1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike,
60   AllocLike          = MallocOrCallocLike | StrDupLike,
61   AnyAlloc           = AllocLike | ReallocLike
62 };
63 
64 struct AllocFnsTy {
65   AllocType AllocTy;
66   unsigned NumParams;
67   // First and Second size parameters (or -1 if unused)
68   int FstParam, SndParam;
69   // Alignment parameter for aligned_alloc and aligned new
70   int AlignParam;
71 };
72 
73 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
74 // know which functions are nounwind, noalias, nocapture parameters, etc.
75 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
76     {LibFunc_malloc,                            {MallocLike,       1,  0, -1, -1}},
77     {LibFunc_vec_malloc,                        {MallocLike,       1,  0, -1, -1}},
78     {LibFunc_valloc,                            {MallocLike,       1,  0, -1, -1}},
79     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1}}, // new(unsigned int)
80     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new(unsigned int, nothrow)
81     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new(unsigned int, align_val_t)
82     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new(unsigned int, align_val_t, nothrow)
83     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1}}, // new(unsigned long)
84     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new(unsigned long, nothrow)
85     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new(unsigned long, align_val_t)
86     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new(unsigned long, align_val_t, nothrow)
87     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned int)
88     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new[](unsigned int, nothrow)
89     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new[](unsigned int, align_val_t)
90     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new[](unsigned int, align_val_t, nothrow)
91     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned long)
92     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1}}, // new[](unsigned long, nothrow)
93     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1}}, // new[](unsigned long, align_val_t)
94     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1}}, // new[](unsigned long, align_val_t, nothrow)
95     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1}}, // new(unsigned int)
96     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1}}, // new(unsigned int, nothrow)
97     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1}}, // new(unsigned long long)
98     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1}}, // new(unsigned long long, nothrow)
99     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned int)
100     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1}}, // new[](unsigned int, nothrow)
101     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1}}, // new[](unsigned long long)
102     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1}}, // new[](unsigned long long, nothrow)
103     {LibFunc_aligned_alloc,                     {AlignedAllocLike, 2,  1, -1,  0}},
104     {LibFunc_memalign,                          {AlignedAllocLike, 2,  1, -1,  0}},
105     {LibFunc_calloc,                            {CallocLike,       2,  0,  1, -1}},
106     {LibFunc_vec_calloc,                        {CallocLike,       2,  0,  1, -1}},
107     {LibFunc_realloc,                           {ReallocLike,      2,  1, -1, -1}},
108     {LibFunc_vec_realloc,                       {ReallocLike,      2,  1, -1, -1}},
109     {LibFunc_reallocf,                          {ReallocLike,      2,  1, -1, -1}},
110     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1}},
111     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1}},
112     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1}},
113     // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
114 };
115 
116 static const Function *getCalledFunction(const Value *V,
117                                          bool &IsNoBuiltin) {
118   // Don't care about intrinsics in this case.
119   if (isa<IntrinsicInst>(V))
120     return nullptr;
121 
122   const auto *CB = dyn_cast<CallBase>(V);
123   if (!CB)
124     return nullptr;
125 
126   IsNoBuiltin = CB->isNoBuiltin();
127 
128   if (const Function *Callee = CB->getCalledFunction())
129     return Callee;
130   return nullptr;
131 }
132 
133 /// Returns the allocation data for the given value if it's a call to a known
134 /// allocation function.
135 static Optional<AllocFnsTy>
136 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
137                              const TargetLibraryInfo *TLI) {
138   // Make sure that the function is available.
139   LibFunc TLIFn;
140   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
141     return None;
142 
143   const auto *Iter = find_if(
144       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
145         return P.first == TLIFn;
146       });
147 
148   if (Iter == std::end(AllocationFnData))
149     return None;
150 
151   const AllocFnsTy *FnData = &Iter->second;
152   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
153     return None;
154 
155   // Check function prototype.
156   int FstParam = FnData->FstParam;
157   int SndParam = FnData->SndParam;
158   FunctionType *FTy = Callee->getFunctionType();
159 
160   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
161       FTy->getNumParams() == FnData->NumParams &&
162       (FstParam < 0 ||
163        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
164         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
165       (SndParam < 0 ||
166        FTy->getParamType(SndParam)->isIntegerTy(32) ||
167        FTy->getParamType(SndParam)->isIntegerTy(64)))
168     return *FnData;
169   return None;
170 }
171 
172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
173                                               const TargetLibraryInfo *TLI) {
174   bool IsNoBuiltinCall;
175   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
176     if (!IsNoBuiltinCall)
177       return getAllocationDataForFunction(Callee, AllocTy, TLI);
178   return None;
179 }
180 
181 static Optional<AllocFnsTy>
182 getAllocationData(const Value *V, AllocType AllocTy,
183                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
184   bool IsNoBuiltinCall;
185   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
186     if (!IsNoBuiltinCall)
187       return getAllocationDataForFunction(
188           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
189   return None;
190 }
191 
192 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
193                                               const TargetLibraryInfo *TLI) {
194   bool IsNoBuiltinCall;
195   const Function *Callee =
196       getCalledFunction(V, IsNoBuiltinCall);
197   if (!Callee)
198     return None;
199 
200   // Prefer to use existing information over allocsize. This will give us an
201   // accurate AllocTy.
202   if (!IsNoBuiltinCall)
203     if (Optional<AllocFnsTy> Data =
204             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
205       return Data;
206 
207   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
208   if (Attr == Attribute())
209     return None;
210 
211   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
212 
213   AllocFnsTy Result;
214   // Because allocsize only tells us how many bytes are allocated, we're not
215   // really allowed to assume anything, so we use MallocLike.
216   Result.AllocTy = MallocLike;
217   Result.NumParams = Callee->getNumOperands();
218   Result.FstParam = Args.first;
219   Result.SndParam = Args.second.getValueOr(-1);
220   // Allocsize has no way to specify an alignment argument
221   Result.AlignParam = -1;
222   return Result;
223 }
224 
225 /// Tests if a value is a call or invoke to a library function that
226 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
227 /// like).
228 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
229   return getAllocationData(V, AnyAlloc, TLI).hasValue();
230 }
231 bool llvm::isAllocationFn(
232     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
233   return getAllocationData(V, AnyAlloc, GetTLI).hasValue();
234 }
235 
236 /// Tests if a value is a call or invoke to a library function that
237 /// allocates uninitialized memory (such as malloc).
238 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
239   return getAllocationData(V, MallocLike, TLI).hasValue();
240 }
241 bool llvm::isMallocLikeFn(
242     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
243   return getAllocationData(V, MallocLike, GetTLI)
244       .hasValue();
245 }
246 
247 /// Tests if a value is a call or invoke to a library function that
248 /// allocates uninitialized memory with alignment (such as aligned_alloc).
249 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
250   return getAllocationData(V, AlignedAllocLike, TLI)
251       .hasValue();
252 }
253 bool llvm::isAlignedAllocLikeFn(
254     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
255   return getAllocationData(V, AlignedAllocLike, GetTLI)
256       .hasValue();
257 }
258 
259 /// Tests if a value is a call or invoke to a library function that
260 /// allocates zero-filled memory (such as calloc).
261 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
262   return getAllocationData(V, CallocLike, TLI).hasValue();
263 }
264 
265 /// Tests if a value is a call or invoke to a library function that
266 /// allocates memory similar to malloc or calloc.
267 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
268   return getAllocationData(V, MallocOrCallocLike, TLI).hasValue();
269 }
270 
271 /// Tests if a value is a call or invoke to a library function that
272 /// allocates memory (either malloc, calloc, or strdup like).
273 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
274   return getAllocationData(V, AllocLike, TLI).hasValue();
275 }
276 
277 /// Tests if a value is a call or invoke to a library function that
278 /// reallocates memory (e.g., realloc).
279 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
280   return getAllocationData(V, ReallocLike, TLI).hasValue();
281 }
282 
283 /// Tests if a functions is a call or invoke to a library function that
284 /// reallocates memory (e.g., realloc).
285 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
286   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
287 }
288 
289 /// Tests if a value is a call or invoke to a library function that
290 /// allocates memory and throws if an allocation failed (e.g., new).
291 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
292   return getAllocationData(V, OpNewLike, TLI).hasValue();
293 }
294 
295 /// Tests if a value is a call or invoke to a library function that
296 /// allocates memory (strdup, strndup).
297 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
298   return getAllocationData(V, StrDupLike, TLI).hasValue();
299 }
300 
301 bool llvm::isAllocRemovable(const CallBase *CB, const TargetLibraryInfo *TLI) {
302   assert(isAllocationFn(CB, TLI));
303 
304   // Note: Removability is highly dependent on the source language.  For
305   // example, recent C++ requires direct calls to the global allocation
306   // [basic.stc.dynamic.allocation] to be observable unless part of a new
307   // expression [expr.new paragraph 13].
308 
309   // Historically we've treated the C family allocation routines as removable
310   return isAllocLikeFn(CB, TLI);
311 }
312 
313 Value *llvm::getAllocAlignment(const CallBase *V,
314                                const TargetLibraryInfo *TLI) {
315   assert(isAllocationFn(V, TLI));
316 
317   const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
318   if (!FnData.hasValue() || FnData->AlignParam < 0) {
319     return nullptr;
320   }
321   return V->getOperand(FnData->AlignParam);
322 }
323 
324 Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc,
325                                             const TargetLibraryInfo *TLI,
326                                             Type *Ty) {
327   assert(isAllocationFn(Alloc, TLI));
328 
329   // malloc and aligned_alloc are uninitialized (undef)
330   if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
331     return UndefValue::get(Ty);
332 
333   // calloc zero initializes
334   if (isCallocLikeFn(Alloc, TLI))
335     return Constant::getNullValue(Ty);
336 
337   return nullptr;
338 }
339 
340 /// isLibFreeFunction - Returns true if the function is a builtin free()
341 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
342   unsigned ExpectedNumParams;
343   if (TLIFn == LibFunc_free ||
344       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
345       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
346       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
347       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
348       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
349       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
350     ExpectedNumParams = 1;
351   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
352            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
353            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
354            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
355            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
356            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
357            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
358            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
359            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
360            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
361            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
362            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
363            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
364            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
365            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
366            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow)
367            TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free
368     ExpectedNumParams = 2;
369   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
370            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
371            TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
372            TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
373            TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
374            TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
375     ExpectedNumParams = 3;
376   else
377     return false;
378 
379   // Check free prototype.
380   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
381   // attribute will exist.
382   FunctionType *FTy = F->getFunctionType();
383   if (!FTy->getReturnType()->isVoidTy())
384     return false;
385   if (FTy->getNumParams() != ExpectedNumParams)
386     return false;
387   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
388     return false;
389 
390   return true;
391 }
392 
393 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
394 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
395   bool IsNoBuiltinCall;
396   const Function *Callee = getCalledFunction(I, IsNoBuiltinCall);
397   if (Callee == nullptr || IsNoBuiltinCall)
398     return nullptr;
399 
400   LibFunc TLIFn;
401   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
402     return nullptr;
403 
404   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
405 }
406 
407 
408 //===----------------------------------------------------------------------===//
409 //  Utility functions to compute size of objects.
410 //
411 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
412   if (Data.second.isNegative() || Data.first.ult(Data.second))
413     return APInt(Data.first.getBitWidth(), 0);
414   return Data.first - Data.second;
415 }
416 
417 /// Compute the size of the object pointed by Ptr. Returns true and the
418 /// object size in Size if successful, and false otherwise.
419 /// If RoundToAlign is true, then Size is rounded up to the alignment of
420 /// allocas, byval arguments, and global variables.
421 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
422                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
423   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
424   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
425   if (!Visitor.bothKnown(Data))
426     return false;
427 
428   Size = getSizeWithOverflow(Data).getZExtValue();
429   return true;
430 }
431 
432 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
433                                  const DataLayout &DL,
434                                  const TargetLibraryInfo *TLI,
435                                  bool MustSucceed) {
436   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
437          "ObjectSize must be a call to llvm.objectsize!");
438 
439   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
440   ObjectSizeOpts EvalOptions;
441   // Unless we have to fold this to something, try to be as accurate as
442   // possible.
443   if (MustSucceed)
444     EvalOptions.EvalMode =
445         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
446   else
447     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
448 
449   EvalOptions.NullIsUnknownSize =
450       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
451 
452   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
453   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
454   if (StaticOnly) {
455     // FIXME: Does it make sense to just return a failure value if the size won't
456     // fit in the output and `!MustSucceed`?
457     uint64_t Size;
458     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
459         isUIntN(ResultType->getBitWidth(), Size))
460       return ConstantInt::get(ResultType, Size);
461   } else {
462     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
463     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
464     SizeOffsetEvalType SizeOffsetPair =
465         Eval.compute(ObjectSize->getArgOperand(0));
466 
467     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
468       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
469       Builder.SetInsertPoint(ObjectSize);
470 
471       // If we've outside the end of the object, then we can always access
472       // exactly 0 bytes.
473       Value *ResultSize =
474           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
475       Value *UseZero =
476           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
477       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
478       Value *Ret = Builder.CreateSelect(
479           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
480 
481       // The non-constant size expression cannot evaluate to -1.
482       if (!isa<Constant>(SizeOffsetPair.first) ||
483           !isa<Constant>(SizeOffsetPair.second))
484         Builder.CreateAssumption(
485             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
486 
487       return Ret;
488     }
489   }
490 
491   if (!MustSucceed)
492     return nullptr;
493 
494   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
495 }
496 
497 STATISTIC(ObjectVisitorArgument,
498           "Number of arguments with unsolved size and offset");
499 STATISTIC(ObjectVisitorLoad,
500           "Number of load instructions with unsolved size and offset");
501 
502 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
503   if (Options.RoundToAlign && Alignment)
504     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment));
505   return Size;
506 }
507 
508 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
509                                                  const TargetLibraryInfo *TLI,
510                                                  LLVMContext &Context,
511                                                  ObjectSizeOpts Options)
512     : DL(DL), TLI(TLI), Options(Options) {
513   // Pointer size must be rechecked for each object visited since it could have
514   // a different address space.
515 }
516 
517 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
518   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
519   Zero = APInt::getZero(IntTyBits);
520 
521   V = V->stripPointerCasts();
522   if (Instruction *I = dyn_cast<Instruction>(V)) {
523     // If we have already seen this instruction, bail out. Cycles can happen in
524     // unreachable code after constant propagation.
525     if (!SeenInsts.insert(I).second)
526       return unknown();
527 
528     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
529       return visitGEPOperator(*GEP);
530     return visit(*I);
531   }
532   if (Argument *A = dyn_cast<Argument>(V))
533     return visitArgument(*A);
534   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
535     return visitConstantPointerNull(*P);
536   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
537     return visitGlobalAlias(*GA);
538   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
539     return visitGlobalVariable(*GV);
540   if (UndefValue *UV = dyn_cast<UndefValue>(V))
541     return visitUndefValue(*UV);
542   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
543     if (CE->getOpcode() == Instruction::IntToPtr)
544       return unknown(); // clueless
545     if (CE->getOpcode() == Instruction::GetElementPtr)
546       return visitGEPOperator(cast<GEPOperator>(*CE));
547   }
548 
549   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
550                     << *V << '\n');
551   return unknown();
552 }
553 
554 /// When we're compiling N-bit code, and the user uses parameters that are
555 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
556 /// trouble with APInt size issues. This function handles resizing + overflow
557 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
558 /// I's value.
559 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
560   // More bits than we can handle. Checking the bit width isn't necessary, but
561   // it's faster than checking active bits, and should give `false` in the
562   // vast majority of cases.
563   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
564     return false;
565   if (I.getBitWidth() != IntTyBits)
566     I = I.zextOrTrunc(IntTyBits);
567   return true;
568 }
569 
570 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
571   if (!I.getAllocatedType()->isSized())
572     return unknown();
573 
574   if (isa<ScalableVectorType>(I.getAllocatedType()))
575     return unknown();
576 
577   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
578   if (!I.isArrayAllocation())
579     return std::make_pair(align(Size, I.getAlign()), Zero);
580 
581   Value *ArraySize = I.getArraySize();
582   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
583     APInt NumElems = C->getValue();
584     if (!CheckedZextOrTrunc(NumElems))
585       return unknown();
586 
587     bool Overflow;
588     Size = Size.umul_ov(NumElems, Overflow);
589     return Overflow ? unknown()
590                     : std::make_pair(align(Size, I.getAlign()), Zero);
591   }
592   return unknown();
593 }
594 
595 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
596   Type *MemoryTy = A.getPointeeInMemoryValueType();
597   // No interprocedural analysis is done at the moment.
598   if (!MemoryTy|| !MemoryTy->isSized()) {
599     ++ObjectVisitorArgument;
600     return unknown();
601   }
602 
603   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
604   return std::make_pair(align(Size, A.getParamAlign()), Zero);
605 }
606 
607 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
608   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
609   if (!FnData)
610     return unknown();
611 
612   // Handle strdup-like functions separately.
613   if (FnData->AllocTy == StrDupLike) {
614     APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0)));
615     if (!Size)
616       return unknown();
617 
618     // Strndup limits strlen.
619     if (FnData->FstParam > 0) {
620       ConstantInt *Arg =
621           dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
622       if (!Arg)
623         return unknown();
624 
625       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
626       if (Size.ugt(MaxSize))
627         Size = MaxSize + 1;
628     }
629     return std::make_pair(Size, Zero);
630   }
631 
632   ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
633   if (!Arg)
634     return unknown();
635 
636   APInt Size = Arg->getValue();
637   if (!CheckedZextOrTrunc(Size))
638     return unknown();
639 
640   // Size is determined by just 1 parameter.
641   if (FnData->SndParam < 0)
642     return std::make_pair(Size, Zero);
643 
644   Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam));
645   if (!Arg)
646     return unknown();
647 
648   APInt NumElems = Arg->getValue();
649   if (!CheckedZextOrTrunc(NumElems))
650     return unknown();
651 
652   bool Overflow;
653   Size = Size.umul_ov(NumElems, Overflow);
654   return Overflow ? unknown() : std::make_pair(Size, Zero);
655 }
656 
657 SizeOffsetType
658 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
659   // If null is unknown, there's nothing we can do. Additionally, non-zero
660   // address spaces can make use of null, so we don't presume to know anything
661   // about that.
662   //
663   // TODO: How should this work with address space casts? We currently just drop
664   // them on the floor, but it's unclear what we should do when a NULL from
665   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
666   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
667     return unknown();
668   return std::make_pair(Zero, Zero);
669 }
670 
671 SizeOffsetType
672 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
673   return unknown();
674 }
675 
676 SizeOffsetType
677 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
678   // Easy cases were already folded by previous passes.
679   return unknown();
680 }
681 
682 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
683   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
684   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
685   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
686     return unknown();
687 
688   return std::make_pair(PtrData.first, PtrData.second + Offset);
689 }
690 
691 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
692   if (GA.isInterposable())
693     return unknown();
694   return compute(GA.getAliasee());
695 }
696 
697 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
698   if (!GV.hasDefinitiveInitializer())
699     return unknown();
700 
701   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
702   return std::make_pair(align(Size, GV.getAlign()), Zero);
703 }
704 
705 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
706   // clueless
707   return unknown();
708 }
709 
710 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
711   ++ObjectVisitorLoad;
712   return unknown();
713 }
714 
715 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
716   // too complex to analyze statically.
717   return unknown();
718 }
719 
720 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
721   SizeOffsetType TrueSide  = compute(I.getTrueValue());
722   SizeOffsetType FalseSide = compute(I.getFalseValue());
723   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
724     if (TrueSide == FalseSide) {
725         return TrueSide;
726     }
727 
728     APInt TrueResult = getSizeWithOverflow(TrueSide);
729     APInt FalseResult = getSizeWithOverflow(FalseSide);
730 
731     if (TrueResult == FalseResult) {
732       return TrueSide;
733     }
734     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
735       if (TrueResult.slt(FalseResult))
736         return TrueSide;
737       return FalseSide;
738     }
739     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
740       if (TrueResult.sgt(FalseResult))
741         return TrueSide;
742       return FalseSide;
743     }
744   }
745   return unknown();
746 }
747 
748 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
749   return std::make_pair(Zero, Zero);
750 }
751 
752 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
753   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
754                     << '\n');
755   return unknown();
756 }
757 
758 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
759     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
760     ObjectSizeOpts EvalOpts)
761     : DL(DL), TLI(TLI), Context(Context),
762       Builder(Context, TargetFolder(DL),
763               IRBuilderCallbackInserter(
764                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
765       EvalOpts(EvalOpts) {
766   // IntTy and Zero must be set for each compute() since the address space may
767   // be different for later objects.
768 }
769 
770 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
771   // XXX - Are vectors of pointers possible here?
772   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
773   Zero = ConstantInt::get(IntTy, 0);
774 
775   SizeOffsetEvalType Result = compute_(V);
776 
777   if (!bothKnown(Result)) {
778     // Erase everything that was computed in this iteration from the cache, so
779     // that no dangling references are left behind. We could be a bit smarter if
780     // we kept a dependency graph. It's probably not worth the complexity.
781     for (const Value *SeenVal : SeenVals) {
782       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
783       // non-computable results can be safely cached
784       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
785         CacheMap.erase(CacheIt);
786     }
787 
788     // Erase any instructions we inserted as part of the traversal.
789     for (Instruction *I : InsertedInstructions) {
790       I->replaceAllUsesWith(UndefValue::get(I->getType()));
791       I->eraseFromParent();
792     }
793   }
794 
795   SeenVals.clear();
796   InsertedInstructions.clear();
797   return Result;
798 }
799 
800 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
801   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
802   SizeOffsetType Const = Visitor.compute(V);
803   if (Visitor.bothKnown(Const))
804     return std::make_pair(ConstantInt::get(Context, Const.first),
805                           ConstantInt::get(Context, Const.second));
806 
807   V = V->stripPointerCasts();
808 
809   // Check cache.
810   CacheMapTy::iterator CacheIt = CacheMap.find(V);
811   if (CacheIt != CacheMap.end())
812     return CacheIt->second;
813 
814   // Always generate code immediately before the instruction being
815   // processed, so that the generated code dominates the same BBs.
816   BuilderTy::InsertPointGuard Guard(Builder);
817   if (Instruction *I = dyn_cast<Instruction>(V))
818     Builder.SetInsertPoint(I);
819 
820   // Now compute the size and offset.
821   SizeOffsetEvalType Result;
822 
823   // Record the pointers that were handled in this run, so that they can be
824   // cleaned later if something fails. We also use this set to break cycles that
825   // can occur in dead code.
826   if (!SeenVals.insert(V).second) {
827     Result = unknown();
828   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
829     Result = visitGEPOperator(*GEP);
830   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
831     Result = visit(*I);
832   } else if (isa<Argument>(V) ||
833              (isa<ConstantExpr>(V) &&
834               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
835              isa<GlobalAlias>(V) ||
836              isa<GlobalVariable>(V)) {
837     // Ignore values where we cannot do more than ObjectSizeVisitor.
838     Result = unknown();
839   } else {
840     LLVM_DEBUG(
841         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
842                << '\n');
843     Result = unknown();
844   }
845 
846   // Don't reuse CacheIt since it may be invalid at this point.
847   CacheMap[V] = Result;
848   return Result;
849 }
850 
851 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
852   if (!I.getAllocatedType()->isSized())
853     return unknown();
854 
855   // must be a VLA
856   assert(I.isArrayAllocation());
857 
858   // If needed, adjust the alloca's operand size to match the pointer size.
859   // Subsequent math operations expect the types to match.
860   Value *ArraySize = Builder.CreateZExtOrTrunc(
861       I.getArraySize(), DL.getIntPtrType(I.getContext()));
862   assert(ArraySize->getType() == Zero->getType() &&
863          "Expected zero constant to have pointer type");
864 
865   Value *Size = ConstantInt::get(ArraySize->getType(),
866                                  DL.getTypeAllocSize(I.getAllocatedType()));
867   Size = Builder.CreateMul(Size, ArraySize);
868   return std::make_pair(Size, Zero);
869 }
870 
871 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
872   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
873   if (!FnData)
874     return unknown();
875 
876   // Handle strdup-like functions separately.
877   if (FnData->AllocTy == StrDupLike) {
878     // TODO: implement evaluation of strdup/strndup
879     return unknown();
880   }
881 
882   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
883   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
884   if (FnData->SndParam < 0)
885     return std::make_pair(FirstArg, Zero);
886 
887   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
888   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
889   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
890   return std::make_pair(Size, Zero);
891 }
892 
893 SizeOffsetEvalType
894 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
895   return unknown();
896 }
897 
898 SizeOffsetEvalType
899 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
900   return unknown();
901 }
902 
903 SizeOffsetEvalType
904 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
905   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
906   if (!bothKnown(PtrData))
907     return unknown();
908 
909   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
910   Offset = Builder.CreateAdd(PtrData.second, Offset);
911   return std::make_pair(PtrData.first, Offset);
912 }
913 
914 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
915   // clueless
916   return unknown();
917 }
918 
919 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
920   return unknown();
921 }
922 
923 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
924   // Create 2 PHIs: one for size and another for offset.
925   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
926   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
927 
928   // Insert right away in the cache to handle recursive PHIs.
929   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
930 
931   // Compute offset/size for each PHI incoming pointer.
932   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
933     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
934     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
935 
936     if (!bothKnown(EdgeData)) {
937       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
938       OffsetPHI->eraseFromParent();
939       InsertedInstructions.erase(OffsetPHI);
940       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
941       SizePHI->eraseFromParent();
942       InsertedInstructions.erase(SizePHI);
943       return unknown();
944     }
945     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
946     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
947   }
948 
949   Value *Size = SizePHI, *Offset = OffsetPHI;
950   if (Value *Tmp = SizePHI->hasConstantValue()) {
951     Size = Tmp;
952     SizePHI->replaceAllUsesWith(Size);
953     SizePHI->eraseFromParent();
954     InsertedInstructions.erase(SizePHI);
955   }
956   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
957     Offset = Tmp;
958     OffsetPHI->replaceAllUsesWith(Offset);
959     OffsetPHI->eraseFromParent();
960     InsertedInstructions.erase(OffsetPHI);
961   }
962   return std::make_pair(Size, Offset);
963 }
964 
965 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
966   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
967   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
968 
969   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
970     return unknown();
971   if (TrueSide == FalseSide)
972     return TrueSide;
973 
974   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
975                                      FalseSide.first);
976   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
977                                        FalseSide.second);
978   return std::make_pair(Size, Offset);
979 }
980 
981 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
982   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
983                     << '\n');
984   return unknown();
985 }
986