1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   CallocLike         = 1<<2, // allocates + bzero
56   ReallocLike        = 1<<3, // reallocates
57   StrDupLike         = 1<<4,
58   MallocOrCallocLike = MallocLike | CallocLike,
59   AllocLike          = MallocLike | CallocLike | StrDupLike,
60   AnyAlloc           = AllocLike | ReallocLike
61 };
62 
63 struct AllocFnsTy {
64   AllocType AllocTy;
65   unsigned NumParams;
66   // First and Second size parameters (or -1 if unused)
67   int FstParam, SndParam;
68 };
69 
70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
71 // know which functions are nounwind, noalias, nocapture parameters, etc.
72 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
73   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
74   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
76   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
77   {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
78   {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
79                                 {MallocLike,  3, 0,  -1}},
80   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
81   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
82   {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
83   {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
84                                 {MallocLike,  3, 0,  -1}},
85   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
86   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
87   {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
88   {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
89                                 {MallocLike,  3, 0,  -1}},
90   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
91   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
92   {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
93   {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
94                                  {MallocLike,  3, 0,  -1}},
95   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
96   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
97   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
98   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
99   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
100   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
101   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
102   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
103   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
104   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
105   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
106   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
107   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}}
108   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
109 };
110 
111 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
112                                          bool &IsNoBuiltin) {
113   // Don't care about intrinsics in this case.
114   if (isa<IntrinsicInst>(V))
115     return nullptr;
116 
117   if (LookThroughBitCast)
118     V = V->stripPointerCasts();
119 
120   ImmutableCallSite CS(V);
121   if (!CS.getInstruction())
122     return nullptr;
123 
124   IsNoBuiltin = CS.isNoBuiltin();
125 
126   if (const Function *Callee = CS.getCalledFunction())
127     return Callee;
128   return nullptr;
129 }
130 
131 /// Returns the allocation data for the given value if it's either a call to a
132 /// known allocation function, or a call to a function with the allocsize
133 /// attribute.
134 static Optional<AllocFnsTy>
135 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
136                              const TargetLibraryInfo *TLI) {
137   // Make sure that the function is available.
138   StringRef FnName = Callee->getName();
139   LibFunc TLIFn;
140   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
141     return None;
142 
143   const auto *Iter = find_if(
144       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
145         return P.first == TLIFn;
146       });
147 
148   if (Iter == std::end(AllocationFnData))
149     return None;
150 
151   const AllocFnsTy *FnData = &Iter->second;
152   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
153     return None;
154 
155   // Check function prototype.
156   int FstParam = FnData->FstParam;
157   int SndParam = FnData->SndParam;
158   FunctionType *FTy = Callee->getFunctionType();
159 
160   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
161       FTy->getNumParams() == FnData->NumParams &&
162       (FstParam < 0 ||
163        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
164         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
165       (SndParam < 0 ||
166        FTy->getParamType(SndParam)->isIntegerTy(32) ||
167        FTy->getParamType(SndParam)->isIntegerTy(64)))
168     return *FnData;
169   return None;
170 }
171 
172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
173                                               const TargetLibraryInfo *TLI,
174                                               bool LookThroughBitCast = false) {
175   bool IsNoBuiltinCall;
176   if (const Function *Callee =
177           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
178     if (!IsNoBuiltinCall)
179       return getAllocationDataForFunction(Callee, AllocTy, TLI);
180   return None;
181 }
182 
183 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
184                                               const TargetLibraryInfo *TLI) {
185   bool IsNoBuiltinCall;
186   const Function *Callee =
187       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
188   if (!Callee)
189     return None;
190 
191   // Prefer to use existing information over allocsize. This will give us an
192   // accurate AllocTy.
193   if (!IsNoBuiltinCall)
194     if (Optional<AllocFnsTy> Data =
195             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
196       return Data;
197 
198   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
199   if (Attr == Attribute())
200     return None;
201 
202   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
203 
204   AllocFnsTy Result;
205   // Because allocsize only tells us how many bytes are allocated, we're not
206   // really allowed to assume anything, so we use MallocLike.
207   Result.AllocTy = MallocLike;
208   Result.NumParams = Callee->getNumOperands();
209   Result.FstParam = Args.first;
210   Result.SndParam = Args.second.getValueOr(-1);
211   return Result;
212 }
213 
214 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
215   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
216   return CS && CS.hasRetAttr(Attribute::NoAlias);
217 }
218 
219 /// Tests if a value is a call or invoke to a library function that
220 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
221 /// like).
222 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
223                           bool LookThroughBitCast) {
224   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
225 }
226 
227 /// Tests if a value is a call or invoke to a function that returns a
228 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
229 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
230                        bool LookThroughBitCast) {
231   // it's safe to consider realloc as noalias since accessing the original
232   // pointer is undefined behavior
233   return isAllocationFn(V, TLI, LookThroughBitCast) ||
234          hasNoAliasAttr(V, LookThroughBitCast);
235 }
236 
237 /// Tests if a value is a call or invoke to a library function that
238 /// allocates uninitialized memory (such as malloc).
239 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
240                           bool LookThroughBitCast) {
241   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
242 }
243 
244 /// Tests if a value is a call or invoke to a library function that
245 /// allocates zero-filled memory (such as calloc).
246 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
247                           bool LookThroughBitCast) {
248   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
249 }
250 
251 /// Tests if a value is a call or invoke to a library function that
252 /// allocates memory similar to malloc or calloc.
253 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
254                                   bool LookThroughBitCast) {
255   return getAllocationData(V, MallocOrCallocLike, TLI,
256                            LookThroughBitCast).hasValue();
257 }
258 
259 /// Tests if a value is a call or invoke to a library function that
260 /// allocates memory (either malloc, calloc, or strdup like).
261 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
262                          bool LookThroughBitCast) {
263   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
264 }
265 
266 /// extractMallocCall - Returns the corresponding CallInst if the instruction
267 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
268 /// ignore InvokeInst here.
269 const CallInst *llvm::extractMallocCall(const Value *I,
270                                         const TargetLibraryInfo *TLI) {
271   return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
272 }
273 
274 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
275                                const TargetLibraryInfo *TLI,
276                                bool LookThroughSExt = false) {
277   if (!CI)
278     return nullptr;
279 
280   // The size of the malloc's result type must be known to determine array size.
281   Type *T = getMallocAllocatedType(CI, TLI);
282   if (!T || !T->isSized())
283     return nullptr;
284 
285   unsigned ElementSize = DL.getTypeAllocSize(T);
286   if (StructType *ST = dyn_cast<StructType>(T))
287     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
288 
289   // If malloc call's arg can be determined to be a multiple of ElementSize,
290   // return the multiple.  Otherwise, return NULL.
291   Value *MallocArg = CI->getArgOperand(0);
292   Value *Multiple = nullptr;
293   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
294     return Multiple;
295 
296   return nullptr;
297 }
298 
299 /// getMallocType - Returns the PointerType resulting from the malloc call.
300 /// The PointerType depends on the number of bitcast uses of the malloc call:
301 ///   0: PointerType is the calls' return type.
302 ///   1: PointerType is the bitcast's result type.
303 ///  >1: Unique PointerType cannot be determined, return NULL.
304 PointerType *llvm::getMallocType(const CallInst *CI,
305                                  const TargetLibraryInfo *TLI) {
306   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
307 
308   PointerType *MallocType = nullptr;
309   unsigned NumOfBitCastUses = 0;
310 
311   // Determine if CallInst has a bitcast use.
312   for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
313        UI != E;)
314     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
315       MallocType = cast<PointerType>(BCI->getDestTy());
316       NumOfBitCastUses++;
317     }
318 
319   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
320   if (NumOfBitCastUses == 1)
321     return MallocType;
322 
323   // Malloc call was not bitcast, so type is the malloc function's return type.
324   if (NumOfBitCastUses == 0)
325     return cast<PointerType>(CI->getType());
326 
327   // Type could not be determined.
328   return nullptr;
329 }
330 
331 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
332 /// The Type depends on the number of bitcast uses of the malloc call:
333 ///   0: PointerType is the malloc calls' return type.
334 ///   1: PointerType is the bitcast's result type.
335 ///  >1: Unique PointerType cannot be determined, return NULL.
336 Type *llvm::getMallocAllocatedType(const CallInst *CI,
337                                    const TargetLibraryInfo *TLI) {
338   PointerType *PT = getMallocType(CI, TLI);
339   return PT ? PT->getElementType() : nullptr;
340 }
341 
342 /// getMallocArraySize - Returns the array size of a malloc call.  If the
343 /// argument passed to malloc is a multiple of the size of the malloced type,
344 /// then return that multiple.  For non-array mallocs, the multiple is
345 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
346 /// determined.
347 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
348                                 const TargetLibraryInfo *TLI,
349                                 bool LookThroughSExt) {
350   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
351   return computeArraySize(CI, DL, TLI, LookThroughSExt);
352 }
353 
354 /// extractCallocCall - Returns the corresponding CallInst if the instruction
355 /// is a calloc call.
356 const CallInst *llvm::extractCallocCall(const Value *I,
357                                         const TargetLibraryInfo *TLI) {
358   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
359 }
360 
361 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
362 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
363   bool IsNoBuiltinCall;
364   const Function *Callee =
365       getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
366   if (Callee == nullptr || IsNoBuiltinCall)
367     return nullptr;
368 
369   StringRef FnName = Callee->getName();
370   LibFunc TLIFn;
371   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
372     return nullptr;
373 
374   unsigned ExpectedNumParams;
375   if (TLIFn == LibFunc_free ||
376       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
377       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
378       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
379       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
380       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
381       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
382     ExpectedNumParams = 1;
383   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
384            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
385            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
386            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
387            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
388            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
389            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
390            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
391            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
392            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
393            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
394            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
395            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
396            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
397            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
398            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
399     ExpectedNumParams = 2;
400   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
401            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow)
402     ExpectedNumParams = 3;
403   else
404     return nullptr;
405 
406   // Check free prototype.
407   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
408   // attribute will exist.
409   FunctionType *FTy = Callee->getFunctionType();
410   if (!FTy->getReturnType()->isVoidTy())
411     return nullptr;
412   if (FTy->getNumParams() != ExpectedNumParams)
413     return nullptr;
414   if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
415     return nullptr;
416 
417   return dyn_cast<CallInst>(I);
418 }
419 
420 //===----------------------------------------------------------------------===//
421 //  Utility functions to compute size of objects.
422 //
423 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
424   if (Data.second.isNegative() || Data.first.ult(Data.second))
425     return APInt(Data.first.getBitWidth(), 0);
426   return Data.first - Data.second;
427 }
428 
429 /// Compute the size of the object pointed by Ptr. Returns true and the
430 /// object size in Size if successful, and false otherwise.
431 /// If RoundToAlign is true, then Size is rounded up to the alignment of
432 /// allocas, byval arguments, and global variables.
433 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
434                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
435   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
436   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
437   if (!Visitor.bothKnown(Data))
438     return false;
439 
440   Size = getSizeWithOverflow(Data).getZExtValue();
441   return true;
442 }
443 
444 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
445                                  const DataLayout &DL,
446                                  const TargetLibraryInfo *TLI,
447                                  bool MustSucceed) {
448   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
449          "ObjectSize must be a call to llvm.objectsize!");
450 
451   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
452   ObjectSizeOpts EvalOptions;
453   // Unless we have to fold this to something, try to be as accurate as
454   // possible.
455   if (MustSucceed)
456     EvalOptions.EvalMode =
457         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
458   else
459     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
460 
461   EvalOptions.NullIsUnknownSize =
462       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
463 
464   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
465   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
466   if (StaticOnly) {
467     // FIXME: Does it make sense to just return a failure value if the size won't
468     // fit in the output and `!MustSucceed`?
469     uint64_t Size;
470     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
471         isUIntN(ResultType->getBitWidth(), Size))
472       return ConstantInt::get(ResultType, Size);
473   } else {
474     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
475     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
476     SizeOffsetEvalType SizeOffsetPair =
477         Eval.compute(ObjectSize->getArgOperand(0));
478 
479     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
480       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
481       Builder.SetInsertPoint(ObjectSize);
482 
483       // If we've outside the end of the object, then we can always access
484       // exactly 0 bytes.
485       Value *ResultSize =
486           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
487       Value *UseZero =
488           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
489       return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0),
490                                   ResultSize);
491     }
492   }
493 
494   if (!MustSucceed)
495     return nullptr;
496 
497   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
498 }
499 
500 STATISTIC(ObjectVisitorArgument,
501           "Number of arguments with unsolved size and offset");
502 STATISTIC(ObjectVisitorLoad,
503           "Number of load instructions with unsolved size and offset");
504 
505 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
506   if (Options.RoundToAlign && Align)
507     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
508   return Size;
509 }
510 
511 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
512                                                  const TargetLibraryInfo *TLI,
513                                                  LLVMContext &Context,
514                                                  ObjectSizeOpts Options)
515     : DL(DL), TLI(TLI), Options(Options) {
516   // Pointer size must be rechecked for each object visited since it could have
517   // a different address space.
518 }
519 
520 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
521   IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
522   Zero = APInt::getNullValue(IntTyBits);
523 
524   V = V->stripPointerCasts();
525   if (Instruction *I = dyn_cast<Instruction>(V)) {
526     // If we have already seen this instruction, bail out. Cycles can happen in
527     // unreachable code after constant propagation.
528     if (!SeenInsts.insert(I).second)
529       return unknown();
530 
531     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
532       return visitGEPOperator(*GEP);
533     return visit(*I);
534   }
535   if (Argument *A = dyn_cast<Argument>(V))
536     return visitArgument(*A);
537   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
538     return visitConstantPointerNull(*P);
539   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
540     return visitGlobalAlias(*GA);
541   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
542     return visitGlobalVariable(*GV);
543   if (UndefValue *UV = dyn_cast<UndefValue>(V))
544     return visitUndefValue(*UV);
545   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
546     if (CE->getOpcode() == Instruction::IntToPtr)
547       return unknown(); // clueless
548     if (CE->getOpcode() == Instruction::GetElementPtr)
549       return visitGEPOperator(cast<GEPOperator>(*CE));
550   }
551 
552   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
553                     << *V << '\n');
554   return unknown();
555 }
556 
557 /// When we're compiling N-bit code, and the user uses parameters that are
558 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
559 /// trouble with APInt size issues. This function handles resizing + overflow
560 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
561 /// I's value.
562 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
563   // More bits than we can handle. Checking the bit width isn't necessary, but
564   // it's faster than checking active bits, and should give `false` in the
565   // vast majority of cases.
566   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
567     return false;
568   if (I.getBitWidth() != IntTyBits)
569     I = I.zextOrTrunc(IntTyBits);
570   return true;
571 }
572 
573 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
574   if (!I.getAllocatedType()->isSized())
575     return unknown();
576 
577   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
578   if (!I.isArrayAllocation())
579     return std::make_pair(align(Size, I.getAlignment()), Zero);
580 
581   Value *ArraySize = I.getArraySize();
582   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
583     APInt NumElems = C->getValue();
584     if (!CheckedZextOrTrunc(NumElems))
585       return unknown();
586 
587     bool Overflow;
588     Size = Size.umul_ov(NumElems, Overflow);
589     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
590                                                  Zero);
591   }
592   return unknown();
593 }
594 
595 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
596   // No interprocedural analysis is done at the moment.
597   if (!A.hasByValOrInAllocaAttr()) {
598     ++ObjectVisitorArgument;
599     return unknown();
600   }
601   PointerType *PT = cast<PointerType>(A.getType());
602   APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
603   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
604 }
605 
606 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
607   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
608   if (!FnData)
609     return unknown();
610 
611   // Handle strdup-like functions separately.
612   if (FnData->AllocTy == StrDupLike) {
613     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
614     if (!Size)
615       return unknown();
616 
617     // Strndup limits strlen.
618     if (FnData->FstParam > 0) {
619       ConstantInt *Arg =
620           dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
621       if (!Arg)
622         return unknown();
623 
624       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
625       if (Size.ugt(MaxSize))
626         Size = MaxSize + 1;
627     }
628     return std::make_pair(Size, Zero);
629   }
630 
631   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
632   if (!Arg)
633     return unknown();
634 
635   APInt Size = Arg->getValue();
636   if (!CheckedZextOrTrunc(Size))
637     return unknown();
638 
639   // Size is determined by just 1 parameter.
640   if (FnData->SndParam < 0)
641     return std::make_pair(Size, Zero);
642 
643   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
644   if (!Arg)
645     return unknown();
646 
647   APInt NumElems = Arg->getValue();
648   if (!CheckedZextOrTrunc(NumElems))
649     return unknown();
650 
651   bool Overflow;
652   Size = Size.umul_ov(NumElems, Overflow);
653   return Overflow ? unknown() : std::make_pair(Size, Zero);
654 
655   // TODO: handle more standard functions (+ wchar cousins):
656   // - strdup / strndup
657   // - strcpy / strncpy
658   // - strcat / strncat
659   // - memcpy / memmove
660   // - strcat / strncat
661   // - memset
662 }
663 
664 SizeOffsetType
665 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
666   // If null is unknown, there's nothing we can do. Additionally, non-zero
667   // address spaces can make use of null, so we don't presume to know anything
668   // about that.
669   //
670   // TODO: How should this work with address space casts? We currently just drop
671   // them on the floor, but it's unclear what we should do when a NULL from
672   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
673   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
674     return unknown();
675   return std::make_pair(Zero, Zero);
676 }
677 
678 SizeOffsetType
679 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
680   return unknown();
681 }
682 
683 SizeOffsetType
684 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
685   // Easy cases were already folded by previous passes.
686   return unknown();
687 }
688 
689 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
690   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
691   APInt Offset(IntTyBits, 0);
692   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
693     return unknown();
694 
695   return std::make_pair(PtrData.first, PtrData.second + Offset);
696 }
697 
698 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
699   if (GA.isInterposable())
700     return unknown();
701   return compute(GA.getAliasee());
702 }
703 
704 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
705   if (!GV.hasDefinitiveInitializer())
706     return unknown();
707 
708   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
709   return std::make_pair(align(Size, GV.getAlignment()), Zero);
710 }
711 
712 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
713   // clueless
714   return unknown();
715 }
716 
717 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
718   ++ObjectVisitorLoad;
719   return unknown();
720 }
721 
722 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
723   // too complex to analyze statically.
724   return unknown();
725 }
726 
727 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
728   SizeOffsetType TrueSide  = compute(I.getTrueValue());
729   SizeOffsetType FalseSide = compute(I.getFalseValue());
730   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
731     if (TrueSide == FalseSide) {
732         return TrueSide;
733     }
734 
735     APInt TrueResult = getSizeWithOverflow(TrueSide);
736     APInt FalseResult = getSizeWithOverflow(FalseSide);
737 
738     if (TrueResult == FalseResult) {
739       return TrueSide;
740     }
741     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
742       if (TrueResult.slt(FalseResult))
743         return TrueSide;
744       return FalseSide;
745     }
746     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
747       if (TrueResult.sgt(FalseResult))
748         return TrueSide;
749       return FalseSide;
750     }
751   }
752   return unknown();
753 }
754 
755 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
756   return std::make_pair(Zero, Zero);
757 }
758 
759 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
760   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
761                     << '\n');
762   return unknown();
763 }
764 
765 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
766     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
767     ObjectSizeOpts EvalOpts)
768     : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
769       EvalOpts(EvalOpts) {
770   // IntTy and Zero must be set for each compute() since the address space may
771   // be different for later objects.
772 }
773 
774 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
775   // XXX - Are vectors of pointers possible here?
776   IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
777   Zero = ConstantInt::get(IntTy, 0);
778 
779   SizeOffsetEvalType Result = compute_(V);
780 
781   if (!bothKnown(Result)) {
782     // Erase everything that was computed in this iteration from the cache, so
783     // that no dangling references are left behind. We could be a bit smarter if
784     // we kept a dependency graph. It's probably not worth the complexity.
785     for (const Value *SeenVal : SeenVals) {
786       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
787       // non-computable results can be safely cached
788       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
789         CacheMap.erase(CacheIt);
790     }
791   }
792 
793   SeenVals.clear();
794   return Result;
795 }
796 
797 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
798   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
799   SizeOffsetType Const = Visitor.compute(V);
800   if (Visitor.bothKnown(Const))
801     return std::make_pair(ConstantInt::get(Context, Const.first),
802                           ConstantInt::get(Context, Const.second));
803 
804   V = V->stripPointerCasts();
805 
806   // Check cache.
807   CacheMapTy::iterator CacheIt = CacheMap.find(V);
808   if (CacheIt != CacheMap.end())
809     return CacheIt->second;
810 
811   // Always generate code immediately before the instruction being
812   // processed, so that the generated code dominates the same BBs.
813   BuilderTy::InsertPointGuard Guard(Builder);
814   if (Instruction *I = dyn_cast<Instruction>(V))
815     Builder.SetInsertPoint(I);
816 
817   // Now compute the size and offset.
818   SizeOffsetEvalType Result;
819 
820   // Record the pointers that were handled in this run, so that they can be
821   // cleaned later if something fails. We also use this set to break cycles that
822   // can occur in dead code.
823   if (!SeenVals.insert(V).second) {
824     Result = unknown();
825   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
826     Result = visitGEPOperator(*GEP);
827   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
828     Result = visit(*I);
829   } else if (isa<Argument>(V) ||
830              (isa<ConstantExpr>(V) &&
831               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
832              isa<GlobalAlias>(V) ||
833              isa<GlobalVariable>(V)) {
834     // Ignore values where we cannot do more than ObjectSizeVisitor.
835     Result = unknown();
836   } else {
837     LLVM_DEBUG(
838         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
839                << '\n');
840     Result = unknown();
841   }
842 
843   // Don't reuse CacheIt since it may be invalid at this point.
844   CacheMap[V] = Result;
845   return Result;
846 }
847 
848 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
849   if (!I.getAllocatedType()->isSized())
850     return unknown();
851 
852   // must be a VLA
853   assert(I.isArrayAllocation());
854   Value *ArraySize = I.getArraySize();
855   Value *Size = ConstantInt::get(ArraySize->getType(),
856                                  DL.getTypeAllocSize(I.getAllocatedType()));
857   Size = Builder.CreateMul(Size, ArraySize);
858   return std::make_pair(Size, Zero);
859 }
860 
861 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
862   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
863   if (!FnData)
864     return unknown();
865 
866   // Handle strdup-like functions separately.
867   if (FnData->AllocTy == StrDupLike) {
868     // TODO
869     return unknown();
870   }
871 
872   Value *FirstArg = CS.getArgument(FnData->FstParam);
873   FirstArg = Builder.CreateZExt(FirstArg, IntTy);
874   if (FnData->SndParam < 0)
875     return std::make_pair(FirstArg, Zero);
876 
877   Value *SecondArg = CS.getArgument(FnData->SndParam);
878   SecondArg = Builder.CreateZExt(SecondArg, IntTy);
879   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
880   return std::make_pair(Size, Zero);
881 
882   // TODO: handle more standard functions (+ wchar cousins):
883   // - strdup / strndup
884   // - strcpy / strncpy
885   // - strcat / strncat
886   // - memcpy / memmove
887   // - strcat / strncat
888   // - memset
889 }
890 
891 SizeOffsetEvalType
892 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
893   return unknown();
894 }
895 
896 SizeOffsetEvalType
897 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
898   return unknown();
899 }
900 
901 SizeOffsetEvalType
902 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
903   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
904   if (!bothKnown(PtrData))
905     return unknown();
906 
907   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
908   Offset = Builder.CreateAdd(PtrData.second, Offset);
909   return std::make_pair(PtrData.first, Offset);
910 }
911 
912 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
913   // clueless
914   return unknown();
915 }
916 
917 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
918   return unknown();
919 }
920 
921 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
922   // Create 2 PHIs: one for size and another for offset.
923   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
924   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
925 
926   // Insert right away in the cache to handle recursive PHIs.
927   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
928 
929   // Compute offset/size for each PHI incoming pointer.
930   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
931     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
932     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
933 
934     if (!bothKnown(EdgeData)) {
935       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
936       OffsetPHI->eraseFromParent();
937       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
938       SizePHI->eraseFromParent();
939       return unknown();
940     }
941     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
942     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
943   }
944 
945   Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
946   if ((Tmp = SizePHI->hasConstantValue())) {
947     Size = Tmp;
948     SizePHI->replaceAllUsesWith(Size);
949     SizePHI->eraseFromParent();
950   }
951   if ((Tmp = OffsetPHI->hasConstantValue())) {
952     Offset = Tmp;
953     OffsetPHI->replaceAllUsesWith(Offset);
954     OffsetPHI->eraseFromParent();
955   }
956   return std::make_pair(Size, Offset);
957 }
958 
959 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
960   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
961   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
962 
963   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
964     return unknown();
965   if (TrueSide == FalseSide)
966     return TrueSide;
967 
968   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
969                                      FalseSide.first);
970   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
971                                        FalseSide.second);
972   return std::make_pair(Size, Offset);
973 }
974 
975 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
976   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
977                     << '\n');
978   return unknown();
979 }
980