1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/TargetFolder.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 #include <numeric> 47 #include <type_traits> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "memory-builtins" 53 54 enum AllocType : uint8_t { 55 OpNewLike = 1<<0, // allocates; never returns null 56 MallocLike = 1<<1, // allocates; may return null 57 AlignedAllocLike = 1<<2, // allocates with alignment; may return null 58 CallocLike = 1<<3, // allocates + bzero 59 ReallocLike = 1<<4, // reallocates 60 StrDupLike = 1<<5, 61 MallocOrOpNewLike = MallocLike | OpNewLike, 62 MallocOrCallocLike = MallocLike | OpNewLike | CallocLike | AlignedAllocLike, 63 AllocLike = MallocOrCallocLike | StrDupLike, 64 AnyAlloc = AllocLike | ReallocLike 65 }; 66 67 enum class MallocFamily { 68 Malloc, 69 CPPNew, // new(unsigned int) 70 CPPNewAligned, // new(unsigned int, align_val_t) 71 CPPNewArray, // new[](unsigned int) 72 CPPNewArrayAligned, // new[](unsigned long, align_val_t) 73 MSVCNew, // new(unsigned int) 74 MSVCArrayNew, // new[](unsigned int) 75 VecMalloc, 76 KmpcAllocShared, 77 }; 78 79 StringRef mangledNameForMallocFamily(const MallocFamily &Family) { 80 switch (Family) { 81 case MallocFamily::Malloc: 82 return "malloc"; 83 case MallocFamily::CPPNew: 84 return "_Znwm"; 85 case MallocFamily::CPPNewAligned: 86 return "_ZnwmSt11align_val_t"; 87 case MallocFamily::CPPNewArray: 88 return "_Znam"; 89 case MallocFamily::CPPNewArrayAligned: 90 return "_ZnamSt11align_val_t"; 91 case MallocFamily::MSVCNew: 92 return "??2@YAPAXI@Z"; 93 case MallocFamily::MSVCArrayNew: 94 return "??_U@YAPAXI@Z"; 95 case MallocFamily::VecMalloc: 96 return "vec_malloc"; 97 case MallocFamily::KmpcAllocShared: 98 return "__kmpc_alloc_shared"; 99 } 100 llvm_unreachable("missing an alloc family"); 101 } 102 103 struct AllocFnsTy { 104 AllocType AllocTy; 105 unsigned NumParams; 106 // First and Second size parameters (or -1 if unused) 107 int FstParam, SndParam; 108 // Alignment parameter for aligned_alloc and aligned new 109 int AlignParam; 110 // Name of default allocator function to group malloc/free calls by family 111 MallocFamily Family; 112 }; 113 114 // clang-format off 115 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 116 // know which functions are nounwind, noalias, nocapture parameters, etc. 117 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 118 {LibFunc_malloc, {MallocLike, 1, 0, -1, -1, MallocFamily::Malloc}}, 119 {LibFunc_vec_malloc, {MallocLike, 1, 0, -1, -1, MallocFamily::VecMalloc}}, 120 {LibFunc_valloc, {MallocLike, 1, 0, -1, -1, MallocFamily::Malloc}}, 121 {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int) 122 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow) 123 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t) 124 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow) 125 {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long) 126 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow) 127 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t) 128 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow) 129 {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int) 130 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow) 131 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t) 132 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow) 133 {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long) 134 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow) 135 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t) 136 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow) 137 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int) 138 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow) 139 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long) 140 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow) 141 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int) 142 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow) 143 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long) 144 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow) 145 {LibFunc_aligned_alloc, {AlignedAllocLike, 2, 1, -1, 0, MallocFamily::Malloc}}, 146 {LibFunc_memalign, {AlignedAllocLike, 2, 1, -1, 0, MallocFamily::Malloc}}, 147 {LibFunc_calloc, {CallocLike, 2, 0, 1, -1, MallocFamily::Malloc}}, 148 {LibFunc_vec_calloc, {CallocLike, 2, 0, 1, -1, MallocFamily::VecMalloc}}, 149 {LibFunc_realloc, {ReallocLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 150 {LibFunc_vec_realloc, {ReallocLike, 2, 1, -1, -1, MallocFamily::VecMalloc}}, 151 {LibFunc_reallocf, {ReallocLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 152 {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 153 {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 154 {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 155 {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 156 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}}, 157 }; 158 // clang-format on 159 160 static const Function *getCalledFunction(const Value *V, 161 bool &IsNoBuiltin) { 162 // Don't care about intrinsics in this case. 163 if (isa<IntrinsicInst>(V)) 164 return nullptr; 165 166 const auto *CB = dyn_cast<CallBase>(V); 167 if (!CB) 168 return nullptr; 169 170 IsNoBuiltin = CB->isNoBuiltin(); 171 172 if (const Function *Callee = CB->getCalledFunction()) 173 return Callee; 174 return nullptr; 175 } 176 177 /// Returns the allocation data for the given value if it's a call to a known 178 /// allocation function. 179 static Optional<AllocFnsTy> 180 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 181 const TargetLibraryInfo *TLI) { 182 // Don't perform a slow TLI lookup, if this function doesn't return a pointer 183 // and thus can't be an allocation function. 184 if (!Callee->getReturnType()->isPointerTy()) 185 return None; 186 187 // Make sure that the function is available. 188 LibFunc TLIFn; 189 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 190 return None; 191 192 const auto *Iter = find_if( 193 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 194 return P.first == TLIFn; 195 }); 196 197 if (Iter == std::end(AllocationFnData)) 198 return None; 199 200 const AllocFnsTy *FnData = &Iter->second; 201 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 202 return None; 203 204 // Check function prototype. 205 int FstParam = FnData->FstParam; 206 int SndParam = FnData->SndParam; 207 FunctionType *FTy = Callee->getFunctionType(); 208 209 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 210 FTy->getNumParams() == FnData->NumParams && 211 (FstParam < 0 || 212 (FTy->getParamType(FstParam)->isIntegerTy(32) || 213 FTy->getParamType(FstParam)->isIntegerTy(64))) && 214 (SndParam < 0 || 215 FTy->getParamType(SndParam)->isIntegerTy(32) || 216 FTy->getParamType(SndParam)->isIntegerTy(64))) 217 return *FnData; 218 return None; 219 } 220 221 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 222 const TargetLibraryInfo *TLI) { 223 bool IsNoBuiltinCall; 224 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) 225 if (!IsNoBuiltinCall) 226 return getAllocationDataForFunction(Callee, AllocTy, TLI); 227 return None; 228 } 229 230 static Optional<AllocFnsTy> 231 getAllocationData(const Value *V, AllocType AllocTy, 232 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 233 bool IsNoBuiltinCall; 234 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) 235 if (!IsNoBuiltinCall) 236 return getAllocationDataForFunction( 237 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 238 return None; 239 } 240 241 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 242 const TargetLibraryInfo *TLI) { 243 bool IsNoBuiltinCall; 244 const Function *Callee = 245 getCalledFunction(V, IsNoBuiltinCall); 246 if (!Callee) 247 return None; 248 249 // Prefer to use existing information over allocsize. This will give us an 250 // accurate AllocTy. 251 if (!IsNoBuiltinCall) 252 if (Optional<AllocFnsTy> Data = 253 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 254 return Data; 255 256 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 257 if (Attr == Attribute()) 258 return None; 259 260 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 261 262 AllocFnsTy Result; 263 // Because allocsize only tells us how many bytes are allocated, we're not 264 // really allowed to assume anything, so we use MallocLike. 265 Result.AllocTy = MallocLike; 266 Result.NumParams = Callee->getNumOperands(); 267 Result.FstParam = Args.first; 268 Result.SndParam = Args.second.value_or(-1); 269 // Allocsize has no way to specify an alignment argument 270 Result.AlignParam = -1; 271 return Result; 272 } 273 274 static AllocFnKind getAllocFnKind(const Value *V) { 275 if (const auto *CB = dyn_cast<CallBase>(V)) { 276 Attribute Attr = CB->getFnAttr(Attribute::AllocKind); 277 if (Attr.isValid()) 278 return AllocFnKind(Attr.getValueAsInt()); 279 } 280 return AllocFnKind::Unknown; 281 } 282 283 static AllocFnKind getAllocFnKind(const Function *F) { 284 Attribute Attr = F->getFnAttribute(Attribute::AllocKind); 285 if (Attr.isValid()) 286 return AllocFnKind(Attr.getValueAsInt()); 287 return AllocFnKind::Unknown; 288 } 289 290 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) { 291 return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown; 292 } 293 294 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) { 295 return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown; 296 } 297 298 /// Tests if a value is a call or invoke to a library function that 299 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 300 /// like). 301 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { 302 return getAllocationData(V, AnyAlloc, TLI).has_value() || 303 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 304 } 305 bool llvm::isAllocationFn( 306 const Value *V, 307 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 308 return getAllocationData(V, AnyAlloc, GetTLI).has_value() || 309 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 310 } 311 312 /// Tests if a value is a call or invoke to a library function that 313 /// allocates uninitialized memory (such as malloc). 314 static bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 315 return getAllocationData(V, MallocOrOpNewLike, TLI).has_value(); 316 } 317 318 /// Tests if a value is a call or invoke to a library function that 319 /// allocates uninitialized memory with alignment (such as aligned_alloc). 320 static bool isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 321 return getAllocationData(V, AlignedAllocLike, TLI).has_value(); 322 } 323 324 /// Tests if a value is a call or invoke to a library function that 325 /// allocates zero-filled memory (such as calloc). 326 static bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 327 return getAllocationData(V, CallocLike, TLI).has_value(); 328 } 329 330 /// Tests if a value is a call or invoke to a library function that 331 /// allocates memory similar to malloc or calloc. 332 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 333 return getAllocationData(V, MallocOrCallocLike, TLI).has_value(); 334 } 335 336 /// Tests if a value is a call or invoke to a library function that 337 /// allocates memory (either malloc, calloc, or strdup like). 338 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 339 return getAllocationData(V, AllocLike, TLI).has_value() || 340 checkFnAllocKind(V, AllocFnKind::Alloc); 341 } 342 343 /// Tests if a functions is a call or invoke to a library function that 344 /// reallocates memory (e.g., realloc). 345 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) { 346 return getAllocationDataForFunction(F, ReallocLike, TLI).has_value() || 347 checkFnAllocKind(F, AllocFnKind::Realloc); 348 } 349 350 Value *llvm::getReallocatedOperand(const CallBase *CB, 351 const TargetLibraryInfo *TLI) { 352 if (getAllocationData(CB, ReallocLike, TLI).has_value()) { 353 // All currently supported realloc functions reallocate the first argument. 354 return CB->getArgOperand(0); 355 } 356 if (checkFnAllocKind(CB, AllocFnKind::Realloc)) 357 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 358 return nullptr; 359 } 360 361 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) { 362 // Note: Removability is highly dependent on the source language. For 363 // example, recent C++ requires direct calls to the global allocation 364 // [basic.stc.dynamic.allocation] to be observable unless part of a new 365 // expression [expr.new paragraph 13]. 366 367 // Historically we've treated the C family allocation routines and operator 368 // new as removable 369 return isAllocLikeFn(CB, TLI); 370 } 371 372 Value *llvm::getAllocAlignment(const CallBase *V, 373 const TargetLibraryInfo *TLI) { 374 const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI); 375 if (FnData && FnData->AlignParam >= 0) { 376 return V->getOperand(FnData->AlignParam); 377 } 378 return V->getArgOperandWithAttribute(Attribute::AllocAlign); 379 } 380 381 /// When we're compiling N-bit code, and the user uses parameters that are 382 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 383 /// trouble with APInt size issues. This function handles resizing + overflow 384 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 385 /// I's value. 386 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) { 387 // More bits than we can handle. Checking the bit width isn't necessary, but 388 // it's faster than checking active bits, and should give `false` in the 389 // vast majority of cases. 390 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 391 return false; 392 if (I.getBitWidth() != IntTyBits) 393 I = I.zextOrTrunc(IntTyBits); 394 return true; 395 } 396 397 Optional<APInt> 398 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, 399 function_ref<const Value *(const Value *)> Mapper) { 400 // Note: This handles both explicitly listed allocation functions and 401 // allocsize. The code structure could stand to be cleaned up a bit. 402 Optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI); 403 if (!FnData) 404 return None; 405 406 // Get the index type for this address space, results and intermediate 407 // computations are performed at that width. 408 auto &DL = CB->getModule()->getDataLayout(); 409 const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType()); 410 411 // Handle strdup-like functions separately. 412 if (FnData->AllocTy == StrDupLike) { 413 APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0)))); 414 if (!Size) 415 return None; 416 417 // Strndup limits strlen. 418 if (FnData->FstParam > 0) { 419 const ConstantInt *Arg = 420 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 421 if (!Arg) 422 return None; 423 424 APInt MaxSize = Arg->getValue().zext(IntTyBits); 425 if (Size.ugt(MaxSize)) 426 Size = MaxSize + 1; 427 } 428 return Size; 429 } 430 431 const ConstantInt *Arg = 432 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 433 if (!Arg) 434 return None; 435 436 APInt Size = Arg->getValue(); 437 if (!CheckedZextOrTrunc(Size, IntTyBits)) 438 return None; 439 440 // Size is determined by just 1 parameter. 441 if (FnData->SndParam < 0) 442 return Size; 443 444 Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam))); 445 if (!Arg) 446 return None; 447 448 APInt NumElems = Arg->getValue(); 449 if (!CheckedZextOrTrunc(NumElems, IntTyBits)) 450 return None; 451 452 bool Overflow; 453 Size = Size.umul_ov(NumElems, Overflow); 454 if (Overflow) 455 return None; 456 return Size; 457 } 458 459 Constant *llvm::getInitialValueOfAllocation(const Value *V, 460 const TargetLibraryInfo *TLI, 461 Type *Ty) { 462 auto *Alloc = dyn_cast<CallBase>(V); 463 if (!Alloc) 464 return nullptr; 465 466 // malloc and aligned_alloc are uninitialized (undef) 467 if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI)) 468 return UndefValue::get(Ty); 469 470 // calloc zero initializes 471 if (isCallocLikeFn(Alloc, TLI)) 472 return Constant::getNullValue(Ty); 473 474 AllocFnKind AK = getAllocFnKind(Alloc); 475 if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown) 476 return UndefValue::get(Ty); 477 if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown) 478 return Constant::getNullValue(Ty); 479 480 return nullptr; 481 } 482 483 struct FreeFnsTy { 484 unsigned NumParams; 485 // Name of default allocator function to group malloc/free calls by family 486 MallocFamily Family; 487 }; 488 489 // clang-format off 490 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = { 491 {LibFunc_free, {1, MallocFamily::Malloc}}, 492 {LibFunc_vec_free, {1, MallocFamily::VecMalloc}}, 493 {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*) 494 {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*) 495 {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 496 {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 497 {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 498 {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 499 {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint) 500 {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong) 501 {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow) 502 {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t) 503 {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint) 504 {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong) 505 {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow) 506 {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t) 507 {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint) 508 {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong) 509 {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 510 {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 511 {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint) 512 {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong) 513 {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 514 {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 515 {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free 516 {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow) 517 {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow) 518 {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t) 519 {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t) 520 {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t) 521 {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t) 522 }; 523 // clang-format on 524 525 Optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee, 526 const LibFunc TLIFn) { 527 const auto *Iter = 528 find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) { 529 return P.first == TLIFn; 530 }); 531 if (Iter == std::end(FreeFnData)) 532 return None; 533 return Iter->second; 534 } 535 536 Optional<StringRef> llvm::getAllocationFamily(const Value *I, 537 const TargetLibraryInfo *TLI) { 538 bool IsNoBuiltin; 539 const Function *Callee = getCalledFunction(I, IsNoBuiltin); 540 if (Callee == nullptr || IsNoBuiltin) 541 return None; 542 LibFunc TLIFn; 543 544 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) { 545 // Callee is some known library function. 546 const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI); 547 if (AllocData) 548 return mangledNameForMallocFamily(AllocData.value().Family); 549 const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn); 550 if (FreeData) 551 return mangledNameForMallocFamily(FreeData.value().Family); 552 } 553 // Callee isn't a known library function, still check attributes. 554 if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc | 555 AllocFnKind::Realloc)) { 556 Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family"); 557 if (Attr.isValid()) 558 return Attr.getValueAsString(); 559 } 560 return None; 561 } 562 563 /// isLibFreeFunction - Returns true if the function is a builtin free() 564 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 565 Optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn); 566 if (!FnData) 567 return checkFnAllocKind(F, AllocFnKind::Free); 568 569 // Check free prototype. 570 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 571 // attribute will exist. 572 FunctionType *FTy = F->getFunctionType(); 573 if (!FTy->getReturnType()->isVoidTy()) 574 return false; 575 if (FTy->getNumParams() != FnData->NumParams) 576 return false; 577 if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext())) 578 return false; 579 580 return true; 581 } 582 583 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) { 584 bool IsNoBuiltinCall; 585 const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall); 586 if (Callee == nullptr || IsNoBuiltinCall) 587 return nullptr; 588 589 LibFunc TLIFn; 590 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) && 591 isLibFreeFunction(Callee, TLIFn)) { 592 // All currently supported free functions free the first argument. 593 return CB->getArgOperand(0); 594 } 595 596 if (checkFnAllocKind(CB, AllocFnKind::Free)) 597 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 598 599 return nullptr; 600 } 601 602 //===----------------------------------------------------------------------===// 603 // Utility functions to compute size of objects. 604 // 605 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 606 if (Data.second.isNegative() || Data.first.ult(Data.second)) 607 return APInt(Data.first.getBitWidth(), 0); 608 return Data.first - Data.second; 609 } 610 611 /// Compute the size of the object pointed by Ptr. Returns true and the 612 /// object size in Size if successful, and false otherwise. 613 /// If RoundToAlign is true, then Size is rounded up to the alignment of 614 /// allocas, byval arguments, and global variables. 615 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 616 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 617 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 618 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 619 if (!Visitor.bothKnown(Data)) 620 return false; 621 622 Size = getSizeWithOverflow(Data).getZExtValue(); 623 return true; 624 } 625 626 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 627 const DataLayout &DL, 628 const TargetLibraryInfo *TLI, 629 bool MustSucceed) { 630 return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr, 631 MustSucceed); 632 } 633 634 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 635 const DataLayout &DL, 636 const TargetLibraryInfo *TLI, AAResults *AA, 637 bool MustSucceed) { 638 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 639 "ObjectSize must be a call to llvm.objectsize!"); 640 641 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 642 ObjectSizeOpts EvalOptions; 643 EvalOptions.AA = AA; 644 645 // Unless we have to fold this to something, try to be as accurate as 646 // possible. 647 if (MustSucceed) 648 EvalOptions.EvalMode = 649 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 650 else 651 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 652 653 EvalOptions.NullIsUnknownSize = 654 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 655 656 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 657 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 658 if (StaticOnly) { 659 // FIXME: Does it make sense to just return a failure value if the size won't 660 // fit in the output and `!MustSucceed`? 661 uint64_t Size; 662 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 663 isUIntN(ResultType->getBitWidth(), Size)) 664 return ConstantInt::get(ResultType, Size); 665 } else { 666 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 667 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 668 SizeOffsetEvalType SizeOffsetPair = 669 Eval.compute(ObjectSize->getArgOperand(0)); 670 671 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 672 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL)); 673 Builder.SetInsertPoint(ObjectSize); 674 675 // If we've outside the end of the object, then we can always access 676 // exactly 0 bytes. 677 Value *ResultSize = 678 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); 679 Value *UseZero = 680 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); 681 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 682 Value *Ret = Builder.CreateSelect( 683 UseZero, ConstantInt::get(ResultType, 0), ResultSize); 684 685 // The non-constant size expression cannot evaluate to -1. 686 if (!isa<Constant>(SizeOffsetPair.first) || 687 !isa<Constant>(SizeOffsetPair.second)) 688 Builder.CreateAssumption( 689 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); 690 691 return Ret; 692 } 693 } 694 695 if (!MustSucceed) 696 return nullptr; 697 698 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 699 } 700 701 STATISTIC(ObjectVisitorArgument, 702 "Number of arguments with unsolved size and offset"); 703 STATISTIC(ObjectVisitorLoad, 704 "Number of load instructions with unsolved size and offset"); 705 706 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { 707 if (Options.RoundToAlign && Alignment) 708 return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment)); 709 return Size; 710 } 711 712 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 713 const TargetLibraryInfo *TLI, 714 LLVMContext &Context, 715 ObjectSizeOpts Options) 716 : DL(DL), TLI(TLI), Options(Options) { 717 // Pointer size must be rechecked for each object visited since it could have 718 // a different address space. 719 } 720 721 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 722 unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 723 724 // Stripping pointer casts can strip address space casts which can change the 725 // index type size. The invariant is that we use the value type to determine 726 // the index type size and if we stripped address space casts we have to 727 // readjust the APInt as we pass it upwards in order for the APInt to match 728 // the type the caller passed in. 729 APInt Offset(InitialIntTyBits, 0); 730 V = V->stripAndAccumulateConstantOffsets( 731 DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true); 732 733 // Later we use the index type size and zero but it will match the type of the 734 // value that is passed to computeImpl. 735 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 736 Zero = APInt::getZero(IntTyBits); 737 738 bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits; 739 if (!IndexTypeSizeChanged && Offset.isZero()) 740 return computeImpl(V); 741 742 // We stripped an address space cast that changed the index type size or we 743 // accumulated some constant offset (or both). Readjust the bit width to match 744 // the argument index type size and apply the offset, as required. 745 SizeOffsetType SOT = computeImpl(V); 746 if (IndexTypeSizeChanged) { 747 if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits)) 748 SOT.first = APInt(); 749 if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits)) 750 SOT.second = APInt(); 751 } 752 // If the computed offset is "unknown" we cannot add the stripped offset. 753 return {SOT.first, 754 SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second}; 755 } 756 757 SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) { 758 if (Instruction *I = dyn_cast<Instruction>(V)) { 759 // If we have already seen this instruction, bail out. Cycles can happen in 760 // unreachable code after constant propagation. 761 if (!SeenInsts.insert(I).second) 762 return unknown(); 763 764 return visit(*I); 765 } 766 if (Argument *A = dyn_cast<Argument>(V)) 767 return visitArgument(*A); 768 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 769 return visitConstantPointerNull(*P); 770 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 771 return visitGlobalAlias(*GA); 772 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 773 return visitGlobalVariable(*GV); 774 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 775 return visitUndefValue(*UV); 776 777 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 778 << *V << '\n'); 779 return unknown(); 780 } 781 782 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 783 return ::CheckedZextOrTrunc(I, IntTyBits); 784 } 785 786 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 787 if (!I.getAllocatedType()->isSized()) 788 return unknown(); 789 790 TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType()); 791 if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min) 792 return unknown(); 793 APInt Size(IntTyBits, ElemSize.getKnownMinSize()); 794 if (!I.isArrayAllocation()) 795 return std::make_pair(align(Size, I.getAlign()), Zero); 796 797 Value *ArraySize = I.getArraySize(); 798 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 799 APInt NumElems = C->getValue(); 800 if (!CheckedZextOrTrunc(NumElems)) 801 return unknown(); 802 803 bool Overflow; 804 Size = Size.umul_ov(NumElems, Overflow); 805 return Overflow ? unknown() 806 : std::make_pair(align(Size, I.getAlign()), Zero); 807 } 808 return unknown(); 809 } 810 811 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 812 Type *MemoryTy = A.getPointeeInMemoryValueType(); 813 // No interprocedural analysis is done at the moment. 814 if (!MemoryTy|| !MemoryTy->isSized()) { 815 ++ObjectVisitorArgument; 816 return unknown(); 817 } 818 819 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); 820 return std::make_pair(align(Size, A.getParamAlign()), Zero); 821 } 822 823 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { 824 if (Optional<APInt> Size = getAllocSize(&CB, TLI)) 825 return std::make_pair(*Size, Zero); 826 return unknown(); 827 } 828 829 SizeOffsetType 830 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 831 // If null is unknown, there's nothing we can do. Additionally, non-zero 832 // address spaces can make use of null, so we don't presume to know anything 833 // about that. 834 // 835 // TODO: How should this work with address space casts? We currently just drop 836 // them on the floor, but it's unclear what we should do when a NULL from 837 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 838 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 839 return unknown(); 840 return std::make_pair(Zero, Zero); 841 } 842 843 SizeOffsetType 844 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 845 return unknown(); 846 } 847 848 SizeOffsetType 849 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 850 // Easy cases were already folded by previous passes. 851 return unknown(); 852 } 853 854 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 855 if (GA.isInterposable()) 856 return unknown(); 857 return compute(GA.getAliasee()); 858 } 859 860 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 861 if (!GV.hasDefinitiveInitializer()) 862 return unknown(); 863 864 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 865 return std::make_pair(align(Size, GV.getAlign()), Zero); 866 } 867 868 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 869 // clueless 870 return unknown(); 871 } 872 873 SizeOffsetType ObjectSizeOffsetVisitor::findLoadSizeOffset( 874 LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From, 875 SmallDenseMap<BasicBlock *, SizeOffsetType, 8> &VisitedBlocks, 876 unsigned &ScannedInstCount) { 877 constexpr unsigned MaxInstsToScan = 128; 878 879 auto Where = VisitedBlocks.find(&BB); 880 if (Where != VisitedBlocks.end()) 881 return Where->second; 882 883 auto Unknown = [this, &BB, &VisitedBlocks]() { 884 return VisitedBlocks[&BB] = unknown(); 885 }; 886 auto Known = [&BB, &VisitedBlocks](SizeOffsetType SO) { 887 return VisitedBlocks[&BB] = SO; 888 }; 889 890 do { 891 Instruction &I = *From; 892 893 if (I.isDebugOrPseudoInst()) 894 continue; 895 896 if (++ScannedInstCount > MaxInstsToScan) 897 return Unknown(); 898 899 if (!I.mayWriteToMemory()) 900 continue; 901 902 if (auto *SI = dyn_cast<StoreInst>(&I)) { 903 AliasResult AR = 904 Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand()); 905 switch ((AliasResult::Kind)AR) { 906 case AliasResult::NoAlias: 907 continue; 908 case AliasResult::MustAlias: 909 if (SI->getValueOperand()->getType()->isPointerTy()) 910 return Known(compute(SI->getValueOperand())); 911 else 912 return Unknown(); // No handling of non-pointer values by `compute`. 913 default: 914 return Unknown(); 915 } 916 } 917 918 if (auto *CB = dyn_cast<CallBase>(&I)) { 919 Function *Callee = CB->getCalledFunction(); 920 // Bail out on indirect call. 921 if (!Callee) 922 return Unknown(); 923 924 LibFunc TLIFn; 925 if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) || 926 !TLI->has(TLIFn)) 927 return Unknown(); 928 929 // TODO: There's probably more interesting case to support here. 930 if (TLIFn != LibFunc_posix_memalign) 931 return Unknown(); 932 933 AliasResult AR = 934 Options.AA->alias(CB->getOperand(0), Load.getPointerOperand()); 935 switch ((AliasResult::Kind)AR) { 936 case AliasResult::NoAlias: 937 continue; 938 case AliasResult::MustAlias: 939 break; 940 default: 941 return Unknown(); 942 } 943 944 // Is the error status of posix_memalign correctly checked? If not it 945 // would be incorrect to assume it succeeds and load doesn't see the 946 // previous value. 947 Optional<bool> Checked = isImpliedByDomCondition( 948 ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL); 949 if (!Checked || !*Checked) 950 return Unknown(); 951 952 Value *Size = CB->getOperand(2); 953 auto *C = dyn_cast<ConstantInt>(Size); 954 if (!C) 955 return Unknown(); 956 957 return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)}); 958 } 959 960 return Unknown(); 961 } while (From-- != BB.begin()); 962 963 SmallVector<SizeOffsetType> PredecessorSizeOffsets; 964 for (auto *PredBB : predecessors(&BB)) { 965 PredecessorSizeOffsets.push_back(findLoadSizeOffset( 966 Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()), 967 VisitedBlocks, ScannedInstCount)); 968 if (!bothKnown(PredecessorSizeOffsets.back())) 969 return Unknown(); 970 } 971 972 if (PredecessorSizeOffsets.empty()) 973 return Unknown(); 974 975 return Known(std::accumulate(PredecessorSizeOffsets.begin() + 1, 976 PredecessorSizeOffsets.end(), 977 PredecessorSizeOffsets.front(), 978 [this](SizeOffsetType LHS, SizeOffsetType RHS) { 979 return combineSizeOffset(LHS, RHS); 980 })); 981 } 982 983 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) { 984 if (!Options.AA) { 985 ++ObjectVisitorLoad; 986 return unknown(); 987 } 988 989 SmallDenseMap<BasicBlock *, SizeOffsetType, 8> VisitedBlocks; 990 unsigned ScannedInstCount = 0; 991 SizeOffsetType SO = 992 findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI), 993 VisitedBlocks, ScannedInstCount); 994 if (!bothKnown(SO)) 995 ++ObjectVisitorLoad; 996 return SO; 997 } 998 999 SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS, 1000 SizeOffsetType RHS) { 1001 if (!bothKnown(LHS) || !bothKnown(RHS)) 1002 return unknown(); 1003 1004 switch (Options.EvalMode) { 1005 case ObjectSizeOpts::Mode::Min: 1006 return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS; 1007 case ObjectSizeOpts::Mode::Max: 1008 return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS; 1009 case ObjectSizeOpts::Mode::Exact: 1010 return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS 1011 : unknown(); 1012 } 1013 llvm_unreachable("missing an eval mode"); 1014 } 1015 1016 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) { 1017 auto IncomingValues = PN.incoming_values(); 1018 return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(), 1019 compute(*IncomingValues.begin()), 1020 [this](SizeOffsetType LHS, Value *VRHS) { 1021 return combineSizeOffset(LHS, compute(VRHS)); 1022 }); 1023 } 1024 1025 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 1026 return combineSizeOffset(compute(I.getTrueValue()), 1027 compute(I.getFalseValue())); 1028 } 1029 1030 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 1031 return std::make_pair(Zero, Zero); 1032 } 1033 1034 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 1035 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 1036 << '\n'); 1037 return unknown(); 1038 } 1039 1040 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 1041 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 1042 ObjectSizeOpts EvalOpts) 1043 : DL(DL), TLI(TLI), Context(Context), 1044 Builder(Context, TargetFolder(DL), 1045 IRBuilderCallbackInserter( 1046 [&](Instruction *I) { InsertedInstructions.insert(I); })), 1047 EvalOpts(EvalOpts) { 1048 // IntTy and Zero must be set for each compute() since the address space may 1049 // be different for later objects. 1050 } 1051 1052 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 1053 // XXX - Are vectors of pointers possible here? 1054 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 1055 Zero = ConstantInt::get(IntTy, 0); 1056 1057 SizeOffsetEvalType Result = compute_(V); 1058 1059 if (!bothKnown(Result)) { 1060 // Erase everything that was computed in this iteration from the cache, so 1061 // that no dangling references are left behind. We could be a bit smarter if 1062 // we kept a dependency graph. It's probably not worth the complexity. 1063 for (const Value *SeenVal : SeenVals) { 1064 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 1065 // non-computable results can be safely cached 1066 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 1067 CacheMap.erase(CacheIt); 1068 } 1069 1070 // Erase any instructions we inserted as part of the traversal. 1071 for (Instruction *I : InsertedInstructions) { 1072 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 1073 I->eraseFromParent(); 1074 } 1075 } 1076 1077 SeenVals.clear(); 1078 InsertedInstructions.clear(); 1079 return Result; 1080 } 1081 1082 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 1083 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); 1084 SizeOffsetType Const = Visitor.compute(V); 1085 if (Visitor.bothKnown(Const)) 1086 return std::make_pair(ConstantInt::get(Context, Const.first), 1087 ConstantInt::get(Context, Const.second)); 1088 1089 V = V->stripPointerCasts(); 1090 1091 // Check cache. 1092 CacheMapTy::iterator CacheIt = CacheMap.find(V); 1093 if (CacheIt != CacheMap.end()) 1094 return CacheIt->second; 1095 1096 // Always generate code immediately before the instruction being 1097 // processed, so that the generated code dominates the same BBs. 1098 BuilderTy::InsertPointGuard Guard(Builder); 1099 if (Instruction *I = dyn_cast<Instruction>(V)) 1100 Builder.SetInsertPoint(I); 1101 1102 // Now compute the size and offset. 1103 SizeOffsetEvalType Result; 1104 1105 // Record the pointers that were handled in this run, so that they can be 1106 // cleaned later if something fails. We also use this set to break cycles that 1107 // can occur in dead code. 1108 if (!SeenVals.insert(V).second) { 1109 Result = unknown(); 1110 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1111 Result = visitGEPOperator(*GEP); 1112 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 1113 Result = visit(*I); 1114 } else if (isa<Argument>(V) || 1115 (isa<ConstantExpr>(V) && 1116 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 1117 isa<GlobalAlias>(V) || 1118 isa<GlobalVariable>(V)) { 1119 // Ignore values where we cannot do more than ObjectSizeVisitor. 1120 Result = unknown(); 1121 } else { 1122 LLVM_DEBUG( 1123 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 1124 << '\n'); 1125 Result = unknown(); 1126 } 1127 1128 // Don't reuse CacheIt since it may be invalid at this point. 1129 CacheMap[V] = Result; 1130 return Result; 1131 } 1132 1133 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 1134 if (!I.getAllocatedType()->isSized()) 1135 return unknown(); 1136 1137 // must be a VLA 1138 assert(I.isArrayAllocation()); 1139 1140 // If needed, adjust the alloca's operand size to match the pointer size. 1141 // Subsequent math operations expect the types to match. 1142 Value *ArraySize = Builder.CreateZExtOrTrunc( 1143 I.getArraySize(), DL.getIntPtrType(I.getContext())); 1144 assert(ArraySize->getType() == Zero->getType() && 1145 "Expected zero constant to have pointer type"); 1146 1147 Value *Size = ConstantInt::get(ArraySize->getType(), 1148 DL.getTypeAllocSize(I.getAllocatedType())); 1149 Size = Builder.CreateMul(Size, ArraySize); 1150 return std::make_pair(Size, Zero); 1151 } 1152 1153 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { 1154 Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 1155 if (!FnData) 1156 return unknown(); 1157 1158 // Handle strdup-like functions separately. 1159 if (FnData->AllocTy == StrDupLike) { 1160 // TODO: implement evaluation of strdup/strndup 1161 return unknown(); 1162 } 1163 1164 Value *FirstArg = CB.getArgOperand(FnData->FstParam); 1165 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 1166 if (FnData->SndParam < 0) 1167 return std::make_pair(FirstArg, Zero); 1168 1169 Value *SecondArg = CB.getArgOperand(FnData->SndParam); 1170 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 1171 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 1172 return std::make_pair(Size, Zero); 1173 } 1174 1175 SizeOffsetEvalType 1176 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 1177 return unknown(); 1178 } 1179 1180 SizeOffsetEvalType 1181 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 1182 return unknown(); 1183 } 1184 1185 SizeOffsetEvalType 1186 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 1187 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 1188 if (!bothKnown(PtrData)) 1189 return unknown(); 1190 1191 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 1192 Offset = Builder.CreateAdd(PtrData.second, Offset); 1193 return std::make_pair(PtrData.first, Offset); 1194 } 1195 1196 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 1197 // clueless 1198 return unknown(); 1199 } 1200 1201 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) { 1202 return unknown(); 1203 } 1204 1205 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 1206 // Create 2 PHIs: one for size and another for offset. 1207 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1208 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1209 1210 // Insert right away in the cache to handle recursive PHIs. 1211 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 1212 1213 // Compute offset/size for each PHI incoming pointer. 1214 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 1215 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 1216 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 1217 1218 if (!bothKnown(EdgeData)) { 1219 OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1220 OffsetPHI->eraseFromParent(); 1221 InsertedInstructions.erase(OffsetPHI); 1222 SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1223 SizePHI->eraseFromParent(); 1224 InsertedInstructions.erase(SizePHI); 1225 return unknown(); 1226 } 1227 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 1228 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 1229 } 1230 1231 Value *Size = SizePHI, *Offset = OffsetPHI; 1232 if (Value *Tmp = SizePHI->hasConstantValue()) { 1233 Size = Tmp; 1234 SizePHI->replaceAllUsesWith(Size); 1235 SizePHI->eraseFromParent(); 1236 InsertedInstructions.erase(SizePHI); 1237 } 1238 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1239 Offset = Tmp; 1240 OffsetPHI->replaceAllUsesWith(Offset); 1241 OffsetPHI->eraseFromParent(); 1242 InsertedInstructions.erase(OffsetPHI); 1243 } 1244 return std::make_pair(Size, Offset); 1245 } 1246 1247 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1248 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 1249 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 1250 1251 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 1252 return unknown(); 1253 if (TrueSide == FalseSide) 1254 return TrueSide; 1255 1256 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 1257 FalseSide.first); 1258 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 1259 FalseSide.second); 1260 return std::make_pair(Size, Offset); 1261 } 1262 1263 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1264 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1265 << '\n'); 1266 return unknown(); 1267 } 1268