 199 if (!Callee) 200 return None; 201 202 // Prefer to use existing information over allocsize. This will give us an 203 // accurate AllocTy. 204 if (!IsNoBuiltinCall) 205 if (Optional<AllocFnsTy> Data = 206 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 207 return Data; 208 209 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 210 if (Attr == Attribute()) 211 return None; 212 213 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 214 215 AllocFnsTy Result; 216 // Because allocsize only tells us how many bytes are allocated, we're not 217 // really allowed to assume anything, so we use MallocLike. 218 Result.AllocTy = MallocLike; 219 Result.NumParams = Callee->getNumOperands(); 220 Result.FstParam = Args.first; 221 Result.SndParam = Args.second.getValueOr(-1); 222 return Result; 223 } 224 225 /// Tests if a value is a call or invoke to a library function that 226 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 227 /// like). 228 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { 229 return getAllocationData(V, AnyAlloc, TLI).hasValue(); 230 } 231 bool llvm::isAllocationFn( 232 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 233 return getAllocationData(V, AnyAlloc, GetTLI).hasValue(); 234 } 235 236 /// Tests if a value is a call or invoke to a library function that 237 /// allocates uninitialized memory (such as malloc). 238 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 239 return getAllocationData(V, MallocLike, TLI).hasValue(); 240 } 241 bool llvm::isMallocLikeFn( 242 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 243 return getAllocationData(V, MallocLike, GetTLI) 244 .hasValue(); 245 } 246 247 /// Tests if a value is a call or invoke to a library function that 248 /// allocates uninitialized memory with alignment (such as aligned_alloc). 249 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 250 return getAllocationData(V, AlignedAllocLike, TLI) 251 .hasValue(); 252 } 253 bool llvm::isAlignedAllocLikeFn( 254 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 255 return getAllocationData(V, AlignedAllocLike, GetTLI) 256 .hasValue(); 257 } 258 259 /// Tests if a value is a call or invoke to a library function that 260 /// allocates zero-filled memory (such as calloc). 261 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 262 return getAllocationData(V, CallocLike, TLI).hasValue(); 263 } 264 265 /// Tests if a value is a call or invoke to a library function that 266 /// allocates memory similar to malloc or calloc. 267 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 268 return getAllocationData(V, MallocOrCallocLike, TLI).hasValue(); 269 } 270 271 /// Tests if a value is a call or invoke to a library function that 272 /// allocates memory (either malloc, calloc, or strdup like). 273 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 274 return getAllocationData(V, AllocLike, TLI).hasValue(); 275 } 276 277 /// Tests if a value is a call or invoke to a library function that 278 /// reallocates memory (e.g., realloc). 279 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 280 return getAllocationData(V, ReallocLike, TLI).hasValue(); 281 } 282 283 /// Tests if a functions is a call or invoke to a library function that 284 /// reallocates memory (e.g., realloc). 285 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) { 286 return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue(); 287 } 288 289 /// Tests if a value is a call or invoke to a library function that 290 /// allocates memory and throws if an allocation failed (e.g., new). 291 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 292 return getAllocationData(V, OpNewLike, TLI).hasValue(); 293 } 294 295 /// Tests if a value is a call or invoke to a library function that 296 /// allocates memory (strdup, strndup). 297 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 298 return getAllocationData(V, StrDupLike, TLI).hasValue(); 299 } 300 301 Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc, 302 const TargetLibraryInfo *TLI, 303 Type *Ty) { 304 assert(isAllocationFn(Alloc, TLI)); 305 306 // malloc and aligned_alloc are uninitialized (undef) 307 if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI)) 308 return UndefValue::get(Ty); 309 310 // calloc zero initializes 311 if (isCallocLikeFn(Alloc, TLI)) 312 return Constant::getNullValue(Ty); 313 314 return nullptr; 315 } 316 317 /// isLibFreeFunction - Returns true if the function is a builtin free() 318 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 319 unsigned ExpectedNumParams; 320 if (TLIFn == LibFunc_free || 321 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 322 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 323 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 324 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 325 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 326 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 327 ExpectedNumParams = 1; 328 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 329 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 330 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 331 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t) 332 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 333 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 334 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 335 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t) 336 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 337 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 338 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 339 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 340 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 341 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 342 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 343 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow) 344 TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free 345 ExpectedNumParams = 2; 346 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow) 347 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow) 348 TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t) 349 TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t) 350 TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t) 351 TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t) 352 ExpectedNumParams = 3; 353 else 354 return false; 355 356 // Check free prototype. 357 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 358 // attribute will exist. 359 FunctionType *FTy = F->getFunctionType(); 360 if (!FTy->getReturnType()->isVoidTy()) 361 return false; 362 if (FTy->getNumParams() != ExpectedNumParams) 363 return false; 364 if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext())) 365 return false; 366 367 return true; 368 } 369 370 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 371 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 372 bool IsNoBuiltinCall; 373 const Function *Callee = getCalledFunction(I, IsNoBuiltinCall); 374 if (Callee == nullptr || IsNoBuiltinCall) 375 return nullptr; 376 377 LibFunc TLIFn; 378 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 379 return nullptr; 380 381 return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr; 382 } 383 384 385 //===----------------------------------------------------------------------===// 386 // Utility functions to compute size of objects. 387 // 388 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 389 if (Data.second.isNegative() || Data.first.ult(Data.second)) 390 return APInt(Data.first.getBitWidth(), 0); 391 return Data.first - Data.second; 392 } 393 394 /// Compute the size of the object pointed by Ptr. Returns true and the 395 /// object size in Size if successful, and false otherwise. 396 /// If RoundToAlign is true, then Size is rounded up to the alignment of 397 /// allocas, byval arguments, and global variables. 398 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 399 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 400 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 401 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 402 if (!Visitor.bothKnown(Data)) 403 return false; 404 405 Size = getSizeWithOverflow(Data).getZExtValue(); 406 return true; 407 } 408 409 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 410 const DataLayout &DL, 411 const TargetLibraryInfo *TLI, 412 bool MustSucceed) { 413 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 414 "ObjectSize must be a call to llvm.objectsize!"); 415 416 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 417 ObjectSizeOpts EvalOptions; 418 // Unless we have to fold this to something, try to be as accurate as 419 // possible. 420 if (MustSucceed) 421 EvalOptions.EvalMode = 422 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 423 else 424 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 425 426 EvalOptions.NullIsUnknownSize = 427 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 428 429 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 430 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 431 if (StaticOnly) { 432 // FIXME: Does it make sense to just return a failure value if the size won't 433 // fit in the output and `!MustSucceed`? 434 uint64_t Size; 435 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 436 isUIntN(ResultType->getBitWidth(), Size)) 437 return ConstantInt::get(ResultType, Size); 438 } else { 439 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 440 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 441 SizeOffsetEvalType SizeOffsetPair = 442 Eval.compute(ObjectSize->getArgOperand(0)); 443 444 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 445 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL)); 446 Builder.SetInsertPoint(ObjectSize); 447 448 // If we've outside the end of the object, then we can always access 449 // exactly 0 bytes. 450 Value *ResultSize = 451 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); 452 Value *UseZero = 453 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); 454 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 455 Value *Ret = Builder.CreateSelect( 456 UseZero, ConstantInt::get(ResultType, 0), ResultSize); 457 458 // The non-constant size expression cannot evaluate to -1. 459 if (!isa<Constant>(SizeOffsetPair.first) || 460 !isa<Constant>(SizeOffsetPair.second)) 461 Builder.CreateAssumption( 462 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); 463 464 return Ret; 465 } 466 } 467 468 if (!MustSucceed) 469 return nullptr; 470 471 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 472 } 473 474 STATISTIC(ObjectVisitorArgument, 475 "Number of arguments with unsolved size and offset"); 476 STATISTIC(ObjectVisitorLoad, 477 "Number of load instructions with unsolved size and offset"); 478 479 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { 480 if (Options.RoundToAlign && Alignment) 481 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment)); 482 return Size; 483 } 484 485 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 486 const TargetLibraryInfo *TLI, 487 LLVMContext &Context, 488 ObjectSizeOpts Options) 489 : DL(DL), TLI(TLI), Options(Options) { 490 // Pointer size must be rechecked for each object visited since it could have 491 // a different address space. 492 } 493 494 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 495 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 496 Zero = APInt::getZero(IntTyBits); 497 498 V = V->stripPointerCasts(); 499 if (Instruction *I = dyn_cast<Instruction>(V)) { 500 // If we have already seen this instruction, bail out. Cycles can happen in 501 // unreachable code after constant propagation. 502 if (!SeenInsts.insert(I).second) 503 return unknown(); 504 505 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 506 return visitGEPOperator(*GEP); 507 return visit(*I); 508 } 509 if (Argument *A = dyn_cast<Argument>(V)) 510 return visitArgument(*A); 511 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 512 return visitConstantPointerNull(*P); 513 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 514 return visitGlobalAlias(*GA); 515 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 516 return visitGlobalVariable(*GV); 517 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 518 return visitUndefValue(*UV); 519 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 520 if (CE->getOpcode() == Instruction::IntToPtr) 521 return unknown(); // clueless 522 if (CE->getOpcode() == Instruction::GetElementPtr) 523 return visitGEPOperator(cast<GEPOperator>(*CE)); 524 } 525 526 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 527 << *V << '\n'); 528 return unknown(); 529 } 530 531 /// When we're compiling N-bit code, and the user uses parameters that are 532 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 533 /// trouble with APInt size issues. This function handles resizing + overflow 534 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 535 /// I's value. 536 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 537 // More bits than we can handle. Checking the bit width isn't necessary, but 538 // it's faster than checking active bits, and should give `false` in the 539 // vast majority of cases. 540 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 541 return false; 542 if (I.getBitWidth() != IntTyBits) 543 I = I.zextOrTrunc(IntTyBits); 544 return true; 545 } 546 547 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 548 if (!I.getAllocatedType()->isSized()) 549 return unknown(); 550 551 if (isa<ScalableVectorType>(I.getAllocatedType())) 552 return unknown(); 553 554 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 555 if (!I.isArrayAllocation()) 556 return std::make_pair(align(Size, I.getAlign()), Zero); 557 558 Value *ArraySize = I.getArraySize(); 559 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 560 APInt NumElems = C->getValue(); 561 if (!CheckedZextOrTrunc(NumElems)) 562 return unknown(); 563 564 bool Overflow; 565 Size = Size.umul_ov(NumElems, Overflow); 566 return Overflow ? unknown() 567 : std::make_pair(align(Size, I.getAlign()), Zero); 568 } 569 return unknown(); 570 } 571 572 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 573 Type *MemoryTy = A.getPointeeInMemoryValueType(); 574 // No interprocedural analysis is done at the moment. 575 if (!MemoryTy|| !MemoryTy->isSized()) { 576 ++ObjectVisitorArgument; 577 return unknown(); 578 } 579 580 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); 581 return std::make_pair(align(Size, A.getParamAlign()), Zero); 582 } 583 584 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { 585 Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 586 if (!FnData) 587 return unknown(); 588 589 // Handle strdup-like functions separately. 590 if (FnData->AllocTy == StrDupLike) { 591 APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0))); 592 if (!Size) 593 return unknown(); 594 595 // Strndup limits strlen. 596 if (FnData->FstParam > 0) { 597 ConstantInt *Arg = 598 dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam)); 599 if (!Arg) 600 return unknown(); 601 602 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 603 if (Size.ugt(MaxSize)) 604 Size = MaxSize + 1; 605 } 606 return std::make_pair(Size, Zero); 607 } 608 609 ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam)); 610 if (!Arg) 611 return unknown(); 612 613 APInt Size = Arg->getValue(); 614 if (!CheckedZextOrTrunc(Size)) 615 return unknown(); 616 617 // Size is determined by just 1 parameter. 618 if (FnData->SndParam < 0) 619 return std::make_pair(Size, Zero); 620 621 Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam)); 622 if (!Arg) 623 return unknown(); 624 625 APInt NumElems = Arg->getValue(); 626 if (!CheckedZextOrTrunc(NumElems)) 627 return unknown(); 628 629 bool Overflow; 630 Size = Size.umul_ov(NumElems, Overflow); 631 return Overflow ? unknown() : std::make_pair(Size, Zero); 632 } 633 634 SizeOffsetType 635 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 636 // If null is unknown, there's nothing we can do. Additionally, non-zero 637 // address spaces can make use of null, so we don't presume to know anything 638 // about that. 639 // 640 // TODO: How should this work with address space casts? We currently just drop 641 // them on the floor, but it's unclear what we should do when a NULL from 642 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 643 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 644 return unknown(); 645 return std::make_pair(Zero, Zero); 646 } 647 648 SizeOffsetType 649 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 650 return unknown(); 651 } 652 653 SizeOffsetType 654 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 655 // Easy cases were already folded by previous passes. 656 return unknown(); 657 } 658 659 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 660 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 661 APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0); 662 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 663 return unknown(); 664 665 return std::make_pair(PtrData.first, PtrData.second + Offset); 666 } 667 668 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 669 if (GA.isInterposable()) 670 return unknown(); 671 return compute(GA.getAliasee()); 672 } 673 674 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 675 if (!GV.hasDefinitiveInitializer()) 676 return unknown(); 677 678 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 679 return std::make_pair(align(Size, GV.getAlign()), Zero); 680 } 681 682 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 683 // clueless 684 return unknown(); 685 } 686 687 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 688 ++ObjectVisitorLoad; 689 return unknown(); 690 } 691 692 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 693 // too complex to analyze statically. 694 return unknown(); 695 } 696 697 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 698 SizeOffsetType TrueSide = compute(I.getTrueValue()); 699 SizeOffsetType FalseSide = compute(I.getFalseValue()); 700 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 701 if (TrueSide == FalseSide) { 702 return TrueSide; 703 } 704 705 APInt TrueResult = getSizeWithOverflow(TrueSide); 706 APInt FalseResult = getSizeWithOverflow(FalseSide); 707 708 if (TrueResult == FalseResult) { 709 return TrueSide; 710 } 711 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 712 if (TrueResult.slt(FalseResult)) 713 return TrueSide; 714 return FalseSide; 715 } 716 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 717 if (TrueResult.sgt(FalseResult)) 718 return TrueSide; 719 return FalseSide; 720 } 721 } 722 return unknown(); 723 } 724 725 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 726 return std::make_pair(Zero, Zero); 727 } 728 729 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 730 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 731 << '\n'); 732 return unknown(); 733 } 734 735 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 736 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 737 ObjectSizeOpts EvalOpts) 738 : DL(DL), TLI(TLI), Context(Context), 739 Builder(Context, TargetFolder(DL), 740 IRBuilderCallbackInserter( 741 [&](Instruction *I) { InsertedInstructions.insert(I); })), 742 EvalOpts(EvalOpts) { 743 // IntTy and Zero must be set for each compute() since the address space may 744 // be different for later objects. 745 } 746 747 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 748 // XXX - Are vectors of pointers possible here? 749 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 750 Zero = ConstantInt::get(IntTy, 0); 751 752 SizeOffsetEvalType Result = compute_(V); 753 754 if (!bothKnown(Result)) { 755 // Erase everything that was computed in this iteration from the cache, so 756 // that no dangling references are left behind. We could be a bit smarter if 757 // we kept a dependency graph. It's probably not worth the complexity. 758 for (const Value *SeenVal : SeenVals) { 759 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 760 // non-computable results can be safely cached 761 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 762 CacheMap.erase(CacheIt); 763 } 764 765 // Erase any instructions we inserted as part of the traversal. 766 for (Instruction *I : InsertedInstructions) { 767 I->replaceAllUsesWith(UndefValue::get(I->getType())); 768 I->eraseFromParent(); 769 } 770 } 771 772 SeenVals.clear(); 773 InsertedInstructions.clear(); 774 return Result; 775 } 776 777 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 778 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); 779 SizeOffsetType Const = Visitor.compute(V); 780 if (Visitor.bothKnown(Const)) 781 return std::make_pair(ConstantInt::get(Context, Const.first), 782 ConstantInt::get(Context, Const.second)); 783 784 V = V->stripPointerCasts(); 785 786 // Check cache. 787 CacheMapTy::iterator CacheIt = CacheMap.find(V); 788 if (CacheIt != CacheMap.end()) 789 return CacheIt->second; 790 791 // Always generate code immediately before the instruction being 792 // processed, so that the generated code dominates the same BBs. 793 BuilderTy::InsertPointGuard Guard(Builder); 794 if (Instruction *I = dyn_cast<Instruction>(V)) 795 Builder.SetInsertPoint(I); 796 797 // Now compute the size and offset. 798 SizeOffsetEvalType Result; 799 800 // Record the pointers that were handled in this run, so that they can be 801 // cleaned later if something fails. We also use this set to break cycles that 802 // can occur in dead code. 803 if (!SeenVals.insert(V).second) { 804 Result = unknown(); 805 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 806 Result = visitGEPOperator(*GEP); 807 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 808 Result = visit(*I); 809 } else if (isa<Argument>(V) || 810 (isa<ConstantExpr>(V) && 811 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 812 isa<GlobalAlias>(V) || 813 isa<GlobalVariable>(V)) { 814 // Ignore values where we cannot do more than ObjectSizeVisitor. 815 Result = unknown(); 816 } else { 817 LLVM_DEBUG( 818 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 819 << '\n'); 820 Result = unknown(); 821 } 822 823 // Don't reuse CacheIt since it may be invalid at this point. 824 CacheMap[V] = Result; 825 return Result; 826 } 827 828 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 829 if (!I.getAllocatedType()->isSized()) 830 return unknown(); 831 832 // must be a VLA 833 assert(I.isArrayAllocation()); 834 835 // If needed, adjust the alloca's operand size to match the pointer size. 836 // Subsequent math operations expect the types to match. 837 Value *ArraySize = Builder.CreateZExtOrTrunc( 838 I.getArraySize(), DL.getIntPtrType(I.getContext())); 839 assert(ArraySize->getType() == Zero->getType() && 840 "Expected zero constant to have pointer type"); 841 842 Value *Size = ConstantInt::get(ArraySize->getType(), 843 DL.getTypeAllocSize(I.getAllocatedType())); 844 Size = Builder.CreateMul(Size, ArraySize); 845 return std::make_pair(Size, Zero); 846 } 847 848 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { 849 Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 850 if (!FnData) 851 return unknown(); 852 853 // Handle strdup-like functions separately. 854 if (FnData->AllocTy == StrDupLike) { 855 // TODO: implement evaluation of strdup/strndup 856 return unknown(); 857 } 858 859 Value *FirstArg = CB.getArgOperand(FnData->FstParam); 860 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 861 if (FnData->SndParam < 0) 862 return std::make_pair(FirstArg, Zero); 863 864 Value *SecondArg = CB.getArgOperand(FnData->SndParam); 865 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 866 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 867 return std::make_pair(Size, Zero); 868 } 869 870 SizeOffsetEvalType 871 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 872 return unknown(); 873 } 874 875 SizeOffsetEvalType 876 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 877 return unknown(); 878 } 879 880 SizeOffsetEvalType 881 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 882 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 883 if (!bothKnown(PtrData)) 884 return unknown(); 885 886 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 887 Offset = Builder.CreateAdd(PtrData.second, Offset); 888 return std::make_pair(PtrData.first, Offset); 889 } 890 891 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 892 // clueless 893 return unknown(); 894 } 895 896 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 897 return unknown(); 898 } 899 900 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 901 // Create 2 PHIs: one for size and another for offset. 902 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 903 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 904 905 // Insert right away in the cache to handle recursive PHIs. 906 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 907 908 // Compute offset/size for each PHI incoming pointer. 909 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 910 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 911 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 912 913 if (!bothKnown(EdgeData)) { 914 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 915 OffsetPHI->eraseFromParent(); 916 InsertedInstructions.erase(OffsetPHI); 917 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 918 SizePHI->eraseFromParent(); 919 InsertedInstructions.erase(SizePHI); 920 return unknown(); 921 } 922 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 923 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 924 } 925 926 Value *Size = SizePHI, *Offset = OffsetPHI; 927 if (Value *Tmp = SizePHI->hasConstantValue()) { 928 Size = Tmp; 929 SizePHI->replaceAllUsesWith(Size); 930 SizePHI->eraseFromParent(); 931 InsertedInstructions.erase(SizePHI); 932 } 933 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 934 Offset = Tmp; 935 OffsetPHI->replaceAllUsesWith(Offset); 936 OffsetPHI->eraseFromParent(); 937 InsertedInstructions.erase(OffsetPHI); 938 } 939 return std::make_pair(Size, Offset); 940 } 941 942 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 943 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 944 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 945 946 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 947 return unknown(); 948 if (TrueSide == FalseSide) 949 return TrueSide; 950 951 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 952 FalseSide.first); 953 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 954 FalseSide.second); 955 return std::make_pair(Size, Offset); 956 } 957 958 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 959 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 960 << '\n'); 961 return unknown(); 962 } 963