1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike,
60   AllocLike          = MallocOrCallocLike | StrDupLike,
61   AnyAlloc           = AllocLike | ReallocLike
62 };
63 
64 struct AllocFnsTy {
65   AllocType AllocTy;
66   unsigned NumParams;
67   // First and Second size parameters (or -1 if unused)
68   int FstParam, SndParam;
69 };
70 
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
74   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_vec_malloc,          {MallocLike,  1, 0,  -1}},
76   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
77   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
78   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
79   {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
80   {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
81                                 {MallocLike,  3, 0,  -1}},
82   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
83   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
84   {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
85   {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
86                                 {MallocLike,  3, 0,  -1}},
87   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
88   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
89   {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
90   {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
91                                 {MallocLike,  3, 0,  -1}},
92   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
93   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
94   {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
95   {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
96                                  {MallocLike,  3, 0,  -1}},
97   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
98   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
99   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
100   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
101   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
102   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
103   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
104   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
105   {LibFunc_aligned_alloc,       {AlignedAllocLike, 2, 1,  -1}},
106   {LibFunc_memalign,            {AlignedAllocLike, 2, 1,  -1}},
107   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
108   {LibFunc_vec_calloc,          {CallocLike,  2, 0,   1}},
109   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
110   {LibFunc_vec_realloc,         {ReallocLike, 2, 1,  -1}},
111   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
112   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
113   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}},
114   {LibFunc___kmpc_alloc_shared, {MallocLike,  1, 0,  -1}},
115   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
116 };
117 
118 static const Function *getCalledFunction(const Value *V,
119                                          bool &IsNoBuiltin) {
120   // Don't care about intrinsics in this case.
121   if (isa<IntrinsicInst>(V))
122     return nullptr;
123 
124   const auto *CB = dyn_cast<CallBase>(V);
125   if (!CB)
126     return nullptr;
127 
128   IsNoBuiltin = CB->isNoBuiltin();
129 
130   if (const Function *Callee = CB->getCalledFunction())
131     return Callee;
132   return nullptr;
133 }
134 
135 /// Returns the allocation data for the given value if it's a call to a known
136 /// allocation function.
137 static Optional<AllocFnsTy>
138 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
139                              const TargetLibraryInfo *TLI) {
140   // Make sure that the function is available.
141   LibFunc TLIFn;
142   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
143     return None;
144 
145   const auto *Iter = find_if(
146       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
147         return P.first == TLIFn;
148       });
149 
150   if (Iter == std::end(AllocationFnData))
151     return None;
152 
153   const AllocFnsTy *FnData = &Iter->second;
154   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
155     return None;
156 
157   // Check function prototype.
158   int FstParam = FnData->FstParam;
159   int SndParam = FnData->SndParam;
160   FunctionType *FTy = Callee->getFunctionType();
161 
162   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
163       FTy->getNumParams() == FnData->NumParams &&
164       (FstParam < 0 ||
165        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
166         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
167       (SndParam < 0 ||
168        FTy->getParamType(SndParam)->isIntegerTy(32) ||
169        FTy->getParamType(SndParam)->isIntegerTy(64)))
170     return *FnData;
171   return None;
172 }
173 
174 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
175                                               const TargetLibraryInfo *TLI) {
176   bool IsNoBuiltinCall;
177   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
178     if (!IsNoBuiltinCall)
179       return getAllocationDataForFunction(Callee, AllocTy, TLI);
180   return None;
181 }
182 
183 static Optional<AllocFnsTy>
184 getAllocationData(const Value *V, AllocType AllocTy,
185                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
186   bool IsNoBuiltinCall;
187   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
188     if (!IsNoBuiltinCall)
189       return getAllocationDataForFunction(
190           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
191   return None;
192 }
193 
194 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
195                                               const TargetLibraryInfo *TLI) {
196   bool IsNoBuiltinCall;
197   const Function *Callee =
198       getCalledFunction(V, IsNoBuiltinCall);
199   if (!Callee)
200     return None;
201 
202   // Prefer to use existing information over allocsize. This will give us an
203   // accurate AllocTy.
204   if (!IsNoBuiltinCall)
205     if (Optional<AllocFnsTy> Data =
206             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
207       return Data;
208 
209   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
210   if (Attr == Attribute())
211     return None;
212 
213   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
214 
215   AllocFnsTy Result;
216   // Because allocsize only tells us how many bytes are allocated, we're not
217   // really allowed to assume anything, so we use MallocLike.
218   Result.AllocTy = MallocLike;
219   Result.NumParams = Callee->getNumOperands();
220   Result.FstParam = Args.first;
221   Result.SndParam = Args.second.getValueOr(-1);
222   return Result;
223 }
224 
225 static bool hasNoAliasAttr(const Value *V) {
226   const auto *CB = dyn_cast<CallBase>(V);
227   return CB && CB->hasRetAttr(Attribute::NoAlias);
228 }
229 
230 /// Tests if a value is a call or invoke to a library function that
231 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
232 /// like).
233 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
234   return getAllocationData(V, AnyAlloc, TLI).hasValue();
235 }
236 bool llvm::isAllocationFn(
237     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
238   return getAllocationData(V, AnyAlloc, GetTLI).hasValue();
239 }
240 
241 /// Tests if a value is a call or invoke to a function that returns a
242 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
243 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI) {
244   // it's safe to consider realloc as noalias since accessing the original
245   // pointer is undefined behavior
246   return isAllocationFn(V, TLI) ||
247          hasNoAliasAttr(V);
248 }
249 
250 /// Tests if a value is a call or invoke to a library function that
251 /// allocates uninitialized memory (such as malloc).
252 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
253   return getAllocationData(V, MallocLike, TLI).hasValue();
254 }
255 bool llvm::isMallocLikeFn(
256     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
257   return getAllocationData(V, MallocLike, GetTLI)
258       .hasValue();
259 }
260 
261 /// Tests if a value is a call or invoke to a library function that
262 /// allocates uninitialized memory with alignment (such as aligned_alloc).
263 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
264   return getAllocationData(V, AlignedAllocLike, TLI)
265       .hasValue();
266 }
267 bool llvm::isAlignedAllocLikeFn(
268     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
269   return getAllocationData(V, AlignedAllocLike, GetTLI)
270       .hasValue();
271 }
272 
273 /// Tests if a value is a call or invoke to a library function that
274 /// allocates zero-filled memory (such as calloc).
275 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
276   return getAllocationData(V, CallocLike, TLI).hasValue();
277 }
278 
279 /// Tests if a value is a call or invoke to a library function that
280 /// allocates memory similar to malloc or calloc.
281 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
282   return getAllocationData(V, MallocOrCallocLike, TLI).hasValue();
283 }
284 
285 /// Tests if a value is a call or invoke to a library function that
286 /// allocates memory (either malloc, calloc, or strdup like).
287 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
288   return getAllocationData(V, AllocLike, TLI).hasValue();
289 }
290 
291 /// Tests if a value is a call or invoke to a library function that
292 /// reallocates memory (e.g., realloc).
293 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
294   return getAllocationData(V, ReallocLike, TLI).hasValue();
295 }
296 
297 /// Tests if a functions is a call or invoke to a library function that
298 /// reallocates memory (e.g., realloc).
299 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
300   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
301 }
302 
303 /// Tests if a value is a call or invoke to a library function that
304 /// allocates memory and throws if an allocation failed (e.g., new).
305 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
306   return getAllocationData(V, OpNewLike, TLI).hasValue();
307 }
308 
309 /// Tests if a value is a call or invoke to a library function that
310 /// allocates memory (strdup, strndup).
311 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
312   return getAllocationData(V, StrDupLike, TLI).hasValue();
313 }
314 
315 Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc,
316                                             const TargetLibraryInfo *TLI,
317                                             Type *Ty) {
318   assert(isAllocationFn(Alloc, TLI));
319 
320   // malloc and aligned_alloc are uninitialized (undef)
321   if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
322     return UndefValue::get(Ty);
323 
324   // calloc zero initializes
325   if (isCallocLikeFn(Alloc, TLI))
326     return Constant::getNullValue(Ty);
327 
328   return nullptr;
329 }
330 
331 /// isLibFreeFunction - Returns true if the function is a builtin free()
332 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
333   unsigned ExpectedNumParams;
334   if (TLIFn == LibFunc_free ||
335       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
336       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
337       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
338       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
339       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
340       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
341     ExpectedNumParams = 1;
342   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
343            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
344            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
345            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
346            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
347            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
348            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
349            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
350            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
351            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
352            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
353            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
354            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
355            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
356            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
357            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow)
358            TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free
359     ExpectedNumParams = 2;
360   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
361            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
362            TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
363            TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
364            TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
365            TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
366     ExpectedNumParams = 3;
367   else
368     return false;
369 
370   // Check free prototype.
371   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
372   // attribute will exist.
373   FunctionType *FTy = F->getFunctionType();
374   if (!FTy->getReturnType()->isVoidTy())
375     return false;
376   if (FTy->getNumParams() != ExpectedNumParams)
377     return false;
378   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
379     return false;
380 
381   return true;
382 }
383 
384 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
385 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
386   bool IsNoBuiltinCall;
387   const Function *Callee = getCalledFunction(I, IsNoBuiltinCall);
388   if (Callee == nullptr || IsNoBuiltinCall)
389     return nullptr;
390 
391   LibFunc TLIFn;
392   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
393     return nullptr;
394 
395   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
396 }
397 
398 
399 //===----------------------------------------------------------------------===//
400 //  Utility functions to compute size of objects.
401 //
402 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
403   if (Data.second.isNegative() || Data.first.ult(Data.second))
404     return APInt(Data.first.getBitWidth(), 0);
405   return Data.first - Data.second;
406 }
407 
408 /// Compute the size of the object pointed by Ptr. Returns true and the
409 /// object size in Size if successful, and false otherwise.
410 /// If RoundToAlign is true, then Size is rounded up to the alignment of
411 /// allocas, byval arguments, and global variables.
412 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
413                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
414   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
415   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
416   if (!Visitor.bothKnown(Data))
417     return false;
418 
419   Size = getSizeWithOverflow(Data).getZExtValue();
420   return true;
421 }
422 
423 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
424                                  const DataLayout &DL,
425                                  const TargetLibraryInfo *TLI,
426                                  bool MustSucceed) {
427   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
428          "ObjectSize must be a call to llvm.objectsize!");
429 
430   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
431   ObjectSizeOpts EvalOptions;
432   // Unless we have to fold this to something, try to be as accurate as
433   // possible.
434   if (MustSucceed)
435     EvalOptions.EvalMode =
436         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
437   else
438     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
439 
440   EvalOptions.NullIsUnknownSize =
441       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
442 
443   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
444   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
445   if (StaticOnly) {
446     // FIXME: Does it make sense to just return a failure value if the size won't
447     // fit in the output and `!MustSucceed`?
448     uint64_t Size;
449     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
450         isUIntN(ResultType->getBitWidth(), Size))
451       return ConstantInt::get(ResultType, Size);
452   } else {
453     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
454     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
455     SizeOffsetEvalType SizeOffsetPair =
456         Eval.compute(ObjectSize->getArgOperand(0));
457 
458     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
459       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
460       Builder.SetInsertPoint(ObjectSize);
461 
462       // If we've outside the end of the object, then we can always access
463       // exactly 0 bytes.
464       Value *ResultSize =
465           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
466       Value *UseZero =
467           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
468       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
469       Value *Ret = Builder.CreateSelect(
470           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
471 
472       // The non-constant size expression cannot evaluate to -1.
473       if (!isa<Constant>(SizeOffsetPair.first) ||
474           !isa<Constant>(SizeOffsetPair.second))
475         Builder.CreateAssumption(
476             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
477 
478       return Ret;
479     }
480   }
481 
482   if (!MustSucceed)
483     return nullptr;
484 
485   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
486 }
487 
488 STATISTIC(ObjectVisitorArgument,
489           "Number of arguments with unsolved size and offset");
490 STATISTIC(ObjectVisitorLoad,
491           "Number of load instructions with unsolved size and offset");
492 
493 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
494   if (Options.RoundToAlign && Alignment)
495     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment));
496   return Size;
497 }
498 
499 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
500                                                  const TargetLibraryInfo *TLI,
501                                                  LLVMContext &Context,
502                                                  ObjectSizeOpts Options)
503     : DL(DL), TLI(TLI), Options(Options) {
504   // Pointer size must be rechecked for each object visited since it could have
505   // a different address space.
506 }
507 
508 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
509   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
510   Zero = APInt::getZero(IntTyBits);
511 
512   V = V->stripPointerCasts();
513   if (Instruction *I = dyn_cast<Instruction>(V)) {
514     // If we have already seen this instruction, bail out. Cycles can happen in
515     // unreachable code after constant propagation.
516     if (!SeenInsts.insert(I).second)
517       return unknown();
518 
519     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
520       return visitGEPOperator(*GEP);
521     return visit(*I);
522   }
523   if (Argument *A = dyn_cast<Argument>(V))
524     return visitArgument(*A);
525   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
526     return visitConstantPointerNull(*P);
527   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
528     return visitGlobalAlias(*GA);
529   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
530     return visitGlobalVariable(*GV);
531   if (UndefValue *UV = dyn_cast<UndefValue>(V))
532     return visitUndefValue(*UV);
533   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
534     if (CE->getOpcode() == Instruction::IntToPtr)
535       return unknown(); // clueless
536     if (CE->getOpcode() == Instruction::GetElementPtr)
537       return visitGEPOperator(cast<GEPOperator>(*CE));
538   }
539 
540   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
541                     << *V << '\n');
542   return unknown();
543 }
544 
545 /// When we're compiling N-bit code, and the user uses parameters that are
546 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
547 /// trouble with APInt size issues. This function handles resizing + overflow
548 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
549 /// I's value.
550 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
551   // More bits than we can handle. Checking the bit width isn't necessary, but
552   // it's faster than checking active bits, and should give `false` in the
553   // vast majority of cases.
554   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
555     return false;
556   if (I.getBitWidth() != IntTyBits)
557     I = I.zextOrTrunc(IntTyBits);
558   return true;
559 }
560 
561 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
562   if (!I.getAllocatedType()->isSized())
563     return unknown();
564 
565   if (isa<ScalableVectorType>(I.getAllocatedType()))
566     return unknown();
567 
568   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
569   if (!I.isArrayAllocation())
570     return std::make_pair(align(Size, I.getAlign()), Zero);
571 
572   Value *ArraySize = I.getArraySize();
573   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
574     APInt NumElems = C->getValue();
575     if (!CheckedZextOrTrunc(NumElems))
576       return unknown();
577 
578     bool Overflow;
579     Size = Size.umul_ov(NumElems, Overflow);
580     return Overflow ? unknown()
581                     : std::make_pair(align(Size, I.getAlign()), Zero);
582   }
583   return unknown();
584 }
585 
586 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
587   Type *MemoryTy = A.getPointeeInMemoryValueType();
588   // No interprocedural analysis is done at the moment.
589   if (!MemoryTy|| !MemoryTy->isSized()) {
590     ++ObjectVisitorArgument;
591     return unknown();
592   }
593 
594   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
595   return std::make_pair(align(Size, A.getParamAlign()), Zero);
596 }
597 
598 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
599   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
600   if (!FnData)
601     return unknown();
602 
603   // Handle strdup-like functions separately.
604   if (FnData->AllocTy == StrDupLike) {
605     APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0)));
606     if (!Size)
607       return unknown();
608 
609     // Strndup limits strlen.
610     if (FnData->FstParam > 0) {
611       ConstantInt *Arg =
612           dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
613       if (!Arg)
614         return unknown();
615 
616       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
617       if (Size.ugt(MaxSize))
618         Size = MaxSize + 1;
619     }
620     return std::make_pair(Size, Zero);
621   }
622 
623   ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
624   if (!Arg)
625     return unknown();
626 
627   APInt Size = Arg->getValue();
628   if (!CheckedZextOrTrunc(Size))
629     return unknown();
630 
631   // Size is determined by just 1 parameter.
632   if (FnData->SndParam < 0)
633     return std::make_pair(Size, Zero);
634 
635   Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam));
636   if (!Arg)
637     return unknown();
638 
639   APInt NumElems = Arg->getValue();
640   if (!CheckedZextOrTrunc(NumElems))
641     return unknown();
642 
643   bool Overflow;
644   Size = Size.umul_ov(NumElems, Overflow);
645   return Overflow ? unknown() : std::make_pair(Size, Zero);
646 }
647 
648 SizeOffsetType
649 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
650   // If null is unknown, there's nothing we can do. Additionally, non-zero
651   // address spaces can make use of null, so we don't presume to know anything
652   // about that.
653   //
654   // TODO: How should this work with address space casts? We currently just drop
655   // them on the floor, but it's unclear what we should do when a NULL from
656   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
657   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
658     return unknown();
659   return std::make_pair(Zero, Zero);
660 }
661 
662 SizeOffsetType
663 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
664   return unknown();
665 }
666 
667 SizeOffsetType
668 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
669   // Easy cases were already folded by previous passes.
670   return unknown();
671 }
672 
673 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
674   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
675   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
676   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
677     return unknown();
678 
679   return std::make_pair(PtrData.first, PtrData.second + Offset);
680 }
681 
682 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
683   if (GA.isInterposable())
684     return unknown();
685   return compute(GA.getAliasee());
686 }
687 
688 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
689   if (!GV.hasDefinitiveInitializer())
690     return unknown();
691 
692   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
693   return std::make_pair(align(Size, GV.getAlign()), Zero);
694 }
695 
696 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
697   // clueless
698   return unknown();
699 }
700 
701 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
702   ++ObjectVisitorLoad;
703   return unknown();
704 }
705 
706 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
707   // too complex to analyze statically.
708   return unknown();
709 }
710 
711 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
712   SizeOffsetType TrueSide  = compute(I.getTrueValue());
713   SizeOffsetType FalseSide = compute(I.getFalseValue());
714   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
715     if (TrueSide == FalseSide) {
716         return TrueSide;
717     }
718 
719     APInt TrueResult = getSizeWithOverflow(TrueSide);
720     APInt FalseResult = getSizeWithOverflow(FalseSide);
721 
722     if (TrueResult == FalseResult) {
723       return TrueSide;
724     }
725     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
726       if (TrueResult.slt(FalseResult))
727         return TrueSide;
728       return FalseSide;
729     }
730     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
731       if (TrueResult.sgt(FalseResult))
732         return TrueSide;
733       return FalseSide;
734     }
735   }
736   return unknown();
737 }
738 
739 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
740   return std::make_pair(Zero, Zero);
741 }
742 
743 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
744   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
745                     << '\n');
746   return unknown();
747 }
748 
749 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
750     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
751     ObjectSizeOpts EvalOpts)
752     : DL(DL), TLI(TLI), Context(Context),
753       Builder(Context, TargetFolder(DL),
754               IRBuilderCallbackInserter(
755                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
756       EvalOpts(EvalOpts) {
757   // IntTy and Zero must be set for each compute() since the address space may
758   // be different for later objects.
759 }
760 
761 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
762   // XXX - Are vectors of pointers possible here?
763   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
764   Zero = ConstantInt::get(IntTy, 0);
765 
766   SizeOffsetEvalType Result = compute_(V);
767 
768   if (!bothKnown(Result)) {
769     // Erase everything that was computed in this iteration from the cache, so
770     // that no dangling references are left behind. We could be a bit smarter if
771     // we kept a dependency graph. It's probably not worth the complexity.
772     for (const Value *SeenVal : SeenVals) {
773       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
774       // non-computable results can be safely cached
775       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
776         CacheMap.erase(CacheIt);
777     }
778 
779     // Erase any instructions we inserted as part of the traversal.
780     for (Instruction *I : InsertedInstructions) {
781       I->replaceAllUsesWith(UndefValue::get(I->getType()));
782       I->eraseFromParent();
783     }
784   }
785 
786   SeenVals.clear();
787   InsertedInstructions.clear();
788   return Result;
789 }
790 
791 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
792   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
793   SizeOffsetType Const = Visitor.compute(V);
794   if (Visitor.bothKnown(Const))
795     return std::make_pair(ConstantInt::get(Context, Const.first),
796                           ConstantInt::get(Context, Const.second));
797 
798   V = V->stripPointerCasts();
799 
800   // Check cache.
801   CacheMapTy::iterator CacheIt = CacheMap.find(V);
802   if (CacheIt != CacheMap.end())
803     return CacheIt->second;
804 
805   // Always generate code immediately before the instruction being
806   // processed, so that the generated code dominates the same BBs.
807   BuilderTy::InsertPointGuard Guard(Builder);
808   if (Instruction *I = dyn_cast<Instruction>(V))
809     Builder.SetInsertPoint(I);
810 
811   // Now compute the size and offset.
812   SizeOffsetEvalType Result;
813 
814   // Record the pointers that were handled in this run, so that they can be
815   // cleaned later if something fails. We also use this set to break cycles that
816   // can occur in dead code.
817   if (!SeenVals.insert(V).second) {
818     Result = unknown();
819   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
820     Result = visitGEPOperator(*GEP);
821   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
822     Result = visit(*I);
823   } else if (isa<Argument>(V) ||
824              (isa<ConstantExpr>(V) &&
825               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
826              isa<GlobalAlias>(V) ||
827              isa<GlobalVariable>(V)) {
828     // Ignore values where we cannot do more than ObjectSizeVisitor.
829     Result = unknown();
830   } else {
831     LLVM_DEBUG(
832         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
833                << '\n');
834     Result = unknown();
835   }
836 
837   // Don't reuse CacheIt since it may be invalid at this point.
838   CacheMap[V] = Result;
839   return Result;
840 }
841 
842 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
843   if (!I.getAllocatedType()->isSized())
844     return unknown();
845 
846   // must be a VLA
847   assert(I.isArrayAllocation());
848 
849   // If needed, adjust the alloca's operand size to match the pointer size.
850   // Subsequent math operations expect the types to match.
851   Value *ArraySize = Builder.CreateZExtOrTrunc(
852       I.getArraySize(), DL.getIntPtrType(I.getContext()));
853   assert(ArraySize->getType() == Zero->getType() &&
854          "Expected zero constant to have pointer type");
855 
856   Value *Size = ConstantInt::get(ArraySize->getType(),
857                                  DL.getTypeAllocSize(I.getAllocatedType()));
858   Size = Builder.CreateMul(Size, ArraySize);
859   return std::make_pair(Size, Zero);
860 }
861 
862 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
863   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
864   if (!FnData)
865     return unknown();
866 
867   // Handle strdup-like functions separately.
868   if (FnData->AllocTy == StrDupLike) {
869     // TODO: implement evaluation of strdup/strndup
870     return unknown();
871   }
872 
873   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
874   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
875   if (FnData->SndParam < 0)
876     return std::make_pair(FirstArg, Zero);
877 
878   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
879   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
880   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
881   return std::make_pair(Size, Zero);
882 }
883 
884 SizeOffsetEvalType
885 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
886   return unknown();
887 }
888 
889 SizeOffsetEvalType
890 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
891   return unknown();
892 }
893 
894 SizeOffsetEvalType
895 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
896   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
897   if (!bothKnown(PtrData))
898     return unknown();
899 
900   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
901   Offset = Builder.CreateAdd(PtrData.second, Offset);
902   return std::make_pair(PtrData.first, Offset);
903 }
904 
905 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
906   // clueless
907   return unknown();
908 }
909 
910 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
911   return unknown();
912 }
913 
914 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
915   // Create 2 PHIs: one for size and another for offset.
916   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
917   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
918 
919   // Insert right away in the cache to handle recursive PHIs.
920   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
921 
922   // Compute offset/size for each PHI incoming pointer.
923   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
924     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
925     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
926 
927     if (!bothKnown(EdgeData)) {
928       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
929       OffsetPHI->eraseFromParent();
930       InsertedInstructions.erase(OffsetPHI);
931       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
932       SizePHI->eraseFromParent();
933       InsertedInstructions.erase(SizePHI);
934       return unknown();
935     }
936     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
937     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
938   }
939 
940   Value *Size = SizePHI, *Offset = OffsetPHI;
941   if (Value *Tmp = SizePHI->hasConstantValue()) {
942     Size = Tmp;
943     SizePHI->replaceAllUsesWith(Size);
944     SizePHI->eraseFromParent();
945     InsertedInstructions.erase(SizePHI);
946   }
947   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
948     Offset = Tmp;
949     OffsetPHI->replaceAllUsesWith(Offset);
950     OffsetPHI->eraseFromParent();
951     InsertedInstructions.erase(OffsetPHI);
952   }
953   return std::make_pair(Size, Offset);
954 }
955 
956 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
957   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
958   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
959 
960   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
961     return unknown();
962   if (TrueSide == FalseSide)
963     return TrueSide;
964 
965   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
966                                      FalseSide.first);
967   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
968                                        FalseSide.second);
969   return std::make_pair(Size, Offset);
970 }
971 
972 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
973   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
974                     << '\n');
975   return unknown();
976 }
977