1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Analysis/TargetFolder.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "memory-builtins" 51 52 enum AllocType : uint8_t { 53 OpNewLike = 1<<0, // allocates; never returns null 54 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 55 CallocLike = 1<<2, // allocates + bzero 56 ReallocLike = 1<<3, // reallocates 57 StrDupLike = 1<<4, 58 MallocOrCallocLike = MallocLike | CallocLike, 59 AllocLike = MallocLike | CallocLike | StrDupLike, 60 AnyAlloc = AllocLike | ReallocLike 61 }; 62 63 struct AllocFnsTy { 64 AllocType AllocTy; 65 unsigned NumParams; 66 // First and Second size parameters (or -1 if unused) 67 int FstParam, SndParam; 68 }; 69 70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 71 // know which functions are nounwind, noalias, nocapture parameters, etc. 72 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 73 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 74 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 75 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 76 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 77 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t) 78 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow) 79 {MallocLike, 3, 0, -1}}, 80 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 81 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 82 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t) 83 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow) 84 {MallocLike, 3, 0, -1}}, 85 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 86 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 87 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t) 88 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow) 89 {MallocLike, 3, 0, -1}}, 90 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 91 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 92 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t) 93 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow) 94 {MallocLike, 3, 0, -1}}, 95 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 96 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 97 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 98 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 99 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 100 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 101 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 102 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 103 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 104 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 105 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 106 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 107 {LibFunc_strndup, {StrDupLike, 2, 1, -1}} 108 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 109 }; 110 111 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 112 bool &IsNoBuiltin) { 113 // Don't care about intrinsics in this case. 114 if (isa<IntrinsicInst>(V)) 115 return nullptr; 116 117 if (LookThroughBitCast) 118 V = V->stripPointerCasts(); 119 120 ImmutableCallSite CS(V); 121 if (!CS.getInstruction()) 122 return nullptr; 123 124 IsNoBuiltin = CS.isNoBuiltin(); 125 126 if (const Function *Callee = CS.getCalledFunction()) 127 return Callee; 128 return nullptr; 129 } 130 131 /// Returns the allocation data for the given value if it's either a call to a 132 /// known allocation function, or a call to a function with the allocsize 133 /// attribute. 134 static Optional<AllocFnsTy> 135 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 136 const TargetLibraryInfo *TLI) { 137 // Make sure that the function is available. 138 StringRef FnName = Callee->getName(); 139 LibFunc TLIFn; 140 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 141 return None; 142 143 const auto *Iter = find_if( 144 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 145 return P.first == TLIFn; 146 }); 147 148 if (Iter == std::end(AllocationFnData)) 149 return None; 150 151 const AllocFnsTy *FnData = &Iter->second; 152 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 153 return None; 154 155 // Check function prototype. 156 int FstParam = FnData->FstParam; 157 int SndParam = FnData->SndParam; 158 FunctionType *FTy = Callee->getFunctionType(); 159 160 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 161 FTy->getNumParams() == FnData->NumParams && 162 (FstParam < 0 || 163 (FTy->getParamType(FstParam)->isIntegerTy(32) || 164 FTy->getParamType(FstParam)->isIntegerTy(64))) && 165 (SndParam < 0 || 166 FTy->getParamType(SndParam)->isIntegerTy(32) || 167 FTy->getParamType(SndParam)->isIntegerTy(64))) 168 return *FnData; 169 return None; 170 } 171 172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 173 const TargetLibraryInfo *TLI, 174 bool LookThroughBitCast = false) { 175 bool IsNoBuiltinCall; 176 if (const Function *Callee = 177 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 178 if (!IsNoBuiltinCall) 179 return getAllocationDataForFunction(Callee, AllocTy, TLI); 180 return None; 181 } 182 183 static Optional<AllocFnsTy> 184 getAllocationData(const Value *V, AllocType AllocTy, 185 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 186 bool LookThroughBitCast = false) { 187 bool IsNoBuiltinCall; 188 if (const Function *Callee = 189 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 190 if (!IsNoBuiltinCall) 191 return getAllocationDataForFunction( 192 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 193 return None; 194 } 195 196 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 197 const TargetLibraryInfo *TLI) { 198 bool IsNoBuiltinCall; 199 const Function *Callee = 200 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 201 if (!Callee) 202 return None; 203 204 // Prefer to use existing information over allocsize. This will give us an 205 // accurate AllocTy. 206 if (!IsNoBuiltinCall) 207 if (Optional<AllocFnsTy> Data = 208 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 209 return Data; 210 211 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 212 if (Attr == Attribute()) 213 return None; 214 215 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 216 217 AllocFnsTy Result; 218 // Because allocsize only tells us how many bytes are allocated, we're not 219 // really allowed to assume anything, so we use MallocLike. 220 Result.AllocTy = MallocLike; 221 Result.NumParams = Callee->getNumOperands(); 222 Result.FstParam = Args.first; 223 Result.SndParam = Args.second.getValueOr(-1); 224 return Result; 225 } 226 227 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 228 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 229 return CS && CS.hasRetAttr(Attribute::NoAlias); 230 } 231 232 /// Tests if a value is a call or invoke to a library function that 233 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 234 /// like). 235 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 236 bool LookThroughBitCast) { 237 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 238 } 239 bool llvm::isAllocationFn( 240 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 241 bool LookThroughBitCast) { 242 return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue(); 243 } 244 245 /// Tests if a value is a call or invoke to a function that returns a 246 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 247 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 248 bool LookThroughBitCast) { 249 // it's safe to consider realloc as noalias since accessing the original 250 // pointer is undefined behavior 251 return isAllocationFn(V, TLI, LookThroughBitCast) || 252 hasNoAliasAttr(V, LookThroughBitCast); 253 } 254 255 /// Tests if a value is a call or invoke to a library function that 256 /// allocates uninitialized memory (such as malloc). 257 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 258 bool LookThroughBitCast) { 259 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 260 } 261 bool llvm::isMallocLikeFn( 262 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 263 bool LookThroughBitCast) { 264 return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast) 265 .hasValue(); 266 } 267 268 /// Tests if a value is a call or invoke to a library function that 269 /// allocates zero-filled memory (such as calloc). 270 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 271 bool LookThroughBitCast) { 272 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 273 } 274 275 /// Tests if a value is a call or invoke to a library function that 276 /// allocates memory similar to malloc or calloc. 277 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 278 bool LookThroughBitCast) { 279 return getAllocationData(V, MallocOrCallocLike, TLI, 280 LookThroughBitCast).hasValue(); 281 } 282 283 /// Tests if a value is a call or invoke to a library function that 284 /// allocates memory (either malloc, calloc, or strdup like). 285 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 286 bool LookThroughBitCast) { 287 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 288 } 289 290 /// Tests if a value is a call or invoke to a library function that 291 /// reallocates memory (e.g., realloc). 292 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 293 bool LookThroughBitCast) { 294 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue(); 295 } 296 297 /// Tests if a functions is a call or invoke to a library function that 298 /// reallocates memory (e.g., realloc). 299 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) { 300 return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue(); 301 } 302 303 /// Tests if a value is a call or invoke to a library function that 304 /// allocates memory and throws if an allocation failed (e.g., new). 305 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI, 306 bool LookThroughBitCast) { 307 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue(); 308 } 309 310 /// extractMallocCall - Returns the corresponding CallInst if the instruction 311 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 312 /// ignore InvokeInst here. 313 const CallInst *llvm::extractMallocCall( 314 const Value *I, 315 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 316 return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr; 317 } 318 319 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 320 const TargetLibraryInfo *TLI, 321 bool LookThroughSExt = false) { 322 if (!CI) 323 return nullptr; 324 325 // The size of the malloc's result type must be known to determine array size. 326 Type *T = getMallocAllocatedType(CI, TLI); 327 if (!T || !T->isSized()) 328 return nullptr; 329 330 unsigned ElementSize = DL.getTypeAllocSize(T); 331 if (StructType *ST = dyn_cast<StructType>(T)) 332 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 333 334 // If malloc call's arg can be determined to be a multiple of ElementSize, 335 // return the multiple. Otherwise, return NULL. 336 Value *MallocArg = CI->getArgOperand(0); 337 Value *Multiple = nullptr; 338 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 339 return Multiple; 340 341 return nullptr; 342 } 343 344 /// getMallocType - Returns the PointerType resulting from the malloc call. 345 /// The PointerType depends on the number of bitcast uses of the malloc call: 346 /// 0: PointerType is the calls' return type. 347 /// 1: PointerType is the bitcast's result type. 348 /// >1: Unique PointerType cannot be determined, return NULL. 349 PointerType *llvm::getMallocType(const CallInst *CI, 350 const TargetLibraryInfo *TLI) { 351 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 352 353 PointerType *MallocType = nullptr; 354 unsigned NumOfBitCastUses = 0; 355 356 // Determine if CallInst has a bitcast use. 357 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 358 UI != E;) 359 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 360 MallocType = cast<PointerType>(BCI->getDestTy()); 361 NumOfBitCastUses++; 362 } 363 364 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 365 if (NumOfBitCastUses == 1) 366 return MallocType; 367 368 // Malloc call was not bitcast, so type is the malloc function's return type. 369 if (NumOfBitCastUses == 0) 370 return cast<PointerType>(CI->getType()); 371 372 // Type could not be determined. 373 return nullptr; 374 } 375 376 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 377 /// The Type depends on the number of bitcast uses of the malloc call: 378 /// 0: PointerType is the malloc calls' return type. 379 /// 1: PointerType is the bitcast's result type. 380 /// >1: Unique PointerType cannot be determined, return NULL. 381 Type *llvm::getMallocAllocatedType(const CallInst *CI, 382 const TargetLibraryInfo *TLI) { 383 PointerType *PT = getMallocType(CI, TLI); 384 return PT ? PT->getElementType() : nullptr; 385 } 386 387 /// getMallocArraySize - Returns the array size of a malloc call. If the 388 /// argument passed to malloc is a multiple of the size of the malloced type, 389 /// then return that multiple. For non-array mallocs, the multiple is 390 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 391 /// determined. 392 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 393 const TargetLibraryInfo *TLI, 394 bool LookThroughSExt) { 395 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 396 return computeArraySize(CI, DL, TLI, LookThroughSExt); 397 } 398 399 /// extractCallocCall - Returns the corresponding CallInst if the instruction 400 /// is a calloc call. 401 const CallInst *llvm::extractCallocCall(const Value *I, 402 const TargetLibraryInfo *TLI) { 403 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 404 } 405 406 /// isLibFreeFunction - Returns true if the function is a builtin free() 407 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 408 unsigned ExpectedNumParams; 409 if (TLIFn == LibFunc_free || 410 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 411 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 412 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 413 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 414 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 415 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 416 ExpectedNumParams = 1; 417 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 418 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 419 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 420 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t) 421 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 422 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 423 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 424 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t) 425 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 426 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 427 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 428 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 429 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 430 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 431 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 432 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 433 ExpectedNumParams = 2; 434 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow) 435 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow) 436 ExpectedNumParams = 3; 437 else 438 return false; 439 440 // Check free prototype. 441 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 442 // attribute will exist. 443 FunctionType *FTy = F->getFunctionType(); 444 if (!FTy->getReturnType()->isVoidTy()) 445 return false; 446 if (FTy->getNumParams() != ExpectedNumParams) 447 return false; 448 if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext())) 449 return false; 450 451 return true; 452 } 453 454 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 455 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 456 bool IsNoBuiltinCall; 457 const Function *Callee = 458 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 459 if (Callee == nullptr || IsNoBuiltinCall) 460 return nullptr; 461 462 StringRef FnName = Callee->getName(); 463 LibFunc TLIFn; 464 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 465 return nullptr; 466 467 return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr; 468 } 469 470 471 //===----------------------------------------------------------------------===// 472 // Utility functions to compute size of objects. 473 // 474 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 475 if (Data.second.isNegative() || Data.first.ult(Data.second)) 476 return APInt(Data.first.getBitWidth(), 0); 477 return Data.first - Data.second; 478 } 479 480 /// Compute the size of the object pointed by Ptr. Returns true and the 481 /// object size in Size if successful, and false otherwise. 482 /// If RoundToAlign is true, then Size is rounded up to the alignment of 483 /// allocas, byval arguments, and global variables. 484 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 485 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 486 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 487 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 488 if (!Visitor.bothKnown(Data)) 489 return false; 490 491 Size = getSizeWithOverflow(Data).getZExtValue(); 492 return true; 493 } 494 495 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 496 const DataLayout &DL, 497 const TargetLibraryInfo *TLI, 498 bool MustSucceed) { 499 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 500 "ObjectSize must be a call to llvm.objectsize!"); 501 502 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 503 ObjectSizeOpts EvalOptions; 504 // Unless we have to fold this to something, try to be as accurate as 505 // possible. 506 if (MustSucceed) 507 EvalOptions.EvalMode = 508 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 509 else 510 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 511 512 EvalOptions.NullIsUnknownSize = 513 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 514 515 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 516 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 517 if (StaticOnly) { 518 // FIXME: Does it make sense to just return a failure value if the size won't 519 // fit in the output and `!MustSucceed`? 520 uint64_t Size; 521 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 522 isUIntN(ResultType->getBitWidth(), Size)) 523 return ConstantInt::get(ResultType, Size); 524 } else { 525 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 526 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 527 SizeOffsetEvalType SizeOffsetPair = 528 Eval.compute(ObjectSize->getArgOperand(0)); 529 530 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 531 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL)); 532 Builder.SetInsertPoint(ObjectSize); 533 534 // If we've outside the end of the object, then we can always access 535 // exactly 0 bytes. 536 Value *ResultSize = 537 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); 538 Value *UseZero = 539 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); 540 return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0), 541 ResultSize); 542 } 543 } 544 545 if (!MustSucceed) 546 return nullptr; 547 548 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 549 } 550 551 STATISTIC(ObjectVisitorArgument, 552 "Number of arguments with unsolved size and offset"); 553 STATISTIC(ObjectVisitorLoad, 554 "Number of load instructions with unsolved size and offset"); 555 556 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 557 if (Options.RoundToAlign && Align) 558 return APInt(IntTyBits, alignTo(Size.getZExtValue(), llvm::Align(Align))); 559 return Size; 560 } 561 562 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 563 const TargetLibraryInfo *TLI, 564 LLVMContext &Context, 565 ObjectSizeOpts Options) 566 : DL(DL), TLI(TLI), Options(Options) { 567 // Pointer size must be rechecked for each object visited since it could have 568 // a different address space. 569 } 570 571 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 572 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 573 Zero = APInt::getNullValue(IntTyBits); 574 575 V = V->stripPointerCasts(); 576 if (Instruction *I = dyn_cast<Instruction>(V)) { 577 // If we have already seen this instruction, bail out. Cycles can happen in 578 // unreachable code after constant propagation. 579 if (!SeenInsts.insert(I).second) 580 return unknown(); 581 582 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 583 return visitGEPOperator(*GEP); 584 return visit(*I); 585 } 586 if (Argument *A = dyn_cast<Argument>(V)) 587 return visitArgument(*A); 588 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 589 return visitConstantPointerNull(*P); 590 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 591 return visitGlobalAlias(*GA); 592 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 593 return visitGlobalVariable(*GV); 594 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 595 return visitUndefValue(*UV); 596 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 597 if (CE->getOpcode() == Instruction::IntToPtr) 598 return unknown(); // clueless 599 if (CE->getOpcode() == Instruction::GetElementPtr) 600 return visitGEPOperator(cast<GEPOperator>(*CE)); 601 } 602 603 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 604 << *V << '\n'); 605 return unknown(); 606 } 607 608 /// When we're compiling N-bit code, and the user uses parameters that are 609 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 610 /// trouble with APInt size issues. This function handles resizing + overflow 611 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 612 /// I's value. 613 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 614 // More bits than we can handle. Checking the bit width isn't necessary, but 615 // it's faster than checking active bits, and should give `false` in the 616 // vast majority of cases. 617 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 618 return false; 619 if (I.getBitWidth() != IntTyBits) 620 I = I.zextOrTrunc(IntTyBits); 621 return true; 622 } 623 624 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 625 if (!I.getAllocatedType()->isSized()) 626 return unknown(); 627 628 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 629 if (!I.isArrayAllocation()) 630 return std::make_pair(align(Size, I.getAlignment()), Zero); 631 632 Value *ArraySize = I.getArraySize(); 633 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 634 APInt NumElems = C->getValue(); 635 if (!CheckedZextOrTrunc(NumElems)) 636 return unknown(); 637 638 bool Overflow; 639 Size = Size.umul_ov(NumElems, Overflow); 640 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), 641 Zero); 642 } 643 return unknown(); 644 } 645 646 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 647 // No interprocedural analysis is done at the moment. 648 if (!A.hasByValOrInAllocaAttr()) { 649 ++ObjectVisitorArgument; 650 return unknown(); 651 } 652 PointerType *PT = cast<PointerType>(A.getType()); 653 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 654 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 655 } 656 657 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 658 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 659 if (!FnData) 660 return unknown(); 661 662 // Handle strdup-like functions separately. 663 if (FnData->AllocTy == StrDupLike) { 664 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 665 if (!Size) 666 return unknown(); 667 668 // Strndup limits strlen. 669 if (FnData->FstParam > 0) { 670 ConstantInt *Arg = 671 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 672 if (!Arg) 673 return unknown(); 674 675 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 676 if (Size.ugt(MaxSize)) 677 Size = MaxSize + 1; 678 } 679 return std::make_pair(Size, Zero); 680 } 681 682 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 683 if (!Arg) 684 return unknown(); 685 686 APInt Size = Arg->getValue(); 687 if (!CheckedZextOrTrunc(Size)) 688 return unknown(); 689 690 // Size is determined by just 1 parameter. 691 if (FnData->SndParam < 0) 692 return std::make_pair(Size, Zero); 693 694 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 695 if (!Arg) 696 return unknown(); 697 698 APInt NumElems = Arg->getValue(); 699 if (!CheckedZextOrTrunc(NumElems)) 700 return unknown(); 701 702 bool Overflow; 703 Size = Size.umul_ov(NumElems, Overflow); 704 return Overflow ? unknown() : std::make_pair(Size, Zero); 705 706 // TODO: handle more standard functions (+ wchar cousins): 707 // - strdup / strndup 708 // - strcpy / strncpy 709 // - strcat / strncat 710 // - memcpy / memmove 711 // - strcat / strncat 712 // - memset 713 } 714 715 SizeOffsetType 716 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 717 // If null is unknown, there's nothing we can do. Additionally, non-zero 718 // address spaces can make use of null, so we don't presume to know anything 719 // about that. 720 // 721 // TODO: How should this work with address space casts? We currently just drop 722 // them on the floor, but it's unclear what we should do when a NULL from 723 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 724 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 725 return unknown(); 726 return std::make_pair(Zero, Zero); 727 } 728 729 SizeOffsetType 730 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 731 return unknown(); 732 } 733 734 SizeOffsetType 735 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 736 // Easy cases were already folded by previous passes. 737 return unknown(); 738 } 739 740 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 741 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 742 APInt Offset(IntTyBits, 0); 743 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 744 return unknown(); 745 746 return std::make_pair(PtrData.first, PtrData.second + Offset); 747 } 748 749 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 750 if (GA.isInterposable()) 751 return unknown(); 752 return compute(GA.getAliasee()); 753 } 754 755 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 756 if (!GV.hasDefinitiveInitializer()) 757 return unknown(); 758 759 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 760 return std::make_pair(align(Size, GV.getAlignment()), Zero); 761 } 762 763 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 764 // clueless 765 return unknown(); 766 } 767 768 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 769 ++ObjectVisitorLoad; 770 return unknown(); 771 } 772 773 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 774 // too complex to analyze statically. 775 return unknown(); 776 } 777 778 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 779 SizeOffsetType TrueSide = compute(I.getTrueValue()); 780 SizeOffsetType FalseSide = compute(I.getFalseValue()); 781 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 782 if (TrueSide == FalseSide) { 783 return TrueSide; 784 } 785 786 APInt TrueResult = getSizeWithOverflow(TrueSide); 787 APInt FalseResult = getSizeWithOverflow(FalseSide); 788 789 if (TrueResult == FalseResult) { 790 return TrueSide; 791 } 792 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 793 if (TrueResult.slt(FalseResult)) 794 return TrueSide; 795 return FalseSide; 796 } 797 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 798 if (TrueResult.sgt(FalseResult)) 799 return TrueSide; 800 return FalseSide; 801 } 802 } 803 return unknown(); 804 } 805 806 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 807 return std::make_pair(Zero, Zero); 808 } 809 810 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 811 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 812 << '\n'); 813 return unknown(); 814 } 815 816 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 817 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 818 ObjectSizeOpts EvalOpts) 819 : DL(DL), TLI(TLI), Context(Context), 820 Builder(Context, TargetFolder(DL), 821 IRBuilderCallbackInserter( 822 [&](Instruction *I) { InsertedInstructions.insert(I); })), 823 EvalOpts(EvalOpts) { 824 // IntTy and Zero must be set for each compute() since the address space may 825 // be different for later objects. 826 } 827 828 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 829 // XXX - Are vectors of pointers possible here? 830 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 831 Zero = ConstantInt::get(IntTy, 0); 832 833 SizeOffsetEvalType Result = compute_(V); 834 835 if (!bothKnown(Result)) { 836 // Erase everything that was computed in this iteration from the cache, so 837 // that no dangling references are left behind. We could be a bit smarter if 838 // we kept a dependency graph. It's probably not worth the complexity. 839 for (const Value *SeenVal : SeenVals) { 840 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 841 // non-computable results can be safely cached 842 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 843 CacheMap.erase(CacheIt); 844 } 845 846 // Erase any instructions we inserted as part of the traversal. 847 for (Instruction *I : InsertedInstructions) { 848 I->replaceAllUsesWith(UndefValue::get(I->getType())); 849 I->eraseFromParent(); 850 } 851 } 852 853 SeenVals.clear(); 854 InsertedInstructions.clear(); 855 return Result; 856 } 857 858 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 859 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); 860 SizeOffsetType Const = Visitor.compute(V); 861 if (Visitor.bothKnown(Const)) 862 return std::make_pair(ConstantInt::get(Context, Const.first), 863 ConstantInt::get(Context, Const.second)); 864 865 V = V->stripPointerCasts(); 866 867 // Check cache. 868 CacheMapTy::iterator CacheIt = CacheMap.find(V); 869 if (CacheIt != CacheMap.end()) 870 return CacheIt->second; 871 872 // Always generate code immediately before the instruction being 873 // processed, so that the generated code dominates the same BBs. 874 BuilderTy::InsertPointGuard Guard(Builder); 875 if (Instruction *I = dyn_cast<Instruction>(V)) 876 Builder.SetInsertPoint(I); 877 878 // Now compute the size and offset. 879 SizeOffsetEvalType Result; 880 881 // Record the pointers that were handled in this run, so that they can be 882 // cleaned later if something fails. We also use this set to break cycles that 883 // can occur in dead code. 884 if (!SeenVals.insert(V).second) { 885 Result = unknown(); 886 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 887 Result = visitGEPOperator(*GEP); 888 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 889 Result = visit(*I); 890 } else if (isa<Argument>(V) || 891 (isa<ConstantExpr>(V) && 892 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 893 isa<GlobalAlias>(V) || 894 isa<GlobalVariable>(V)) { 895 // Ignore values where we cannot do more than ObjectSizeVisitor. 896 Result = unknown(); 897 } else { 898 LLVM_DEBUG( 899 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 900 << '\n'); 901 Result = unknown(); 902 } 903 904 // Don't reuse CacheIt since it may be invalid at this point. 905 CacheMap[V] = Result; 906 return Result; 907 } 908 909 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 910 if (!I.getAllocatedType()->isSized()) 911 return unknown(); 912 913 // must be a VLA 914 assert(I.isArrayAllocation()); 915 Value *ArraySize = I.getArraySize(); 916 Value *Size = ConstantInt::get(ArraySize->getType(), 917 DL.getTypeAllocSize(I.getAllocatedType())); 918 Size = Builder.CreateMul(Size, ArraySize); 919 return std::make_pair(Size, Zero); 920 } 921 922 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 923 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 924 if (!FnData) 925 return unknown(); 926 927 // Handle strdup-like functions separately. 928 if (FnData->AllocTy == StrDupLike) { 929 // TODO 930 return unknown(); 931 } 932 933 Value *FirstArg = CS.getArgument(FnData->FstParam); 934 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 935 if (FnData->SndParam < 0) 936 return std::make_pair(FirstArg, Zero); 937 938 Value *SecondArg = CS.getArgument(FnData->SndParam); 939 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 940 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 941 return std::make_pair(Size, Zero); 942 943 // TODO: handle more standard functions (+ wchar cousins): 944 // - strdup / strndup 945 // - strcpy / strncpy 946 // - strcat / strncat 947 // - memcpy / memmove 948 // - strcat / strncat 949 // - memset 950 } 951 952 SizeOffsetEvalType 953 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 954 return unknown(); 955 } 956 957 SizeOffsetEvalType 958 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 959 return unknown(); 960 } 961 962 SizeOffsetEvalType 963 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 964 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 965 if (!bothKnown(PtrData)) 966 return unknown(); 967 968 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 969 Offset = Builder.CreateAdd(PtrData.second, Offset); 970 return std::make_pair(PtrData.first, Offset); 971 } 972 973 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 974 // clueless 975 return unknown(); 976 } 977 978 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 979 return unknown(); 980 } 981 982 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 983 // Create 2 PHIs: one for size and another for offset. 984 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 985 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 986 987 // Insert right away in the cache to handle recursive PHIs. 988 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 989 990 // Compute offset/size for each PHI incoming pointer. 991 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 992 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 993 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 994 995 if (!bothKnown(EdgeData)) { 996 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 997 OffsetPHI->eraseFromParent(); 998 InsertedInstructions.erase(OffsetPHI); 999 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 1000 SizePHI->eraseFromParent(); 1001 InsertedInstructions.erase(SizePHI); 1002 return unknown(); 1003 } 1004 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 1005 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 1006 } 1007 1008 Value *Size = SizePHI, *Offset = OffsetPHI; 1009 if (Value *Tmp = SizePHI->hasConstantValue()) { 1010 Size = Tmp; 1011 SizePHI->replaceAllUsesWith(Size); 1012 SizePHI->eraseFromParent(); 1013 InsertedInstructions.erase(SizePHI); 1014 } 1015 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1016 Offset = Tmp; 1017 OffsetPHI->replaceAllUsesWith(Offset); 1018 OffsetPHI->eraseFromParent(); 1019 InsertedInstructions.erase(OffsetPHI); 1020 } 1021 return std::make_pair(Size, Offset); 1022 } 1023 1024 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1025 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 1026 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 1027 1028 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 1029 return unknown(); 1030 if (TrueSide == FalseSide) 1031 return TrueSide; 1032 1033 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 1034 FalseSide.first); 1035 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 1036 FalseSide.second); 1037 return std::make_pair(Size, Offset); 1038 } 1039 1040 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1041 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1042 << '\n'); 1043 return unknown(); 1044 } 1045